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Abstract In this paper, we study the spontaneous scalar-
ization of Reissner–Nordström (RN) black holes enclosed
by a cavity in an Einstein–Maxwell-scalar (EMS) model
with non-minimal couplings between the scalar and Maxwell
fields. In this model, scalar-free RN black holes in a cavity
may induce scalarized black holes due to the presence of a
tachyonic instability of the scalar field near the event horizon.
We calculate numerically the black hole solutions, and inves-
tigate the domain of existence, perturbative stability against
spherical perturbations and phase structure. The scalarized
solutions are always thermodynamically preferred over RN
black holes in a cavity. In addition, a reentrant phase tran-
sition, composed of a zeroth-order phase transition and a
second-order one, occurs for large enough electric charge Q.
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1 Introduction

The no-hair theorem is important to understand black hole
physics, which initially states that all black hole can be
uniquely characterized by only three externally observable
parameters: mass, electric charge, and angular momentum.
Although the no-hair theorem has been proven for the
Einstein–Maxwell field theory, the advent of hairy black hole
solutions in the context of the Einstein–Yang–Mills theory
[1,2] prompt people to reconsider the no-hair theorem. Later,
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black holes with Skyrme hairs [3,4] and black holes with dila-
ton hairs [5] were also discovered as counter-examples to the
no-hair theorem. For a recent review, see [6].

As a way of formation of hairy black holes, spontaneous
scalarization is first studied for neutron stars in scalar-tensor
models [7]. In this phenomenon of spontaneous scalarization,
the non-minimal coupling of the scalar field to the Ricci cur-
vature can lead to a certain parameter region, where scalar-
free and scalarized neutron star solutions coexist, and the
scalarized one is energetically favoured. Later, the sponta-
neous scalarization of black holes is also found in scalar-
tensor models [8,9]. Recently, the authors of [10–15] studied
the spontaneous scalarization in the extended Scalar–Tensor-
Gauss–Bonnet (eSTGB) gravity, where the scalar field is non-
minimally coupled to the Gauss–Bonnet curvature invari-
ant of the gravitational sector. However, the numerical chal-
lenges of studying dynamical evolution equations in this
model compels people to consider other simpler model. It is at
this juncture that the Einstein–Maxwell-scalar (EMS) mod-
els, a kind of classical black-hole-field model, were intro-
duced to gain a deeper insight into spontaneous scalarization
[16]. In these models, spontaneous scalarization can be trig-
gered by the strong non-minimal coupling of the scalar field
to the electromagnetic field. In [16], a massless and non-
self-interacting scalar field was considered, and an exponen-
tial coupling function was introduced to ensure a tachyonic
instability of Reissner–Nordström (RN) black holes. In [17],
the analytical technique is applied to solve the Klein–Gordon
wave equation for the non-minimally coupled linearized
scalar fields in the spacetimes of near-extremal supporting
black holes. Furthermore, spontaneous scalarization in the
EMS models was discussed in context of coupling functions
beyond the exponential coupling [18,19], dyons including
magnetic charges [20], axionic-type couplings [21], massive
and self-interacting scalar fields [22,23], horizonless reflect-
ing stars [24], linear stability of scalarized black holes [25–
27], higher dimensional scenario [28], quasinormal modes of
scalarized black holes [29,30], two U(1) fields [31] and quasi-
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topological electromagnetism [32]. Moreover, the EMS mod-
els with a cosmological constant are considered in [33,34].
Recently, the effect of non-linear electrodynamics correc-
tions on the EMS models is also studied [35]. Analytic
approximations were also used to study spontaneous scalar-
ization of the EMS models [36–38].

