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Abstract In this article, we study further applications of
the Schwarzschild–Finsler–Randers (SFR) model which was
introduced in a previous work Triantafyllopoulos et al. (Eur
Phys J C 80(12):1200, 2020). In this model, we investigate
curvatures and the generalized Kretschmann invariant which
plays a crucial role for singularities. In addition, the derived
path equations are used for the gravitational redshift of the
SFR-model and these are compared with the GR model.
Finally, we get some results for different values of param-
eters of the generalized photonsphere of the SFR-model and
we find small deviations from the classical results of general
relativity (GR) which may be ought to the possible Lorentz
violation effects.

1 Introduction

The last decade has seen a rapid increase of Finsler and
Finsler-like geometries and their applications to gravitation
and cosmology with appreciable results in the scientific com-
munity. We quote some relevant works which have con-
tributed in the development of applications of Finsler and
Finsler-like geometries to the gravitational field theory and
cosmology [1–49].

Finsler geometry is a dynamical metric geometry depend-
ing on position and direction or dynamical coordinates on
a tangent or fiber bundle of a differentiable manifold. This
type of geometry can also be connected to Lorentz viola-
tion investigations of the standard model extension (SME)
[50,51] and in the context of local anisotropy [4,8,11,19].
Moreover, Finsler-like geometries breaking the local four
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dimensional Lorentz invariance can be considered as a pos-
sible alternative direction for investigating physical models
with both local anisotropy and violation of local spacetime
symmetries [3].

A significant class of Finslerian spacetime is the Finsler–
Randers (FR) spacetime proposed by Randers [52]. An FR
space has a metric function of the form

F(x, y) = (−aμν(x)y
μyν)1/2 + uα y

α (1)

where uα is a covector with ||uα|| � 1, yα = dxα

dτ
and aμν(x)

is a Riemannian metric for which the Lorentzian signature
(−,+,+,+) has been assumed and the indices μ, ν, α take
the values 0, 1, 2, 3. The geodesics of this space can be pro-
duced by (1) and the Euler–Lagrange equations. If uα denotes
a force field fα and yα is substituted with dxα then fαdxα

represents the spacetime effective energy produced by the
anisotropic force field fα , therefore Eq. (1) is written as

F(x, dx) = (−aμν(x)dx
μdxν

)1/2 + fαdx
α (2)

The integral
∫ b
a F(x, dx) represents the total work that some

particle needs to move along a path.
The length of a curve c in the FR space is given by

l(c) =
∫ 1

0
F(x, ẋ)dτ (3)

where ẋ = dx
dτ

and τ is affine parameter.
An FR cosmological model was introduced and studied

in [2,5]. In this case, by considering the metric of the FRW
cosmological model instead of aμν(x) in (2) we get

aμν(x) = diag

[
−1,

a2

1 − κr2 , a2r2, a2r2 sin2 θ

]
(4)

and we obtain a Finsler–Randers cosmology. From (2) we
can notice that an FR spacetime shows a motion of the FRW
model with a produced work which comes from the second
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term (one-form). This form of metric provides a dynamic
effective structure in spacetime. More investigations about
this model can be found in the following articles [6,15,30,
53–60].

By using a Schwarzschild metric in (1), we obtain a
Schwarzschild–Randers spacetime [40].

F(x, y) =
[

−
(

1 − Rs

r

)
(yt )2 + (yr )2

1 − Rs
r

+ r2(yθ )2

+ r2 sin2 θ (yφ)2
]1/2

+ uα y
α (5)

From (5), we can also see that the Schwarzschild–Randers
metric has a dynamical second term.

Finsler and Finsler–Randers spacetimes can give an effec-
tive description of fermion particles with CPT-odd Lorentz
violating terms in the SME framework [19,55,61].

In this work, we elaborate some fundamental results of
the SFR model and compare them with the corresponding
ones of GR. We prove that the gravitational redshift pre-
dicted from our model remains invariant compared with the
one of GR. Nevertheless, in the case of photon sphere, we
find infinitesimal deviations from GR which may be ought
to the small anisotropic perturbations coming from Lorentz
violation effects. In addition, in our generalized metric space,
we calculate the Kretschmann invariants of the model and we
find that the generalized second Kretschmann invariant KV

provides more information for singularities with additional
degrees of freedom.

This article is organized as follows: in Sect. 2 we give
some basic elements from the geometry of SFR. In Sect. 3 we
present the curvatures and the field equations. In Sects. 4, 5, 6
and 7 we give some applications of the SFR model includ-
ing paths, energy, gravitational redshift and photonsphere.
Finally, in the last Sect. 8 we summarize the results of our
work.

2 Basic structure of the model

In this section, we briefly present the underlying geometry
of the SFR gravitational model, as well as the field equations
for the SFR metric. The solution of these equations for this
metric is presented at the end of the section. An extended
study of this model can be found in [40,44].

