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Abstract The dark matter direct detection rates are highly
correlated with the phase space distribution of dark mat-
ter particles in our galactic neighbourhood. In this paper
we make a systematic study of the impact of astrophysical
uncertainties on electron recoil events at the direct detec-
tion experiments with Xenon and semiconductor detectors.
We find that within the standard halo model there can be up
to ∼ 50% deviation from the fiducial choice in the exclu-
sion bounds from these observational uncertainties. For non-
standard halo models we report a similar deviation from the
fiducial standard halo model when fitted with recent cosmo-
logical N -body simulations while even larger deviations are
obtained in case of the observational uncertainties.

1 Introduction

In the last few decades particulate dark matter (DM) has been
probed by its possible scattering with the Standard Model
(SM) particles [1–5]. The typical direct detection experi-
ments measure the nuclear recoil of a target material through
scattering of ambient DM wind on the surface of the earth
[1,2,6–9]. While nuclear target experiments are suitable to
probe a non-relativistic DM mass at O(100) GeV, however
for DM masses in sub-GeV range these looses its sensitivity.
This is due to the fact that energy deposited by a sub-GeV
non-relativistic DM remains below the threshold of these
experiments.

An alternate and novel strategy to search for such light
DM is through the DM-electron scattering [10–14]. For an
atomic target (e.g. Xenon) if DM scatters off the electron
on the atomic shell then this may lead to the ionization of
electrons. Whereas for a semiconductor target material (e.g.
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Si, Ge etc.) scattering of DM with electron may transfer an
electron from valance band to conduction band. These ion-
ization signals could provide a handle in the search for sub-
GeV DM. The boundedness of electron in the target material
makes these electron scattering events inelastic in nature.
This essentially suggests that the incoming DM particles has
to have a sufficient energy to excite these bound electrons.
For a semiconductor material the typical energy gap between
valance and conduction band is of the order 1 eV whereas for
Xe targets the minimum binding energy of a shell is around
10 times larger than that. Thus for a Xe target materials a
relatively light DM can excite an electron if the DM is mov-
ing fast. These fast moving DM can only be found near the
tail of the galactic DM distribution. Subsequently the DM-
electron event rate would be suppressed for such Xe targets
as compared to semiconductors targets, implying sensitivity
of semiconductor detector below the MeV scale.

The DM-electron scattering rate can be divided into three
parts viz. particle physics, atomic physics and astrophysics.
The particle physics input depends on the particular model
under consideration and determines the hard scattering cross
section between the DM and the electron. In this paper we
take a model independent approach to estimate the cross
sections. The electron ionization form factor constitutes the
atomic physics part and depends on the wave function of the
scattered electron. For this we have used the result of QEdark
[15]. In QEdark, the form factor for Xe targets has been cal-
culated using Hartee-Fock method while for semiconductor
materials density functional theory has been utilized.

The local distribution of the ambient DM constitutes the
astrophysical part. The Standard Halo Model (SHM) with
Maxwell–Boltzmann (MB) distribution truncated at galactic
escape velocity is usually assumed for the distribution of DM
in the galaxy. The dispersion of the MB distribution is deter-
mined by the Sun’s circular velocity (v0). The typical choice
of these parameters are v0 = 220 km/s and vesc = 544 km/s,
following [16]. However there is still a considerable uncer-
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tainty in the measurement of these astrophysical inputs [17].
In this paper we make a systematic study of the impact of
these astrophysical uncertainties in DM electron scattering
rate.

Cosmological N -body simulations generate a patch of our
local universe containing mostly DM particles and in some
cases stars and gas to study and compare our local universe
including the Milky Way (MW) galaxy and its halo to the
present day observations. They usually include the effect of
baryons utilizing hydrodynamic simulation. We will refer
these collectively as cosmological simulations. These sim-
ulations indicate that the SHM may not give an accurate
description of a Milky Way-like halo. Modifications of the
SHM framework have been introduced to reconcile the astro-
physical observations and cosmological simulations [18–21].
These include the King velocity distribution determines the
cut off in the distribution through a self consistent manner
[22]. The double power law which can nicely explain the
high velocity dependence of double power density profiles
like that of NFW [23]. The Tsallis is a theoretical distribution
based on Gibbs entropy motivated by Tsallis statistics [24].
The Mao et al. [25] suggests another distribution showing a
strong correlation of particle velocities to their position and
characteristic radius of the simulated halo [25]. In this work
we have only considered the impact of isotropic velocity dis-
tributions on electron scattering events, while leaving the
possible impact of anisotropic distributions [26] for a future
work.

The paper is organized as follows. In Sect. 2 we briefly
review the methodology to calculate rate of the DM-electron
scattering for atomic and semiconductor target material. In
Sect. 3 we present the variations of DM-electron exclusion
limit due to the uncertainty in the SHM parameters. Going
beyond, in Sect. 4 we explore the effect of non-standard
velocity distribution. In Sect. 5 we present a detailed com-
parison between the deviations obtained from cosmological
simulations and recent astrophysical observations, with ref-
erence to the fiducial SHM. Finally, we conclude in Sect. 6.

2 DM-electron scattering

In this section we will briefly review the scattering of DM
particles with electrons that are bound inside the detector
material. We will pair it down to the particle physics effects,
the atomic physics effects and the astrophysical factors. Let
us consider a DM particle (χ) of massmχ , and initial velocity
v scatters of an electron within the target material. Then in the
non-relativistic limit the energy conservation of the system
implies [10]

�Ee + |mχv − q|2
2mχ

= 1

2
mχv2, (1)

where q is the momentum transfer by DM and �Ee is the
energy transferred to electron. Note that for a DM mass in
sub-GeV scale, the relevant momentum transfer is small com-
pared to the mass of the nucleus, therefore the nuclear recoil
piece has been neglected in Eq. (1).1 Following Eq. (1), the
minimum DM speed vmin required to transfer an energy �Ee

for a fixed q is given by

vmin = q

2mχ

+ �Ee

q
, (2)