Over the past four decades a preponderance of evi-
dence has accumulated suggesting a fundamental relation-
ship between gravitation, thermodynamics, and quantum the-
ory. This evidence is rooted in our understanding of black
holes and their relationship to quantum physics, and devel-
oped into the sub-discipline of black hole thermodynamics.
Since the discover of the area theorem [39] and the Hawking
radiation [40,41], the analogy between usual thermodynam-
ics and black hole thermodynamics is confirmed. Further-
more, the four laws of black hole mechanics were established
in [42] and numerous studies have focused on this subject.
Since it is shown that asymptotically anti-de Sitter (AdS)
black holes are thermodynamically stable and the Hawking-
Page phase transition was revealed in Schwarzschild–AdS
black holes [43], thermodynamic properties of various more
complicated black holes have been studied [44–51]

As parallel research with that of AdS black holes, studies
of black holes in a cavity have also attracted a lot attentions
since York realized that Schwarzschild black holes can be
thermally stable by placing them inside a spherical cavity,
on the wall of which the metric is fixed [52]. The phase
structure and transitions of black holes in a cavity were
shown to closely resemble that of the AdS counterparts for
Schwarzschild black holes [52] and RN black holes [53–55].
Recently, it is found that the resemblance still exist in the
extended phase space [56]. And it was discovered that Gauss–
Bonnet black holes in a cavity also have quite similar phase
structure and transitions to the AdS counterparts [57]. How-
ever, it is shown that the phase structure of Born–Infeld black
holes enclosed in a cavity has dissimilarities from that of
Born–Infeld–AdS black holes [58,59]. Moreover, it is found
that there exist significant differences between the thermo-
dynamic geometry of RN black holes in a cavity and that of
RN–AdS black holes [60], and some dissimilarities between
the two cases also occur for validities of the second thermo-
dynamic law and the weak cosmic censorship [61]. These
findings motivate us to further explore connections between
thermodynamic properties of black holes and their bound-
ary conditions. For black holes in a cavity, it is shown that
there exist the black hole bomb setup for Kerr black holes
[62,63]. Although it is shown the black hole bomb still exists
for charged black holes in a cavity [64–66], the hairy black
holes in a cavity are also found for Einstein–Maxwell gravity
coupled to a charged scalar field [67]. Therefore, it is inter-
esting to investigated hairy black holes in a cavity for the
EMS model and compare the results with those of AdS case
[34].

Nevertheless, the solutions and thermodynamics of hairy
black holes in cavity have rarely been studied in the context
of the EMS model. The rest of this paper is organized as fol-
lows. Section 2 presents the basics of the EMS model and
provides the equations of motion for the solution ansatz of
interest. In Sect. 3, we review the scalar-free RN black holes
in cavity and show our main numerical results for scalar-
ized black hole solutions in a cavity, which include domains
of existence, thermodynamic preference and effective poten-
tials for radial perturbations. In Sect. 4, we discuss the phase
structure and transitions in a canonical ensemble. We sum-
marize our results with a brief discussion in Sect. 5. For
simplicity, we set 16πG = 1 in this paper.

2 EMS model in a cavity

The EMS model describes a real scalar field minimally cou-
pled to Einstein’s gravity and non-minimally coupled to
Maxwell’s electromagnetism. In a cavity, the EMS model
is described by the action

S =
∫
M

d4x
√−g

[
R − 2∂μφ∂μφ − f (φ) FμνFμν

]

+Ssur f , (1)

where f (φ) is the coupling function governing the non-
minimal coupling of φ and Aμ, Fμν = ∂μAν − ∂ν Aμ is
the electromagnetic field strength tensor. And Ssur f is the
surface terms on ∂M, which does not affect the equations of
motion. Therefore, the equations of motion that follow from
the action (1) are

Rμν − 1

2
Rgμν = Tμν

2
,

∂μ

[√−g f (φ) Fμν
] = 0,

∂μ
(√−g∂μφ

)
√−g

= ḟ (φ) FμνFμν

4
, (2)

where ḟ (φ) ≡ d f (φ) /dφ, and the energy-momentum ten-
sor is

Tμν = 4

(
∂μφ∂νφ − gμν∂ρφ∂ρφ

2

)