The Lorentz tangent bundleT M is a fibered 8-dimensional
manifold with local coordinates {xμ, yα} where the indices of
the x variables are κ, λ, μ, ν, . . . = 0, . . . , 3 and the indices
of the y variables are α, β, . . . , θ = 4, . . . , 7. The tangent
space at a point of T M is spanned by the so called adapted
basis {EA} = {δμ, ∂̇α} with

δμ = δ

δxμ
= ∂

∂xμ
− Nα

μ(x, y)
∂

∂yα
(6)

and

∂̇α = ∂

∂yα
(7)

where Nα
μ are the components of a nonlinear connection N =

Nα
μ(x, y) dxμ ⊗ ∂̇α .
The nonlinear connection induces a split of the total space

T T M into a horizontal distribution THT M and a vertical
distribution TV T M . The above-mentioned split is expressed
with the Whitney sum:

T T M = THT M ⊕ TV T M (8)

The anholonomy coefficients of the nonlinear connection are
defined as

�α
νκ = δNα

ν

δxκ
− δNα

κ

δxν
(9)

A Sasaki-type metric G on T M is:

G = gμν(x, y) dxμ ⊗ dxν + vαβ(x, y) δyα ⊗ δyβ (10)

We define the metrics gμν and vαβ to be pseudo-Finslerian.
A pseudo-Finslerian metric fαβ(x, y) is defined as one

that has a Lorentzian signature of (−,+,+,+) and that also
obeys the following form:

fαβ(x, y) = ±1

2

∂2F2

∂yα∂yβ
(11)

where the function F satisfies the following conditions [12]:

1. F is continuous on T M and smooth on ˜T M ≡ T M \
{0} i.e. the tangent bundle minus the null set {(x, y) ∈
T M |F(x, y) = 0}.

2. F is positively homogeneous of first degree on its second
argument:

F(xμ, kyα) = kF(xμ, yα), k > 0 (12)

3. The form

fαβ(x, y) = ±1

2

∂2F2

∂yα∂yβ
(13)

defines a non-degenerate matrix:

det
[
fαβ

] �= 0 (14)

where the plus-minus sign in (11) is chosen so that the metric
has the correct signature.
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In this work, we will follow the model presented in [40].
The metric gμν is the classic Schwarzschild one:

gμνdxμdxν

= − f dt2 + dr2

f
+ r2dθ2 + r2 sin2 θ dφ2 (15)

with f = 1 − Rs
r and Rs = 2GM the Schwarzschild radius

(we assume units where c = 1).
Hereafter, we consider an α-Randers type metric as the

one in Rel. (1) which is distinguished from the β-Randers
type metric that is investigated in the SME [11,19,23,27].

The metric vαβ is derived from a metric function Fv of the
α-Randers type:

Fv =
√

−gαβ(x)yα yβ + Aγ (x)yγ (16)

where gαβ = gμνδ̃
μ
α δ̃ν

β is the Schwarzschild metric and
Aγ (x) is a covector which expresses a deviation from gen-
eral relativity, with |Aγ (x)| � 1. The nonlinear connection
will take the form:

Nα
μ = 1

2
yβgαγ ∂μgβγ (17)

The metric tensor vαβ of (16) is derived from (11) after omit-
ting higher order terms O(A2):

vαβ(x, y) = gαβ(x) + wαβ(x, y) (18)

where

wαβ = 1

ã
(Aβgαγ y

γ + Aγ gαβ y
γ + Aαgβγ y

γ )

+ 1

ã3 Aγ gαεgβδ y
γ yδ yε (19)

with ã =
√

−gαβ yα yβ . The total metric defined in the previ-
ous steps is called the Schwarzschild–Finsler–Randers (SFR)
metric.

In this work, we consider a distinguished connection (d-
connection) D on T M . This is a linear connection with coef-
ficients {�A

BC } = {Lμ
νκ, Lα

βκ ,Cμ
νγ ,Cα

βγ } which preserves by
parallelism the horizontal and vertical distributions:

Dδκ δν = Lμ
νκ(x, y)δμ , D∂̇γ

δν = Cμ
νγ (x, y)δμ (20)

Dδκ ∂̇β = Lα
βκ(x, y)∂̇α , D∂̇γ

∂̇β = Cα
βγ (x, y)∂̇α (21)

From these, the definitions for partial covariant differentia-
tion follow as usual, e.g. for X ∈ T T M we have the defini-
tions for covariant h-derivative

X A|ν ≡ Dν X A ≡ δνX
A + L A

BνX
B (22)

and covariant v-derivative

X A|β ≡ Dβ X A ≡ ∂̇βX
A + CA

BβX
B (23)

The d-connection is metric-compatible when the following
conditions are met:

Dκ gμν = 0, Dκ vαβ = 0, Dγ gμν = 0, Dγ vαβ = 0

(24)

A d-connection can be uniquely defined given that the fol-
lowing conditions are satisfied:

– The d-connection is metric compatible
– Coefficients Lμ

νκ, Lα
βκ ,Cμ

νγ ,Cα
βγ depend solely on the

quantities gμν , vαβ and Nα
μ

– Coefficients Lμ
κν and Cα

βγ are symmetric on the lower

indices, i.e. Lμ
[κν] = Cα[βγ ] = 0

We use the symbol D instead of D for a connection satis-
fying the above conditions, and call it a canonical and dis-
tinguished d-connection. The coefficients of canonical and
distinguished d-connection are

Lμ
νκ = 1

2
gμρ

(
δkgρν + δνgρκ − δρgνκ

)
(25)

Lα
βκ = ∂̇βN

α
κ + 1

2
vαγ

(
δκvβγ − vδγ ∂̇βN

δ
κ − vβδ ∂̇γ N

δ
κ

)

(26)

Cμ
νγ = 1

2
gμρ∂̇γ gρν (27)

Cα
βγ = 1

2
vαδ

(
∂̇γ vδβ + ∂̇βvδγ − ∂̇δvβγ

)
(28)

Curvatures and torsions on T M can be defined by the
multilinear maps:

R(X,Y )Z = [DX ,DY ]Z − D[X,Y ]Z (29)

and

T (X,Y ) = DXY − DY X − [X,Y ] (30)

where X,Y, Z ∈ T T M . We use the following definitions for
the curvature components [1,3]:

R(δλ, δκ)δν = Rμ
νκλδμ (31)

R(δλ, δκ)∂̇β = Rα
βκλ∂̇α (32)

R(∂̇γ , δκ)δν = Pμ
νκγ δμ (33)

R(∂̇γ , δκ)∂̇β = Pα
βκγ ∂̇α (34)

R(∂̇δ, ∂̇γ )δν = Sμ
νγ δδμ (35)

R(∂̇δ, ∂̇γ )∂̇β = Sα
βγ δ∂̇α (36)

In addition, we use the following definitions for the torsion
components:

T (δκ , δν) = T μ
νκδμ + T α

νκ ∂̇α (37)

T (∂̇β, δν) = T μ
νβδμ + T α

νβ ∂̇α (38)
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T (∂̇γ , ∂̇β) = T μ
βγ δμ + T α

βγ ∂̇α (39)

The h-curvature tensor of the d-connection in the adapted
basis and the corresponding h-Ricci tensor have, respectively,
the components given from (31):

Rμ
νκλ = δλL

μ
νκ − δκL

μ
νλ + Lρ

νκ L
μ
ρλ − Lρ

νλL
μ
ρκ + Cμ

να�α
κλ

(40)

Rμν = Rκ
μνκ = δκL

κ
μν − δνL

κ
μκ + Lρ

μνL
κ
ρκ − Lρ

μκL
κ
ρν

+ Cκ
μα�α

νκ (41)

The v-curvature tensor of the d-connection in the adapted
basis and the corresponding v-Ricci tensor have, respectively,
the components (36):

Sα
βγ δ = ∂̇δC

α
βγ − ∂̇γC

α
βδ + Cε

βγC
α
εδ − Cε

βδC
α
εγ (42)

Sαβ = Sγ
αβγ = ∂̇γC

γ
αβ − ∂̇βC

γ
αγ + Cε

αβC
γ
εγ − Cε

αγC
γ
εβ

(43)

The generalized Ricci scalar curvature in the adapted basis
is defined as

R = gμνRμν + vαβ Sαβ = R + S (44)

where

R = gμνRμν, S = vαβ Sαβ (45)

A Hilbert-like action on T M can be defined as

K =
∫

N
d8U

√|G|R + 2κ

∫

N
d8U

√|G|LM (46)

for some closed subspaceN ⊂ T M , where |G| is the absolute
value of the metric determinant, LM is the Lagrangian of the
matter fields, κ is a constant and

d8U = dx0 ∧ · · · ∧ dx3 ∧ dy4 ∧ · · · ∧ dy7 (47)

Variation with respect to gμν , vαβ and Nα
κ leads to the follow-

ing field equations [44] (see Appendix A for more details):

Rμν − 1

2
(R + S) gμν

+
(
δ(λ
ν δκ)

μ − gκλgμν

) (
DκT β

λβ − T γ
κγ T

β
λβ

)
= κTμν (48)

Sαβ − 1

2
(R + S) vαβ

+
(
vγ δvαβ − δ(γ

α δ
δ)
β

) (
DγC

μ
μδ − Cν

νγC
μ
μδ

)
= κYαβ

(49)

gμ[κ ∂̇αL
ν]
μν + 2T β

μβg
μ[κCλ]

λα = κ

2
Zκ

α (50)

with

Tμν ≡ − 2√|G|
�

(√|G|LM
)

�gμν
= − 2√−g

�
(√−gLM

)

�gμν

(51)

Yαβ ≡ − 2√|G|
�

(√|G|LM
)

�vαβ
= − 2√−v

�
(√−vLM

)

�vαβ

(52)

Zκ
α ≡ − 2√|G|

�
(√|G|LM

)

�Nα
κ

= −2
�LM

�Nα
κ

(53)

where LM is the Lagrangian of the matter fields, δ
μ
ν and δα

β

are the Kronecker symbols, |G| is the absolute value of the
determinant of the total metric (10), and

T α
νβ = ∂̇βN

α
ν − Lα

βν (54)

are torsion components, where Lα
βν is defined in (26). From

the form of (10) it follows that
√|G| = √−g

√−v, with g, v
the determinants of the metrics gμν, vαβ respectively.