For an atomic target (e.g. Xenon) the differential DM-
electron scattering rate is [11]

dRion

d ln Ee
= NT

ρχ

mχ

∑

nl

σ e

8μ2
χe

×
∫

qdq FDM(q)2 | f n,l
ion (k′, q)|2 η

(
vmin(k

′, q)
)
, (3)

where NT denotes the number of atoms in the target. ρχ is the
local DM density. DM-electron reduced mass is denoted by
μχe. σ e stands for DM-electron cross section for a particular
momentum transferq = αme and FDM is the DM form factor.
The ionization form factor and average inverse velocity are
represented by f n,l

ion and η respectively.
Whereas, the differential rate for a semiconductor target

(e.g. Ge) can be written as [13]
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d ln Ee
= ρχ

mχ

Ncellσ eα
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e

μ2
χe

×
∫

dlnq
Ee

q
FDM(q)2 | fcrystal(k

′, q)|2 η
(
vmin(k

′, q)
)
,

(4)

where Ncell stands for the number of unit cell in a crystal
targets [13]. The fcrystal denotes the ionization form factor
for the crystal. Other parameters have their usual meaning as
discussed.

Note that both in Eqs. (3) and (4) FDM(q) takes care
of the momentum dependency in DM-electron interaction.
This DM form factor and σ e comprise the main particle
physics input in Eqs. (3) and (4). Remaining agnostic about
any particular model here we have considered three types
of interactions between DM and electron. These interactions
can be quantified by the DM form factor FDM. The three
choices for the FDM are 1, αme/q, (αme/q)2. Note that
FDM = 1 can be induced by an exchange of heavy mediator
between DM and electron [27,28], FDM = αme/q which
could arise through electric dipole moment interaction [29],
and FDM = (αme/q)2 which may be induced by a light
mediator [13,28].

1 The typical momentum transfer to electron is of the order of few keV
and the nuclear mass is of the order GeV. Therefore the recoil nuclear
energy remains below eV.
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The ionization form factor defines the suppression of the
event rate to ionize an electron from its bound state to a
continuum state of momentum k′ = √

2meEe through q.
Hence it depends solely on the target material. Throughout
our numerical calculation we have utilized the form factor
given in QEdark [15].

Other than these the usual astrophysical inputs are the
local DM density ρχ and average inverse DM speed

η(vmin) =
∫ ∞

vmin

f⊕(v)
v

d3v. (5)

The f⊕(v) in Eq. (5) is the DM velocity distribution in the
detector rest frame. If we assume f (v) as the DM distribution
in the galactic frame then the distribution at lab frame can be
obtained by

f⊕(v) = f (v + ve), (6)

where ve = v0 + v� + v⊕ and v0 and v� are the Sun’s circu-
lar velocity at local standard rest and Sun’s peculiar velocity
respectively. The earth velocity in the Solar rest frame is rep-
resented by v⊕. Note that the variation in v⊕ with time leads
to the familiar annual modulation [12,13] in the DM direct
detection rate, has been neglected here. The Sun’s peculiar
motion v� = (U�, V�,W�) = (11.1±1.5, 12.2±2, 7.3±
1) is adapted from [30]. We set the Earth’s rotational velocity
following the reference [6].

The mean inverse speed is essentially regulated by the
astrophysical parameters discussed above. Therefore any
uncertainty in determination of these parameters will have
a direct impact in the exclusion limit. In the rest of this paper
we systematically study the impact of these astrophysical
uncertainties including departure from the MB distribution
on the exclusion bounds of direct detection experiments.

The differential rates given in Eqs. (3) and (4) are with
respect to the electron recoil energy Ee. While the semicon-
ductor detectors are only sensitive to electron and the Xe
detector finally detects photo-electron at the PMT’s. For the
Xe target material this electronic energy is converted into
a number of electrons and subsequently to photo-electrons
using the prescription of [14]. Note that the Xenon10 exper-
iment [31] which has an exposure of 15 kg-days, sets most
stringent limits in most of the region in the parameter space
of interest [14], therefore we would only consider the bound
from Xenon10 in this paper. The exclusion limit for Xenon10
is obtained by making a conservative assumption that all the
observed events arise from DM. Whereas for semiconductor
targets the electron-hole yields are obtained following refer-
ence [13]. We have considered the one electron threshold to
present the bound for semiconductor detectors. For semicon-
ductor detectors, the upper limit on the relevant parameters
are presented at the 90% CL (corresponds to 2.3 DM events),
assuming an one electron threshold with an exposure of 1 kg-
day.

3 Astrophysical uncertainties within the Standard Halo
Model

The most simplified isotropic and isothermal DM distribution
in the MW halo is usually described by a MB distribution,
with a cut off at the escape velocity of the DM particles
[32,33]. The distribution function has the following form

f (v) =
⎧
⎨

⎩

1
N

[
exp

(
−|v|2

v2
0

)]
|v| ≤ vesc

0 |v| > vesc,

(7)

where N denotes the normalization constant of the distri-
bution, v0 is the measure of its velocity dispersion and vesc

sets the maximum allowed DM velocity of the distribution.
Keeping ourselves within this SHM, in this section we will
present the uncertainties in the determination of astrophysical
parameters and their implications on the DM-electron scat-
tering events.2 A discussion about the main observational
uncertainties in the SHM parameters are now in order:

1. Local DM density: The typical choice for the local
density is 0.3 GeV cm−3 [44]. Recent estimations sug-
gest that it may vary in the range (0.2–0.6) GeV cm−3

[17,26,45–54]. While others predict slightly different
values [50–53,55]. However note that the differential rate
given in Eqs. (3) and (4) scale linearly with the local DM
density. Therefore for a change in ρχ one would expect
a proportional vertical shift in the exclusion limits for
all the experiments. Assuming the central value of the
local DM density 0.4 GeV cm−3, we find that there is
a maximum 100% relative change due to the aforemen-
tioned variation of ρχ . This change is independent of the
DM mass and the target materials used for the detec-
tion. Hence we have fixed this to 0.4 GeV cm−3 without
considering its variational implications on the exclusion
bounds.