+ f (φ)
[
4FμρF

ρ
ν − FμνFμν

]
. (3)

The generic spherically symmetric metric can be written
as

ds2 = −N (r) e−2δ(r)dt2 + dr2

N (r)

+ r2
(
dθ2 + sin2 θdϕ2

)
, (4)

The electromagnetic field and the scalar field are given by
Aμdxμ = V (r) dt and φ = φ (r), respectively. Then the
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equations of motion (2) reduce to

− 1 + N (r) + r N ′ (r) + r2N (r) φ′ (r) = − Q2

r2 f (φ)
,

[
r2N (r) φ′ (r)

]′ + r3φ′ (r)3 N (r) = − Q2 ḟ (φ)

2 f 2 (φ) r2 ,

δ′ (r) = −rφ′ (r)2 ,

V ′ (r) = −e−δ(r)Q

r2 f (φ)
, (5)

where primes denote derivatives with respect to the radial
coordinate r , and Q is a constant that can be interpreted as
the electric charge.

3 Scalarized RN black hole in a cavity

In this paper, we study spontaneous scalarization of the EMS
model in a cavity, which requires a scalar-free solution. When
the scalar field φ = 0, the static spherically symmetric RN
black hole solution was derived in [53],

N (r) =
(

1 − r+
r

) (
1 − Q2

b

r+r

)
≡ 1 − 2m(r)

r
, V (r)

= −Qb

r
dt, δ (r) = 0, (6)

where Qb is the black hole charge, and r+ is the radius of
the outer event horizon. The Hawking temperature Tb of the
RN black hole is given by

Tb = 1

4πr+

(
1 − Q2

b

r2+

)
. (7)

In this scalar-free solution background, one can linearize the
scalar equation in Eq. (2) around the scalar-free solution,
which gives

∂μ
(√−g∂μδφ

)
√−g

= μ2
e f f , (8)

where μ2
e f f = − f̈ (0) Q2/

(
2r4

)
. If μ2

e f f < 0, i.e. f̈ (0) >

0, a tachyonic instability is induced, and a scalarized black
hole solution can bifurcate from the scalar-free RN black hole
solution. In the remainder of the paper, we focus an expo-
nential coupling, f (φ) = eαφ2

with α > 0, which satisfies
ḟ (0) = 0 and f̈ (0) > 0.

To obtain non-trivial hairy black hole solutions of the
non-linear ordinary differential equations (5), one needs to
impose regular boundary conditions at the event horizon and
the boundary of the cavity. The regularity of the solutions
across the event horizon at r = r+ gives that the solutions

can be approximated by a power series expansion in r − r+,

m (r) = r+
2

+ (r − r+)m1 + · · · ,

δ (r) = δ0 + (r − r+) δ1 + · · · ,

φ (r) = φ0 + (r − r+) φ1 + · · · ,

V (r) = (r − r+) v1 + · · · , (9)

where

m1 = Q2

2r2+ f (φ0)
,

φ1 = − Q2 ḟ (φ0)

2
[
f 2 (φ0) r3+ − f (φ0) r+Q2

] ,

δ1 = −r+φ2
1 , v1 = Qe−δ0

r2+ f (φ0)
. (10)

The parameters φ0 and δ0 determine the expansion coeffi-
cients and hence the solutions in the vicinity of the horizon.
Outside the cavity, we require that the scalar field vanishes
and it recover the scalar-free solution [67]. Therefore the
boundary conditions at the boundary of the cavity is

φ (rB) = 0, δ (rB) = 0.

We can use a standard shooting method to solve Eq. (5) for a
family of black hole solutions with the boundary conditions
at the event horizon and the boundary of the cavity. Note that
the solutions and the associated physical quantities scale as

r → λr, φ → φ,m → λm, V → V, δ → δ,

Q → λQ, M → λM, (11)

where λ is a constant and the ADM mass M is introduced by
the asymptotic expansion of the solutions at spatial infinity,

m (r) = M − Q2 + Q2
s

2r
+ · · · (12)

So we introduce some reduced quantities for later use,

q = Q

M
, aH = AH

16πM2 , tH = 8πMTH , (13)

which are dimensionless and invariant under the scaling sym-
metry.

