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Abstract Ellis–Bronnikov (EB) wormholes require viola-
tion of null energy conditions at the ‘throat’. This prob-
lem was cured by a simple modification of the ‘shape func-
tion’, which introduces a new parameter m ≥ 2 (m = 2
corresponds to the EB model). This leads to a generalised
(GEB) version. In this work, we consider a model where
the GEB wormhole geometry is embedded in a five dimen-
sional warped background. We studied the status of all the
energy conditions in detail for both EB and GEB embed-
ding. We present our results analytically (wherever possible)
and graphically. Remarkably, the presence of decaying warp
factor leads to satisfaction of weak energy conditions even
for the EB geometry, while the status of all the other energy
conditions are improved compared to the four dimensional
scenario. Besides inventing a new way to avoid the presence
of exotic matter, in order to form a wormhole passage, our
work reveals yet another advantage of having a warped extra
dimension.

1 Introduction

Wormholes connect two distant spacetime points creating
‘short-cut’s that allow ‘apparently faster than light’ travel
between those two points [1–5]. Initially the idea was taken
seriously by its inventors and proponents [6–8]. Soon it was
realised that the Einstein–Rosen “wormhole” is not, contrary
to expectations, a stable structure. The wormhole opens up
and closes too quickly for even a photon to ‘travel’ through.
Later work [9] suggested that exotic forms of energy threaded
through a wormhole might keep it open but it remains unclear
whether such arrangements are physically feasible. They
have been analysed for many different reasons. However, the
necessary presence of negative energy density makes them
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difficult to be created in macroscopic quantities [5]. The orig-
inal goal may have faded, but the Einstein–Rosen bridge still
pops up occasionally as a handy solution to the pesky prob-
lem of intergalactic travel [10,11]. Therefore, traversable
wormholes are considered, by many, more of a science fic-
tion rather than science. In classical general relativity, they
are forbidden by the average null energy condition. Thus,
within the framework of general relativity, wormholes are
not real if energy conditions are to be absolutely respected
[1,4,12,13]. Note that, quantum fluctuations permits the cre-
ation of microscopic wormholes [14–17]. However, they are
not adequate to form macroscopic wormholes. To be pre-
cise, they are allowed in the quantum theory, but, the time it
takes to travel through the wormhole should be longer than
the time it takes to travel between the two mouths on the
outside. Therefore only microscopic wormholes were found
using standard model matter.

However, it is also known for long that there are classical
ways as well to circumvent the problem of exotic matter that
violates the energy conditions [18–21]. One such way is the
framework of large class of the so-called modified theories of
gravity. There are large number of such models exist in mod-
ified gravity that have non-exotic matter [22–28], though, in
some cases, the convergence condition of null geodesics is
violated. Models of dynamical wormholes [29–33] also pro-
vide ways of restricting the violation of energy conditions.
Other popular class modified gravity theories, where detailed
analysis of wormhole geometries is done with viable matter
source, are the so-called f (R) and higher order gravity theo-
ries [34–50]. Recently, successful modelling and analysis of
energy condition satisying wormholes are carried out within
the framework of Born–Infeld gravity [51–53] and torsional
gravity [54–56]. Note that, all these different scenarios in
general have different signatures in different physical phe-
nomenon, particularly in gravitational lensing [57–59]. With
the advent of gravitational wave astronomy era [60–62] and
recent blackhole photography [63], search for wormhole sig-
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nature do not seem unreal. Recently, the possibility of exis-
tence of astrophysical wormholes in the dark matter galac-
tic haloes is raised in [64,65]. Wormholes have entered into
the catalogue of the so-called blak hole mimickers and their
unique signature can be imprinted on during merger phenom-
ena [66,67] or through nature of their quasi-normal modes
[68,69] etc. Such signature would also support the case for
modified theories of gravity over general relativity. The main
purpose of this article is to investigate an yet unexplored
modified gravity scenario namely a wormhole embedded in
a warped five dimensional thick braneworld. Note that, earlier
investigations are done on wormholes embedded in Kaluza–
Klein, DGP and Randal–Sundrum thin braneworld scenario
[70–75] as such. Below we discuss motivation behind this
analysis.

Though yet to be detected in experiments, extra dimen-
sions are around in the literature for almost a century now
[76,77]. The reason behind the survival of this idea for so long
is in the advantages one get in having them. For instance,
while making models of unification (such as superstrings
[78]), or how the age-old hierarchy problem can be solved
with extra dimensions [79,80]. Recently, in the context of
reinterpreting the standard model (and what may lye beyond)
using octonions, extra dimensions appear naturally [82–
87,87,88]. Thus theories of extra dimensions have strong
footing on basis of fundamental physical symmetries and are
not mere useful extension of existing theories as such. Per-
haps the most popular among these higher dimensional mod-
els are the so-called warped braneworld models [81,89,90].
This model assumes a non-factorizable geometry – a curved
five dimensional spacetime where the geometry of the four-
dimensional part depends on the extra dimension through a
warping factor (a feature unique to this class of models).