2. Circular velocity of the Sun: The local circular velocity of
the Sun (v0) with respect to the galactic center is usually
assumed to be 220 km/s [9,56,57]. This would be con-
sidered as the fiducial choice of the parameter v0 for rest
of the paper. From the orbit of the GD-1 stellar stream, the
reference [58] constrained v0 in the range 221±18 km/s.
A similar range ofv0, namely 225±29 km/s is found to be
in consonance with the kinematics of maser [59]. These
estimates seem to have around 10% error in the measure-
ment of v0. However a more precise assessment of v0

can be done using the measurement of apparent proper
motion of Sgr A∗ relative to a distant quasar [60,61]. This
measurement fixes the total angular velocity of the Sun

2 Note that the impact of these astrophysical uncertainties both in the
case of nuclear and electron recoil has studied previously in references
[21,34–43].
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((v0 +V�)/R	) in the range 30.24±0.12 km s−1kpc−1.
On the other hand recently GRAVITY collaboration has
estimated the value of R	 with quite a high accuracy:
8.122 ± 0.031 kpc [62]. Also note that the relevant com-
ponent of the peculiar velocity V� varies in the range
12.24 ± 2.47 [30]. Combining all these observations,
the circular velocity of the Sun has been found to be
233 ± 3 km/s [26]. Other recent assessments [63–66]
would also lead to similar result for v0. We will explore
the impact of the deviations of this from the fiducial value
on the exclusion limits from direct detection experiments
in the electron scattering events.
As can be seen from the Eq. (7), v0 is related to the
standard deviation of the distribution. Thus any incre-
ment in v0 would flatten the distribution. Therefore this
would make more DM particles available to interact with
electrons in the tail region. This will lead to a relatively
stronger bound in DM-electron cross section. The effect
will be reversed for a decrement in v0. Further a change
in v0 would also alter the Galilean boost.

3. Galactic escape velocity: The escape velocity of a mas-
sive body in a galaxy is defined by the velocity above
which they will no longer remain bound to its gravita-
tional potential. Measurements from the high velocity
stars of the RAVE survey determines the vesc in the range
498–608 km/s [16] with the median 544 km/s. In the rest
of the paper we would consider this as the fiducial choice
for vesc. Based on the recent analysis from the velocities
of 2850 halo stars from the Gaia velocity survey Data
Release-2 [67], the local escape speed has been revised
to 580 ± 63 km/s. However it has been argued that this
result is sensitive to the prior chosen for describing high
velocity tail of the distribution function. With a prior esti-
mation from simulations, and a more localized sample
of 2300 high velocity counter-rotating stars, the escape
speed has been obtained to be 528+24

−25 km/s [68]. This is
also in consonance with the previous results. We will be
using the central value of the latter as the new central
value for the escape velocity of the DM particles within
the SHM.

To estimate the relative fractional change in the cross-
section we will adopt Eq. (8) throughout this paper,

� =
∣∣∣∣
σ i
e − σ fiducial,SHM

e

σ fiducial,SHM
e

∣∣∣∣ , (8)

where σ i
e denotes the cross section corresponding to non-

fiducial values of the distribution in consideration.
With a decrease in the escape velocity there will be less

energetic particles in the halo capable of scattering, hence a
larger σ e is required to produce the same number of events
at a given experiment. Due to the exponential suppression of

the MB distribution near the tail, increasing vesc has a smaller
effect than decreasing it by the same amount. We find that
for similar relative change in v0 and vesc, the effect due to
the change in v0 is more pronounced. This can be ascribed
to the fact that any change in v0 causes an overall change
in the shape of distribution, whereas the vesc determines the
distribution’s cut-off near the exponentially suppressed tail.

The inverse relation between mχ and vmin implies that the
required minimum DM velocity is rather close to vesc for
light DM. This is because DM particles having lower mass
and hence lower kinetic energy can generate the required
recoil energy if their minimum velocity becomes closer to
the escape velocity of the distribution. And the tail of the
distribution is quite sensitive to the choice of astrophysical
parameters. Thus the observed fractional change in the exclu-
sion limit is significantly larger for light DM. This is evident
from all figures shown in the paper.

In the upper panel of Fig. 1, the light blue, green and yel-
low shaded regions represent uncertainties associated with
an updated measurements of vesc = 528+24

−25 km/s and v0 =
233 ± 6 km/s for the three choices of the DM form factor
FDM = 1, αme/q and (αme/q)2 respectively at 95% confi-
dence level. In the lower panel we show the deviation from
the fiducial SHM for FDM = 1, the light blue bands arise due
the uncertainties related to the measurement of vesc and v0.
The corresponding deviations for the other choices of FDM

lie in a similar range, hence have not been shown in the plots
to reduce clutter. Like Fig. 1, in rest of the paper the variations
of a Xenon target are shown in the left panels, whereas simi-
lar variations for Germanium and Silicon target materials are
depicted in the middle and right panels respectively. In con-
clusion our study indicates a variation in � between 2% to
50%, due to the astrophysical uncertainties in the exclusion
bounds within the SHM. This is over and above the modifi-
cations due to the ambiguity in the measurement of the local
DM density mentioned earlier.