To study how a scalarized black hole solution bifurcates
from a scalar-free solution, we derive the zero modes of the
scalar perturbation in the scalar-free black hole background.
First, we express the scalar perturbation as a spherical har-
monics decomposition

δφ =
∑
l,m

Ylm (θ, φ)Ul (r) . (14)
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With this decomposition, the scalar equation (8) then simpli-
fies to

∂r
[
r2N (r)U ′

l (r)
]

r2 −
[
l (l + 1)

r2 + μ2
e f f

]
Ul (r) = 0, (15)

where N (r) is given by Eq. (6). For the black hole in a cav-
ity, Ul (r) is regular at r = r+ and vanishes at r = rB .
The boundary conditions of Ul (r) would pick up a set of
black hole solution with different reduced charge q if one
fixes α and l. The black hole solutions can be labeled by a
non-negative integer n, and n = 0 is the fundamental mode,
whereas n > 0 corresponds to overtones. In this paper, we
focus on the l = 0 = n mode since it gives the smallest q
of the black hole solutions for a given α [16]. The reduced
charge qexist (α) of the l = 0 = n mode compose the bifur-
cation line in the α−q plane, on which scalarized black hole
solutions emerge from the RN black holes in a cavity.

We present the numerical results, e.g., domains of exis-
tence, thermodynamic preference and effective potentials, for
scalarized black hole solutions in a cavity. We express non-
linear differential equation (5) in terms of a new coordinate

x = 1 − r+
r

with 0 ≤ x < 1 − r+
rB

, (16)

and employ the NDSolve function in Wolfram Mathematic
to numerically solve the equations in the interval 10−8 <

x < 1 − r+/rB . In what follows, we confine ourselves to the
simplest case of nodeless, spherically symmetric black hole
solutions and leave general configurations for future work.

In the left panel of Fig. 1, we present the domain of
existence for scalarized RN black holes in a cavity with
rB/Q = 10. For a given α, scalarized solutions emerge from
the bifurcation line as zero modes, and can be continuously
induced by increasing q until they reach the critical line. The
numerical results suggest that, for scalarized solutions on the
critical line, the horizon radius r+ vanishes, whereas the mass
M and the charge Q remain finite. The domain of existence
for scalarized solutions is bounded by the bifurcation and crit-
ical lines, and the boundary contour for domain of existence
shows a close resemblance to that of RN black holes [16] and
RN–AdS black holes [34]. The numerical results show that
there exists a unique set of nodeless scalarized solutions for
given α and q in the domain of existence. We plot the reduced
area aH of the scalarized solutions against the reduced charge
q for several α values of in the right panel of Fig. 1, which
indicates that scalarized solutions are entropically preferred
over RN black hole solutions in a cavity.

Then we consider spherically symmetric and time-
dependent linear perturbations around the black hole. The
metric ansatz including the perturbations can be written as
[18]

ds2 = −Ñ (r, t) eδ̃(r,t)dt2 + dr2

Ñ (r, t)

+ r2
(
dθ2 + sin2 θdϕ2

)
, (17)

where

Ñ (r, t) = N (r) + ε Ñ1 (r) e−it

and δ̃ (r, t) = δ (r) + εδ̃1 (r) e−it . (18)

The time dependence of the perturbations is assumed to be
Fourier modes with frequency. Similarly, the ansatzes of the
scalar and electromagnetic fields are given by

φ̃ (r, t) = φ (r) + εφ̃1 (r) e−it

and Ṽ (r, t) = V (r) + εṼ1 (r) e−it , (19)

respectively. Solving Eq. (2) with the ansatzes (18) and (19),
one can extract a Schrodinger-like equation for the perturba-
tive scalar field φ̃1 (r),

