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Abstract We consider modified gravity cosmological mod-
els that can be transformed into two-field chiral cosmological
models by the conformal metric transformation. For the R2

gravity model with an additional scalar field and the cor-
responding two-field model with the cosmological constant
and nonstandard kinetic part of the action, the general solu-
tions have been obtained in the spatially flat FLRW met-
ric. We analyze the correspondence of the cosmic time solu-
tions obtained and different possible evolutions of the Hubble
parameters in the Einstein and Jordan frames.

1 Introduction

Modified gravity models are actively investigated [1–5]. An
important class of these models that includes F(R) gravity
models and models with a nonminimal coupling between the
scalar field and the curvature is characterized by the pos-
sibility to construct the mathematically equivalent General
Relativity models with a scalar field by the conformal metric
transformation. In other words, these models can be consid-
ered in the Einstein frame as models with one scalar field.

At present, a lot of modified gravity cosmological models
with an additional scalar field have been proposed [6–31].
In particular, inflationary models of the R2 gravity with the
Higgs-like boson [15–25] as well as inflationary models with
multiple scalar fields nonminimally coupled to the curvature
term [26–31] are actively studied. Note that the R2 term arises
as a quantum correction when inflationary models with scalar
fields are considered [32–35]. One of the motivations to con-
sider the R2 gravity with the Higgs-like boson is the possible
production of primordial black holes in such types of models
[23–25]. Also, we want to mention the Higgs-dilaton cosmo-
logical model that has been proposed to describe simultane-
ously an inflationary expansion in the early Universe and a
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dark energy dominated stage responsible for the present-day
acceleration [36].

Unlike models with a single scalar field nonminimally
coupled to gravity as well as F(R) gravity models, models
with multiple scalar fields nonminimally coupled with grav-
ity cannot be transformed to models with minimally coupled
scalar fields with the canonical kinetic terms in the generic
case [37]. After the metric transformation, one obtains mod-
els with a nonstandard kinetic part, so-called chiral cos-
mological models [38–43]. Mathematical properties of such
models attract a lot of attention [38,40,44–54].

In spite of the great success of numerical and approxima-
tion methods, exact analytical solutions play an important
role in studying evolution equations and in the investiga-
tion of some important qualitative features of cosmological
models with scalar fields [55–61]. Most of the results of the
exact integration of cosmological models with scalar fields
are connected with one-field cosmological models [58,62–
66]. A method for constructing integrable models with non-
minimally coupled scalar fields by using the interrelation
between the Jordan and Einstein frames has been proposed
for one-field models in Ref. [63]. Sometimes, the integra-
bility of cosmological models with nonminimal coupling is
more apparent, than the integrability of the corresponding
models in the Einstein frame [64–66].

The generalization of this analysis on the case of a few
scalar fields is not straightforward, because the conformal
transformation of the metric changes the form of kinetic
terms of the scalar fields. So, to find integrable modified grav-
ity models with an additional scalar field it can be useful to
study the corresponding chiral cosmological model. The inte-
grability of many cosmological models has been proved by
solving evolution equations with a suitable parametric time
[58], but it is not clear how to find this parametric time. In our
paper, we show that for some modified gravity models the
suitable parametric time is the cosmic time in the Einstein
frame. We propose the method in which the parametric time
is one and the same in both frames.
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In this paper, we study chiral cosmological models with
two scalar fields and the cosmological constant. The absence
of the scalar field potential allows us to get the behaviour
of the Hubble parameter in the analytic form, namely, in the
form of hyperbolic tangent or cotangent. We also get scalar
fields in the analytic form. The knowledge of this general
solution allows us to get the general solution of the initial
modified gravity models with an additional standard or phan-
tom scalar field in the parametric time. After this, using the
time transformation, we get solutions in the cosmic time. It
is important to check the existence of other solutions to the
initial modified gravity model.

The most famous F(R) gravity model, the Starobinsky R2

inflationary model [67–72], includes both R2 term and the
standard Hilbert-Einstein term. Adding to this model the cos-
mological constant, one can obtain the model with exact cos-
mological solutions [73]. The integrability of the Starobinsky
model as well as the integrability of R+Rn and pure Rn cos-
mological models are actively investigated by the singularity
analysis [74] and other methods [75–77]. It is known that a
pure R2 model is integrable [74]. At the same time, the inte-
grability of Rn models with a scalar or phantom scalar field
is an open question.

We consider in detail the R2-gravity model with a scalar
field without potential. We obtain the general solutions of
evolution equations in the cosmic time and analyze a possi-
ble behaviour of the Hubble parameter. Also, we study the
correspondence between solutions in the Jordan and Einstein
frames and show that it is not one-to-one correspondence for
all solutions in the case of a phantom scalar field. In par-
ticular, we have found such analytic solutions that the Ricci
scalar changes its sign during evolution. These solutions have
no analogues in the Einstein frame.

