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Abstract In a previous paper, Symmetry Finder (SF)
method is proposed to find the reparametrization symmetry
of the state-exchange type in neutrino oscillation in matter.
It has been applied successfully to the 1–2 state exchange
symmetry in the DMP perturbation theory, yielding the eight
symmetries. In this paper, we apply the SF method to the
atmospheric-resonance perturbation theory to uncover the
1–3 state relabeling symmetries. The pure 1–3 state symme-
try takes the unique position that it is practically impossible
to formulate in vacuum under the conventional choice of the
flavor mixing matrix. In contrast, our SF method produces
the sixteen 1–3 state exchange symmetries in matter. The
relationship between the symmetries in the original (vacuum
plus matter) Hamiltonian and the ones in the diagonalized
system is discussed.
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1 Introduction

Symmetry consideration plays an important role in under-
standing the system in quantum mechanics and quantum field
theory [1]. It should be true in neutrino oscillation, which
plays a crucial role in the measurement of the flavor mixing
angles, the CP phase, neutrino masses and the mass patterns
[2]. These informations have been and will be the source
of stimulation for physics of neutrino masses and the flavor
mixing [3,4]. Naturally, various symmetries and mapping
properties are discussed in many different contexts, possi-
bly including the parameter space alternative to the custom-
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ary assumed ones, or interactions beyond the neutrino-mass
embedded Standard Model (νSM) [5–16].1

In a previous paper [17], we have proposed a systematic
method for finding symmetry in neutrino oscillation proba-
bility in matter, which is dubbed as SymmetryFinder (SF). By
symmetry we mean invariance under a state-relabeling and
the associated redefinitions of the mixing angles, or inclu-
sively under the reparametrization. The SF method starts
from the observation that the two different expressions of the
flavor state in terms of the energy eigenstate imply a sym-
metry [18]. If one of the expressions contains the 1–2 state
exchange, for example, the appearing symmetry is of the 1–
2 state exchange type. Often the rephasing of either one of
the flavor or the energy eigenstates, or the both are involved.
Because of its efficient function of hunting symmetries, the
flavor-mass eigenstates relation is termed as the SF equation.

Despite its simple structure in vacuum, the application of
the SF method in matter environments requires a new formal-
ism which is set up in Ref. [17]. The resultant machinery for
uncovering the state-relabeling, or reparametrization sym-
metry in neutrino oscillation in matter has been applied to
the Denton et al. (DMP) perturbation theory [13]. The SF
method has proved to be powerful as it produced the eight
1–2 state exchange symmetries [17], all of which are new
except for the unique exception uncovered in Ref. [13]. Since
only a few of the similar symmetries were known [15] before
Ref. [17], it is fair to say that the SF method is powerful and
successful, to the opinion of the present author.

In this paper we discuss the 1–3 state exchange
reparametrization symmetry in matter by using the SF
method. This is the first systematic treatment of the 1–3
exchange symmetry to our knowledge. The 1–3 relabel-
ing symmetry takes a very different position from the 1–2
exchange symmetry. As we will briefly mention in Sect. 3,
there is an ongoing discussion on how to understand the rela-
tionship between the vacuum symmetry, invariance under the
vacuum variable transformations, and the symmetry written
by the dynamical, or the matter-dressed variables. What is
unique in the 1–3 exchange symmetry is that it is practically
impossible to write down the pure 1–3 state relabeling sym-
metry in vacuum, the symmetry in which only the 1 and 3
states are involved. On the other hand, our treatment using
the SF method produces the sixteen 1–3 state relabeling sym-
metry in matter, as we will see in Sects. 5 and 6. The key req-
uisite is the use of the “correct” perturbative framework, the
atmospheric-resonance perturbation theory [19], in this case.
We hope that the new series of the 1–3 exchange symme-
try contributes a better understanding of the state relabeling
symmetry in neutrino oscillation in matter.

What is the significance of the state-relabeling, or
reparametrization symmetry in neutrino oscillation? The

1 It is likely that we miss many other relevant references.

question arises probably because the state-relabeling is an
operation done inside the theoretical treatment, and it does
not appear to carry an obvious physical meaning. While
this itself is true, we will learn through investigation of
reparametrization symmetry in matter that our theoretical
understanding of the three-flavor neutrino oscillations is far
below the matured level. For example, we do not know how
big is the reparametrization symmetry in the system. There-
fore, our symmetry discussion serves for diagnostic of neu-
trino theory. We will bring the readers to a door open for
further discussions on understanding the nature of the state-
relabeling symmetry in Sect. 3. On the other side of the ques-
tion, about the practical utility, these symmetries serve as a
useful tool to make a consistency check of the derived expres-
sions of the oscillation probabilities.

2 The three neutrino evolution in matter in the νSM
and its diagonalization

Though standard by based on νSM, we first define our sys-
tem, evolution of the three-flavor neutrinos defined by the
Hamiltonian H in the flavor basis. In this paper we often
discuss the two ways of expressing the Hamiltonian H , the
originally defined form which will be denoted as HLHS, and
its diagonalized form HRHS.2 Of course, they must be equal
to each other, HLHS = HRHS. They are expressed after mul-
tiplication of 2E with E being neutrino energy, respectively,
as

2EHLHS = U23(θ23)U13(θ13, δ)U12(θ12)

×
⎡
⎣
m2

1 0 0
0 m2

2 0
0 0 m2

3

⎤
⎦U †

12(θ12)U
†
13(θ13, δ)U

†
23(θ23)

+
⎡
⎣
a(x) 0 0

0 0 0
0 0 0

⎤
⎦ , (2.1)

2EHRHS = U23(θ̃23)U13(θ̃13, δ̃)U12(θ̃12)

×
⎡
⎣

λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎦U †

12(θ̃12)U
†
13(θ̃13, δ̃)U

†
23(θ̃23).

(2.2)

In Eq. (2.1), U ≡ U23(θ23)U13(θ13, δ)U12(θ12) denotes
denotes the standard 3×3 lepton flavor mixing matrix [20] in
the Particle Data Group (PDG) convention [2], which relates
the flavor neutrino states to the vacuum mass eigenstates as
να = Uαiνi , where α runs over e, μ, τ , and the mass eigen-
state index i runs over 1, 2, and 3. Our notations for the

2 Throughout this paper, “LHS” and “RHS” are shorthand of the terms
“left-hand side” and “right-hand side”, respectively.
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mixing angles and the CP phase (i.e., lepton Kobayashi–
Maskawa phase [21]) are the standard ones. The function
a(x) in Eq. (2.1) denotes the Wolfenstein matter potential
[22] due to the charged current (CC) reactions

a(x) = 2
√

2GFNeE

≈ 1.52 × 10−4
(
Yeρ(x)

g cm−3

) (
E

GeV

)
eV2. (2.3)

Here, GF is the Fermi constant, Ne is the electron number
density in matter. ρ(x) andYe denote, respectively, the matter
density and number of electron per nucleon in matter.

In HRHS in Eq. (2.2), λi (i = 1, 2, 3) are the eigenval-
ues in matter, and θ̃12, δ̃, and etc. denote the mixing angles
and CP phase in matter. The expressions of λi are obtained
in Ref. [23], and the matter mixing angles and phases by
Zaglauer and Schwarzer (ZS) [24], both under the uniform
matter density approximation. For notational convenience we
denote the first and the second terms of HLHS as Hvac and
Hmatt, respectively.

2.1 Symmetry in HLHS vs. symmetry in HRHS

In Ref. [17] the vacuum symmetry of 1–2 mass-eigenstates
exchange type is reviewed. It can be shown that the SF equa-
tion in vacuum leads to the following two symmetries [18]

Symmetry IA-vacuum: m2
1 ↔ m2

2,

cos θ12 → ∓ sin θ12,

sin θ12 → ± cos θ12,

Symmetry IB-vacuum: m2
1 ↔ m2

2,

cos θ12 ↔ sin θ12, δ → δ ± π. (2.4)

In a nutshell, the two different expressions of neutrino flavor
state by the mass eigenstate,3

⎡
⎣

νe
νμ

ντ

⎤
⎦ = U23(θ23)U13(θ13)U12(θ12, δ)

⎡
⎣

ν1

ν2

ν3

⎤
⎦

= U23(θ23)U13(θ13)U12

(
θ12 + π

2
, δ

) ⎡
⎣

−eiδν2

e−iδν1

ν3

⎤
⎦ ,

(2.5)

implies the symmetry under the transformations we referred
as Symmetry IA-vacuum (upper sign) in Eq. (2.4). The other
flavor-mass eigenstate relation can be written down and leads
to Symmetry IB-vacuum which contains the δ transforma-
tion, see Refs. [17,18]. Notice that they can be regarded as
the symmetries of the total Hamiltonian Eq. (2.1), because

3 Here we use the SOL convention of the flavor mixing matrix U , in
which e±iδ is attached to s12. For its relation to the PDG and the other
conventions, see Ref. [25].

the matter potential term is obviously invariant under the
transformations in Eq. (2.4).