Solving the above equations to first order in Aγ (x) in
vacuum (Tμν = Yαβ = Zκ

α = 0), we get [40]:

Aγ (x) =
[

Ã0

∣
∣∣∣1 − RS

r

∣
∣∣∣

1/2

, 0, 0, 0

]

(55)

with Ã0 a constant.

3 Curvatures and generalized Kretschmann invariants

It is useful to calculate invariants of the metrics gμν and vαβ

so that we can get a better understanding for the behaviour
of the solution in specific points of T M . Specifically, any
point in T M where these invariants diverge can be considered
singular, namely, a point where our geometrical model breaks
down.

We consider invariants constructed from contractions of
the curvature tensor on T M and the metric. The nonvan-
ishing curvature components of the distinguished canonical
connection are given by relations (31)–(36):

Rμ
νκλ = δλL

μ
νκ − δκ L

μ
νλ + Lρ

νκ L
μ
ρλ − Lρ

νλL
μ
ρκ + Cμ

να�α
κλ

(56)

Rα
βκλ = δλL

α
βκ − δκ L

α
βλ + Lγ

βκ L
α
γλ − Lγ

βλL
α
γ κ + Cα

βγ �
γ
κλ

(57)

Pμ
νκγ = ∂̇γ L

μ
νκ − DκC

μ
νγ + Cμ

νβT
β

κγ (58)

Pα
βκγ = ∂̇γ L

α
βκ − DκC

α
βγ + Cα

βδT δ
κγ (59)

Sμ
νγ δ = ∂̇δC

μ
νγ − ∂̇γC

μ
νδ + Cκ

νγC
μ
κδ − Cκ

νδC
μ
κγ (60)

Sα
βγ δ = ∂̇δC

α
βγ − ∂̇γC

α
βδ + Cε

βγC
α
εδ − Cε

βδC
α
εγ (61)
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where Dκ is the covariant derivative with respect to the con-
nection defined in (25)–(28). An explicit calculation for the
SFR metric yields

Rα
βκλ = Pμ

νκγ = Pα
βκγ = Sμ

νγ δ = 0 (62)

Consequently, we cannot construct any non-vanishing invari-
ant of the metrics from these components so they are not
useful for finding singular points. Additionally, we get
gμνRμν = 0 so this scalar curvature gives no information
about singular points either.

Next, we calculate the scalar curvature S = vαβ Sαβ to the
lowest non-vanishing order and we find:

S = 5 Ã2
0r

{
(yr )2 + r(r − RS)

[
(yθ )2 + sin2 θ(yφ)2

]}

2ã4 (r − RS)
(63)

with ã =
√

−gαβ yα yβ and we have set y4 ≡ yt , y5 ≡
yr , y6 ≡ yθ , y7 ≡ yφ . From (63), we see that the anisotropic
scalar curvature S has a geometrical meaning because of its
dependence on the coordinates.

A straightforward calculation results in the following
cases:

1. ã �= 0, r = RS and yr �= 0: In this case, we get S = 0
2. ã �= 0, r = RS and yr = 0: In this case, the fiber scalar

curvature takes the value

S = 5 Ã2
0

2R2
S

[
(yθ )2 + sin2 θ(yφ)2

] (64)

3. ã = 0: In this case, the fiber scalar curvature diverges:
S → ∞

The third case is the most interesting one, where it can be seen
that ã = 0 represents a set of singular points for the metric
vαβ . In the next paragraphs, we will identify yα with the 4-
velocity of a free particle, in which case the condition ã = 0
will denote a null path with respect to the metric gμν(x).
Taking this argument into account, we reach the conclusion
that such paths can not describe physical trajectories.

Finally, we calculate the nontrivial Kretschmann-like
invariants of the metrics gμν and vαβ to the lowest non-
vanishing order:

KH ≡ RκλμνR
κλμν = 12R2

S

r6 (65)

KV ≡ Sαβγ δS
αβγ δ =

(
3S

5

)2

(66)

The invariant in Eq. (65) coincides with the Kretschmann
invariant of the classic Schwarzschild solution [62] and it
reveals a singularity of the metric gμν at the point r = 0.
The second Kretschmann-like invariant contains the same

information as the scalar curvature S, as we can see from
Eqs. (63) and (66), so the same conclusions apply for it.

We notice from (65) and (66) that the total Kretschmann
invariant K = KH+KV is equal to the classic Schwarzschild
one plus a small correction which comes from the additional
geometrical inner structure of the SFR gravitational model.
Specifically, the scalar curvature of the vertical space (the
space of y−variables) is related to a non-trivial vertical-space
Kretschmann invariant, as one can see from (66), so it induces
a deviation from classical general relativity.