The paper is organized as follows. In Sect. 2, we define
the chiral cosmological model and construct the correspond-
ing modified gravity models. In Sect. 3, we find the general
solution of this chiral cosmological model. In Sect. 4, we con-
sider the corresponding R2 gravity model with an additional
scalar field and obtain its general solution in the cosmic time.
In Sect. 5, we compare the obtained solutions the Jordan and
Einstein frames. Section 6 contains concluding remarks.

2 Chiral cosmological models and modified gravity

Our goal is to find integrable modified gravity cosmological
models with an additional scalar field minimally coupled to
gravity:

S̃J =
∫

d4x
√−g̃

[
U (σ )R̃ − θσ

2
g̃μν∂μσ∂νσ

− εψ

2
g̃μν∂μψ∂νψ − VJ (σ )

]
, (1)

where U (σ ) > 0 and VJ (σ ) are double differentiable func-
tions, the constant θσ equals either ±1 or 0, whereas εψ =
±1. The case of θσ = 0 corresponds to F(R) gravity models.
As known, modified gravity models (1) are connected with
chiral cosmological models by the metric transformation.

Let us consider the chiral cosmological model, describing
by the following action:

SE =
∫

d4x
√−g

[
M2

Pl

2
R − 1

2
gμν∇μφ∇νφ

−εψ

2
K (φ)gμν∇μψ∇νψ − VE (φ)

]
, (2)

where the K and VE are differentiable functions. We con-
sider K (φ) to be a positive-definite function, so the field ψ

is either phantom or ordinary scalar field in dependence of
εψ . Dynamics of cosmological solutions of models (2) with
potentials depending on the field φ only are actively studied
[46,53,54].

The considered models with the phantom scalar field ψ

are generalizations of quintom models that have been actively
used to describe dark energy with the crossing of the cosmo-
logical constant barrier (see review [78]). There exist meth-
ods for construction of quintom models with exact solutions
[79–85] as well as for construction of chiral cosmological
models with exact solutions [47,86], but it is a almost unsolv-
able problem to construct integrable cosmological models
with multiple scalar fields [55,85].

Using the conformal transformation of the metric:

gμν = K (φ)g̃μν, (3)

we get the following action in the Jordan frame:

SJ =
∫

d4x
√−g̃

[
M2

Pl

2K
R̃− g̃μν

2K

[
1− 3M2

PlK
2
,φ

2K 2

]
∂μφ∂νφ

−εψ

2
g̃μν∂μψ∂νψ − VE

K 2

]
. (4)

If

2K 2 > 3M2
PlK

2
,φ,

then we introduce σ by the relation

dσ

dφ
=

√√√√ 1

K

(
1 − 3M2

PlK
2
,φ

2K 2

)
(5)

in order to get action (1) with θσ = 1,

U (σ ) = M2
Pl

2K (φ(σ ))
, VJ (σ ) = VE (φ(σ ))

K 2(φ(σ ))
. (6)

If

2K 2 < 3M2
PlK

2
,φ,
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then a phantom scalar field in the Jordan frame corresponds
to standard scalar field φ in the Einstein frame. At 2K 2 =
3M2

PlK
2
,φ for all φ, we get F(R) gravity model.

We consider the case of the exponential function K (φ):

K (φ) = K0eκφ, (7)

where K0 > 0 and κ are constants. Note that such chiral
cosmological models are actively studied [39,42,53,54]. To
get the general solutions for the Einstein frame model in
analytic form we restrict ourselves to the case of a constant
potential VE (φ) = Λ.

If κ2 < 2/(3M2
Pl), we use Eq. (5):

dσ

dφ
=

√
2 − 3M2

Plκ
2

2K0
eκφ/2, (8)

and obtain

σ =
√
Cκ

K0
eκφ/2, (9)

where

Cκ = 2
[
2 − 3M2

Plκ
2
]

κ2 . (10)

Action (1) takes the following form:

S̃J =
∫

d4x
√−g̃

[
M2

Pl

2Cκ

σ 2 R̃ − g̃μν

2
∇μσ∇νσ

−εψ

2
g̃μν∇μψ∇νψ − ΛC2

κσ 4
]
. (11)

In terms of σ , we obtain an induced gravity model with
the fourth degree potential and the additional scalar field ψ .

If

κ = ±
√

2√
3MPl

≡ κ1, (12)

then the scalar field φ has no kinetic term in the action SJ :

SJ =
∫

d4x
√−g̃

[
M2

Pl

2K0
e−κ1φ R̃

−εψ

2
g̃μν∇μψ∇νψ − Λ

K 2
0

e−2κ1φ

]
. (13)

Varying action (13) over φ, we obtain for Λ �= 0:

e−κ1φ = M2
PlK0

4Λ
R̃. (14)

So, we obtain the following action of F(R) gravity with
the scalar field ψ :

SF =
∫

d4x
√−g̃

[
M4

Pl

16Λ
R̃2 − εψ

2
g̃μν∇μψ∇νψ

]
. (15)

As known [87], a F(R) gravity model is stable if F ′ > 0
and F ′′ > 0, so, the model SF is stable for R̃ > 0. The stable
model corresponds to Λ > 0.