Since the Hamiltonian of the ZS system (2.2) has the same
form as Hvac with replacements m2

j → λ j , θi j → θ̃i j and

δ → δ̃, it has the matter version of the above vacuum sym-
metries, termed as IA-ZS and IB-ZS in Ref. [17]:

Symmetry IA-ZS: λ1 ↔ λ2,

cos θ̃12 → ∓ sin θ̃12, sin θ̃12 → ± cos θ̃12,

Symmetry IB-ZS: λ1 ↔ λ2,

cos θ̃12 ↔ sin θ̃12, δ̃ → δ̃ ± π. (2.6)

Notice that these are the symmetries whose transformations
consist only of the matter variables. None of the vacuum
parameters in HLHS in Eq. (2.2) transforms.

What is the nature of the symmetries Symmetry IA-ZS and
IB-ZS in matter? What is the interpretation of symmetries
in the DMP system [13], as well as the ones found in Ref.
[15]? We have made several remarks about this question. The
first one is that they are the “dynamical symmetry” [15,25].4

The second characterization we have coined is that these
symmetries arise due to the rephasing invariance of the S
matrix [16]. We believe that both of the interpretations are
still valid, illuminating the alternative aspects.

A note for the nomenclature: In this paper we denote a
symmetry of the Hamiltonian HLHS in Eq. (2.1) as “vacuum
symmetry”, and a symmetry of the Hamiltonian HRHS in
Eq. (2.2) as “matter symmetry”. The vacuum symmetry trans-
formations are written by the masses and the mixing param-
eters in vacuum, whereas the matter symmetry transforma-
tions are expressed by using the Hamiltonian-diagonalizing
or matter-dressed variables. The Hamiltonian HRHS need not
to be the completely diagonalized form as in Eq. (2.2). It can
be the form of a sum of nearly diagonalized term plus cor-
rections. See Sect. 7.

3 Vacuum symmetry vs. matter symmetry

It may be illuminative to briefly discuss the relationship
between the vacuum symmetry and matter symmetry to
understand the nature of state relabeling symmetries in neu-
trino oscillations in matter.

3.1 Vacuum symmetry approach

We can start from the following argument: suppose that
one finds a symmetry X of Hvac, the first term in HLHS

4 A dynamical symmetry is the symmetry that has no obvious trace
in the Hamiltonian of the system, but the one which indeed arises after
the system is solved. The symmetry often involves the variables that are
used to diagonalize the Hamiltonian.
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in Eq. (2.1), whose transformations consist of the vacuum
parameters. Then, the symmetry X must be the symmetry of
HLHS because the matter term Hmatt does not transform by X
[5,14]. Then, HRHS must also be invariant under X because
they are equal, HRHS = HLHS. If this argument is valid, one
can find symmetries of HRHS by using HLHS only.

3.2 Two-flavor model and its vacuum symmetry

We analyze a two-flavor model of neutrino oscillations to
know how symmetry of HLHS can reveal symmetry of HRHS.5

In this model, whose Hamiltonian is the two-flavor version
of Eq. (2.1), the flavor and the mass eigenstates are related
by να = Uα j (θ)ν j (α = e, μ, j = 1, 2) where U (θ) denotes
the two-dimensional rotation matrix with the vacuum mixing
angle θ . We assume thatm2

2 > m2
1. Then, 2E times the flavor-

basis Hamiltonian reads

2EHLHS = U (θ)

[
m2

1 0
0 m2

2

]
U (θ)† +

[
a 0
0 0

]

=
[

cos2 θm2
1 + sin2 θm2

2 + a cos θ sin θ
m2

cos θ sin θ
m2 sin2 θm2
1 + cos2 θm2

2

]
,

(3.1)

where 
m2 ≡ m2
2 −m2

1, and a denotes Wolfenstein’s poten-
tial for uniform density matter. We observe that HLHS is
invariant under the transformations of Symmetry IA-vacuum,
θ12 → θ in Eq. (2.4).

We formulate the small-θ perturbation theory in a way
keeping the manifest invariance under Symmetry IA-vacuum.
For this purpose we make an overall phase redefinition of
the neutrino state such that the unit matrix (cos2 θm2

1 +
sin2 θm2

2)1 is subtracted from the Hamiltonian (3.1) [14].
Then, we decompose the Hamiltonian into the unperturbed
and perturbed parts, 2EHLHS = 2EH0 + 2EH1, where

2EH0 =
[
a 0
0 cos 2θ
m2

]
,

2EH1 =
[

0 1
2 sin 2θ
m2

1
2 sin 2θ
m2 0

]
. (3.2)

Notice that the both 2EH0 and 2EH1 are separately invariant
under Symmetry IA. In this way the small-θ perturbation
theory can be formulated in such a way that invariance under
Symmetry IA-vacuum transformations is manifest in each
order in perturbation theory [14].

3.3 Matter symmetry vs. perturbative vacuum symmetry

We now show that the symmetry of HRHS is not identical
with Symmetry IA-vacuum, even though it is respected in

5 The author thanks the referee of EPJC for the comments which led
him to the treatment of the two-flavor model in this section.

each order in perturbation theory. The Hamiltonian (3.1) can
be diagonalized by the rotation with the matter angle θ̃ , which
yields the eigenvalues of 2EHLHS and θ̃ as

λ2,1 = 1

2

{
(a + m2

1 + m2
2)

±
√
a2 − 2a cos 2θ
m2 + (
m2)2

}
,

cos 2θ̃ = cos 2θ
m2 − a

λ2 − λ1
, sin 2θ̃ = sin 2θ
m2

λ2 − λ1
. (3.3)

The ± sign in the eigenvalues are taken such that λ2 > λ1.
Then, there is no sign ambiguity in cos 2θ̃ and sin 2θ̃ , because
it must be that θ̃ → θ as a → 0 and θ̃ → π

2 as a → +∞, the
usual MSW mechanism [22,26]. The diagonalized Hamilto-
nian takes the form HRHS = U (θ̃)diag(λ1, λ2)U (θ̃)†, and
the oscillation probability is given by

P(νμ → νe) = sin2 2θ̃ sin2 (λ2 − λ1)L

4E
, (3.4)

where L is the baseline. By using the matter variable expres-
sions of the eigenvalues

λ1 = cos2 θ̃a + 1

2
(m2

2 + m2
1) − 1

2
cos 2(θ̃ − θ)
m2,

λ2 = sin2 θ̃a + 1

2
(m2

2 + m2
1) + 1

2
cos 2(θ̃ − θ)
m2,

(3.5)

the transformations of θ̃ in Eq. (3.3) are consistent with λ1 ↔
λ2. In the both expressions Eqs. (3.3), or (3.5), it follows that
λ j → m2

j ( j = 1, 2) in the vacuum limit a → 0.
Therefore, the symmetry of HRHS is the two-flavor ver-

sion of the matter symmetry IA-ZS, see Eq. (2.6). A natural
question would be why it is different from Symmetry IA-
vacuum, which is concluded in the perturbative approach in
Sect. 3.2.

To understand the point we must notice first that both
the eigenvalues λ j and the matter angle θ̃ are invariant
under the transformations of Symmetry IA-vacuum, the sym-
metry of HLHS [27]. The diagonalized Hamiltonian HRHS

describes the dynamics of the system, and it must be inde-
pendent of how (in which way) the vacuum Hamiltonian,
and hence HLHS, is parametrized. Therefore, the vacuum
relabeling symmetry cannot affect the physical system, and
hence the symmetry of HRHS.6 It is what our two-flavor toy
model reveals. Hence, it appears that the vacuum symmetry
approach fails to identify the system’s matter symmetry.

6 For a different view that the symmetry of HRHS is the product, IA-
vacuum × IA-ZS, see Ref. [27].
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3.4 All-order summation of perturbative series

However, the picture changes when the perturbative series
is summed to all orders.7 Obviously it reproduces the sys-
tem with λ2,1 (apart from the constant shift of cos2 θm2

1 +
sin2 θm2

2) and θ̃ in (3.3). The symmetry of the system is
clearly the two-flavor version of the matter symmetry IA-ZS.
Thus, we have arrived at a rather complicated, or profound,
picture of the relationship between the symmetries of HLHS

and HRHS:

• In any finite order in the small-θ perturbation theory using
the bases in Eq. (3.2), the symmetry of the system pre-
dicted by HLHS is Symmetry IA-vacuum.

• When all orders are summed, the symmetry of the system
becomes Symmetry IA-ZS. It appears that Symmetry IA-
vacuum fuses into IA-ZS, the non-perturbative matter
symmetry of HRHS.

The emerged feature suggests that Symmetry IA-ZS is not
completely independent of Symmetry IA-vacuum, reflecting
the fact that HLHS and HRHS define the same theory. Even
though the readers might feel the above picture contrived one,
it seems to be the reality which is extracted from an explicit
treatment of the two-flavor model.