3.1 Cosmological simulations

An alternate way to estimate the value of v0 and vesc is to fit
a model of DM velocity distribution to cosmological simu-
lations. Here we have utilized the results of the APOSTLE
[69–71] and ARTEMIS [72,73] simulations3 to find the best-
fit values of the velocity distribution parameters. For APOS-
TLE, two MW-like haloes identified as A1 and A2 in [73]
are chosen based on the selection criterion: total halo mass
(M200) in the range 5 × 1011 < M200/M	 < 2 × 1013, hav-
ing rotation curves similar to the observed MW like rotation
curves, stellar mass (M�) within the observed stellar mass of
the MW i.e in the range 4.5 × 1010 < M�/M	 < 8.3 × 1010

3 We have provided brief details of the simulations used in this paper
in Appendix A.

123



Eur. Phys. J. C (2021) 81 :1005 Page 5 of 19 1005

(a) (b) (c)

(d) (e) (f)

Fig. 1 Exclusion bounds in the SHM for fiducial and with recently
obtained astrophysical parameters. In the upper panel, the solid lines
are for the fiducial values and the dashed lines are the exclusion bounds
for a Modified MB distribution (given in Eq. (9)) with the fiducial values.
The light blue, green and yellow shaded regions express the uncertain-
ties in astrophysical observations for FDM = 1, αme/q and (αme/q)2

respectively. In the lower panel we show the corresponding fractional
changes relative to the fiducial choice in the SHM (defined in Eq. (8)).
The uncertainties associated with the recent astrophysical observations
are utilized to form light blue shaded bands. Whereas the blue dashed
curves denote the relative fractional changes in the Modified Maxwell–
Boltzmann distribution for FDM = 1

and having a substantial stellar disc [71,74]. In this work we
have used the A1 halo for all our fits. For the ARTEMIS sim-
ulation [72], 42 MW like haloes are chosen by considering
galaxies in the mass range 8×1011 < M200/M	 < 2×1012.
We have utilized the median DM distribution of the 42 MW-
like galaxies reported in [73].

Note that these two simulations capture the impact of
baryons through hydrodynamic corrections and have rela-
tively high force resolution. This may be contrasted with
the older DM only simulations like GHALO [75] or Via
Lactea [76] which have large deviations from the SHM.
Therefore we do not consider them further in this study.
Given these DM distribution of A1 for APOSTLE and the
median DM distribution for ARTEMIS, the best fit values of
the relevant DM distribution parameters are summarized in
Table 1. Throughout the paper, we have utilized an inbuilt
python function scipy [77] to fit the simulation data with
a given distribution. We find that our result matches rela-
tively well with [23,71]. Note that throughout the work DMO
implies simulations containing only DM for both APOSTLE
and ARTEMIS. Both simulations also have a hydrodynamic
version containing both DM and baryons. Simulations that
include both DM and baryon effects hereafter will be referred
to as DMB. We have employed the values given in Table 1, to

present the shift in the exclusion bounds as shown in Fig. 2
for FDM = 1. The light blue curves represent the exclu-
sion bounds for the fiducial choice of v0 and vesc. The other
solid lines represent exclusion limits with the DMB sim-
ulations. The dashed lines represent exclusion limits with
DMO simulations. The orange and red lines corresponds to
APOSTLE and ARTEMIS simulations respectively. For the
APOSTLE DMB simulation, we observe a maximum change
� ∼ O(30%) in the cross section relative to the fiducial
SHM.

3.2 Modified Maxwell–Boltzmann distribution

In the passing, we briefly discuss the modified version
of Maxwell-Boltzmann velocity distribution in the galactic
frame, truncated at the galaxy escape velocity vesc. This can
be written in the form

f (v) =
⎧
⎨

⎩

1
N

[
exp

(
−|v|2

v2
0

)
−β exp

(
− v2

esc
v2

0

)]
|v|≤vesc

0 |v|>vesc,

(9)

where the symbols have their usual meaning. In this work
β = 1 has been chosen with the desire for an exponential

123



1005 Page 6 of 19 Eur. Phys. J. C (2021) 81 :1005

Table 1 Best fit parameters for the SHM. DMO refers to the DM only simulation. DMB indicates the simulation which takes into account both
DM and baryon smooth particle hydrodynamics

Simulation vesc (km/s) vo (km/s)

APOSTLE DMO [69–71] 646 212.7

APOSTLE DMB [69–71] 646 224.1

ARTEMIS DMO [72,73] 521.6 161.4

ARTEMIS DMB [72,73] 521.6 184.3

101 102 103
mχ (MeV)

10−38

10−37

10−36

10−35

σ̄
e
(c
m

2 )

XeAPOSTLE
ARTEMIS

(a)

101 102 103
mχ (MeV)

10−42

10−41

10−40

σ̄
e
(c
m

2 )

GeDMO
DMB

(b)

101 102 103
mχ (MeV)

10−42

10−41

10−40

σ̄
e
(c
m

2 )

SiDMO
DMB

(c)

Fig. 2 Variation in the SHM for the APOSTLE and ARTEMIS simu-
lations for FDM = 1. The light blue solid lines denote the fiducial SHM
exclusion limit. The dashed lines corresponds to upper limit on DM-
electron cross when SHM is fitted with DM only simulation (denoted by

DMO). The solid lines represents exclusion limit when SHM is fitted to
the simulations which includes both baryon and DM (denoted by DMB).
The orange and red lines represent the APOSTLE and ARTEMIS sim-
ulations. The other relevant details are mentioned in Fig. 1

cut-off. The exclusion bounds for this distribution of DM
are shown by the dashed lines in Fig. 1. We use the fiducial
values to generate the exclusion curves. We do not observe
any significant changes in the exclusion bounds as compared
to the standard MB distribution.

4 Beyond the standard halo model

Several high resolution cosmological simulations suggest
that the DM velocity distribution may depart from stan-
dard MB distribution, particularly in the high velocity tail
[23,78,79]. Due to the sharp cut off at the escape velocity,
the SHM over predicts the number of high energetic DM
particles that are available for scattering. A possibility in this
regard is to look for a non-SHM distribution of DM moti-
vated by cosmological simulations. In what follows, we have
considered some of these distributions and their implications
on the DM-electron scattering rates in the direct detection
experiments.