4 Paths

In this section, we study the paths of a particle in the SFR
model. We consider the Lagrangian of the form [44]:

L(x, ẋ, y)=
(
−agμν ẋ

μ ẋν −bδ̃α
μvαβ ẋ

μyβ −cvαβ y
α yβ

)1/2

(67)

with a, b, c constants. Variation of the action with respect to
yα gives the relation:

yα = ẋα (68)

Furthermore, if we variate the action with respect to xμ and
substitute (68), we get the path equations:

ẍμ + γ
μ
κλ ẋ

κ ẋλ

= − z

1 + z

{
ãgμν (∂ν Aκ − ∂κ Aν) ẋ

κ

+ 1

ã

[
Aν

(
∂κgνλ − 1

2
∂νgκλ

)
+ ∂κ Aλ

]
ẋμ ẋκ ẋλ

+ 1

ã

(1

4
gμνAκ∂νgσλ+gμνAκ∂λgσν +Aμ∂κgλσ

)
ẋσ ẋκ ẋλ

+ 1

2ã3 Aλ∂κgστ ẋ
σ ẋτ ẋμ ẋκ ẋλ

}
(69)

where z = −b2/4ac is a constant and a dot denotes differ-
entiation with respect to the generalized proper time τ , with
the definition

dτ = [−agμνdx
μdxν − (b + c)vαβdx

αdxβ
]1/2

(70)

which is derived from the Lagrangian (67) if we substitute
yα = dxα . The form (69) generalizes the geodesics equa-
tions of general relativity in the SFR model.

In order to solve the Eqs. (69) we use the NDSolve com-
mand of Mathematica to obtain a numerical timelike solution.
By assuming different initial values we get two different solu-
tions which are described by a closed path and an open path
respectively and we compare our results with the geodesics of
GR for the same initial values. In our approach, we consider
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Fig. 1 This is an r, t graph of the timelike paths that we find using our
theoretical SFR (red curve) model in comparison to the geodesics of
GR (blue line) for E = 0.98, L = 1, r0 = 3 and (a, b, c) = (1, 1, 1)

Fig. 2 This is a polar graph of the timelike paths that we find using
our theoretical SFR (red curve) model in comparison to the geodesics
of GR (blue line) for E = 0.98, L = 1, r0 = 3 and (a, b, c) = (1, 1, 1)

the energy E =
(

1 − Rs
r

) dt

dτ
and the angular momentum

L = r2 dφ

dτ
.

We notice from the two graphs (Figs. 1, 2) that the paths in
the SFR model and GR are very similar. However, from the r-t
graph (Fig. 1) we can see that the maximum radial distance in
SFR is lower and the required time to reach the Schwarzschild
radius is also less compared to GR. From the second graph
(Fig. 2) we can see that the two ellipses are similar but the
red ellipse (SFR model) is smaller and it reaches the event

Fig. 3 This is an r, t graph of the timelike paths that we find using our
theoretical SFR (red curve) model in comparison to the geodesics of
GR (blue line) for E = 0.98, L = 1, r0 = 3 and (a, b, c) = (1, 10, 10)

Fig. 4 This is a polar graph of the timelike paths that we find using our
theoretical SFR (red curve) model in comparison to the geodesics of
GR (blue line) for E = 0.98, L = 1, r0 = 3 and (a, b, c) = (1, 10, 10)

horizon faster than the blue ellipse (GR). We remark that in
the path equations (69) the right hand side is non-zero and
this term acts as a small extra force that influences the paths in
the gravitational field. This correction increases or decreases
the effects of gravity depending on the sign of the term.

In the two figures (Figs. 3, 4) we have taken a = 1, b = 10
and c = 10 in (67). In this case, we can see that the red line
(SFR model) takes higher values than the blue line (GR) and
it requires more time to reach the Schwarzschild radius. In
our case, the parameters ( Ã0, a, b, c) control the deviation
of the SFR model from General Relativity. In particular, the
values of (a, b, c) can give higher or lower results compared
to GR.
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Fig. 5 This is an r-t graph of the timelike paths in the SFR model in
comparison to the geodesics in GR for E = 1.2, L = 4, r0 = 5 and
(a, b, c) = (1, 10, 10)

Fig. 6 This is a polar graph of the timelike paths in the SFR model in
comparison to the geodesics in GR for E = 1.2, L = 4, r0 = 5 and
(a, b, c) = (1, 10, 10)

The last two graphs (Figs. 5, 6) represent open paths with
a = 1, b = 10 and c = 10. In this case, we can see that the
SFR model deviates from GR when we start to move away
from the event horizon and the two paths (red and blue) sepa-
rate. For a small interval, the paths of the SFR model approx-
imate the geodesics of GR. As the radial distance increases,
the paths of our model deviate from GR.

5 Energy

In this section, we give the form of the energy and momentum
of a particle in an SFR spacetime.