4 General constraints on state exchange symmetry

In Sect. 3, we have used the two-flavor model to investigate
the relationship between the 1-2 state exchange symmetries
in HLHS and HRHS. To extend the similar consideration to
the three-flavor system, we consider the possibility that the
general relations which reflect the equality HLHS = HRHS

might be useful. In fact, there exist the identities á la Naumov
[28] and Toshev [29], which connect the Jarlskog invariants
[30] in vacuum and in matter,

Naumov identity: c23s23c
2
13s13c12s12 sin δ

×(m2
2 − m2

1)(m
2
3 − m2

2)(m
2
3 − m2

1)

= c̃23s̃23c̃13
2s̃13c̃12s̃12 sin δ̃

×(λ2 − λ1)(λ3 − λ2)(λ3 − λ1), (4.1)

Toshev identity: c23s23 sin δ = c̃23s̃23 sin δ̃, (4.2)

where c̃23 implies cos θ̃23, etc. Nature of the identity which
originates from HLHS = HRHS is transparent in the derivation
of the Naumov identity in Refs. [31,32].

If necessary for clarity, we can take the normal mass
ordering and the neutrino channel in this section, though the

7 Assuming convergence in a small radius one can show that the series
can be exponentiated. The result may be analytically continued to a
larger domain of the expansion parameter.

extension to the alternative cases can be easily done. Then,
m2

1 < m2
2 < m2

3, and λ1 < λ2 < λ3. In the vacuum limit
a → 0, λ j → m2

j ( j = 1, 2, 3) and c̃i j → ci j , δ̃ → δ etc.
Thanks to the above stated nature of the identities there is no
ambiguity in the relative sign between the LHS and RHS of
Eqs. (4.1) and (4.2).

4.1 Toshev test for symmetry in the ZS system

Let us first examine the Toshev identity because it directly
gives a powerful message on the relationship between the
transformations of HLHS and HRHS. Under the transforma-
tions of Symmetry IA-vacuum in Eq. (2.4), the left-hand side
(LHS) of Eq. (4.2) does not transform, so that no transfor-
mation of the matter variables in the right-hand side (RHS)
of Eq. (4.2) is consistent. But, for Symmetry IB-vacuum in
Eq. (2.4), the LHS of Eq. (4.2) does transform by getting the
minus sign. Therefore, at least one of the matter parameters
in the RHS of Eq. (4.2) must transform.

The last statement above is in apparent contradiction to our
previous statement “the vacuum relabeling symmetry cannot
affect the physical system” in Sect. 3.3. However, since there
is neither θ23 nor δ in the two-flavor model, there is no imme-
diate inconsistency. The constraint from the Toshev identity
seems to have a tension with the direct product structure of
the vacuum and the matter symmetries advocated in Ref.
[27].

4.2 T-odd observables and the Naumov identity

We point out that it is possible to make a nontrivial consis-
tency check of the reparametrization symmetries of the state
exchange type by using the T-odd observables in neutrino
oscillation. The T-odd combination of the oscillation proba-
bilities 
PT ≡ P(να → νβ) − P(νβ → να) in vacuum and
in matter can be written as


PTvac = 16c23s23c
2
13s13c12s12 sin δ sin

(m2
2 − m2

1)x

4E

× sin
(m2

3 − m2
2)x

4E
sin

(m2
3 − m2

1)x

4E
,


PTmatt = 16c̃23s̃23c̃13
2s̃13c̃12s̃12 sin δ̃ sin

(λ2 − λ1)x

4E

× sin
(λ3 − λ2)x

4E
sin

(λ3 − λ1)x

4E
. (4.3)

We now discuss the response of 
PTvac and the LHS of
the Naumov identity in Eq. (4.1). Under a state exchange
symmetry transformation, the sign of 
PTvac may flip, but
the same sign flip must occur in the LHS of the Naumov
identity. Similarly, the sign flip in 
PTmatt is correlated to
the sign flip in the RHS of the Naumov identity. That is,
the sign responses of the Naumov identity are the physical
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observables. Therefore, one can make a consistency check
of our state exchange symmetry using the Naumov identity.

Let us make the Naumov test (or 
PT test) of Symme-
try IA- and IB-vacuum. The transformations of the former
(latter) symmetry are given by m2

1 ↔ m2
2, c12 → ∓s12,

s12 → ±c12 (m2
1 ↔ m2

2, c12 ↔ s12, δ → δ ± π ). It is easy
to verify that the LHS of the Naumov identity stays the same
under these transformations. It is also readily verified that the
RHS of the Naumov identity remains invariant under under
the transformations of Symmetry IA- and IB-ZS (2.6).

4.3 Naumov test for the DMP symmetries

We apply the Naumov test for the symmetries in DMP derived
in Ref. [17]. Note that the Toshev test is trivial for them
because θ23 and δ are not elevated to the matter variables. In
our Naumov test we approximate the RHS of the Naumov
identity in Eq. (4.1) by the leading order expressions in the
DMP perturbation theory,

c23s23c
2
13s13c12s12 sin δ (m2

2 − m2
1)(m

2
3 − m2

2)(m
2
3 − m2

1)

= c23s23c
2
φsφcψ sψ sin δ (λ2 − λ1)(λ3 − λ2)(λ3 − λ1).

(4.4)

By making the leading order approximation, the Naumov
identity becomes the approximate equality, and testing for
the numerical accuracy in the both sides would not reveal
a clear result. But, it is not the problem for us, because we
confine ourselves to the sign test, as discussed above. That
is, what we mean by the Naumov test for DMP is to verify
the same, consistent sign non-flip in the both LHS and RHS
of Eq. (4.4) by all the DMP symmetries.

One can show that for all the eight symmetries in DMP,
Symmetry X-DMP, where X = IA, . . ., IVB, listed in Table 1
in Ref. [17], both the LHS and RHS of Eq. (4.4) are invari-
ant under the symmetry transformations. Therefore, all the
DMP symmetries pass the Naumov sign test. Apart from
Symmetry IA, the vacuum parameter transformations affect
not only the LHS but also the RHS of Eq. (4.4), so that the
results are highly nontrivial. It indicates a nontrivial consis-
tency between the vacuum and the matter parameter transfor-
mations, the marked property of symmetries that are derived
by the SF equation in matter.

5 Looking for the 1–3 state exchange symmetry in
matter

The 1–3 state exchange symmetry takes a very special posi-
tion among possible state-relabeling symmetries because it
is practically impossible to construct in vacuum. However,
we will show in this and the next sections that, with the
SF method, it is indeed possible to formulate the 1–3 state

exchange symmetry in matter. The flavor-mass eigenstate
relation at the zeroth order, να = [U23(θ23)U13(φ, δ)]α j ν̂ j

where ν̂ j denotes the propagation basis (see Eq. (5.3)), will be
the key to allow us to find the 1–3 state exchange symmetry.

5.1 Difficulty in constructing the 1–3 exchange symmetry
in vacuum

With the conventional way of defining the flavor mixing
matrix, U = U23(θ23)U13(θ13, δ)U12(θ12), it is hard to write
down the pure m2

1 ↔ m2
3 exchange without involving the

other mass states. If one introduces the 1–3 state exchange in
theU13 rotation matrix, it has to pass through theU12 rotation
matrix to reach to the matter-mass eigenstate. Then, the ν2

state inevitably comes-in into the “1–3” state exchange.8 The
difficulty in constructing the 1–3 state exchange symmetry
in vacuum and its availability in matter may open a window
toward the better understanding of the state exchange sym-
metry in matter.

5.2 Renormalized helio-perturbation theory to first order

We work with so called the renormalized helio-perturbation
theory [19], a particular version of the atmospheric-resonance
perturbation theory [19,34–37], which describes the
atmospheric-scale enhancement of neutrino oscillation [23,
26], roughly phrased here as the “resonance” [38]. The term
“helio” is a shorthand of “helio to terrestrial ratio” which
means the ratio of the solar to atmospheric (i.e., terrestrial)

m2. The renormalized helio-perturbation theory has the
unique expansion parameter ε

ε ≡ 
m2
21


m2
ren

, 
m2
ren ≡ 
m2

31 − s2
12
m2

21, (5.1)

where 
m2
ren is the “renormalized” atmospheric 
m2 used

in Ref. [19]. In what follows we simply call the theory as the
“helio-perturbation theory”.

We follow the SF method [17] to uncover the symmetry
in the helio-perturbation theory. For convenience, we use the
PDG convention [2] of the flavor mixing matrix U ≡ UMNS.
Since the ATM convention U matrix is used in Ref. [19], in
which e±iδ is attached to s23, we first transform everything
into the PDG convention. Notice that the expression of the
oscillation probability is identical independent of the conven-
tions, ATM, PDG, and SOL, as the states are related only by

8 If we take a different U matrix such as U =
U23(θ

′
23)U12(θ

′
12)U13(θ

′
13, δ

′), see e.g., Ref. [33], then one can do
the job. But, in this case, θ ′

i j (i, j = 1, 2, 3) and δ′ in this new
parametrization is completely different from those in the our conven-
tional parametrization. Rewriting the newly obtained 1–3 exchange
symmetry transformations written with θ ′

i j (i, j = 1, 2, 3) and δ′ by
the three angles and CP phase in our PDG convention U matrix would
be a formidable task.
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the phase redefinition. The transformation of the flavor basis
Hamiltonian and the flavor states from the ATM convention
to the PDG can be done with

HPDG =
⎡
⎣

1 0 0
0 1 0
0 0 eiδ

⎤
⎦ HATM

⎡
⎣

1 0 0
0 1 0
0 0 e−iδ

⎤
⎦ ,

νPDG =
⎡
⎣

1 0 0
0 1 0
0 0 eiδ

⎤
⎦ νATM. (5.2)

See Ref. [25] for the relationships between the threeU matrix
conventions.