Motivated by the appearance of extra dimensions in fun-
damental physics, we ask what new features extra dimen-
sional models may induce on wormhole passages. Here we
investigate a straightforward embedding of a four dimen-
sional wormhole in a static five dimensional warped geom-
etry. The family of wormholes we choose for embedding is
based on [91] where the well-known Ellis–Bronnikov (EB)
spacetime [92,93] had been extended to provide a generalised
family (GEB) of spacetimes that satisfies the null energy con-
dition and further detailed studies is done in [69]. For bulk
geometry, we choose the so-called thick braneworld scenario
[94,95] where the growing or decaying warping factor is a
smooth function of the extra dimension and thus represent
thick domain wall solutions. A thick brane scenario is pre-
ferred over the originally proposed infinitely thin Randall–
Sundrum-branes as the former do not introduce Dirac delta
functions in the field equations and they naturally appear if
one takes into account quantum effects and minimum length
scales. Our intention here is to first figure out whether such
models satisfy energy conditions or not, i.e., whether they

admit matter sources that satisfy energy conditions. Recently
it is reported that energy conditions are satisfied for worm-
holes embedded in Randall–Sundrum type thin brane models
[96]. We on the other hand, want to see if the presence of a
smooth warping factor can lead to a viable wormhole geom-
etry with energy condition satisfying matter source. This is
an yet unexplored feature of these class of models.

Our program is as follows. In the next section, we briefly
review the above mentioned generalised Ellis–Bronnikov
wormhole geometry. Then we introduce our five dimen-
sional model and the resulting field equations. In Sect. 3,
we review (analytically wherever possible otherwise numer-
ically/graphically) whether the energy conditions are satis-
fied (locally and/or globally) or not for the four dimensional
model. Following this, we investigate how the status of the
energy conditions are modified due to the presence of a
warped extra dimension (with both decaying and growing
warp factor). At the end we conclude with summarising the
key results and future plans.

2 Generalised Ellis–Bronnikov wormhole and
embedding in 5D warped space-time

Assuming phantom (negative kinetic energy) scalar field,
Ellis and Bronnikov constructed static, spherically symmet-
ric, geodesically complete, horizon-less Lorentzian
wormhole-geometry connecting two asymptotically flat
regions [92,93]. The merric of the Ellis–Bronnikov worm-
hole is given by

ds2 = −dt2 + dr2

1 − b2
0
r2

+ r2dθ2 + r2 sin2(θ)dφ2. (1)

Considering the freedom provided by the Morris–Thorne
conditions [10] as necessary conditions to construct a
Lorentzian wormhole, a generalised Ellis–Bronnikov (GEB)
model is constructed by Kar et al. [91] as a two parameter
(m and b0) family of Lorentzian wormholes, where m is a
free metric parameter and b0 is the throat radius. For m = 2,
one gets back the Ellis–Bronnikov spacetime. The purpose
behind the so-called GEB models was to study the their vari-
ous classical properties such as the geodesics, the differences
and similarities among such wormhole-geometries etc. The
line element of GEB spacetime is given by

ds2 = −dt2 + dl2 + r2(l)dθ2 + r2(l) sin2(θ)dφ2, (2)

where r(l) = (bm0 + lm)1/m . (3)

The parameter m takes only even values to make r(l) smooth
over the entire domain of the so-called ‘tortoise’ or ‘proper
radial distance’ coordinate l (where −∞ ≤ l ≤ ∞). Metric
(2), in terms of the usual radial coordinate r , can be written
as
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ds2 = −dt2 + dr2
(

1 − b(r)
r

) + r2dθ2 + r2 sin2 θ dφ2, (4)

where r and l are related through the shape function b(r) as,

dl2 = dr2
(

1 − b(r)
r

) , b(r) = r − r (3−2m)(rm − bm0 )

(
2− 2

m

)
.

(5)

It is straightforward to derive the energy–momentum ten-
sor that results in the geometry represented by metric (2)
using Einstein tensor and Einstein equations. In the frame
basis (denoted by indices with hat), the diagonal components
of the energy–momentum-tensor Tμ̂ν̂ (μ̂, ν̂ = 0̂, 1̂, 2̂, 3̂) can
be identified as T0̂0̂ = ρ, T1̂1̂ = p1 = τ , T2̂2̂ = p2 and
T3̂3̂ = p3, where ρ is the energy-density, p1 = τ is the radial
tension, p2 and p3 are the principal pressure [1] of the cor-
responding matter source. Due to spherical symmetry p2 is
equal to p3. Thus the non-zero components of Tμ̂ν̂ for the
GEB wormhole space-time (2) are

T0̂0̂ = ρ(l) = −−1 + r ′2(l) + 2r(l)r ′′(l)
r2(l)

, (6)

T1̂1̂ = p1(l) = τ(l) = −1 + r ′2(l)
r2(l)

, (7)

T2̂2̂ = p2(l) = r ′′(l)
r(l)

, (8)

T3̂3̂ = p3(l) = r ′′(l)
r(l)

, (9)

where a prime denotes derivative with respect to l. In the
following, we introduce a 5D warped spacetime where the 4D
part is GEB wormhole. However the corresponding energy
momentum tensor will be derived later.