− d2� (r)

dr∗2 +U� (r) = 2� (r) , (20)

where � (r) ≡ rφ1 (r), and the tortoise coordinates r∗ is
defined by dr∗/dr = eδ(r)N−1 (r). The effective potential
U is given by

U = e−2δN

r2

[
1 − N − 2r2φ′2 − Q2

r2 f (φ)

×
(

1 − 2r2φ′2 + f̈ (φ)

2 f (φ)
+ 2rφ′ ḟ (φ)

f (φ)
− ḟ 2 (φ)

f 2 (φ)

)]
,

which can be shown to vanish at the event horizon and spatial
infinity. A positive definite U ensures that scalarized black
hole solutions are stable against the spherically symmetric
perturbations. We display effective potentials for scalarized
solutions with α = 5 in Fig. 2. The numerics show that the
scalarized solutions always have positive effective potentials,
thus are stable against the spherically symmetric perturba-
tions.

4 Phase structure

In this section, we consider phase structure and transitions
of scalarized and RN black holes in a cavity. For black holes
in a cavity, in a canonical ensemble, the wall of the cavity,
which is located at r = rB , is maintained at a temperature
of T and a charge of Q. It was showed [53] that the system
temperature T and charge Q can be related to the black hole
temperature Tb and charge Qb as

Q = Qb and T = Tb√
N (rB)

, (21)
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Fig. 1 Domain of existence and thermodynamic preference for scalar-
ized RN BH in a cavity. Left panel: Domain of existence in the α − q
plane, which is displayed by a shaded light blue region and bounded
by the bifurcation and critical lines. The blue dashed line represents
the bifurcation line, where scalarized black holes bifurcate from RN
black holes in a cavity as zero modes. The red line marks critical con-
figurations of scalarized black holes, where the horizon area vanishes
with the mass remaining finite. The horizontal dashed gray line denotes

extremal RN black holes in cavity, above which RN black hole solutions
in a cavity do not exist. Right panel: Reduced area aH versus reduced
charge q for RN black holes (a gray line) and scalarized RN black holes
with various values of q (red lines). For a given q, aH of the scalarized
RN black hole in a cavity is larger than that of the RN black hole, and
increases with the growth of α. The scalarized black hole solutions are
always entropically preferred

Fig. 2 Effective potentials for scalarized RN black holes with α = 5
for various values of q . They are all positive definite, which means that
the scalarized solutions are stable against radial perturbations

respectively. The Helmholtz free energy F and the thermal
energy E were also given in [54],

F = rB
√

1 − N (rB) − Tπr2+, E = rB
√

1 − N (rB).

(22)

The phase that has the lowest possible Helmholtz free energy
F is the globally stable phase of a multiphase system. The
rich phase structure of black holes comes from solving T (r+)

for r+. If T (r+) is a monotonic function with respect to
r+, there is only one branch for the black hole. More often,
there exists a local minimum/maximum for T (r+) at r+ =
r+,min/r+,max. In this case, there is more than one branch for
the black hole, corresponding to different phases. The scalar-

free RN black holes in a cavity has been studied in [55] in
a canonical ensemble, it show that the thermodynamics and
phase structure of RN Black Holes in a cavity is similar to
that of AdS counterparts and the critical values is

r̃+c = 5 − 2
√

5, Qc = √
5 − 2, T̃c

=
√

5 + 2
√

5
(

9 − 4
√

5
)

2
(

5 − 2
√

5
)3

π

. (23)

Considering the scalarized black hole solution, there is
additional branch for T (r+). Therefore we displays r̃+ and
F̃ against T̃ for scalarized and scalar-free RN black holes
in a cavity with different values of Q̃ and α = 5 in Fig. 3,
where

r̃+ = r+
rB

, F̃ = F

rB
, T̃ = rBT . (24)