In the case of κ2 > 2/(3M2
Pl), we introduce a new phan-

tom scalar field ζ using relation (5):

ζ =
√

2(3M2
Plκ

2 − 2)

K0κ2 eκφ/2, (16)

and get

Sph =
∫

d4x
√−g̃

[
− M2

Pl

2
Cκζ 2 R̃ + g̃μν

2
∇μζ∇νζ

−εψ

2
g̃μν∇μψ∇νψ − ΛC2

κζ 4

]
. (17)

Note that Cκ < 0 in this case. The corresponding one-field
cosmological model has been considered in [88].

The main goal of our paper is to find general solu-
tions of the modified gravity cosmological models described
by action (1) in the spatially flat Friedmann–Lemaître–Ro-
bertson–Walker (FLRW) metric. The standard way to inte-
grate Friedmann equations includes the suitable choice of the
parametric time, so we use

ds2 = − N 2
J (τ )dτ 2 + a2

J (τ )
(
dx2

1 + dx2
2 + dx2

3

)
, (18)

where aJ (τ ) is the scale factor and NJ (τ ) is the lapse func-
tion. In this metric, action (1) gives the following equations
[63]:

6Uh2 + 6U ′hσ̇ = θσ

2
σ̇ 2 + εψ

2
ψ̇2 + N 2

J VJ , (19)

4Uḣ + 6Uh2 + 4U ′hσ̇ − 4Uh
ṄJ

NJ
+ 2U ′′σ̇ 2 + 2U ′σ̈

= 2U ′σ̇ ṄJ

NJ
− θσ

2
σ̇ 2 − εψ

2
ψ̇2 + N 2

J VJ ,

(20)

ψ̈ +
(

3h − ṄJ

NJ

)
ψ̇ = 0, (21)

where h = ȧ/a, dots mean derivatives with respect to time τ

and primes mean derivatives with respect to the scalar field σ .
Note that h(τ ) is the Hubble parameter only for NJ (τ ) ≡ 1.
The evolution equation in σ is a consequence of Eqs. (19)–
(21).

The knowledge of solutions in the Einstein frame allows us
to get solutions in the Jordan frame, choosing the parametric
time τ = t , where t is the cosmic time in the Einstein frame.
The metric transformation (3) corresponds to the following
transformations of the functions defining the FLRW metric:

NJ = √
K (φ)NE , aJ = √

K (φ)aE . (22)
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So, we get the following solution in the Jordan frame

NJ (t) = √
K0eκφ(t)/2, (23)

aJ (t) = √
K0eκφ(t)/2aE (t), (24)

σ(t) =
√
Cκ

K0
eκφ(t)/2 (25)

and ψ(t) is the same in the both frames.
Let us remind that the cosmic time in the Jordan frame is

t̃ =
∫ √

K (φ(t)) dt, (26)

and the Hubble parameter in the Jordan frame

HJ (t̃) = 1√
K (φ(t̃))

[
HE (t̃) + 1

2

d ln K

dt
(t̃)

]
. (27)

So, using Eq. (26), we can get general solutions in the cosmic
time t̃ for some functions K (φ) at least in quadratures. For
the R2 model, we consider this question in detail in Sect. 5.

3 General solutions for Friedmann equations in the
Einstein frame

Varying action (2) with VE = Λ, and substituting the spa-
tially flat FLRW metric with

ds2 = − dt2 + a2
E (t)

(
dx2 + dy2 + dz2

)
,

we obtain the following system of equations:

3M2
PlH

2
E = 1

2
φ̇2 + εψ

2
K ψ̇2 + Λ, (28)

2M2
Pl ḢE + 3M2

PlH
2
E + 1

2
φ̇2 + εψ

2
K ψ̇2 = Λ, (29)

φ̈ = − 3HE φ̇ + εψ

2
K ′

,φψ̇2, (30)

ψ̈ = − 3HE ψ̇ − K ′
,φ

K
φ̇ψ̇, (31)

where HE = ȧE/aE , aE (t) is the scale factor in the Einstein
frame, dots and primes denote the derivatives with respect to
the cosmic time t and to the scalar field φ respectively.

From Eqs. (28) and (29), we get

ḢE + 3H2
E = λ, (32)

where λ ≡ Λ/M2
Pl.

If Λ > 0, then the general solution of Eq. (32) is

HE (t) =
√

λ

3

1 − Ce−2
√

3λ t

1 + Ce−2
√

3λ t
, (33)

where C is an integration constant.
The corresponding scale factor is

aE (t) = a0e

√
λ
3 t

(
1 + Ce−2

√
3λ t

)1/3
, (34)

where a0 is a constant.
We get three forms of the Hubble parameter in dependance

of the sign of C :

HE (t) =
√

λ

3
tanh

(√
3λ (t − t0)

)
, (35)

for C > 0,

HE =
√

λ

3
(36)

for C = 0, and

HE (t) =
√

λ

3
coth

(√
3λ (t − t0)

)
, (37)

for C < 0.
To get φ(t) for the exponential function K (φ) we present

Eq. (30) in the following form:

φ̈ = −3HE φ̇ + K ′
,φ

K

(
3M2

PlH
2
E − 1

2
φ̇2 − Λ

)

= −3HE φ̇ + 3κM2
PlH

2
E − κ

2
φ̇2 − κM2

Plλ.