The flavor basis state is expressed by the propagating
eigenstate to first order in perturbation theory by using the V
matrix method [39], with which the helio-perturbation the-
ory is formulated [19]. In the PDG convention the relation
can be written, using (5.2), as⎡
⎣

νe
νμ

ντ

⎤
⎦ = U23(θ23)U13(φ, δ)

×
{

1 + εc12s12R(φ, δ; λ−, λ+)

} ⎡
⎣

ν−
ν0

ν+

⎤
⎦ , (5.3)

where ε is the expansion parameter defined in Eq. (5.1), and
R(φ, δ; λ−, λ+) is defined by

R(φ, δ; λ−, λ+)

≡

⎡
⎢⎢⎣

0 −c(φ−θ13)

m2

ren
λ−−λ0

0

c(φ−θ13)

m2

ren
λ−−λ0

0 s(φ−θ13)e−iδ 
m2
ren

λ+−λ0

0 −s(φ−θ13)eiδ

m2

ren
λ+−λ0

0

⎤
⎥⎥⎦ ,

(5.4)

where c(φ−θ13) ≡ cos (φ − θ13), and s(φ−θ13) ≡ sin (φ − θ13)

are the abbreviated notations.
Our state label [ν−, ν0, ν+] is arranged in such a way that

ν+ and ν− always undergo the atmospheric level crossing.
The relationship between our state label [ν−, ν0, ν+] and the
standard notation [ν1, ν2, ν3] (with the property λ1 < λ2 <

λ3 in the normal mass ordering) is that [ν1, ν2, ν3] correspond
to [ν0, ν−, ν+] above the solar level crossing, and to [ν− ν0

ν+] below the solar level crossing in both the normal and the
inverted mass orderings. By “above the solar level crossing”
we mean by ρE so that the region ρE < 0 corresponds to
the antineutrino channels. See Fig. 3 in Ref. [19].

5.3 Symmetry Finder (SF) equation in the
helio-perturbation theory

Following the spirit of Eq. (2.5) in the vacuum case, we look
for an alternative form of Eq. (5.3) in which the transformed
V matrix acts on the ν− − ν+ exchanged state. It naturally
leads us to the ansatz

F

⎡
⎣

νe
νμ

ντ

⎤
⎦ = FU23(θ23)U13(φ, δ)G†G

×
{

1 + εc12s12R(φ, δ; λ−, λ+)

}
G†G

⎡
⎣

ν−
ν0

ν+

⎤
⎦ .

(5.5)

In Eq. (5.5) we have introduced the flavor-state rephasing
matrix F , which is parametrized as

F ≡
⎡
⎣
eiτ 0 0
0 1 0
0 0 eiσ

⎤
⎦ , (5.6)

and a generalized ν− ↔ ν+ state exchange matrix G

G ≡
⎡
⎣

0 0 −e−i(δ−α)

0 1 0
ei(δ−β) 0 0

⎤
⎦ ,

G† ≡
⎡
⎣

0 0 e−i(δ−β)

0 1 0
−ei(δ−α) 0 0

⎤
⎦ , (5.7)

where τ , σ , α, and β denote the arbitrary phases. Notice
that the rephasing and state exchange matrices, F and G in
Eqs. (5.6) and (5.7), takes the nonvanishing, nontrivial (not
unity) elements in ν−−ν+ sub-sector. It is because we restrict
ourselves into the ν− ↔ ν+ state exchange symmetry.

The SF equation, an explicit form of Eq. (5.5), reads
⎡
⎣
eiτ 0 0
0 1 0
0 0 eiσ

⎤
⎦

⎡
⎣

νe
νμ

ντ

⎤
⎦

=
⎡
⎣

1 0 0
0 c23 s23e−iσ

0 −s23eiσ c23

⎤
⎦ FU13(φ, δ)G†G

×
{

1 + εc12s12R(φ, δ; λ−, λ+)

}
G†G

⎡
⎣

ν1

ν2

ν3

⎤
⎦

=
⎡
⎣

1 0 0
0 c′

23 s′
23

0 −s′
23 c′

23

⎤
⎦U13(φ

′, δ + ξ)

{
1

×
{

1 + εc′
12s

′
12R(φ′, δ + ξ ; λ+, λ−)

}⎡
⎣

−e−i(δ−α)ν3

ν2

ei(δ−β)ν1

⎤
⎦ .

(5.8)

We would like to keep the transformed s23, s′
23 = s23e−iσ , a

real number, which means that σ must be an integral multiple
of π . Under this ansatz, the SF equation (5.8) can be decom-
posed into the following first and the second conditions. They
read
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FU13(φ, δ)G† = U13(φ
′, δ + ξ),

εc12s12GR(φ, δ; λ−, λ+)G†

= εc′
12s

′
12R(φ′, δ + ξ ; λ+, λ−). (5.9)

The explicit form of the first condition is given by
⎡
⎣

−sφe−i(α−τ) 0 cφe−i(δ−β−τ)

0 1 0
−cφei(δ−α+σ) 0 −sφei(β+σ)

⎤
⎦

=
⎡
⎣

c′
φ 0 s′

φe
−i(δ+ξ)

0 1 0
−s′

φe
i(δ+ξ) 0 c′

φ

⎤
⎦ , (5.10)

and the second condition by

εc12s12

⎡
⎢⎢⎣

0 s(φ−θ13)e
iα 
m2

ren
λ+−λ0

0

−s(φ−θ13)e
−iα 
m2

ren
λ+−λ0

0 c(φ−θ13)e
−i(δ−β) 
m2

ren
λ−−λ0

0 −c(φ−θ13)e
i(δ−β) 
m2

ren
λ−−λ0

0

⎤
⎥⎥⎦

= εc′
12s

′
12

⎡
⎢⎢⎣

0 −c(φ′−θ ′
13)


m2
ren

λ+−λ0
0

c(φ′−θ ′
13)


m2
ren

λ+−λ0
0 s(φ′−θ ′

13)
e−i(δ+ξ) 
m2

ren
λ−−λ0

0 −s(φ′−θ ′
13)
ei(δ+ξ) 
m2

ren
λ−−λ0

0

⎤
⎥⎥⎦ , (5.11)

where the notation is such that c′
12 ≡ cos θ ′

12, and c(φ′−θ ′
13)

≡
cos(φ′ − θ ′

13) etc.
Here is an important note for τ , σ , α, β, and ξ . We have

already stated above that σ in units of π is an integer to keep
s23 a real number. Similarly, Eq. (5.10) tells us that β+σ and
α − τ must be integers, where we abbreviate “in units of π”
for the moment. Then, β must be an integer as well. Now, the
second condition (5.11) requires that α must be an integer,
which implies that τ must be an integer. Compare the 1–2 or
2–1 elements of the both sides. Then, by comparing the 2–3
elements at the both sides we know that ξ is an integer. Thus,
we have shown that τ , σ , α, β, and ξ are all integers in units
of π .

Though our SF equation (5.9) is similar to that in DMP
[17], there is an important difference between them. In the
present system, R(φ, δ; λ−, λ+) in Eq. (5.9) contains the
both φ and θ13, in the particular combination φ − θ13. In
DMP, the similar R matrix does not contain the vacuum
mixing angles. The difference entails the doubled, sixteen
symmetries in the helio-perturbation theory.

5.4 Analyzing the first condition

We analyze the first condition (5.10). It is not difficult to show
that it entails the conditions

cφ′ = −sφe
−i(α−τ) = −sφe

i(β+σ),

sφ′ = cφe
i(β+τ+ξ) = cφe

−i(α−σ+ξ), (5.12)

and the consistency conditions for the phases

α + β − τ + σ = 0 (mod. 2π), τ − σ + ξ = 0, ± π

(5.13)

In the second equation in Eq. (5.13), a classification naturally
appeared:

Class I: τ − σ =−ξ, Class II: τ −σ =−ξ ± π. (5.14)

Then, the procedure for obtaining solutions to the SF equa-
tion is: (1) to choose an ansatz for ξ . In this paper we try only
the limited choices, ξ = 0, π . (2) To choose Class I or Class
II. Then, find all possible solutions for τ , σ , α, and β. (3)
Verify the solution against the second condition (5.11).

6 The 1–3 state exchange symmetry: analysis and result

Let us present a few examples of the symmetries as the solu-
tions to the SF equation. We start our search from the easiest
case of no flavor-state rephasing, τ = σ = 0. In the follow-
ing discussion, we mean by Symmetry Type A a symmetry
whose transformations do not include δ, and Type B a sym-
metry which includes transformation of δ. In the latter we
only consider a shift of δ with the amount ±π . This ± sign is
not important, as δ is a periodic variable with period 2π . We
denote the case of no favor-basis rephasing as Type I, so that
we will be considering Symmetry IA and IB in the following
two sections before Sect. 6.3.