A general warped line element in five dimensions is given
as

ds2 = e2 f (y)gαβdx
αdxβ + g44dy

2 (10)

where gαβ can, in principle, be any metric and g44 can be a
function of 3-space, time, and the extra spatial dimension-y,
not necessarily separable. The line element, representing an
embedded wormhole, we choose to work with is as follows:

ds2 = e2 f (y)(−dt2+dl2+r2(l)dθ2+r2(l) sin2 θdφ2)+dy2.

(11)

Here the factor, e2 f (y), is called a warp factor. The domain of
y, which is the extra spatial dimension, can be −∞ < y <

∞. In the following, we shall set f (y) = ± log[cosh(y/y0)],
which correspond to the well-known thick brane models [94,

95]. In such models, the brane is dynamically generated as a
scalar field domain wall in the bulk. Note that the warp factor
in such models is a smooth function of the extra dimension,
unlike the Raldall–Sundrum models where f (y) ∼ |y| (i.e.
a function with a derivative jump that implies presence of
thin branes). Thick brane models do not posses the jumps
and delta functions in the connection and curvature. They
also appear naturally in multi-dimensional theories. In fact,
quantum fluctuations are expected to create an effective brane
thickness. Note that the Ricci Scalar for metric (11), is given
by

R5D = 2e−2 f
(

(2m − 3)l2m−2

(bm0 + lm)2 − 2(m − 1)lm−2

bm0 + lm

+ 1

(bm0 + lm)2/m

)
− 4(5 f ′2 + 2 f ′′). (12)

Thus the curvature invariants of the warped model are essen-
tially singularity free unlike some models of black holes
in higher dimensions. However, if one considers thin brane
models for embedding, then Dirac Delta functions would
appear in the curvature to account for those infinitely thin
branes.

3 Energy conditions

The energy conditions (EC) are mathematical restriction on
solutions of the Einstein equations, to rule out the non-
physical solutions. A spacetime geometry may satisfy the one
or many or all of the weak, strong, dominant and null energy
conditions (WEC, SEC, DEC and NEC) to be physically
viable solutions of Einstein equations. These energy condi-
tions lead the following inequalities involving the energy and
momentum densities–

ρ ≥ 0, ρ + pi ≥ 0 (WEC), (13)

ρ +
3∑

i=1

pi ≥ 0, ρ + pi ≥ 0 (SEC), (14)

ρ− | pi |≥ 0 (DEC), (15)

ρ + pi ≥ 0 (NEC) where i = space index. (16)

Violation of these energy conditions would imply the exis-
tence of exotic matter (Matter with negative energy density).
Note that, as the NEC is implied by the WEC, we would not
discuss NEC in the present context. Primarily, Morris and
Thorne found that for existence of stable traversable worm-
holes, violation of WEC is required atleast at the throat [1].
Further studies revealed that presence of the so-called exotic
matter is necessary for the stability of all classes of static
wormholes. But, there are no observation in support for the
presence of exotic matter, which raises doubt on the reality
of wormholes.
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Table 1 Inequality functions,
f (W )
μ for m = 2, m = 4 and

m = 8

Function m = 2 m = 4 m = 8

f (W )
0 − 1

(1+l2)2
1√

1+l4
− l2(6+l4)

(1+l4)2
1

(1+l8)1/4 − l6(14+l8)

(1+l8)2

f (W )
1 − 2

(1+l2)2 − 6l2

(1+l4)2 − 14l6

(1+l8)2

f (W )
2 = f (W )

3 0 1√
1+l4

− l2(3+l4)

(1+l4)2
1

(1+l8)1/4 − l6(7+l8)

(1+l8)2

However, in various modified gravity models, as men-
tioned in the Introduction, modification of general relativity
can serve the purpose of exotic matter. Thus providing stabil-
ity to wormohole geometry even in presence of energy condi-
tion satisfying matter as such. In the following we are going
to explore whether the presence of warped extra dimension
can lead to similar result. To compare the two models given
by Eqs. (2) and (11), we check analytically (wherever pos-
sible) and graphically how the energy conditions behaving
throughout the spacetime.

3.1 Inequalities of WEC for GEB-space-time

WEC states that the energy density of any matter distribution
should be non-negative for any time-like observer in space-
time, which implies ρ ≥ 0 and ρ + pi ≥ 0. Using Eqs. (6)–
(9), we define ‘inequality functions’, f (W )

μ corresponding to
WEC as

f (W )
0 (l) = ρ(l) = −−1 + r ′2(l) + 2r(l)r ′′(l)

r2(l)
, (17)

f (W )
1 (l) = ρ(l) + τ(l) = −2r ′′(l)

r(l)
, (18)

f (W )
2 (l) = f (W )

3 (l) = ρ(l) + p2(l)

= −−1 + r ′(l)2 + r(l)r ′′(l)
r(l)2 . (19)

Here, prime denotes derivative with respect to the ‘Tortoise’
coordinate l and f (W )

2 = f (W )
3 comes from the fact that

p2 = p3 (see Eqs. (8) and (9)). According to the inequalities
of WEC, the given functions ( f (W )

μ , where μ = 0, 1, 2, 3)
should be greater than or equal to zero. Using the expression
of r(l) (given by Eq. (5)) and setting b0 = 1, the inequality
functions simplify as given in Table 1 for three cases with
m = 2, m = 4 and m = 8.