(38)

Introducing a new function

u(t) =
√

K (φ)

K0
= eκφ/2,

we transform Eq. (38) into the following second-order linear
differential equation:

ü + 3HEu̇ + κ2M2
Pl

2

(
λ − 3H2

E

)
u = 0. (39)

Now we introduce a new independent variable, χ =√
3/λ HE (t), that is proportional to the Hubble parameter.

This change of variables gives the following Chebyshev’s
differential equation:

(
1 − χ2

) d2u

dχ2 − χ
du

dχ
+ κ2M2

Pl

6
u = 0.

The general solution of Eq. (39) can be presented in the fol-
lowing form:

u(t)= A cos

[
κMPl√

6
arccos

[
1−Ce−2

√
3λ t

1+Ce−2
√

3λ t

]
+ B

]
, (40)

where A and B are constants of integration.
It is more convenient to write the function φ:

φ = 2

κ
ln

[
A cos

(
κMPl√

6
arccos

(
1 − Ce−2

√
3λ t

1 + Ce−2
√

3λ t

)
+B

)]
,

in explicitly real forms for C > 0 and C < 0 separately.
Namely, we get

φ = 2

κ
ln

[
A cos

[
κMPl√

6
arccos

[
tanh

(√
3λ(t−t0)

)]
+B

]]
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for C > 0, and

φ = 2

κ
ln

[
A tanhn

(√
3λ

2
(t − t0)

)

+B cothn
(√

3λ

2
(t − t0)

)]
,

where n = κMPl/
√

6 , for C < 0.
Equation (31) can be integrated:

ψ̇ = Cψ

Ka3
E

= C̃ψe−√
3λ t(

1 + Ce−2
√

3λ t
)
K0u2

, (41)

where C̃ψ ≡ Cψ/a3
0 is an integration constant.

In terms of u, Eq. (28) has the following form:

4K0u̇
2
(
C2e−4

√
3λt + 1

)

+
[
εψ C̃

2
ψκ2 + 8CK0

(
κ2Λu2 + u̇2

)]
e−2

√
3λt = 0.

(42)

Substituting solution (40) into Eq. (42), we get

8A2K0ΛC + C̃2
ψεψ = 0. (43)

We see that the solutions with C > 0 exist in the case of
εψ = −1 only, whereas the solutions with C < 0 exist only
at εψ = 1.

The Hubble parameter HE does not depend on the form
of the function K (φ). Moreover, the Hubble parameter (37)
can be obtained in the case of the corresponding one-field
model without ψ [89], whereas solution (35) exists in the
model with a phantom field φ and a standard field ψ for
an arbitrary positive-definite function K (φ). For example,
for K = sin2(φ/MPl) the Hubble parameter (35) and the
explicit form of functions φ(t) and ψ(t) have been found
in Ref. [40]. Note that the same behaviour of the Hubble
parameter HE has been found in the model with a nonlocal
scalar field [90].

Equation (32) has constant nonzero solutions HE =
±√

λ/3. In this case, one obtains the following general solu-
tion for φ:

φ(t) = 2

κ
ln

∣∣∣e−3HE t − C1

∣∣∣ + C2,

where C1 and C2 are constants of integration.
The function ψ̇ is given by

ψ̇(t) = C̃ψe3HE t

K0eκC2(C1e3HE t − 1)2 .

So, the constraint equation (28):
(

6HE

κ

)2

+ εψeκC2 C̃2
ψ = 0, (44)

gives us that for a constant HE , the scalar field ψ should be
nonconstant and a phantom one.

If Λ = 0, then Eq. (32) has the following solution:

HE (t) = 1

3(t − t0)
, (45)

therefore

aE (t) = a0 (t − t0)
1/3 , ψ̇ = C̃ψ

K0 (t − t0) u2 . (46)

Solving Eq. (39) and substituting into Eq. (28), we get

u(t) = Cu(t − t0)
κ√
6
MPl + 3εψ C̃2

ψ

8K 3
0 M

2
PlCu

(t − t0)
− κ√

6
MPl

,

where Cu is an integration constant. So,

φ = 2

κ
ln

⎡
⎣Cu(t − t0)

κ√
6
MPl + 3εψ C̃2

ψ (t − t0)
− κ√

6
MPl

8K 3
0 M

2
PlCu

⎤
⎦ .

These solutions obtained in the Einstein frame allow us to
get solutions in the parametric time in the Jordan frame by
using formulae (23)–(25).