We assume a four-velocity vector uα = (ut , ur , uθ , uφ),
with

uα ≡ dxα

dτ
(71)

and we require that its norm equals −1, so we have [45]:

||u|| = uαuα = uαuβvαβ = −1 (72)

By use of (18) we find1:

gαβu
αuα + wαβu

αuβ = −1 (73)

and by (19) we get:

gαβu
αuβ + 1

ã

[
(Aβu

β)(gαγ u
αuγ )

+ (Aγ u
γ )(gαβu

αuβ) + (Aαu
α(gβγ u

βuγ )
]

+ 1

ã3 (Aγ u
γ )(gαεu

αuε)(gβδu
βuδ) = −1 (74)

where we have set yα = uα and ã =
√

−gαβuαuβ .
After some calculations, we have:

ã2 + 2Aγ u
γ ã − 1 = 0 (75)

By solving (75) we can find ã

ã = − Ã0 f
1/2ut +

√
1 + Ã2

0 f (u
t )2 (76)

where we have used (55) for Aγ with f = 1 − RS
r .

If we use a Taylor expansion for the second term and omit

higher order terms O( Ã0
2
) we get:

ã = 1 − Ã0 f
1/2ut (77)

Equation (77) is the condition so that the norm of the four-
velocity equals −1.

If we assume that the particle is at rest, the four-velocity
becomes uα = (ut , 0, 0, 0) and if we substitute this in (77)
we find:

utSFR = (1 − Ã0) f
−1/2 (78)

We see from (78) that if Ã0 → 0 we find the result from GR
:

utGR = f −1/2 (79)

Consequently, by using (78) and (79) we can write:

utSFR = (1 − Ã0)u
t
GR (80)

1 The condition (73) along with relation (70) give a = b + c = 1 in
this case.
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From Rel. (80) we see that if Ã0 has a positive value then
utSFR < utGR and if Ã0 has a negative value then utSFR >

utGR .
We can find the momentum and energy of the particle:

pα = muα = (mut , 0, 0, 0) (81)

where m is the mass of the particle.
From Rel. (78) we get for ptSFR and ESFR :

ESFR = ptSFR = m(1 − Ã0) f
−1/2. (82)

6 Gravitational redshift

If we take r, θ, φ = const in the definition of proper time
(70), we get:

dτ =
[
−ag00dt

2 − (b + c)v00dt
2
]1/2

(83)

By using Eq. (18), we get:

dτ = [−g00 − κw00]1/2dt ′ (84)

where we have set dt ′ = √
a + b + cdt and κ = b+c

a+b+c .
From the definition of the metric perturbation wαβ in (19)

for α = 0 and β = 0 we get:

w00 = 1

ã

(
A0g00 ẋ

0 + A0g00 ẋ
0 + A0g00 ẋ

0
)

+ 1

ã3 A0g00g00 ẋ
0 ẋ0 ẋ0

⇒ w00 = − 2 Ã0 f (85)

where ã =
√

−gαβ ẋα ẋβ = ṫ
√−g00 = ṫ

√
f because we

have taken r, θ, φ =const.
If we return to (84) we find:

dτ = [−g00 − κw00]1/2dt ′

⇒ dτ = [ f − κ(−2 Ã0 f )]1/2dt ′

⇒ dτ = (1 + ε)1/2√−g00 dt
′ (86)

where we have set ε = 2κ Ã0 with ε � 1, g00 = − f and
f = 1 − Rs

r . We note that in GR the calculation for the
redshift leads to: dτGR = √−g00 dt .

Now, if we consider two clocks at two different points of
spacetime r1 and r2, we will have:

dτ1 = (1 + ε)1/2
√−g00(1) dt ′ (87)

and

dτ2 = (1 + ε)1/2
√−g00(2) dt ′ (88)

and thus for the frequencies ν1 and ν2 we find:

ν2 = ν1

(
g00(1)

g00(2)

)1/2

= ν1

(
1 − Rs

r1

1 − Rs
r2

)1/2

⇒ ν2

ν1
≈ 1 − GM

(
1

r1
− 1

r2

)
(89)

where we have used the Taylor expansion (1 + x)1/2 ≈ 1 +
1
2 x .

From (89) we find:
(

�ν

ν1

)

SFR
= �U (90)

where �ν = ν2 − ν1 with ν2, ν1 the emitter and receiver fre-
quencies and �U = GM( 1

r2
− 1

r1
) is the change of potential.

We recall that in general relativity (GR) the gravitational
redshift is given by:
(

�ν

ν1

)

GR
= �U (91)

We remark that, in the scenario under consideration, the grav-
itational redshift predicted by the SFR gravitational model
is the same as the one predicted in the classic Schwarzschild
spacetime of GR.

7 Photonsphere

In order to calculate the radius of the photonsphere we will
use Eq. (70):

dτ = [−agμνdx
μdxν − (b + c)vαβdx

αdxβ
]1/2

(92)

From (18) we get:

dτ ′ = (−gμνdx
μdxν − κwαβdx

αdxβ
)1/2

(93)

where κ = b+c
a+b+c and dτ ′ = dτ√

a+b+c
.