Thus, form = 2 the inequalities are maximally violated at
and around the throat. However, in case ofm = 4, we see that
f (W )
0 and f (W )

2 are positive in the restricted domain given by
−0.41 ≤ l ≤ 0.41 and −0.62 ≤ l ≤ 0.62 respectively. The
same is true for m = 8 in the domain −0.64 ≤ l ≤ 0.64
and −0.73 ≤ l ≤ 0.73. The second inequality of WEC
( f (W )

1 ≥ 0) is always violated (for all the cases), since, f (W )
1

is negative for all values of l. Thus the WEC is partially
satisfied so to speak. We plot the inequality functions versus
l in Fig. 1. As f (W )

0 is essentially equal to the matter energy

density, the first plot in Fig. 1 shows that the negative energy
matter accumulates most near the throat form = 2 and moves
away from the throat for m > 2. Thus exotic matter gets
localised inside a increasingly narrow region with increasing
m. Thus giving a physical understanding of the parameter m.
It can be further shown that for increasingm the minima of the
energy densities approaches l = ±b0. Thus characterising
±b0 as a length scale where there is uniformly distributed
(in l) positive density matter bounded by two infinitely thin
(in limit m → ∞) negative energy “walls”, beyond which
the of the energy density vanishes rapidly.

3.2 Inequalities of SEC for GEB-space-time

SEC implies ρ +
∑3

j=1 p j ≥ 0, ρ + p j ≥ 0 ( j = 1, 2, 3).
Thus, from Eqs. (6)–(9) and (18), (19) we write the ‘inequal-
ity functions’ for SEC, f (S)

μ as

f (S)
0 (l) = ρ(l) +

3∑
j=1

p j (l) = 0, (20)

f (S)
1 (l) = f (W )

1 (l), (21)

f (S)
2 (l) = f (S)

3 (l) = f (W )
2 (l) = f (W )

3 (l). (22)

Equation (20) implies that the first inequality function of
SEC is always zero over the entire domain of coordinate
l (−∞ ≤ l ≤ ∞). Equations (21) and (22), imply that the
behaviour of these inequality functions are same as those
analysed in the case of WEC.

3.3 Inequalities of DEC for GEB-space-time

DEC essentially implies ρ − |p j | ≥ 0. Again, from Eqs.
(6–9) we write the corresponding inequality functions as

f (D)
1 (l) = ρ(l) − |τ(l)| = −−1 + r ′(l)2 + 2r(l)r ′′(l)

r(l)2

−
∣∣∣−1 + r ′(l)2

r(l)2

∣∣∣, (23)
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Fig. 1 Plot of inequality
functions f (W )

0 and f (W )
2 (with

b0 = 1), where dotted curve
represents case m = 2, dashed
curve represents case m = 4 and
thick curve represents case
m = 8

Table 2 Inequality functions, f (D)
i (i = 1, 2, 3) for m = 2, m = 4 and m = 8

Function m = 2 m = 4 m = 8

f (D)
1 (l) − 1

(1+l2)2 −
∣∣∣ − 1

(1+l2)2

∣∣∣ 1√
1+l4

− l2(6+l4)

(1+l4)2 −
∣∣∣ l6

(1+l4)2 − 1√
1+l4

∣∣∣ 1
(1+l8)1/4 − l6(14+l8)

(1+l8)2 −
∣∣∣ l14

(1+l8)2 − 1
(1+l8)1/4

∣∣∣
f (D)
2 (l) = f (D)

3 (l) − 1
(1+l2)2 −

∣∣∣ 1
(1+l2)2

∣∣∣ 1√
1+l4

− l2(6+l4)

(1+l4)2 − 3
∣∣∣ l2

(1+l4)2

∣∣∣ 1
(1+l8)1/4 − l6(14+l8)

(1+l8)2 − 7
∣∣∣ l6

(1+l8)2

∣∣∣

Fig. 2 Plot of inequality
functions of DEC (for b0 = 1),
where dotted curve represents
case m = 2, dashed curve
represents case m = 4 and thick
curve represents the case m = 8

f (D)
2 (l) = f (D)

3 (l) = ρ(l) − |p2(l)|
= −−1 + r ′(l)2 + 2r(l)r ′′(l)

r(l)2 −
∣∣∣r

′′(l)
r(l)

∣∣∣. (24)

Again, by setting b0 = 1 and considering three cases with
m = 2, m = 4 and m = 8, the inequality functions f (D)

μ

simplifies as given in Table 2.
The two inequality functions f (D)

1 and f (D)
2 are plotted

in Fig. 2 for three different values of m. In case of m = 2,
DECs are violated everywhere in l. For m = 4, sum of the
second and the third term in f (D)

1 is greater than the first term

for all values of l (except for l = 0), therefore, f (D)
1 will be

always negative but vanishes at l = 0. Hence, first inequality
of DEC is always violated (this is true for m = 8 as well).
However, the second inequality of DEC is partially satisfied,
since f (D)

2 (or f (D)
3 ) is positive for restricted domain of l

given by ≈ −0.33 ≤ l ≤ 0.33 (and for m = 8, the domain
is −0.60 ≤ l ≤ 0.60).