4 The integrable R2 model with a scalar field

4.1 The general solution in the cosmic time

The results of the previous section are sufficient to get solu-
tions of modified gravity models in the parametric time τ = t .
To obtain solutions in the cosmic time t̃ one can use Eq. (26)
or try to solve the evolution equations with the cosmic time.
The second way can give solutions in a more simple analytic
form, also it guarantees that no solution has been lost. In this
section, we obtain the general solution of the considered R2

model in the cosmic time.
The F(R) model has the following evolution equations:

F ′Rμν − 1

2
gμνF − (∇μ∇ν − gμν�)F ′ = 1

2
Tμν, (47)

where Tμν is the matter stress–energy tensor.

Action (15) corresponds to F = F0 R̃2 with F0 = M4
Pl

16Λ

and the stress–energy tensor

Tμν = εψ∂μψ∂νψ − εψ

2
g̃μνg

αβ∂αψ∂βψ. (48)

In the FLRW metric with

ds2 = − dt̃2 + ã2(t̃)
(
dx2 + dy2 + dz2

)
,

system (47) has only two independent equations:

F ′ R̃00 + 1

2
F + 3HJ Ḟ ′ = 1

4
εψψ̇2, (49)

F ′ R̃11 − ã2

2
F − ã2 (

F̈ ′ + 2HJ Ḟ ′) = ã2

4
εψψ̇2. (50)

123
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The trace equation

F ′ R̃ − 2F + 3�F ′ = 1

2
Tμ

μ = − εψψ̇2, (51)

is a consequence of Eqs. (49) and (50). In this section, dots
mean derivatives with respect to the cosmic time t̃ .

Using

R̃00 = −3
(
ḢJ + H2

J

)
,

R̃11 = ã2
(
ḢJ + 3H2

J

)
,

R̃ = 6
(
ḢJ + 2H2

J

)
,

we obtain for the R2 model considered:

18F0

(
6H2

J ḢJ − Ḣ2
J + 2HJ ḦJ

)
= εψ

4
ψ̇2, (52)

6F0

(
18H2

J ḢJ + 12HJ ḦJ + 9Ḣ2
J + 2

...
H J

)
= − εψ

4
ψ̇2.

(53)

Excluding ψ̇ , we get the following third order differential
equation in HJ :
...
H J + 9HJ ḦJ + 18H2

J ḢJ + 3Ḣ2
J = 0. (54)

Multiplying Eq. (54) by Ḣ2
J and factoring, we get

(
ḦJ + 3HJ ḢJ

) (
2HJ

...
H J + 6H2

J ḦJ + 12HJ Ḣ
2
J

)

=
(

2HJ ḦJ + 6H2
J ḢJ − Ḣ2

J

) ( ...
H J + 3HJ ḦJ + 3Ḣ2

J

)
,

or, equivalently,
(
ḦJ + 3HJ ḢJ

) d

dt̃

[
Ḣ2

J − 2HJ ḦJ − 6H2
J ḢJ

]

=
(
Ḣ2

J − 2HJ ḦJ − 6H2
J ḢJ

) d

dt̃

[
ḦJ + 3HJ ḢJ

]
.

(55)

So, there are two families of solutions:

1. The first possibility is

ḦJ + 3HJ ḢJ = 0. (56)

This equation has the following integral:

2ḢJ + 3H2
J = 2C̃,

where C̃ is an integration constant.
For this case, Eq. (52) takes the following form:

εψψ̇2 = − 72F0 Ḣ
2
J . (57)

From this relation, it follows that εψ = −1, and

ψ̇ = ±6
√

2F0 ḢJ = ±3
√

2F0

(
2C̃ − 3H2

J

)
. (58)

The model has de Sitter solutions with HJ =
√

2C̃/3 that
correspond to a constant ψ .
The type of solutions obtained depends on the sign of C̃ ,
see Table 1. The values of constants B and t̃ ′ are defined
by the initial value HJ0. The third line of Table 1 includes
the solutions from lines 1 and 2 in a different form and
de Sitter solutions at B = 0. The power-law solution
is presented in the fourth line. One needs to be careful
with the solution from the fifth line, because the scalar

curvature R̃ changes sign at t̃ = t̃ ′ ± π
3

√
−2/(3C̃).

2. If ḦJ + 3HJ ḢJ �= 0, then one can integrate Eq. (55) and
get the following equation:

Ḣ2
J

ḦJ + 3HJ ḢJ
− 2HJ = C1, (59)

where C1 is a constant of integration.
Integrating the equation,

(C1 + 2HJ )ḦJ + 3HJ (C1 + 2HJ )ḢJ − Ḣ2
J = 0, (60)

one gets:

ḢJ = C2
√|C1 + 2HJ | + (C1 + 2HJ )(C1 − HJ ), (61)

where C2 is also a constant of integration.
Equation (61) with arbitrary constants C1 and C2 can

be solved in quadratures. Also, there are some particular
solutions of Eq. (61):

(a) At C1 = C2 = 0,

HJ (t) = 1

2
(
t̃ − t̃ ′

) , (62)

(b) At C2 = 0, C1 �= 0,

HJ (t) = C1
C̃ + e−3C1 t̃

C̃ − 2 e−3C1 t̃
, (63)

where C̃ is a constant of integration.
Combining Eqs. (52) and (60), we obtain

ψ̇2 = − 72F0C1εψ

(
ḦJ + 3HJ ḢJ

)
. (64)

So, the case of C1 = 0 corresponds to R2 without addi-
tional scalar field.