To calculate the radius of the photonsphere, we take r =
const. , θ = π

2 and dτ ′ = 0 because we want to find the
photon orbits.
Under these conditions, Rel. (93) yields:

(g00 + κw00)dt
2 + (g33 + κw33)dφ2 = 0 (94)

From the above relation, we find:
(
dφ

dt

)2

= −g00 + κw00

g33 + κw33
(95)

To calculate w00 and w33, we use (19).

wαβ = 1

ã
(Aβgαγ y

γ + Aγ gαβ y
γ + Aαgβγ y

γ )

+ 1

ã3 Aγ gαεgβδ y
γ yδ yε (96)
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where ã =
√

−gαβ yα yβ and for Aγ we use (55).

We calculate ã:

ã =
√

−gαβ yα yβ =
√

−gαβ ẋα ẋβ =
√

f ṫ2 − r2φ̇2 ⇒
ã =ṫ

√
f − r2φ′2 = ṫ p̃ (97)

where we used the Leibniz chain rule φ̇ = dφ
dt

dt
dτ

= φ′(t)ṫ
and we set p̃ = √

f − r2φ′2.
After some calculations, we find:

w00 = Ã0

p̃3 f 3/2( − 3ã2 + f
)

(98)

w33 = Ã0

p̃3 f 3/2r2 (99)

If we return to (95) and we use w00 and w33, we get:

r2φ′2 + κ
Ã0

p̃3 f 3/2r2φ′2 = f − κ
Ã0

p̃3 f 3/2( f − 3ã2) (100)

From (100) we find:

p̃5 + 4κ Ã0 f
3/2 p̃2 − 2κ Ã0 f

5/2 = 0. (101)

In order to determine the radius of the photonsphere, we need
two equations. The first one is (101) and we find the second
from the path equations. We get the radial path equation by
substituting μ = 1 in (69) and if we use our assumptions
r =const. and θ = π

2 we find:

f (1 − f )

2r
ṫ2 − r f φ̇2

=−λ Ã0

[(
1

2
ã f 1/2 ṫ− 1

4ã
f 3/2 ṫ3

)
1− f

r
+ 1

2ã
f 3/2r ṫ φ̇2

]

(102)

where λ = z
1+z .

Then, by using (97) and after some calculations we find:

4 f 1/2 p̃3 + 2λ Ã0(1 − 2 f ) p̃2 + 2 f 1/2(1 − 3 f ) p̃

−λ Ã0 f (1 − 3 f ) = 0 (103)

Therefore, the equations we need to solve are (101) and (103).
If we take (101) and set μ = f −1/2 p̃ we get:

μ5 + 4κ Ã0μ
2 − 2κ Ã0 = 0 (104)

By giving values to the parameters κ and Ã0 we can solve
(104) numerically and determine the value of μ. Then, from
the definition of μ we can find a relation between f and p̃
which can be substituted in (103) to find the term f and from
this the radius of the photonsphere. The results for different
values of the parameters are shown on the table that follows:
where a, b, c are the starting parameters in the Lagrangian

in (67) and through them we calculate the term κ = b+c
a+b+c .

(a , b , c) Ã0 μ r/Rs

(1, 1, 1) 10−3 0, 25854 1, 53577
(1, 1, 1) 10−4 0, 16599 1, 51416
(1, 1, 1) 10−6 0, 06671 1, 50224
(1000, 1, 1) 10−4 0, 05245 1, 50138
(1, 1000, 1) 10−4 0, 17961 1, 51668
(1, 1, 1000) 10−4 0, 17961 1, 51667
(1, 1000, 1000) 10−4 0, 17963 1, 51668

8 Concluding remarks

In this article, we investigate further properties and applica-
tions of our previous work of the SFR model which general-
izes the classical Schwarzschild spacetime by introducing a
timelike covector Aγ in the metric structure [40]. This cov-
ector is specified by the solution of the generalized Einstein
equations of the SFR model. It provides the local anisotropy
and may cause Lorentz violating effects.

In addition, we derive the form of S-anisotropic curvature
which takes a geometrical meaning because of its dependence
on coordinates.

The generalized Kretschmann-like curvature invariant
plays a crucial role in our approach since the horizontal KH ,
Rel. (65), coincides with the Kretschmann invariant of the
classical Schwarzschild solution which gives a singularity at
the point r = 0. The second Kretschmann curvature invari-
ant KV , Rel. (66), provides information for singularities with
more degrees of freedom as we show and it is characterized
by the scalar curvature S, Rel. (63).

In the framework of applications of SFR model we extend
our study of timelike geodesic paths and we compare them
with corresponding paths of GR. We notice that the extra
terms in Rel. (69) act as an extra force that influences the
gravitational field and give a small deviation from the paths
of GR.

In the last sections, we find the form of momentum and
the energy in our approach, Rel. (81) and (82).