Table 3 summarises the status of GEB wormholes as per
energy conditions are concerned. In case of m = 2, the
energy conditions are violated everywhere and maximally at
the wormhole throat. However for m ≥ 2 the energy condi-
tions are partially satisfied near the throat. Thus GEB models

Table 3 Status of energy conditions for GEB wormhole-geometry,
where ‘Yes’, ‘Y’ and ‘No’ stands for satisfied, partially satisfied and
not satisfied respectively

GEB m = 2 m > 2

Ineq. Fns. WEC SEC DEC WEC SEC DEC

f0 ≥ 0 No Yes – Y Yes –

f1 ≥ 0 No No No No No No

f2, f3 ≥ 0 Yes Yes No Y Y Y

provide a new way to avoid necessity of exotic matter. Let us
briefly comment what this generalisation implies for r(l). In
case of m = 2, r(l) has a global minima at the throat (l = 0)
which corresponds to a global maxima in geodetic potential at
the throat. Therefore the trapped trajectory denoted by l = 0
is unstable. In case of m > 2, on the other hand, l = 0 is a
saddle point for r(l) (and also for the geodetic potential) and
the non-vanishing and positively valued (and negative val-
ued for geodetic potential) derivative of r(l) appears at order
m [10]. Apparently, creating a saddle point in r(l) is com-
pensating for the negative energy density. After discussing
energy conditions for GEB wormhole geometry in detail, in
the following, we analyse the energy conditions for the GEB
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wormhole embedded in a warped background as given by
Eq. (11).

4 Energy conditions for GEB spacetime in warped 5D
background

As mentioned earlier, we look to investigate whether the
spacetime geometry given by Eq. (11) may lead to satis-
faction of energy conditions or not. Equation (11) is a static
and spherical symmetric geometry of spacetime in (4 + 1)

dimension, where y is an extra spatial dimension. As usual
we have, r(l) = (b0

m + lm)1/m . For the warp factor we
choose f (y) = ± log[cosh(y/y0)] that represents typical
thick braneworld scenario with growing/decaying warp fac-
tor. Here, y0 represents a characteristic length scale along
the extra dimension. For numerical computation we will set
b0 = 1 and y0 = 1 in the following.

We get the energy–momentum tensor as the Einstein ten-
sor for our metric (11) as before. In the frame basis, the
diagonal components of the energy–momentum-tensor are
represented as T0̂0̂ = ρ(l, y), T1̂1̂ = p1(l, y) = τ(l, y),
T2̂2̂ = p2(l, y), T3̂3̂ = p3(l, y), T4̂4̂ = p4(l, y) where ρ

is the energy-density, p1 = τ is the radial tension, p2, p3

and p4 are the normal stresses in respective directions. Due
to the spherical symmetry p2 will be equal to p3. Diagonal
components of T

α̂β̂
(α̂, β̂ = 0, 1, 2, 3, 4) for our wormhole

spacetime are given below.

T0̂0̂ = −3
(

2 f ′(y)2 + f ′′(y)
)

−
e−2 f (y)

(
− 1 + r ′(l)2 + 2r(l)r ′′(l)

)

r(l)2 , (25)

T1̂1̂ =
e−2 f (y)

(
− 1 + r ′(l)2

)

r(l)2 + 3
(

2 f ′(y)2 + f ′′(y)
)
,

(26)

T2̂2̂ = 6 f ′(y)2 + 3 f ′′(y) + e−2 f (y)r ′′(l)
r(l)

, (27)

T3̂3̂ = 6 f ′(y)2 + 3 f ′′(y) + e−2 f (y)r ′′(l)
r(l)

, (28)

T4̂4̂ = 6 f ′(y)2 + e−2 f (y)(−1 + r ′(l)2 + 2r(l)r ′′(l))
r(l)2 , (29)

Clearly, Eqs. (25)–(29), suggests that the energy inequalities
might behave differently due to the appearance of the new
terms that depend on the derivatives of the decaying/growing
warp factors. In the following, we analyse these inequality
functions in detail.

4.1 Inequalities of WEC

The inequality functions FA=01,2,3,4 for WEC corresponding
to our 5D model (11) are given below:

F (W )
0 (l, y) = ρ(l, y)

= −3(2 f ′(y)2 + f ′′(y))

−e−2 f (y)(−1 + r ′(l)2 + 2r(l)r ′′(l))
r(l)2 , (30)

F (W )
1 (l, y) = ρ(l, y) + τ(l, y) = −2e−2 f (y)r ′′(l)

r(l)
, (31)

F (W )
2 (l, y) = F (W )

3 (l, y) = ρ(l, y) + p2(l, y)

= −e−2 f (y)(−1 + r ′(l)2 + r(l)r ′′(l))
r(l)2 , (32)

F (W )
4 (y) = ρ(l, y) + p4(l, y) = −3 f ′′(y). (33)

It is easy to see that F (W )
1 and F (W )

2,3 only gets an overall pos-
itive multiplicative factor. So there status would not change
compared to the 4D case. However, due to appearance of y-
derivative terms, there is possibility that F0 may satisfy the
inequality (at least partially/locally) for decaying warp fac-
tor. It is also clear that, for growing warp factor there is no
such hope. In the following, we analyse these inequalities as
functions of l at various locations along the extra dimension.
In Table 4, for decaying warp factor, we present the analyti-
cal expressions of the inequality functions, at y = 0 (typical
location of the brane). Note that, at y = 0, F (W )

1 = f (W )
1 and

F (W )
2 = F (W )

3 = f (W )
2 = f (W )

3 , therefore behaviour of this
inequalities everywhere in l is similar as the four dimensional
case.