4.1 King model

For a physical system of finite size, the truncated MB dis-
tribution, given in Eq. (7) may not be a natural solution
of collision-less Boltzmann equation. The King distribution
[80] is an alternate model which can be formulated self-

consistently for a finite size DM halo. In this model instead of
the escape velocity, the maximum DM particle velocity vmax

determines the cut-off criterion (vmax < vesc). It is predicted
on the assumption that if a DM particle moves with vmax at
any position of the halo then it can reach the halo boundary
where by construction the density vanishes [81]. This bound-
ary is often called the truncated radius which represents the
physical size of a halo. Such a finite size halo provides a more
realistic description of galaxies as compared to the isother-
mal sphere. These so called lowered isothermal model is also
preferred by simulations [82]. The distribution function can
be written as

f (v) =
⎧
⎨

⎩

1
N

[
exp

(
v2

esc−|v|2
v2

0

)
− 1

]
|v| ≤ vmax

0 |v| > vmax,

(10)

where the symbols have their usual meaning.4 Equating vmax

with the maximum velocities reported by the cosmological
simulations provides a reasonable estimate. The best fit val-
ues of the parameters for the considered simulations are pro-
vided in Table 2. The corresponding shift in the exclusion
curves are shown in the upper panel of Fig. 3 for contact
interaction (FDM = 1) between DM and electron. In the
middle panel the solid grey lines correspond to exclusion

4 The normalisation constant N has been computed numerically for all
the non-standard velocity distributions considered in this paper.
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limits for the King distribution with fiducial parameters. The
grey shaded bands represent the uncertainties associated with
the recent astrophysical observations of v0 = 233 ± 6 km/s
and vmax = 443+27

−30 km/s5 for the King distribution. We have
also shown the fiducial SHM exclusion bounds by the light
blue solid lines for reference. The grey bands in the lower
panel represent the relative change from fiducial values for
the King model, fitted with astrophysical parameters from
recent observations. The orange and red lines represent the
same deviation for best fitted APOSTLE and ARTEMIS sim-
ulations respectively. The variation for the other types of
interactions are shown in Appendix B.

The special feature observed around the DM mass of 50
MeV on the fiducial SHM curve in Fig. 3a, d is originat-
ing from the atomic structure of the Xenon atom. This is
because around the aforesaid mass the maximum accessi-
ble DM energy crosses a threshold to ionize electrons from
inner shell. This leads to an increment in the event rate and
subsequently the bound becomes tighter. Further, as can be
seen from Fig. 3a, d, compared to the fiducial values this spe-
cial feature shift towards higher mass for a lower choice of
v0. Note that as v0 decreases the DM population in the high
velocity region decreases substantially. Due to this unavail-
ability of high velocity DM the required DM mass shift
towards higher mass to overcome a certain threshold. While
for a semiconductor target, recoil electrons need to overcome
only one energy barrier i.e. the energy gap between valance
band and conduction band. Hence we do not observe such
features in Fig. 3b, c. The apparent spike in the lower left
panel of Fig. 3g is a manifestation of the offset between the
two kinks of the SHM and the King distribution.

As indicated in Table 2, the best fit values of v0 for DM
only simulations is smaller than the fiducial values. Due to
this in the high velocity region, less number of DM parti-
cles are available to interact with the electrons. This leads to
weaker bounds in DM electron cross section.6 This has been
shown by the dashed lines in Fig. 3. The best fit values of v0

with the DMB simulations lie close to fiducial value, imply-
ing exclusion limits close to the fiducial exclusion curve.
This has been displayed by the orange and red solid lines for
APOSTLE and ARTEMIS respectively.

We note that the deviation for King’s model lies between
2 to 20% for Xe, Ge and Si target material for the best fit
values of the APOSTLE DMB simulation. In contrast to that
the best fit values of APOSTLE DMO and ARTEMIS DMO
simulations seem to produce larger deviation from the SHM.
The corresponding deviation induced by the recent astro-

5 Following reference [83], the numerical value of vmax is obtained
using the radius and mass of a typical milky-way like galaxies.
6 For APOSTLE simulations vesc is larger than the fiducial value how-
ever as indicated earlier effect of v0 will be more pronounced.

physical observations lie between 5 to 500% for Xe detector
and 1–70% for both Ge and Si semiconductor detectors.

4.2 Double power law

The double power law (DPL) distribution is an isotropic dis-
tribution of DM which has been obtained empirically [23].
The DPL very well describes the empirical matter distribu-
tions such as NFW, Hernquist, etc [23]. The matter distribu-
tion of a generic empirical double power law has the form

ρ(r) = ρs(
r
rs

)α (
1 + r

rs

)γ−α
, (11)

where rs is the characteristic radius, ρs is the characteristic
density, α and γ determines the slope of the density profile
at small and large radii respectively. For (α, γ ) = (1, 3) this
reduces to the NFW profile [84] while for (α, γ ) = (1, 4)

this reproduces Hernquist profile [85]. The DPL velocity dis-
tribution is expressed by the form

f (v) =

⎧
⎪⎨

⎪⎩

1
N

[
exp

(
v2

esc−|v|2
kv2

0

)
− 1

]k
|v| ≤ vesc

0 |v| > vesc,

(12)

where the symbols have their usual meaning. Cosmological
simulation which take into account the quasi-static equilib-
rium nature of the virialised objects [32] and it’s formation
history attributed from hierarchical merging, smooth accre-
tion and violent relaxations [86] favour such distribution [23].
Unlike the SHM, the velocity distribution in DPL smoothly
goes to zero at the escape velocity. Thus it differs in the high
velocity tail region from the SHM and predicts lower number
of DM particles near the tail of the velocity distribution. For
k → 0 it reduces to the SHM and for k = 1 it tends to the
King distribution. The best fit parameters from cosmological
simulations, that have been used in this work are given in
Table 2. We note that our best fit values is matched with [23].