By considering the Lagrangian function (Rel. (67)) we cal-
culate the gravitational redshift and the photonsphere for our
case. While in the redshift calculation we find no deviation
from general relativity, in the study of the photonsphere we
find infinitesimal deviations from GR which may be ought
to the small anisotropic perturbations coming from Lorentz
violation effects.
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Appendix A: Variational principle on a Hilbert-like
action

In this section, we present the basic steps of the variation of
the action (46):

K =
∫

N
d8U

√|G|R + 2κ

∫

N
d8U

√|G|LM (A.1)

with respect to gμν , vαβ and Nα
κ in order to acquire the gen-

eralized field equations (48)–(50), see [44] for the original
derivation. Variating the total action, we get:

�K =
∫

N
d8U(R + S)�

√|G| +
∫

N
d8U

√|G|(�R + �S)

+ 2κ

∫

N
d8U �

(√|G|LM

)
(A.2)

with

�
√|G| = − 1

2

√|G| (gμν�gμν + vαβ�vαβ
)

(A.3)

�R = 2gμ[κ ∂̇αL
ν]
μν�Nα

κ + Rμν�gμν + Dκ Z
κ (A.4)

�S = Sαβ�vαβ + Dγ B
γ (A.5)

where Rμν = R(μν) + �α
κ(μC

κ
ν)α and

Zκ = gμν�Lκ
μν − gμκ�Lν

μν

= − Dν�gνκ + gκλgμνDλ�gμν

+ 2
(
gκμCλ

λα − gκλCμ
λα

)
�Nα

μ (A.6)

Bγ = vαβ�Cγ
αβ − vαγ �Cβ

αβ

= − Dα�vαγ + vγ δvαβDδ�vαβ (A.7)

Stokes theorem on the Lorentz tangent bundle reads:

∫

N
d8U

√|G|DμH
μ =

∫

N
d8U

√|G| T α
μαH

μ

+
∫

∂N
nμH

μẼ (A.8)
∫

N
d8U

√|G|DαW
α = −

∫

N
d8U

√|G|Cμ
μαW

α

+
∫

∂N
nαW

α Ẽ (A.9)

where H = Hμδμ and W = Wα∂̇α are vector fields on T M ,
Ẽ is the Levi-Civita tensor on the boundary ∂N , (nμ, nα) is
the normal vector on the boundary and T α

μβ = ∂̇βNα
μ − Lα

βμ.
Using relation (A.8) and eliminating boundary terms, we get

∫

N
d8U

√|G|Dκ Z
κ

=
∫

N
d8U

√|G| T α
καZ

κ

=
∫

N
d8U

√|G|Dν

[
T β

κβ

(−�gνκ + gνκgμλ�gμλ
)]

−
∫

N
d8U

√|G|
[
−DνT β

μβ + gμνDλT β
λβ

]
�gμν

+ 2
∫

N
d8U

√|G| T β
κβ

(
gκμCλ

λα − gκλCμ
λα

)
�Nα

μ

(A.10)

where we have used the Leibniz rule for the covariant deriva-
tive. Using (A.8) again and eliminating the new boundary
terms, we get
∫

N
d8U

√|G|Dκ Z
κ

=
∫

N
d8U

√|G|
(
δ(λ
ν δκ)

μ − gκλgμν

)

×
(
DκT β

λβ − T γ
κγ T

β
λβ

)
�gμν

+
∫

N
d8U

√|G| 4T β
κβg

κ[μCλ]
λα�Nα

μ (A.11)

Similarly, using relation (A.9) and eliminating the boundary
terms, we get
∫

N
d8U

√|G|DαB
α

= −
∫

N
d8U

√|G|Cμ
μβB

β

= −
∫

N
d8U

√|G|Dα

[
Cμ

μβ�vαβ − vαβvγ δC
μ
μβ�vγ δ

]

−
∫

N
d8U

√|G|
(
DαC

μ
μβ − vγ δvαβDγC

μ
μδ

)
�vαβ

(A.12)

where again we used the Leibniz rule. Applying (A.9) again
and eliminating the new boundary terms, we get
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∫

N
d8U

√|G|DαB
α

=
∫

N
d8U

√|G|
(
vγ δvαβ −δ(γ

α δ
δ)
β

) (
DγC

μ
μδ−Cν

νγC
μ
μδ

)

(A.13)

The matter part of the action is written as:
∫

N
d8U �

(√|G|LM

)

=
∫

N
d8U

√|G| 1√|G|
�

(√|G|LM
)

�gμν
�gμν

+
∫

N
d8U

√|G| 1√|G|
�

(√|G|LM
)

�vαβ
�vαβ

+
∫

N
d8U

√|G| 1√|G|
�

(√|G|LM
)

�Nα
κ

�Nα
κ (A.14)

Finally, combining equations (A.2)–(A.7), (A.11), (A.13),
(A.14) and setting �K = 0, we get the Eqs. (48)–(50) and
the energy–momentum tensors (51)–(53).
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