Remarkably, in contrast to the four dimensional case (see
Table 1), here we see that F (W )

0 > 0 is satisfied for all values
of l, even for m = 2 (and for m = 4 and partially for m = 8)
which is the most interesting result we report here. In fact, the
whole energy density profile shifts towards the positive F0

axis compared to the 4D case. Figure 3 shows the variation
of F (W )

0 and F (W )
2 Vs l at |y| = 0.4 (variations are same

for both signs of y). Again, for m = 2 and m = 4 energy
density turns out to be positive everywhere in l. In fact, Eq.
(32) suggests, F (W )

2 > 0 is satisfied everywhere on y (for
both decaying and growing warp factors) and the domain for
l is exactly same as that of 4D case. We also do not need
to plot F (W )

1 (does not satisfy the inequality anywhere) and

F (W )
4 (does satisfy the inequality for decaying warp factor

everywhere) vs l as their behaviour is obvious from their
analytic expressions.
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Table 4 Inequalities of WEC
for decaying warp factor at
y = 0 with b0 = 1, m = 2, 4
and 8

Ineq. fn m = 2 m = 4 m = 8

F (W )
0 3 − 1

(1+l2)2 3 + 1√
1+l4

− l2(6+l4)

(1+l4)2 3 + 1
(1+l8)1/4 − l6(14+l8)

(1+l8)2

F (W )
1 − 2

(1+l2)2 − 6l2

(1+l4)2 − 14l6

(1+l8)2

F (W )
2 = F (W )

3 0 1
(1+l4)1/2 − l2(3+l4)

(1+l4)2
1

(1+l8)1/4 − l6(7+l8)

(1+l8)2

F (W )
4 3 3 3

Fig. 3 Variation of inequality
functions of WEC at y = ±0.4
(where f (y) = − log[cosh(y)]),
with b0 = 1 for cases – m = 2
(dotted curve) m = 4 (dashed
curve) and m = 8 (continuous
curve)

Fig. 4 Variation of the energy
density (where
f (y) = − log[cosh(y)]), with
b0 = 1 for cases – m = 2 and
m = 4

Fig. 5 Parameter space plot F (W )
0 > 0 (shaded region), with f (y) = − log[cosh(y)] for m = 2 m = 4 and m = 8 with b0 = 1

To get a complete view, we plot the energy density profile
or F (W )

0 in Fig. 4 as a surface in the l−y plane (form = 2 and
m = 4), which clearly shows that energy density is positive
around y = 0 and does become negative far away in the bulk.
The physical reason behind satisfaction of WEC in presence
of a decaying warp factor will be discussed at the end.

This prompts us to find the parameter space or the domain
of the l − y plane where F (W )

0 > 0 is satisfied in case of

decaying warp factor. This is depicted in Fig. 5. The shaded
region is the parameter space where the inequality is satisfied.
It is noticeable from Fig. 5 that for increasing m, the domain
of y is converging on y = 0 given that the energy density
is positive everywhere on l. This suggests then that, in the
m → ∞ limit, thickness of a physical (made of positive
energy density matter) thick brane vanishes.
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Table 5 F (S)
0 for

f (y) = − log[cosh(y/y0)] (first
row) and
f (y) = + log[cosh(y/y0)]
(second row) at y = 0 with
b0 = 1, y0 = 1 and m = 2, 4, 8

F (S)
0 m = 2 m = 4 m = 8

Decaying −6 + 1
(1+l2)2 −6 − 1√

1+l4
+ l2(6+l4)

(1+l4)2 −6 − 1
(1+l8)1/4 + l6(14+l8)

(1+l8)2

Growing 6 + 1
(1+l2)2 6 − 1√

1+l4
+ l2(6+l4)

(1+l4)2 6 − 1
(1+l8)1/4 + l6(14+l8)

(1+l8)2

Fig. 6 Parameter space plots for F (S)
0 > 0 (where f (y) = − log[cosh(y)]) for m = 2, 4, 8

Fig. 7 Profile of F (S)
0 of for

f (y) = − log[cosh(y)] (left
plot) and f (y) = log[cosh(y)]
(right plot) at |y| = 1 with
b0 = 1 and m = 2 (dotted
curve), m = 4 (dashed curve)
and m = 8 (continuous curve)

4.2 Inequalities of SEC

As usual, we can write the first inequality, ρ(l, y) +∑4
i=1 pi (l, y) ≥ 0, of SEC using Eqs. (25)–(29). All remain-

ing inequalities of SEC, ρ(l, y) + pi (l, y) ≥ 0, are already
being implied in the WEC section above. The inequality func-
tion F (S)

0 for SEC is,

F (S)
0 (l, y) = 6(3 f ′(y)2 + f ′′(y))

+e−2 f (y)(−1 + r ′(l)2 + 2r(l)r ′′(l))
r(l)2 . (34)

In Table 5, we write the analytic expression of F (S)
0 , for both

decaying and growing warp factor, at y = 0, as a function of
l (with b0 = 1, y0 = 1) and for values of m = 2, 4, 8.