Moreover, the thermodynamic stabilities against thermal
fluctuations of these phase is also shown in Fig. 3, where
thermodynamic unstable and stable phase is plotted with
dashed and solid line, respectively. In a canonical ensem-
ble, the quantity we consider is the specific heat at constant
electric charge:

CQ = T

(
∂S

∂T

)
Q

= 2πr+T
(

∂r+
∂T

)
Q

. (25)

Since the entropy is proportional to the size of the black hole,
a positive specific heat means that the black hole radiates less
when it is smaller. Thus, the thermal stability of the branch
follows from CQ > 0 .
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Fig. 3 Plots of the reduced horizon radius r̃+ and the reduced free
energy F̃ against the reduced temperature T̃ for RN black holes and
scalarized black holes in a cavity with different values of Q̃ and α = 5.
The top row displays r̃+ − T̃ for various Q̃, and the corresponding
F̃ − T̃ is shown in the bottom row. Moreover, the phases plotted by
dashed line are thermodynamic unstable since their heat capacity is neg-
ative. And black points B are bifurcation points. Left column: Q̃ = 0.1.
three scalar-free phases, namely Small RN BH, Intermediate RN BH
and Large RN BH, coexist for T̃1< T̃ < T̃ 2 since Q̃ < Q̃c. And the
scalarized BH exist when T̃ > T̃ B , where T̃B is the temperature of
bifurcation point. And the Small RN BH and Large RN BH are ther-
modynamic stable, whereas the Intermediate RN BH and Scalarized
BH are thermodynamic unstable. Therefore, there is only a first-order

phase transition form Small RN BH to Large RN BH at T̃ = T̃ p . Cen-
ter column: Q̃ = 0.4. There are one branch of scalar-free solutions and
one branch of scalarized solutions, dubbed RN BH and Scalarized BH.
Since the Scalarized BH is thermodynamic unstable, there is no phase
transition in this case. Right column: Q̃ = 0.8. There are one branch
of scalar-free solutions and two branch of scalarized solutions, dubbed
RN BH, Small Scalarized BH (Small SBH) and Large Scalarized BH
(Large SBH). Note that the Large SBH is thermodynamic stable. As
T̃ increases from 0, the black hole jumps from the RN BH branch to
the Large SBH one, corresponding to the zeroth order phase. Further
increasing T̃ , there would be a first order phase transition returning to
the RN BH. Therefore there is a RN BH → Large SBH → RN BH
reentrant phase transition

When Q̃ < Q̃c, three phases of the scalar-free RN black
holes, namely Small BH, Intermediate BH and Large BH,
coexist for some range of T̃ . And there is only one phase of
scalarized RN black holes, which bifurcates form the scalar-
free solution. For Q̃ = 0.1 < Q̃c, we plot r̃+ and F̃ against
T̃ in the left column of Fig. 3, where different colored lines
represent different phases. The three phases of scalar-free
black holes form the characteristic swallowtail, which usu-
ally means a van der Waals-like phase transitions. And the
scalarized BH bifurcates form Intermediate BH. Moreover,
the free energy of scalarized BH is always not the lowest,
and the negative specific heat of scalarized BH means that it
is thermodynamic unstable. So the scalarized BH is always
not globally stable and there is only a first-order transition
form Small BH to Large BH at T̃ = T̃p for Q̃ < Q̃c.

When Q̃c < Q̃ < 0.49, there are one branch of scalar-
free solutions and one branch of scalarized solutions. The
scalar-free one is thermodynamic stable and the scalarized
one is thermodynamic unstable. Therefore, the globally sta-
ble phase is always scalar-free RN BH, and there is no phase
transition, which is shown in the middle column of Fig. 3.