4.2 The different behaviour of the Hubble parameter

One can see in Table 1 that all nonconstant solutions of
Eq. (56) are monotonic functions. Let us consider a possible
extremum of a solution of Eq. (61). Solving Eq. (54) numeri-
cally, we have found solutions with nonmonotonic behaviour.
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Table 1 List of the R2 gravity
exact solutions

C̃ HJ
(
t̃
) ∣∣ψ̇ (

t̃
)∣∣

C̃ > 0,

ḢJ0 > 0

√
2C̃
3 tanh

(√
3C̃
2

(
t̃ − t̃ ′

))
6C̃

√
2F0

cosh2
(√

3C
2

(
t̃−t̃ ′

))

C̃ > 0,

ḢJ0 < 0

√
2C̃
3 coth

(√
3C̃
2

(
t̃ − t̃ ′

))
6C̃

√
2F0

sinh2
(√

3C
2

(
t̃−t̃ ′

))

C̃ > 0

√
6C̃

(
1−Be−

√
6C̃ t̃

)

3
(

1+Be−
√

6C̃ t̃
) 24BC

√
2F0e−

√
6C̃ t̃(

Be−
√

6C̃ t̃+1
)2

C̃ = 0 2

3
(
t̃−t̃ ′

) 4
√

2F0(
t̃−t̃ ′

)2

C̃ < 0 −
√

−6C̃
3 tan

[√
−6C̃
2

(
t̃ − t̃ ′

)]
6C

√
2F0

cos2

(√
−3C

2

(
t̃−t̃ ′

))

Fig. 1 The Hubble parameter HJ (t̃) in the R2 model considered

Fig. 2 The Hubble parameter HJ (t̃) (left) and the corresponding phase
portraits (right)

Also, we have found both bounded, and unbounded solu-
tions (see Figs. 1 and 2). In Fig. 1, one can see bounded and
unbounded solutions with minima. A monotonic solution and
solutions with maxima are presented in Fig. 2.

Let us analyze possible types of the Hubble parameter
evolution for the phantom and the standard scalar field ψ .
At the point HJ = −C1/2, it is obvious that ḢJ = 0, but
ḦJ = C2

2 sgn(C1 + 2HJ0) �= 0 if C2 �= 0. This means that
HJ = −C1/2 is an extreme value of HJ , namely, a maximum
for C1 + 2HJ0 < 0 and a minimum for C1 + 2HJ0 > 0,
where HJ0 = HJ (t̃0) is an initial condition for HJ . When
(if at all), during its evolution, HJ becomes equal to −C1/2,

Fig. 3 Phase portraits ḢJ (HJ ) for C1 = 1.1, C2 = ±1. Parts of the
curves corresponding to the different possible solutions are in different
colors. The blue and gray trajectories are described by two equations –
Eqs. (61) and (65). The change of the equation describing these trajec-
tories occurs at HJ = −C1/2 = −0.55

the equation describing ḢJ changes from (61) to

ḢJ = −C2
√|C1 + 2HJ | + (C1 + 2HJ )(C1 − HJ ). (65)

The phase portraits in Fig. 3 illustrate this situation.
Combining Eqs. (52), (60), and (61), one gets the follow-

ing relation:

−εH F0C1

[
±C2 + εH

√|C1 + 2HJ |(C1 − HJ )
]2 = εψ

72
ψ̇2,

where εH = sgn(C1 +2HJ0), and the symbol “±” beforeC2

represents the change of equation describing ḢJ when HJ

reaches the value −C1/2. From here, it follows that εψ =
−εH sgn(C1), and

ψ̇ = ±6
√

2F0|C1|
∣∣∣±C2 + εH

√|C1 + 2HJ |(C1 − HJ )

∣∣∣ .
In particular, if C1 = 0, then ψ̇ ≡ 0.

Let us find roots of Eqs. (61) and (65) that are not equal
to HJ = −C1/2. These roots are of interest to us because
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they correspond to the stable points (asymptotically stable
points, to be precise) of Eq. (54). Knowing how many stable
points there are, we can determine for any particular values
of C1 and C2 whether or not there exists a bounded solution.
At C2 = 0, solutions are given by Eqs. (62) and (63) in
the analytic form, so, we need to consider only the case of
C2 �= 0.

We get two cases, 2HJ0 + C1 > 0 and 2HJ0 + C1 < 0.
We start by analyzing the first case. The substitution ũ =√

2HJ + C1 results in the following pair of equations:

±C2 + 1

2
ũ

(
3C1 − ũ2

)
= 0 ⇐⇒ ũ3 − 3C1ũ ± 2C2 = 0.