Table 5 implies that, for the case of decaying warp factor,
at or near y = 0, the inequality is not satisfied anywhere in l
for allm. On the other hand, this inequality is always satisfied
everywhere in l in the growing warp factor scenario. Let us
to look at the parameter space again in the case of decaying
warp factor which is presented in Fig. 6. This shows that

for m = 2 the inequality is satisfied almost everywhere in
l − y plane except the region which essentially represents
the location of the thick brane. However, for of m → ∞, the
inequality is satisfied at or near of l → ±1 (these are the
regions about to pinch for large m in Fig. 6). On the other
hand, in presence of the growing warp factor, the inequality
is satisfied everywhere in the l − y plane as is obvious from
Eq. (34).

Taking suggestion from the parameter space plots, in
Fig. 7, we present the variation of F0(l, y) Vs l at |y| = 1 (for
m = 2, 4, 8), where the inequality is satisfied in presence of
both decaying and growing warp factor. The distinctive fea-
ture of m = 2 case is again visible.

4.3 Inequalities of DEC

The inequality functions for DEC in our 5D model is given
below. It is clear that the DEC would not satisfy for a growing
warp factor. However, for the decaying warp factor, these
conditions may be satisfied in limited domain on the l − y
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Table 6 Inequality functions of DEC for decaying warp factor, at y = 0, b0 = 1, m = 2, 4 and 8

Ineq. fns. m = 2 m = 4 m = 8

F (D)
1 3 − 1

(1+l2)2 −
∣∣∣3 + 1

(1+l2)2

∣∣∣ 3 + 1√
1+l4

− l2(6+l4)

(1+l4)2 −
∣∣∣3 − l6

(1+l4)2 + 1√
1+l4

∣∣∣ 3 + 1
(1+l8)1/4 − l6(14+l8)

(1+l8)2 −
∣∣∣3 − l14

(1+l8)2 + 1
(1+l8)1/4

∣∣∣
F (D)

2 = F (D)
3 3 − 1

(1+l2)2 −
∣∣∣3 − 1

(1+l2)2

∣∣∣ 3 + 1√
1+l4

− l2(6+l4)

(1+l4)2 − 3
∣∣∣1 − l2

(1+l4)2

∣∣∣ 3 + 1
(1+l8)1/4 − l6(14+l8)

(1+l8)2 −
∣∣∣3 − 7l6

(1+l8)2

∣∣∣
F (D)

4 3 − 1
(1+l2)2 −

∣∣∣ 1
(1+l2)2

∣∣∣ 3 + 1√
1+l4

− l2(6+l4)

(1+l4)2 −
∣∣∣ 1√

1+l4
− l2(6+l4)

(1+l4)2

∣∣∣ 3 + 1
(1+l8)1/4 − l6(14+l8)

(1+l8)2 −
∣∣∣ 1
(1+l8)1/4 − l6(14+l8)

(1+l8)2

∣∣∣

space.

F (D)
1 (l, y) = ρ(l, y) − |τ(l, y)|

= −
∣∣∣
e−2 f (y)

(
− 1 + r ′(l)2

)

r(l)2

+3
(

2 f ′(y)2+ f ′′(y)
)∣∣∣−3

(
2 f ′(y)2+ f ′′(y)

)

−
e−2 f (y)

(
− 1 + r ′(l)2 + 2r(l)r ′′(l)

)

r(l)2 , (35)

F (D)
2 (l, y) = ρ(l, y) − |p2(l, y)| = F (D)

3 (l, y)

= −
∣∣∣6 f ′(y)2 + 3 f ′′(y) + e−2 f (y)r ′′(l)

r(l)

∣∣∣

−3
(

2 f ′(y)2 + f ′′(y)
)

−
e−2 f (y)

(
− 1 + r ′(l)2 + 2r(l)r ′′(l)

)

r(l)2 , (36)

F (D)
4 (l, y) = ρ(l, y) − |p4(l, y)|

= −
∣∣∣6 f ′(y)2 + e−2 f (y)

(
−1+r ′(l)2+2r(l)r ′′(l)

)

r(l)2

∣∣∣

−3
(

2 f ′(y)2 + f ′′(y)
)

−
e−2 f (y)

(
− 1 + r ′(l)2 + 2r(l)r ′′(l)

)

r(l)2 . (37)

The functional dependence of the inequality functions on l at
the location of the brane, for decaying warp factor, is written
down in Table 6.

Note that, at y = 0, for m = 2, F (D)
1 is always negative

whereas F (D)
2 (and F (D)

3 ) identically vanishes everywhere

and F (D)
4 = 3 in l. In case of m = 4 (or m = 8), the

sum of the first two terms of F (D)
1 will always be less than

the sum of the last two terms for all values of l (except for
l = 0), thus the first inequality of DEC is always violated
except at the wormhole throat even for the decaying warp
factor. However, F (D)

2 (and F (D)
3 ) is positive for restricted

domain of coordinate l ≈(−0.62 ≤ l ≤ 0.62 for m = 4 and
−0.73 ≤ l ≤ 0.73 for m = 8. Whereas F (D)

4 is constant,
for both m = 4 and m = 8, in the domain (−0.41 � l �
0.41) and (−0.64 � l � 0.64) respectively but beyond these
domain of l, F (D)

4 can be negative or positive. In general one

Fig. 8 Parameter space plots F (D)
2 > 0 (where f (y) =

− log[cosh(y)]) for m = 4 and 8

can say that the fourth inequality of DEC is always satisfied
for m = 4 and partially satisfied for m = 8.