When Q̃ > 0.49, there are branches of scalarized
black holes, namely Small SBH and Large SBH, coexisting
between T̃ = T̃min and T̃ = T̃B . The Large SBH has posi-
tive specific heat and is thermodynamic stable, whereas the
Small SBH is thermodynamic unstable. As T̃ increase from
0, there is a jumps from the scalar-free RN BH branch to
the Large SBH one, corresponding to the zeroth order phase
transition between RN BH and Small SBH, followed by a
second-order phase transition returning to RN BH. This RN
BH→Large SBH→RN BH phase transition corresponds to
a reentrant phase transition.

Furthermore, we display the globally stable phase of black
holes in a cavity in the Q̃−T̃ plane. In Fig. 4, the blue line rep-
resents Large BH/Small BH first-order transition lines, which
terminates at the critical point, where a second-order phase
transition occurs. The red line and green line correspond the
zeroth order phase transition from RN BH to Small SBH and
the first order phase transition returning to RN BH, respec-
tively. Comparing with the phase diagram of scalar-free RN
black hole in a cavity, the join of scalarized BH results in
a additional structure for large enough Q̃, corresponding a
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Fig. 4 Phase diagrams of RN black holes and scalarized black holes
enclosed by a cavity in the Q̃-T̃ plane with α = 10. The phase diagram
exhibits the globally stable phases, which have the lowest free energy.
The first-order phase transition line separating Large BH and Small BH
is displayed by blue lines and terminate at the critical point, marked
by black dots C . In the blue region, the Large scalarized BH (Large
SBH) is globally stable. It shown that a reentrant phase transition hap-
pens when Q̃ is large enough. This reentrant phase transition consists
of a zero-order phase transition and a second-order phase transition,
corresponding the red line and green line, respectively

reentrant phase transition, which consists of the red line and
green line.

5 Discussion and conclusion

In this paper, we investigated spontaneous scalarization of
charged black holes enclosed by a cavity in the EMS model
with the nonminimal coupling function f (φ) = eαφ2

, and
studied the phase structure of these black holes in a canonical
ensemble. The scalarized black holes in a cavity can bifurcate
from scalar-free solution on the bifurcation line, which con-
sists of zero modes of the scalar-free solutions. The domains
of existence, thermodynamic preference, radial stability and
temperature of these solutions were numerically investigated
for the black holes in a cavity. In the α − q, Fig. 1 shows
that the domain of existence for scalarized RN black holes
in a cavity is bounded by the bifurcation and critical lines,
which is very similar with the case of not in a cavity [16] and
RN–AdS [34]. Note that the scalarized solutions in a cavity
always have positive effective potentials, which means they
are always stable against the spherically symmetric pertur-
bations, unlike the case of RN–AdS black holes.

Furthermore, we studied the thermodynamic of these
black holes and a richer phase structure than the scalar-free
case is displays in Fig. 4. In the small Q̃ regime, scalarized
black holes never globally minimize the free energy, there is
a classical first-order phase transition line separating Large
BH and Small BH, resembling that of the liquid/gas system
closely. However, when Q̃ is large enough, there is another
structure since scalarized black holes can be the globally sta-
ble phase in the large Q̃ regime, where the system undergoes a
RN BH→Large SBH→RN BH reentrant phase transition as
T̃ increases from 0. And this reentrant phase transition con-
sists of a zeroth-order phase transition and a second-order
one.

In this paper, the spontaneous scalarization of black holes
in a cavity were studied, and the phase structure is investi-
gated in the normal phase space, where the cavity radius is
fixed. The results closely resemble those of the AdS counter-
parts for scalarized RN black holes. Recently, the phase space
of black holes in a cavity has been extended by including a
thermodynamic pressure and a thermodynamic volume [56],
it is interesting to consider scalarized black holes enclosed
by a cavity in the extended phase space. Moreover, one can
study excited scalarized solutions since only the fundamental
state was considered in this paper. On the other hand, other
thermodynamic properties could be investigated for scalar-
ized black holes in a cavity and it would be very interesting to
explore these phenomena in the context of other non-linear
electrodynamics black holes in a cavity and check whether
analogies with the AdS counterparts can go beyond RN black
holes.
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