The determinant of both of these equations is

Δ = 108
(
C3

1 − C2
2

)
. (66)

So, for C3
1 < C2

2 , we have two real roots:

ũ = ±
[

3

√
C2 +

√
C2

2 − C3
1 + 3

√
C2 −

√
C2

2 − C3
1

]
, (67)

and for C3
1 > C2

2 , we have six real roots:

ũk = ± 2
√
C1 cos

(
1

3
arccos

(
C2

C1

√
1

C1

)
− 2πk

3

)
, (68)

here and in the following, k = 0, 1, 2.
At C3

1 = C2
2 , we can use Eq. (68) as well and get four

different roots:

ũk = ±2
√
C1 cos

(
2πk

3

)
, ⇒

ũ0 = ± 2
√
C1, ũ1 = ± √

C1.

(69)

In terms of HJ = (ũ2 − C1)/2, we get:
− at C3

1 < C2
2 :

HJas = 1

2

[
3

√
C2 +

√
C2

2 − C3
1 + 3

√
C2 −

√
C2

2 − C3
1

]2

− C1

2
,

− at C3
1 > C2

2 :

HJas = 2C1 cos2

(
1

3
arccos

(
C2

C3/2
1

)
− 2πk

3

)
− C1

2
.

− and at C3
1 = C2

2 :

HJas = 3

2
C1, and HJas = 0.

In a similar manner, one can obtain the values correspond-
ing to the stable points in the case of 2HJ0 + C1 < 0:

– at C3
1 > −C2

2 :

HJas = −1

2

[
3

√
C2+

√
C2

2 +C3
1 + 3

√
C2−

√
C2

2 +C3
1

]2

− C1

2
,

– at C3
1 < −C2

2 :

HJas = 2C1 cos2
[

1

3
arccos

(
C2

(−C1)3/2

)
− 2πk

3

]
−C1

2
.

– and at C3
1 = −C2

2 :

HJas = 3

2
C1, and HJas = 0.

As we mentioned above,

εψ = − sgn (C1(C1 + 2HJ0)) .

So, the field ψ is not a phantom field only ifC1 andC1+2HJ0

are of different signs. But our analysis of the stable points of
Eq. (54) shows that in this case there is only one stable point,
and so HJ (t̃) is unbounded. So, we come to the conclusion
that bounded solutions are allowed only if the field ψ is a
phantom field.

It is easy to verify that continuous and bounded solutions
HJ (t̃) of Eqs. (61) and (65) have different asymptotic values
at t̃ → ∞ and t̃ → −∞. Obviously, if the asymptotic values
of the non-constant solution HJ (t̃) are the same, then the
solution has at least one extremum. In this case, C2 �= 0
and the following equation must have a solution other than
HJ = −C1/2:

C2
√|C1 + 2HJ | + (C1 + 2HJ )(C1 − HJ )

= −C2
√|C1 + 2HJ | + (C1 + 2HJ )(C1 − HJ ).

(70)

Obviously, it doesn’t have any solutions besides HJ =
−C1/2. Thus, the asymptotic values at t̃ → ∞ and t̃ → −∞
of the continuous and bounded solution HJ (t̃) of Eqs. (61)
and (65) are never equal.

Another interesting property of the obtained solutions: a
continuous solution HJ (t̃) can change sign only if the field
ψ is a phantom field. It follows from the fact that

εψ = − sgn (C1(C1 + 2HJ ))
∣∣
HJ=0 = − sgn(C2

1 ) = −1.

We can safely take C1 to be nonzero, because the case of
C1 = 0 corresponds to ψ̇ ≡ 0. We obtain that HJ = 0 at
some moment of time only if the field ψ is a phantom one.
Therefore, a continuous solution HJ (t̃) can change sign only
if the field ψ is a phantom field.
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The same result can be obtained by substituting HJ = 0
into Eq. (52). Assuming HJ > 0, Eq. (52) with εψ = 1 can
be presented in the following form:

d

dt̃

[
R̃√
HJ

]
= ψ̇2

24F0H
3/2
J

. (71)

So, if at the initial moment t̃0 we have R̃(t̃0) > 0 and
HJ (t̃0) > 0, then R̃(t̃) > 0 and HJ (t̃) > 0 for all t̃ > t̃0. If
the field ψ is a phantom field, the situation is different and
the initially positive R̃(t̃) and HJ (t̃) can change sign during
their evolution (see line 5 in Table 1 and the green curves in
Figs. 1 and 2).

5 The connection between the Jordan and Einstein
frame solutions of the R2 model

In this section, we compare the behaviour of the Hubble
parameters in the Jordan and Einstein frame. In the Einstein
frame, equations on the Hubble parameter and scalar fields
can be separated and the Hubble parameter HE satisfies the
first order differential equation (32). In the Jordan frame,
the Hubble parameter HJ satisfies the third order differential
equation (54) and, therefore, includes three free parameters.