6.1 Symmetry IA in the helio-perturbation theory

We investigate the simplest solution τ = σ = ξ = 0. There
are two solutions of Eq. (5.12), α = β = 0 (upper sign) and
α = π , and β = −π (lower sign). This is in Class I. Because
we want to observe more clearly the new feature of doubled
solutions due to s12 sign flip - nonflip dualism, we treat the
upper-sign and lower-sign cases separately.
Case of [τ = 0, σ = 0, ξ = 0 α = 0, β = 0]:

The solution of the first condition Eq. (5.12) is given by
cφ′ = −sφ , sφ′ = cφ , which implies φ′ = φ+ π

2 . The solution
to the second condition (5.11) is given by
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(a) No sign flip of s12: c(φ′−θ ′
13)

= −s(φ−θ13), s(φ′−θ ′
13)

= c(φ−θ13),

(b) With sign flip of s12: c(φ′−θ ′
13)

= s(φ−θ13), s(φ′−θ ′
13)

= −c(φ−θ13). (6.1)

One might think that one of them must be rejected as
a solution, as in the case of DMP SF equation. Here, the
situation is more complicated, and we examine one by one
of these two cases.
[No sign flip of s12]: The solution in Eq. (6.1) implies that
(φ′ − θ ′

13) = (φ − θ13) + π
2 . Together with φ′ = φ + π

2
above,9 the resultant relation is θ ′

13 = θ13. That is, θ13 does
not transform.
[With sign flip of s12]: The solution in Eq. (6.1) with sign flip
of s12 implies that (φ′−θ ′

13) = (φ−θ13)−π
2 . When combined

with φ′ = φ + π
2 , the solution is given by θ ′

13 = θ13 + π .
To convince ourselves that the both solutions are tenable,

we appeal to the expressions of cos 2φ and sin 2φ [19]:

cos 2φ = 
m2
ren cos 2θ13 − a

λ+ − λ−
,

sin 2φ = 
m2
ren sin 2θ13

λ+ − λ−
. (6.2)

In the case of [No sign flip of s12], θ13 does not transform. But
since our transformation involve the state exchange λ− ↔
λ+, the transformation of φ is such that cos 2φ → − cos 2φ

and sin 2φ → − sin 2φ. They are consistent with 2φ′ =
2φ+π , as above. Therefore, we have shown that [No sign flip
of s12] solution is a consistent solution. Now, let us discuss
[With sign flip of s12] solution in which case θ ′

13 = θ13 +
π . Even though θ13 transforms, because 2θ ′

13 = 2θ13 mod.
2π , the transformation of φ is the same as above. Therefore,
the solution [With sign flip of s12] also qualifies as a viable
solution.

We would like to stress here again that unlike the case of
DMP symmetries, a pair of flip and non-flip s12 solutions are
always allowed. In DMP, one of these options must be cho-
sen as dictated by the SF equation. The both options become
available in our present case because of the cooperation of
θ13 which now lives in the R matrix. That is, possible incon-
sistency in one of the two solutions is taken care of by the
change in θ13, in a way consistent with the φ transformation.
We will see this feature in all the rest of the symmetries.
Case of [τ = 0, σ = 0, ξ = 0 α = π, β = −π ]:

We now turn to the lower sign solution. The solution of
the first condition Eq. (5.12) is given by cφ′ = sφ , sφ′ =
−cφ , which implies φ′ = φ − π

2 . The solution to the second

9 We still keep our attitude to remain the region of definition of the
mixing angles 0 ≤ φ ≤ π

2 , but for simplicity of notation we use the
expression such as φ′ = φ+ π

2 . A precise description of the prescription
which we impose to embody our attitude is given in section 3.2 in Ref.
[17].

condition (5.11) is given by

(a) No sign flip of s12: c(φ′−θ ′
13)

= s(φ−θ13), s(φ′−θ ′
13)

= −c(φ−θ13),

(b) With sign flip of s12: c(φ′−θ ′
13)

=−s(φ−θ13), s(φ′−θ ′
13)

= c(φ−θ13). (6.3)

We can proceed as in the case of the upper sign. The trans-
formation property of θ13 is given by θ ′

13 = θ13 in [No sign
flip of s12], θ ′

13 = θ13 − π in [With sign flip of s12]. The
both solutions qualify as the consistent solutions of the SF
equation.

It is important to confirm that the symmetry transforma-
tions we have obtained do really exchange the eigenvalues,
λ− ↔ λ+, when we perform the transformations. It can be
done easily by the alternative expressions of the eigenvalues

λ− = sin2 (φ − θ13)
m2
ren + c2

φa + εs2
12
m2

ren,

λ+ = cos2 (φ − θ13)
m2
ren + s2

φa + εs2
12
m2

ren. (6.4)

The transformations we have obtained above are of the
two types, exchanging between cφ and sφ , and exchanging
between c(φ′−θ ′

13)
and s(φ−θ13), but they are done simulta-

neously. Then, given the expressions of the eigenvalues in
Eq. (6.4), the φ transformations are consistent with the eigen-
value exchange. We did the consistency check here for IA
type symmetries in the helio-perturbation theory, but it will
be repeated in all the other symmetries, even though we do
not mention it explicitly.

6.1.1 Symmetry IA-helioP and symmetry IAf-helioP

Thus, we have obtained the following two sets of the solu-
tions, “Symmetry IA-helioP” and “Symmetry IAf-helioP”,
where “ f ′′ denotes the sign flip of s12:

Symmetry IA-helioP: λ− ↔ λ+, cφ → ∓sφ,

sφ → ±cφ, φ → φ ± π

2
,

c(φ−θ13) → ∓s(φ−θ13), s(φ−θ13) → ±c(φ−θ13),

cφc(φ−θ13) → sφs(φ−θ13), sφs(φ−θ13) → cφc(φ−θ13). (6.5)

Symmetry IAf-helioP: θ13 → θ13 ± π, θ12 → −θ12,

λ− ↔ λ+, cφ → ∓sφ, sφ → ±cφ, φ → φ ± π

2
,

c(φ−θ13) → ±s(φ−θ13), s(φ−θ13) → ∓c(φ−θ13),

cφc(φ−θ13) → −sφs(φ−θ13), sφs(φ−θ13) → −cφc(φ−θ13).

(6.6)

The last lines in Eqs. (6.5) and (6.6) may be redundant,
but they are given for convenience of the readers to verify
that the oscillation probability is invariant under the trans-
formations of these symmetries. Now, it should be straight-
forward to verify Symmetry IA-helioP and Symmetry IAf-
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helioP against the expressions of the oscillation probability
given in Appendix B in Ref. [19].

Notice that in Symmetry IA-helioP no transformation of
the vacuum parameter is involved. It is nothing but the unique
symmetry observed prior to this work in Ref. [15], the sym-
metry of 1–3 state exchange type uncovered for the first time
to the best of our knowledge. In this paper, we will learn that
it is just one of the sixteen.

6.2 Symmetry IB in the helio-perturbation theory

After learning lessons with Symmetry IA it is a straightfor-
ward exercise to discuss the Symmetry IB with the δ →
δ + π transformation. We have the following two cases:
[τ = 0, σ = 0, ξ = π α = π, β = −π ] (upper sign),
and [τ = 0, σ = 0, ξ = π α = 0, β = 0] (lower sign). They
are in Class II.
Case of [τ = 0, σ = 0, ξ = π α = π, β = −π ]

The solution of the first condition Eq. (5.12) is given by
cφ′ = sφ , sφ′ = cφ , which implies φ′ = −φ+ π

2 . The solution
to the second condition (5.11) is given by

(a) No sign flip of s12: c(φ′−θ ′
13)

= s(φ−θ13), s(φ′−θ ′
13)

= c(φ−θ13),

(b) With sign flip of s12: c(φ′−θ ′
13)

= −s(φ−θ13), s(φ′−θ ′
13)

= −c(φ−θ13). (6.7)

The transformations of (φ − θ13) in the above two cases
are: (a) φ′ − θ ′

13 = −(φ − θ13) + π
2 , and (b) φ′ − θ ′

13 =
−(φ−θ13)− π

2 , which lead to the θ13 transformation proper-
ties of (a) θ ′

13 = −θ13, and (b) θ ′
13 = −θ13 +π , respectively.