Note that the DPL distribution can be viewed as a general-
ization of the King model, described in Sect. 4.1. Therefore
the impact on electron recoil event rates here would be sim-
ilar to what has been discussed in Sect. 4.1. The difference
here is in the power index k. Any change in the numeri-
cal value of k would proportionally change the event rate
and subsequently the direct detection limits. This can also
be understood by comparing the relative fractional change
in cross section depicted in lower panel of the Figs. 3 and 4.
Like Fig. 3, in the upper panel of Fig. 4 the orange and red
coloured lines correspond to the APOSTLE and ARTEMIS
simulations respectively. Whereas in the middle panel, the
solid grey lines correspond to the exclusion bounds for a
representative k = 1.5 with the fiducial parameters. The
shaded bands represent the uncertainties associated with the
recent astrophysical observations of v0 = 233 ± 6 km/s and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3 Variations in the exclusion bounds for the King distribution with
FDM = 1. In the upper panel the orange and red exclusion lines corre-
spond to the APOSTLE and ARTEMIS simulations respectively with
best-fit values from Table 2. In the middle panel we show the exclusion
bounds using King distribution with astrophysical parameters obtained
from recent observations. The shaded bands represent observational
error at the 95% confidence level. The solid light blue and grey lines

correspond to the exclusion bounds with the fiducial parameters of the
SHM and the King distribution respectively. In the lower panel the
fractional changes relative to the fiducial choice (defined in Eq. (8))
for the APOSTLE and ARTEMIS simulations containing both DM and
baryon (DMB) are shown by the solid orange and red lines respec-
tively. Whereas the gray bands represent the deviation due to the recent
astrophysical observations

Table 2 Best fit values used to derive the exclusion limit for King, DPL, Mao, and Tsallis model

Simulation vesc (km/s) King DPL Mao Tsallis
v0 (km/s) v0 (km/s) k v0 (km/s) p v0 (km/s) q

APOSTLE DMO [69–71] 646 192.5 192.4 0.5 105.2 2.36 210.3 0.894

APOSTLE DMB [69–71] 646 223 212.7 0.1 165 2.2 257 0.84

ARTEMIS DMO [72,73] 521.6 161.5 161.5 0.5 120 3.6 177.4 0.884

ARTEMIS DMB [72,73] 521.6 184.6 184.3 0.67 174.7 3.4 209.4 0.839
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 Variations in the exclusion bounds for the Double Power Law with FDM = 1. In both the middle and lower panels k = 1.5 is represented
by the gray region. The other relevant details are same as of Fig. 3

vesc = 528+24
−25 km/s for k = 1.5. We have also shown the

fiducial SHM exclusion bounds by the light blue solid lines
for reference.

We find that for APOSTLE DMB simulation with DPL
distribution, the deviation obtained ranges between 5 to 20%
for Xe and 4–14% for both Ge and Si semiconductor detec-
tors. This deviation is fairly flat in the DM mass range of
interest. The corresponding deviation induced by the recent
astrophysical observation ranges between 2 to 100% for Xe
detector, between 1 to 21% for Ge and 1–26% for Si semi-
conductor detectors.

4.3 Tsallis

The Tsallis distribution is explicitly derived through a factor-
ization approximation of the Tsallis statistics [24] which is a
generalisation of Boltzmann–Gibbs entropy. The distribution

is widely used in high energy collisions [87], Bose–Einstein
condensation [88], black-body radiation, neutron star [89],
early universe cosmology [90] and superconductivity [91].
The velocity distribution function goes by the form

f (v) =

⎧
⎪⎨

⎪⎩

1
N

[
1 − (1 − q)

|v|2
v2

0

] 1
1−q |v| ≤ vesc

0 |v| > vesc,

(13)

where the symbols have their usual meaning. For this distri-
bution with q < 1 the escape velocity is determined by the
relation v2

esc = v2
0/(1 − q). This inherent cut off criterion

makes this distribution appealing as compared to the SHM.
While for q > 1 escape velocity still remains a somewhat
arbitrary parameter. In q → 1 limit the Tsallis distribution
reduces to the Gaussian form of the SHM. Further from Eq.
(13) it is evident that this distribution predicts a continuous
and smooth fall near the tail, favoured by cosmological sim-
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ulations [78,79,82]. In particular, it has been argued in refer-
ence [82] that the Tsallis distribution seems to fit better with
Milky Way like simulations including Baryonic physics.

With the best fit values provided in Table 2, the bound on
σ e considering Tsallis as the distribution for DM is presented
in the upper panel of Fig. 5. In the middle panel, the solid grey
curve corresponds to the Tsallis distribution when fitted with
the fiducial value. The grey bands correspond to the Tsallis
distribution when fitted to the recent astrophysical observa-
tions of v0 = 233 ± 6 km/s and vesc = 528+24

−25 km/s. The
deviation obtained for APOSTLE DMB simulation ranges in
between 12 to 33% for the three set of target materials con-
sidered here. The corresponding deviations induced by the
recent astrophysical measurement are between 3 to 290% for
Xe targets, 1–90% for Ge and 1–100% for Si semiconductor
detectors.

4.4 Mao et al.

Mao et al. [92] postulates an empirical model for the velocity
distribution of DM having a wider peak and a steeper tail in
comparison to the MB distribution. The Mao distribution
function is given by

f (v) =
{

1
N

[(
v2

esc − |v|2)p e− v
v0

]
|v| ≤ vesc

0 |v| > vesc,
(14)

where the symbols have their usual meaning. It is favoured
by the simulations that have taken into account the sequence
of mergers, violent-relaxation and accretion in the simulated
halos [93]. Unlike other variants of the SHM, this empirical
model is not based on a Gaussian but rather on an expo-
nential distribution function having a power law cut-off at
the binding energy or the equivalent escape velocity. We fit
the distribution given in (14) with two different simulation
namely APOSTLE and ARTEMIS with the corresponding
best fit values given in Table 2.

Assuming Mao as the velocity distribution for DM, in the
upper panel of Fig. 6 we have presented the shifts in the
exclusion limits for the best fit value given in Table 2. In
the middle panel the grey curves correspond to the exclusion
bounds for a representative value of p = 2.7, while keeping
v0 and vesc at the fiducial choice. In the lower panel, with p =
2.7, the grey shaded band emerge due to the uncertainties
associated with the recent astrophysical observations of v0 =
233 ± 6 km/s and vesc = 528+24

−25 km/s.
From the upper panel of Fig. 6 it is clear that compared to

the fiducial SHM, the red curves set weaker bounds on DM-
electron scattering cross section. This is mainly due to the
large difference between the best fit values of v0 and the fidu-
cial values of the SHM. For the best fit DMO simulations, we
observe a significant deviation from the SHM, compared to
DMB simulations. Further the best fit APOSTLE DMB sim-

ulation which takes into account the baryonic contribution,
shows a variation between 10 to 20% for all the three consid-
ered targets. This signifies the correlation between the exclu-
sion bounds and the nature of the underlying fitted cosmo-
logical simulations. The corresponding deviation relative to
the fiducial SHM induced for the recent astrophysical obser-
vations are between 4 to 200% for Xe targets, for Ge 3–43%
and 3–57% for Si semiconductor detectors.