For all solutions in the Einstein frame, one can construct
the corresponding solutions in the Jordan frame, but some
solutions in Jordan frame have no analogues in the Einstein
frame. Equation (14) is sensible and a continuously map from
the Jordan frame to the Einstein frame is possible, only if
the Ricci scalar R̃ has the same sign as Λ/K0 and does not
change it during evolution. It is not always the case if the
field ψ is a phantom one. For example, the solution for R2

gravity model with C̃ < 0 (see Table 1) corresponds to R̃
that changes sign. Looking at Figs. 1 and 2 , we see that both
green curves correspond to solutions with R̃ that changes
sign, because HJ (t̃) = 0 at two points. Also, solution (62)
corresponds to R̃ ≡ 0. All these solutions cannot be obtained
from the Einstein frame solutions.

We consider the case of Λ/K0 > 0. To get the scalar field
φ(t) that corresponds to the given HJ (t̃) we use

6
(
ḢJ (t̃) + 2H2

J (t̃)
)

= R̃(t̃) = 4Λ

K0M2
Pl

e
√

2/3φ(t̃)/MPl

and

t =
∫

eφ(t̃)/
√

6MPl

√
K0

dt̃ =
∫ √

3M2
Pl

2Λ

√
ḢJ (t̃) + 2H2

J (t̃) dt̃ .

For solutions that correspond to R̃ > 0, we have

φ(t (t̃)) =
√

3

2
MPl ln

[
6K0M2

Pl

4Λ

(
ḢJ (t̃) + 2H2

J (t̃)
)]

and

dφ

dt

(
t (t̃)

) = dφ

dt̃

dt̃

dt
= √

Λ
ḦJ + 4HJ ḢJ(
ḢJ + 2H2

J

)3/2 .

In our case, Eq. (27) takes the form

HJ (t̃) = eφ/
√

6MPl

√
K0

[
HE (t (t̃)) − 1√

6MPl

dφ

dt

(
t (t̃)

)]

= 1

u(t (t̃))

[
HE (t (t̃)) + u̇(t (t̃))

u(t (t̃))

]
.

Expressing HE from this equation, we get the following
relation:

HE (t (t̃)) = √
K0e−φ/

√
6MPl HJ (t̃) + 1√

6MPl

dφ

dt
(t̃)

=
√

Λ

6M2
Pl

ḦJ + 6HJ ḢJ + 4H3
J(

ḢJ + 2H2
J

)3/2 . (72)

6 Conclusion

In our paper, we have found general solutions in the cosmic
time for the two-field chiral cosmological model. The cosmic
time in the Einstein frame corresponds to a parametric time
in the Jordan frame, so, the consideration of integrable chiral
cosmological models is useful to get the general solutions
for the corresponding modified gravity models in parametric
time. Using this method, we have found general solutions for
the induced gravity cosmological model with the four-order
potential and the R2 gravity model. The proposed method
allows finding general solutions for different cosmological
models that can be presented as chiral cosmological mod-
els after the metric transformation. In particular, it would be
interesting to generalize our consideration on other forms of
the function K (φ), including K = sin2(φ/MPl) proposed in
Ref. [40]. Note that the behaviour of the Hubble parameter
(33) does not depend on the form of the K (φ), whereas the
form of scalar fields depends on it.

At the same time, some particular solutions can be lost,
because they have no analogue in the Einstein frame. For
example, constructing the Einstein frame analogue of R2

gravity models, one uses Eq. (14), hence, no finite value of
φ corresponds to R̃ = 0. At the same time, the Ricci scalar
R̃ can change its sign during the evolution. We have found
such solutions explicitly for the R2 model with a phantom
scalar field. On the other hand, it is known that F(R) grav-
ity models without additional scalar field have anisotropic
instabilities associated with the crossing of the hypersurface
F ′(R) = 0. In other words, the solutions in the FLRW metric
are smooth, whereas solutions in the Bianchi I metric have
singularities [91]. A similar situation arises in the model with
nonminimally coupled scalar field [92,93] (see also [94–96]).
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Anisotropic cosmological solutions in R + R2 gravity have
been investigated in [97]. We plan to analyze anisotropic
solutions and their stability in the considering R2 model with
an additional scalar field in future investigations.

We have found the general solution of the R2 grav-
ity model with an additional scalar field and analyzed the
behaviour of the Hubble parameter. The integrability of dif-
ferent F(R) gravity models is actively investigated [74,98–
100]. In particular, it has been shown that for some values of
the constants q and n the cosmological equations of R+qRn

model are integrable in the sense that they pass the singular-
ity (Painleve) test [74]. We plan to generalize the proposed
method on other modified gravity models, including the Pala-
tine gravity and F(R) models with an ideal gas [100].

We show that the behaviour of the Hubble parameter is
essentially different in the Einstein and Jordan frames. In
the Einstein frame, only monotonic behaviour is possible,
whereas in the Jordan frame, we have found both monotonic
and nonmonotonic behaviour of the Hubble parameter. In
particular, bounce solutions with a maximum of the Hub-
ble parameter after bounce have been obtained in quadra-
tures. Such behaviour may be suitable for inflationary scenar-
ios. The considered R2 model does not include the standard
Einstein-Hilbert term and cannot be considered as a realis-
tic model after inflation, but can be a good approximation at
large values of R, when the R2 term dominates.
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