Using Eq. (6.2), they both implies that sin 2φ′ = sin 2φ and
cos 2φ′ = − cos 2φ, which is consistent with the transfor-
mation property of φ which comes from the first condition,
φ′ = −φ ± π

2 .
Case of [τ = 0, σ = 0, ξ = π α = 0, β = 0]

The treatment of the lower sign case is as before with the
solution of the first condition Eq. (5.12) given by cφ′ = −sφ ,
sφ′ = −cφ , which implies φ′ = −φ − π

2 . The solution to the
second condition (5.11) is given by

(a) No sign flip of s12: c(φ′−θ ′
13)

= −s(φ−θ13),

s(φ′−θ ′
13)

= −c(φ−θ13),

(b) With sign flip of s12: c(φ′−θ ′
13)

= s(φ−θ13),

s(φ′−θ ′
13)

= c(φ−θ13). (6.8)

The transformation properties of θ13 is such that (a) θ ′
13 =

−θ13, and (b) θ ′
13 = −θ13 −π , respectively. The consistency

between the θ13 and the φ transformation properties can be
checked in exactly the same way as above.

6.2.1 Symmetry IB-helioP and symmetry IBf-helioP

Thus, we have obtained the another two sets of the solutions,
“Symmetry IB-helioP” and “Symmetry IBf-helioP”, where
“ f ′′ denotes the sign flip of s12:

Symmetry IB-helioP: θ13 → −θ13, δ → δ + π,

λ− ↔ λ+, cφ → ±sφ, sφ → ±cφ, φ → −φ ± π

2
,

c(φ−θ13) → ±s(φ−θ13), s(φ−θ13) → ±c(φ−θ13),

cφc(φ−θ13) → sφs(φ−θ13), sφs(φ−θ13) → cφc(φ−θ13). (6.9)

Symmetry IBf-helioP: θ13 → −θ13 ± π,

θ12 → −θ12, δ → δ + π,

λ− ↔ λ+, cφ → ±sφ, sφ → ±cφ, φ → −φ ± π

2
,

c(φ−θ13) → ∓s(φ−θ13), s(φ−θ13) → ∓c(φ−θ13),

cφc(φ−θ13) → −sφs(φ−θ13), sφs(φ−θ13) → −cφc(φ−θ13).

(6.10)

Again the above transformations of Symmetry IB-helioP and
symmetry IBf-helioP leave the oscillation probabilities to
first order in helio-perturbation theory invariant. It is surpris-
ing that such a rich symmetry structure was hidden, remained
undetected in the previous investigations.

6.3 The whole structure of symmetry in the
helio-perturbation theory

The similar job of solving the SF equation can be repeated
for the other solutions of the parameters that appear in the
equation. Since the computation is so similar that we hesitate
to repeat all these calculations for the remaining cases, and
hence we leave it as a modest exercise by the interested read-
ers. The result of such symmetry hunting is summarized in
Table 1. For possible convenience of the readers, the relation-
ship between the solutions given in Table 1 and the parame-
ters of the SF equation is tabulated in Table 2.

The structure and variety of symmetry in the helio-
perturbation theory is very similar to that of the DMP case
[17]. We have the four types, I, II, III, and IV, doubled with
Types A (no δ) and B (with δ), in which only Symmetry IA
and IB are free free from the flavor basis rephasing. However,
a clear difference exists. That is a new pairing of symmetries
with or without θ12 sign flip, which entailed the doubled, six-
teen symmetries in the helio-perturbation theory as opposed
to the eight in DMP. Another difference is, of course, here
we discuss the 1–3 state exchange symmetry, but in DMP
the 1–2 state exchange one, whose two levels nearly cross in
very different kinematical regions.

Interestingly, Table 2 for the solutions to the SF equation
is identical with Table 2 for the DMP symmetries [17] apart
from the presence or absence of the s12 flip solutions. It sug-
gests that the structure I–IV doubled with Types A and B
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Table 1 Summary of the reparametrization symmetry in the helio-
perturbation theory [19]. The symmetry denoted as e.g., “Symmetry
X” in this Table is called as “Symmetry X-helioP” in the text, where

X = IA, IB, IIA, IIB, IIIA, IIIB, IVA, and IVB. Each type is paired by
no “f” and with “f” which show without or with sign flipping of s12,
respectively

Symmetry Vacuum parameter transformations Matter parameter transformations

Symmetry IA None λ− ↔ λ+, cφ → ∓sφ , sφ → ±cφ .

c(φ−θ13) → ∓s(φ−θ13), s(φ−θ13) → ±c(φ−θ13)

Symmetry IAf θ13 → θ13 ± π , θ12 → −θ12 λ− ↔ λ+, cφ → ∓sφ , sφ → ±cφ .

c(φ−θ13) → ±s(φ−θ13), s(φ−θ13) → ∓c(φ−θ13)

Symmetry IB θ13 → −θ13, δ → δ + π . λ− ↔ λ+, cψ → ±sψ , sψ → ±cψ .

c(φ−θ13) → ±s(φ−θ13), s(φ−θ13) → ±c(φ−θ13)

Symmetry IBf θ13 → −θ13 ± π , θ12 → −θ12, λ− ↔ λ+, cψ → ±sψ , sψ → ±cψ .

δ → δ + π c(φ−θ13) → ∓s(φ−θ13), s(φ−θ13) → ∓c(φ−θ13)

Symmetry IIA θ23 → −θ23, θ13 → −θ13 λ− ↔ λ+, cφ → ±sφ , sφ → ±cφ

c(φ−θ13) → ±s(φ−θ13), s(φ−θ13) → ±c(φ−θ13)

Symmetry IIAf θ23 → −θ23, θ13 → −θ13 ± π λ− ↔ λ+, cφ → ±sφ , sφ → ±cφ

θ12 → −θ12 c(φ−θ13) → ∓s(φ−θ13), s(φ−θ13) → ∓c(φ−θ13)

Symmetry IIB θ23 → −θ23, δ → δ + π λ− ↔ λ+, cφ → ∓sφ , sφ → ±cφ

c(φ−θ13) → ∓s(φ−θ13), s(φ−θ13) → ±c(φ−θ13)

Symmetry IIBf θ23 → −θ23, θ13 → θ13 ± π , λ− ↔ λ+, cφ → ∓sφ , sφ → ±cφ

θ12 → −θ12, δ → δ + π c(φ−θ13) → ±s(φ−θ13), s(φ−θ13) → ∓c(φ−θ13).

Symmetry IIIA θ13 → −θ13 ± π , λ− ↔ λ+, cφ → ±sφ , sφ → ±cφ

c(φ−θ13) → ∓s(φ−θ13), s(φ−θ13) → ∓c(φ−θ13)

Symmetry IIIAf θ13 → −θ13, θ12 → −θ12. λ− ↔ λ+, cφ → ±sφ , sφ → ±cφ

c(φ−θ13) → ±s(φ−θ13), s(φ−θ13) → ±c(φ−θ13)

Symmetry IIIB θ13 → θ13 ± π , δ → δ + π . λ− ↔ λ+, cφ → ∓sφ , sφ → ±cφ

c(φ−θ13) → ±s(φ−θ13), s(φ−θ13) → ∓c(φ−θ13)

Symmetry IIIBf θ12 → −θ12, δ → δ + π . λ− ↔ λ+, cφ → ∓sφ , sφ → ±cφ

c(φ−θ13) → ∓s(φ−θ13), s(φ−θ13) → ±c(φ−θ13)

Symmetry IVA θ23 → −θ23, θ13 → θ13 ± π λ− ↔ λ+, cφ → ∓sφ , sφ → ±cφ

c(φ−θ13) → ±s(φ−θ13), s(φ−θ13) → ∓c(φ−θ13)

Symmetry IVAf θ23 → −θ23, θ12 → −θ12 λ− ↔ λ+, cφ → ∓sφ , sφ → ±cφ

c(φ−θ13) → ∓s(φ−θ13), s(φ−θ13) → ±c(φ−θ13)

Symmetry IVB θ23 → −θ23, θ13 → −θ13 ± π , λ− ↔ λ+, cφ → ±sφ , sφ → ±cφ

δ → δ + π . c(φ−θ13) → ∓s(φ−θ13), s(φ−θ13) → ∓c(φ−θ13)

Symmetry IVBf θ23 → −θ23, θ13 → −θ13, λ− ↔ λ+, cφ → ±sφ , sφ → ±cφ

θ12 → −θ12, δ → δ + π . c(φ−θ13) → ±s(φ−θ13), s(φ−θ13) → ±c(φ−θ13)

represents the universal feature of state-relabeling symme-
tries in neutrino oscillation in matter.

One may ask: why so many, doubled number of sym-
metries compared to DMP? The DMP perturbation theory
is a global framework for all the terrestrial experiments
which include the both atmospheric-scale and solar-scale
resonances [13], as emphasized in Ref. [16]. For a pictorial
view, see e.g., Fig. 1 in Ref. [40]. Even if we discuss physics
in region of the atmospheric-scale enhanced oscillation, the
variables which describe the solar-scale oscillation are not the
spectators. On the other hand, in the helio-perturbation the-
ory, the region of solar-scale oscillation is outside the region
of validity of the theory. Therefore, the solar variables are

completely spectators. That is probably why the symmetries
in the helio-perturbation theory is doubled due to the s12 sign
flip and non-flip dualism.