5 Comparison of deviation: observational and
cosmological simulation

A discussion about the effects of best fit parameters for the
various cosmological simulations on the derived exclusion
bounds and its comparison with observational estimation of
astrophysical parameters is now in order.

Comparing the bounds from various simulations, it can
be inferred that DM only simulations show large devia-
tion with respect to SHM fiducial as compared to simu-
lation which takes into account the baryonic effects. Fur-
ther among the two simulations, considered in the paper the
APOSTLE DMB closely resemble the fiducial SHM sce-
nario. For instance, the King, DPL, Tsallis, and Mao distri-
butions show a maximum deviation of O(10%) relative to
the fiducial SHM. We typically observe an order of magni-
tude deviation from the fiducial SHM for DM only counter-
part of the considered simulations. This indicates that these
deviations are correlated with the underlying dynamics of
the simulations. Interestingly, for these non-SHM models,
the recent astrophysical measurements indicate a maximum
O(100%) and O(10%) deviations from fiducial SHM for Xe
and semiconductor detectors respectively.

In Table 3, we have provided a comparison of the per-
centage deviations from the fiducial SHM for sophisticated
cosmological simulations and for the recent observational
values of vesc and v0. As evident from the Table 3, we con-
clude that for most of the halo distributions it is the updated
astrophysical measurements that gives the most significant
deviations in the exclusion bounds which are traditionally
represented using the fiducial choice. This can imply sig-
nificant reinterpretation of the conclusion drawn from direct
detection experiments.

6 Conclusions

The non-observation of DM in the typical nuclear recoil
direct detection experiments and the inability of GeV scale
cold DM to address certain small scale structure formation
issues have increased the interest in sub-GeV scale DM.
An elegant avenue to probe such light DM is to consider
the scattering of DM with electron in the direct detection
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5 Variations in the exclusion bounds for Tsallis with FDM = 1. All the relevant details are same as of Fig. 3

Table 3 A comparison of the uncertainties between APOSTLE DMB simulations for DPL, King, Tsallis, and Mao distributions and in the observed
estimates of v0 and vesc

Halo model � in percentage for Xe � in percentage for Ge � in percentage for Si

Simulation Recent measurements Simulation Recent measurements Simulation Recent measurements

King 3–20 5–500 2–12 1–60 3–15 1–74

DPL 5–20 2–100 4–14 1–21 5–14 1–26

Tsallis 12–30 3–290 12–32 1–90 13–33 1–100

Mao 10–21 4–200 10–20 3–43 10–20 3–57

experiments. Bounds on DM electron cross section are typ-
ically presented assuming the SHM for the DM distribution
in our galaxy, with a fiducial choice for v0 = 220 km/s
and vesc = 544 km/s. However, recent progress in the mea-
surement of these parameters shows a deviation from these
values. In this paper we have systematically investigated the
effects of uncertainties associated with the determination of
these astrophysical quantities on the exclusion limits of DM

electron cross section. We consider the uncertainties within
the SHM and empirical models of DM distribution beyond
the SHM that have been motivated by recent high resolution
cosmological simulations.

We find that the exclusion bounds are expectedly sensitive
to the population of DM particles in the high velocity tails of
the distributions. Within the SHM the velocity distribution is
assumed to be MB like. The tail shape is controlled by the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Variations in the exclusion bounds for Mao et al. with a representative value of p = 2.7 for FDM = 1. All other relevant details are same
as of Fig. 3

Sun’s circular velocity (v0) and to a lesser extent by the escape
velocity (vesc). We find that within SHM for contact interac-
tion between DM and electron, these uncertainties imply a
2–50% change in the event rates in the three target materials
that have been considered. Further, inclusion of uncertain-
ties in the local DM density leads to additional change in the
exclusion bounds.

Going beyond the SHM, we have considered the simula-
tion motivated King’s model, double power law, Mao, and
Tsallis distributions. Relative to SHM all these non-SHM
models fall smoothly near the high velocity tail, predicting
less number particles in the region. This causes a reduction
in the event rate. Therefore for the same set of astrophysical
parameters, the non-SHM models seem to provide weaker
bounds as compared to their SHM counterparts. Further for
these models, depending on the fitted parameters we find
that for most of the region in the parameter space the frac-
tional changes in the cross section could vary substantially.

Interestingly the amount of deviations observed from cos-
mological simulations fit can be traced to their treatment of
baryonic content. In these models the deviation from the fidu-
cial choice ranges between 1 and 30% for the APOSTLE
hydrodynamic simulation which includes baryons. Whereas
for these non-SHM models the uncertainties associated with
the recent astrophysical observations lead to a maximum
O(100%) change in the exclusion limit.

Note added: While this paper was under preparation a
related work [94] appeared in the arXiv. Their treatment of
halo uncertainties for semiconductor targets with Tsallis and
Mao distribution is complementary with our discussion in
Sect. 4.
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Appendix A: A brief detail of the cosmological simula-
tions

In this appendix we briefly summarize the cosmological sim-
ulations used in this paper. We give a brief and generic outline
of the APOSTLE and ARTEMIS simulations along with their
relevant resolutions.