We plot a limited part of the parameter space in l− y plane
where the second (Fig. 8) and fourth (Fig. 9) inequalities of
DEC are satisfied. Figure 8 suggests that in the limitm → ∞
and y → 0, the domain of l where the inequality is satisfied
increases. On the other hand, Fig. 9 implies that, in the limit
m → ∞, the inequality is satisfied only at y → 0 and l → 0,
i.e. on the brane and near the throat.

After discussing the energy conditions for a GEB worm-
hole embedded in a 5D warped braneworld background in
detail, we summarise in Table 7,1 the status of the inequali-
ties of the energy conditions, at or near the location of the so-
called brane. Note that energy conditions away from y = 0
have also been analysed and it has been shown that they
indeed are satisfied in few cases particularly in presence of
decaying warp factor. We discuss the results in the next sec-
tion.

5 Discussion

Existence of wormholes and extra dimensions, though natu-
rally appears in theoretical physics as solutions of Einstein
equations and in the context of unified field theories are yet to
be confirmed through observations/experiments. Wormhole
solutions, within the context of general theory of relativity,

1 Here the status in presence decaying and growing warp factor is sep-
arated by ‘/’.
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Fig. 9 Parameter space plots F (D)
4 > 0 (where f (y) = − log[cosh(y)]) for m = 2, 4 and 8

Table 7 Status of the
inequalities of the energy
conditions for our 5D
wormhole-geometry, with
“decaying/growing warp
factor”, at y → 0 where ‘Yes’,
‘Y’ and ‘No’ stands for (as
before) satisfied, partially
satisfied and not satisfied
everywhere in l respectively

Warped GEB m = 2 m > 2
Ineq. Fns. WEC SEC DEC WEC SEC DEC

F0 ≥ 0 Yes/No No/Yes – Yes/No No/Yes –

F1 ≥ 0 No/No No/No No/No No/No No/No No /No

F2, F3 ≥ 0 Yes/Yes Y/Y Yes/No Y/Y Y/Y Y/No

F4 ≥ 0 Yes/No Yes/No Y/No Yes/No Yes/No Y/No

has serious drawbacks as they do not satisfy energy condi-
tions and need negative energy density to support the worm-
hole ‘throat’. On the other hand, extra dimensions though
have not been discovered, required by fundamental symme-
tries and provide new possibilities. In this article, we provide
a new way to avoid exotic matter for wormhole geometry
as well as we demonstrate yet another advantage of hav-
ing a warped extra spatial dimension by embedding a GEB
wormhole in a five dimensional warped braneworld back-
ground. Comparison between Tables 3 and 7 summarises the
key results and we discuss them in a systematic manner in
the following.

• Table 3 shows that, in the 4D scenario, it is the generali-
sation of the Ellis–Bronnikov model and setting the new
parameter m > 2 (m = 2 case corresponds to the origi-
nal EB model) that provides WEC satisfying wormhole
geometry. However the WEC is satisfied near throat and
violated near l → ±b0. With increasingm the magnitude
of violation increases though the negative density matter
accumulates in ever-narrower region near l → ±b0.

• The location l = b0 is a challenging barrier for a positive
energy particle to cross without interacting with matter of
negative energy density. However, as the negative energy
spike goes deeper with increasing m, ‘stronger’ becomes
the throat as suggested by the increased flatness of f (W )

0

around l = 0 (uptom-th derivative of f (W )
0 vanishes lead-

ing to increased stability of the structure with increasing
m against small perturbations).

• On the other hand, Table 7 shows, presence of a warped
extra dimension (with a decaying warp factor) leads to
satisfaction of WEC and renders the energy density posi-
tive even in the case of m=2. Further for m > 2, status of
inequalities have improved significantly compared to the
4D GEB model. One of the key aspects of the 5D model
is to resolve the particular drawback mentioned above.

• Physical understanding behind the rise of positive energy
density is the following. In thick brane models, it has
been shown that [94], a warped geometry with grow-
ing warp factor is sourced by bulk phantom or tachyon
fields, whereas a decaying warp factor shows up in pres-
ence of matter fields with positive energy density, e.g. a
scalar field with Sine-Gordon potential. Thus in presence
of a decaying warp factor, the negative energy density
(needed in 4D EB scenario) is compensated for.

A complete picture of the role played by the warped extra
dimension, particularly the one with a decaying warp factor,
towards forming a viable wormhole geometry can be realised
by looking at the geodetic potentials, particle trajectories and
evolution of geodesic congruences as such. One may also ask,
to what extent a EB wormhole embedded in 5D braneworld
with a decaying warp factor can mimic physical aspects GEB
model. These and studies on other astrophysical aspects such
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as lensing effect, stability of the wormhole will be reported
in future communications.
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