The characteristic feature which one can observe through
the process of symmetry finding and is worth to comment
here again is the tight relationship between the vacuum- and
the matter-variables transformations. It must be obvious from
the treatment of Sects. 6.1 and 6.2 that the transformations
of φ, θ13, and θ12 are all related to each others to organize
themselves into the symmetries IA, IAf, IB, and IBf in the
helio-perturbation theory. The similar conspiracy of the vac-
uum and matter variables appeared in our treatment of the SF
equation in DMP in which, for example, only one of the s12
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Table 2 The relationship
between the solutions given in
Table 1 and the parameters of
the SF equation. The labels
“upper” and “lower” imply the
upper and lower sign in the
corresponding columns in
Table 1

Symmetry τ, σ, ξ α, β

Symmetry IA, IAf τ = 0, σ = 0, ξ = 0 α = β = 0 (upper)

α = π, β = −π (lower)

Symmetry IB, IBf τ = σ = 0, ξ = π α = π, β = −π (upper)

α = β = 0 (lower)

Symmetry IIA, IIAf τ = 0, σ = −π , ξ = 0 α = π, β = 0 (upper)

α = 0, β = π (lower)

Symmetry IIB, IIBf τ = 0, σ = −π , ξ = π α = 0, β = π (upper)

α = π, β = 0 (lower)

Symmetry IIIA, IIIAf τ = π , σ = 0, ξ = 0 α = 0, β = π (upper)

α = π, β = 0 (lower)

Symmetry IIIB, IIIBf τ = π, σ = 0, ξ = π α = π, β = 0 (upper)

α = 0, β = π (lower)

Symmetry IVA, IVAf τ = σ = π , ξ = 0 α = π, β = −π (upper)

α = β = 0 (lower)

Symmetry IVB, IVBf τ = π , σ = π , ξ = π α = β = 0 (upper)

α = π, β = −π (lower)

sign flip, or non-flip solution is allowed depending upon the
transformations of the other vacuum and matter parameters.
See Ref. [17].

7 Hamiltonian view of the 1–3 exchange symmetry in
matter

We have already introduced in Sect. 2 the Hamiltonian
view of the symmetry. There are two ways of expressing
the flavor basis Hamiltonian, the originally defined form
HLHS = Hvac + Hmatt, and its diagonalized form HRHS. Of
course, they must be equal to each other.

In the helio-perturbation theory HRHS is not exactly diago-
nalized, but decomposed into the unperturbed (zeroth-order)
and perturbed (first-order) Hamiltonian. In the PDG conven-
tion 2EHRHS is given by

2EHRHS = U23(θ23)U13(φ, δ) ×
⎧⎨
⎩

⎡
⎣

λ− 0 0
0 λ0 0
0 0 λ+

⎤
⎦

+εc12s12
m2
ren

⎡
⎣

0 c(φ−θ13) 0
c(φ−θ13) 0 s(φ−θ13)e

−iδ

0 s(φ−θ13)e
iδ 0

⎤
⎦

⎫⎬
⎭

×U †
13(φ, δ)U †

23(θ23). (7.1)

Of course HLHS is the same as in Eq. (2.1).
In this section we show that all the symmetries derived in

Sect. 6 are the Hamiltonian symmetries. That is, the trans-
formations belonging to each symmetry tabulated in Table 1
leave HLHS and HRHS in Eq. (7.1) invariant up to a common
rephasing matrix. Since there are so many symmetries, six-

teen of them, which does not quite fit to the explicit treatment
for demonstrating the invariance here, we pick only one of
them to show the point. But, the interested readers can easily
work out the invariance for the rest of the symmetries.

7.1 Symmetry IVB-helioP

We pick up Symmetry IVB-helioP (see Table 1, the second
from the bottom) for an example for explicit demonstration
of invariance of the Hamiltonian. We first discuss invariance
of HLHS. The vacuum parameter transformations in Sym-
metry IVB-helioP include: θ23 → −θ23, θ13 → −θ13 ± π ,
and δ → δ + π . θ13 → −θ13 ± π implies c13 → −c13

and s13 → s13. Then, under these transformations the
U = U23(θ23)U13(θ13, δ)U12(θ12) matrix transforms under
Symmetry IVB-helioP as10

U → Rep(IV)U, Rep(IV) ≡
⎡
⎣

−1 0 0
0 1 0
0 0 −1

⎤
⎦ . (7.2)

The rephasing matrix - Rep(IV) (“-” means minus) can do
the job as well. Since Hvac = Udiag(m2

1,m
2
2,m

2
3)U

†, Hvac

and hence HLHS is invariant under Symmetry IVB-helioP
transformations up to the Rep(IV) rephasing matrix, which
is operated both from the left and the right.

10 The transformation property of the U matrix with the asymmetric
rephasing matrix, from left only, is new. It has never showed up in the
case of the DMP symmetries discussed in Ref. [17]. The similar asym-
metric rephasing factors onU also appear in the treatment of Symmetry
IIAf, IIBf, IIIA, IIIB, IVA.
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Now we discuss invariance of HRHS. By cφ → ±sφ , sφ →
±cφ and δ → δ + π , U13(φ, δ) transforms as

U13(φ, δ) =
⎡
⎣

cφ 0 sφe−iδ

0 1 0
−sφeiδ 0 cφ

⎤
⎦ → U13(φ

′, δ′)

=
⎡
⎣

±sφ 0 ∓cφe−iδ

0 1 0
±cφeiδ 0 ±sφ

⎤
⎦

where φ′ = −φ ± π
2 , and δ′ = δ + π . Then,

U13(φ, δ)

⎡
⎣

λ− 0 0
0 λ0 0
0 0 λ+

⎤
⎦U †

13(φ, δ)

→ U13(φ
′, δ′)

⎡
⎣

λ+ 0 0
0 λ0 0
0 0 λ−

⎤
⎦U †

13(φ
′, δ′)

=
⎡
⎣

s2
φλ+ + c2

φλ− 0 cφsφe−iδ(λ+ − λ−)

0 λ0 0
cφsφeiδ(λ+ − λ−) 0 c2

φλ+ + s2
φλ−

⎤
⎦

= U13(φ, δ)

⎡
⎣

λ− 0 0
0 λ0 0
0 0 λ+

⎤
⎦U †

13(φ, δ). (7.3)

under the transformations of Symmetry IVB-helioP. There-
fore, H0 is invariant by itself, without the Rep(IV) rephasing
matrix. It may look like a trouble but it is not. One can eas-
ily show that H0, the RHS of Eq. (7.3) is invariant under
multiplication of the Rep(IV) rephasing matrix from left and
right.

The matrix part in the perturbed Hamiltonian H1 trans-
forms under Symmetry IVB-helioP transformations

U13(φ, δ)

⎡
⎣

0 c(φ−θ13) 0
c(φ−θ13) 0 s(φ−θ13)e−iδ

0 s(φ−θ13)eiδ 0

⎤
⎦U †

13(φ, δ)

→ U13(φ
′, δ′)

⎡
⎣

0 ∓s(φ−θ13) 0
∓s(φ−θ13) 0 ±c(φ−θ13)e−iδ

0 ±c(φ−θ13)eiδ 0

⎤
⎦U †

13(φ
′, δ′)

= −U13(φ, δ)

⎡
⎣

0 c(φ−θ13) 0
c(φ−θ13) 0 s(φ−θ13)e−iδ

0 s(φ−θ13)eiδ 0

⎤
⎦U †

13(φ, δ). (7.4)

While the minus sign looks troublesome but actually not.
The structure of non-vanishing lozenge position elements is
maintained in the all three terms in Eq. (7.4). Hence, the
minus sign can be cancelled when the Rep(IV) rephasing
matrices are multiplied from left and right. Notice that there
is no s12 sign flip in Symmetry IVB-helioP. Therefore, H1 is
invariant under Symmetry IVB-helioP transformations up to
the Rep(IV) rephasing.

The last step to prove the invariance of H1 is to show
that the Rep(IV) rephasing matrices successfully exit from
the above U13(φ, δ)OU †

13(φ, δ) part to left and right of H1,
see HRHS in Eq. (7.1). Notice that the transformation θ23 →

−θ23 transformation is involved in Symmetry IVB-helioP. It
is easy to see how it can be done:

U23(−θ23)Rep(IV)U13(φ, δ)OU †
13(φ, δ)Rep(IV)

U †
23(−θ23) = Rep(IV)U23(θ23)

U †
13(φ, δ)OU †

13(φ, δ)U †
23(θ23)Rep(IV), (7.5)

where we have used the property Rep(IV)U23(−θ23)Rep(IV)
= U23(θ23). That is, passing through the rephasing matrix
remedies the flipped sign of sin θ23.

To summarize, the both H0 and H1, hence HRHS is invari-
ant under Symmetry IVB-helioP transformations with the
Rep(IV) rephasing factor which is identical with the one for
HLHS. It implies that Symmetry IVB-helioP is the Hamilto-
nian symmetry.