A.1 APOSTLE

The APOSTLE (A Project Of Simulating The Local Envi-
ronment) project comprises of a suite of high-resolution cos-
mological simulation of 12 Milky way like environments,
selected from a volumes of the �CDM universe. Each con-
tain a pair of halo with a virial mass in the range 5×1011M	
to 2.5 × 1012M	, with median values of 1.4 × 1012M	 for
the more massive and 0.9 × 1012M	 for the less massive
haloes. The project uses a combination of a hydrodynamical
SPH implementation named Anarchy superimposed on the
Tree-PM SPHGadget code. The numerical resolution of the
hydrodynamical simulation reaches up to a mass of 104 M	
per gas particle, using the sub-grid developed for the EAGLE
project [95]. Each of the main galaxy haloes contain more
than 2 × 107 particles. The high resolution initial conditions
were generated using second-order Lagrangian perturbation
theory. The Apostle simulation suite has three different res-
olution levels for the primordial gas (DM) particle masses of
approximately 1.0(5.0) × 104M	 , 1.2(5.9) × 105M	 and
1.5(7.5)×106M	 respectively. Maximum gravitational soft-
ening lengths of 134 pc, 307 pc and 711 pc. In this work
we use the DM distribution data of the APOSTLE IR halo
marked A1, which fits the selection criteria as discussed in

Sect. 3.1 having a stellar mass of 4.88×1010 M	 and a virial
mass of 1.64 × 1012 M	.

A.2 ARTEMIS

The ARTEMIS (Assembly of high-ResoluTion Eagle-simulations
of MIlky Way-type galaxieS) is a suite of high-resolution
cosmological hydrodynamical simulations of Milky Way
like haloes [72]. It uses the ‘zoom-in’ technique to simu-
late the halos at a high resolution with DM and by incorpo-
rating baryons with DM using SPH. The initial conditions
were generated using the MUSIC code [96]. Haloes were
selected from a base periodic box is 25 Mpc h−1 on one
side with 2563 particles. The initial conditions were gen-
erated at a redshift of 127 using a transfer function com-
puted using the CAMB Boltzmann code cite for a flat �CDM
WMAP cosmology was run to z = 0 using the Tree-PM SPH
Gadget-3 code. Haloes were selected with masses in the
range 8 × 1011 < M200/M	 < 2 × 1012, where M200 is
the mass enclosed inside a sphere of radius R200, when the
mean density is 200 times the critical density at z = 0. There
were 63 such halos in this mass range. A subset of 42 high-
resolution collision-less simulations (DMO), together with
their full hydrodynamical counterparts including baryons.
The subset of 42 halos were not selected based on any phys-
ical criterion. They are the subset that ran to z = 0. The
DM particles have a mass around 1.17 × 105M	h−1 and
the baryon particle mass is 2.23 × 104M	h−1. The force
resolution (Plummer-equivalent softening) is 125 pc/h−1.
ARTEMIS used the stellar mass estimates to be in the range
(1.75–5.45) ×1010M	 with a mean value of 2.87×1010M	.

Appendix B: Momentum dependent DM-electron inter-
actions

In this appendix we have presented the shifts in the exclu-
sion limits for the other two choices of interactions between
DM and electron, namely FDM ∝ q−1 and FDM ∝ q−2. The
aforementioned variations within the standard halo model
have been shown in Figs. 7 and 8 only for the simulations
that have been considered in this work. In Figs. 9 and 10
we have provided variations for the King whereas the same
for DPL models are depicted in Fig. 11 and 12. The bounds
from the rest of the non-SHM distributions considered here
are shown in Figs. 13, 14, 15, and 16. For each of the fig-
ures (except Figs. 7, 8) the upper panels correspond to the
variations for the best fit values of the cosmological simula-
tion and the lower panels correspond to the same consider-
ing the updated observational values and their uncertainties.
For Xe targets the momentum suppression in the momentum
dependent interactions shift the special feature (discussed
in Sect. 4.1) towards higher DM masses. For FDM ∝ q−1
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Fig. 7 Shifts in the exclusion limits for the standard halo model with FDM ∝ q−1 for the best fit values of the different cosmological simulations.
The other relevant details are same as of Fig. 2

101 102 103
mχ (MeV)

10−35

10−34

10−33

σ̄
e
(c
m

2 )

XeAPOSTLE
ARTEMIS

(a)

101 102 103
mχ (MeV)

10−41

10−40

σ̄
e
(c
m

2 )
GeDMO

DMB

(b)

101 102 103
mχ (MeV)

10−41

10−40

σ̄
e
(c
m

2 )

SiDMO
DMB

(c)

Fig. 8 Same as Fig. 7 but for FDM ∝ q−2
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Fig. 9 Shifts in the exclusion limits for King distribution with FDM ∝
q−1. Upper panel shows the variations for the best fit values of differ-
ent cosmological simulations. The bands in the lower panel represent

uncertainties in the recent astrophysical measurements. The other rele-
vant details are same as of Figs. 1 and 3
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Fig. 10 Same as Fig. 9 but for FDM ∝ q−2
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Fig. 11 Shifts in the exclusion limits for DPL distribution with FDM ∝
q−1. In the upper panel we show the variations for the best fit values of
different cosmological simulations. The bands in the lower panel repre-

sents uncertainties in the recent astrophysical measurements. The other
relevant details are same as of Figs. 1 and 4
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Fig. 12 Same as Fig. 11 but for FDM ∝ q−2
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Fig. 13 Shifts in the exclusion limits for Tsallis distribution with
FDM ∝ q−1. In the upper panel we show the variations for the best
fit values of different cosmological simulations. The bands in the lower

panel represents uncertainties in the recent astrophysical measurements.
The other relevant details are same as of Figs. 1 and 5
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Fig. 14 Same as Fig. 13 but for FDM ∝ q−2
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Fig. 15 Shifts in the exclusion limits for Mao et al. distribution with
FDM ∝ q−1. In the upper panel we show the variations for the best
fit values of different cosmological simulations. The bands in the lower

panel represents uncertainties in the recent astrophysical measurements.
The other relevant details are same as of Figs. 1 and 6
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Fig. 16 Same as Fig. 15 but for FDM ∝ q−2

this appears around a DM mass of 200 MeV, however for
FDM ∝ q−2 this crosses the boundary of the figures, as
depicted in the left panels of the aforementioned figures.
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