7.2 All the rest of symmetries in the helio-perturbation
theory

One can repeat the similar analysis for all the symmetries
tabulated in Table 1 to prove that they are all Hamiltonian
symmetries. First, one has to go through the analysis of how
HLHS transforms under Symmetry X, where X=I, II, III, IV,
and identifies the rephasing matrix Rep(X). As in the case of
DMP, Rep(X) depends only on the type X=I, II, III, IV, and
independent of Types A or B, and “f” type or non “f” type
symmetries. Rep(IV) is already given in Eq. (7.2).

Next, one should examine the transformation properties
of HRHS under Symmetry X. It involves the both H0 and
H1, the first and second terms in Eq. (7.1). One can show
that H0 and U13(φ, δ)OU †

13(φ, δ) part of H1 are invariant
under Symmetry X up to the same rephasing matrix obtained
from HLHS transformation analysis. The required rephasing
matrices depend on symmetry types (see Table 1),

Rep(II) ≡
⎡
⎣

1 0 0
0 1 0
0 0 −1

⎤
⎦ for IIA, IIAf, IIB, IIBf,

Rep(III) ≡
⎡
⎣

−1 0 0
0 1 0
0 0 1

⎤
⎦ for IIIA, IIIAf, IIIB, IIIBf,

Rep(IV) ≡
⎡
⎣

−1 0 0
0 1 0
0 0 −1

⎤
⎦ for IVA, IVAf, IVB, IVBf,

(7.6)

and no rephasing matrix is needed for IA, IAf, IB, IBf. In the
“f” type symmetries in which s12 sign flip is involved, the
“troublesome minus sign” remains in the H1 transformation
similar to Eq. (7.4) even after the same rephasing factor as
in HLHS is introduced. But, this minus sign is cancelled by
another minus sign which comes from s12 sign flip.
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The remaining issue is, then, how passing-through rephas-
ing matrix affects U23(±θ23), the similar problem discussed
in Eq. (7.5). We note the property of the rephasing matrix

Rep(X)U23(−θ23)Rep(X) = U23(θ23), X=II, IV,

Rep(III)U23(θ23)Rep(III) = U23(θ23). (7.7)

For Symmetry X = II and IV, the rephasing matrix has to pass
through U23(−θ23) because θ23 → −θ23 transformation is
involved, see Table 1. For Symmetry X = III, no θ23 transfor-
mation is involved, so that Rep(III) passes through U23(θ23).
The formulas in (7.7) imply that the rephasing matrix exits
from theU13(φ, δ)OU †

13(φ, δ) part of H1 with remedying the
minus sign of U23(−θ23) for Symmetry X = II and IV, and
just pass through U23(θ23) without affecting it for Symmetry
III. Therefore, the both HLHS and HRHS are invariant under
all Symmetry X (X = I, II, III, IV), apart from the rephasing
matrix given in Eq. (7.6).

Thus, all the sixteen symmetries tabulated in Table 1 are
the Hamiltonian symmetries. What is good for a Hamiltonian
symmetry is that (1) the symmetry holds to all orders of
perturbation theory, and (2) it is valid for varying density
matter profile, the properties pointed out in Ref. [17] for the
DMP symmetries.

Finally, we should make a remark on possible “Naumov
test” for the symmetries we have obtained in this section.
Unfortunately, there is no Naumov identity in the helio-
perturbation theory. The reason for this property is explained
in Appendix A.

8 Concluding remarks

In this paper, we have reported a new progress in uncover-
ing the state relabeling symmetry by using the Symmetry
Finder (SF) method [17] in neutrino oscillations in matter.
That is, the sixteen 1–3 state exchange symmetries came out
in the helio-perturbation theory, which describes the region
of atmospheric-scale enhanced oscillation. It is the second
application of the SF method after the similar treatment of
the 1–2 state exchange symmetry in DMP, which produced
the eight symmetries [17]. These results testify that the SF
method is flexible, easy to use, and sufficiently powerful to
identify symmetries in neutrino oscillation in matter.

The structure and variety of symmetry in the helio-
perturbation theory is very similar to that of DMP, apart
from the doubling due to s12 sign flip and non-flip dualism.
The DMP symmetries have the four types, I, II, III, and IV,
doubled with Types A and B, where they are distinguished
by without (A) and with (B) δ transformations, the structure
common to the helio-perturbation theory. They constitute the
eight symmetries, which is further doubled by s12 sign flip
or non-flip, supplying another eight in the helio-perturbation

theory, the only different aspect of symmetry between the
two theories.

Why the symmetry is doubled in the helio-perturbation
theory? The DMP perturbation theory is constructed in such
a way that the whole region covered by the terrestrial neu-
trino experiments is inside the region of validity of the theory
[13,16]. Whereas in the helio-perturbation theory, the solar
resonance region is outside the region of validity of the the-
ory, and hence the solar variables are completely spectators
in the helio-perturbation theory, unlike in DMP. That is prob-
ably why the symmetries in the helio-perturbation theory is
doubled due to the availability of s12 sign flip and non-flip
options.

In Sect. 3, we have investigated the two-flavor model
to make clear the relationship between the vacuum sym-
metry (of the Hamiltonian HLHS) and matter symmetry (of
the Hamiltonian HRHS). We have observed a rather intricate
structure. While Symmetry IA-vacuum is the symmetry of
the system in any finite order in perturbation theory based
on HLHS, if the perturbative series is summed to all orders,
the system approaches to the diagonalized one in a non-
perturbative fashion, which has Symmetry IA-ZS. There-
fore, it appears that the vacuum symmetry fuses into the
matter symmetry through the process of all-order summa-
tion. We would like to note that the question of the relation-
ship between the vacuum symmetry and matter symmetry is
even more nontrivial one with the three generation neutrinos.
The Toshev identity indicates that the vacuum-symmetry and
matter-symmetry transformations cannot be independent in
the θ23-δ and θ̃23-̃δ sub-secter.

A more general approach to symmetries including the state
exchange and non-exchange types is taken by the authors
of Ref. [27]. In our SF method, since the vacuum-variable
transformations are tightly linked to the matter-variable ones,
the direct product structure of symmetries of HLHS and
HRHS is unlikely to come out. But, we feel it better to wait
their final report to discuss the relationship between the two
approaches, because the characteristically different new sym-
metries are expected to exist in their framework [27].

Finally, we would like to repeat our interest in the pos-
sibility that the neutrino theory under the matter potential
can be viewed as a mean-field treatment of self-interacting
neutrino system apart from the difference between electron
and neutrino density potentials [17]. It would be an interest-
ing problem to examine what is the consequence of the state
exchange symmetries written by the dynamical variables.
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Appendix A: Naumov identity in the helio-perturbation
theory

The Naumov identity has a problem in the helio-perturbation
theory, so that let us understand it first. In this appendix we
use the ATM convention of the U matrix not to worry about
the change into the PDG convention. Naively, the Naumov
identity may be written in the helio-perturbation theory as

c23s23c
2
13s13c12s12 sin δ (m2

2 − m2
1)(m

2
3 − m2

2)(m
2
3 − m2

1)

≈ c23s23c
2
φsφc12s12 sin δ (λ2−λ1)(λ3−λ2)(λ3−λ1),

(A.1)

where the leading order expression is to be inserted in the
RHS of Eq. (A.1). We assume the normal mass ordering and
neutrino channel for which λ1, λ2, λ3 correspond to λ0, λ−,
λ+, respectively.

By using the leading order expressions of the eigenvalues,
cφ and sφ [19], where φ is the θ13 in matter, one can write
the RHS of Eq. (A.1) as
√

2c23s23c
2
13s

2
13c12s12 sin δ(
m2

ren)
2

×
[
c2

13a
m2
ren − ε cos 2θ12
m2

ren

(

m2

ren + a
)]

√
(λ+ − λ−)

[
(λ+ − λ−) − 
m2

ren cos 2θ13 − a
] .

(A.2)

This result implies that the Naumov identity fails in the helio-
perturbation theory, even as the approximate relation due to
our limitation to the leading order expression in the RHS.
The reason is that while the LHS of Eq. (A.1) is of order

m2

21(
m2
31)

2, the RHS in Eq. (A.2) is of order (
m2
31)

3,
no ε suppression. Of course, this is the common feature of
all the versions of the helio-perturbation theory [19,34–37].

The fact that the Naumov identity is not satisfied in
the helio-perturbation theory should not be interpreted as
a failure of the theory. The region of validity of the helio-
perturbation theory is restricted to the region around the
atmospheric resonance. In this region all the three eigenvalue
differences are of order 
m2

31, and the matter mixing angle
φ is large to describe the “resonance”. Therefore, there is no
way to produce ε suppression in the RHS of Eq. (A.1).

Of course, the Naumov identity holds in the exact ZS the-
ory and in the DMP theory [13] at least approximately, whose
region of validity spans a global region which include the
solar and atmospheric resonance regions. In the DMP pertur-
bation theory, the ε suppression in region of the atmospheric-
scale enhanced oscillations is provided by the smallness of
ψ , cψ sψ ∝ ε [13]. Therefore, it appears that the Naumov
identity classifies the exact and approximate frameworks of
neutrino oscillation into the two categories, with the global
region of validity, the ZS [24] and DMP [13],11 and with the
local region of validity, such as the helio-perturbative theory.
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