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Abstract We study some aspects of a class of non-AdS
holography where the 3D bulk gravity is given by generalized
minimal massive gravity (GMMG). We consider the space-
like warped AdS3 (W AdS3) black hole solution of this model
where the 2d dual boundary theory is the warped conformal
field theory (WFCT). The charge algebra of the isometries
in the bulk and the charge algebra of the vacuum symmetries
at the boundary are compatible and this is an evidence for
the duality conjecture. Further evidence for this duality is
the equality of entanglement entropy and modular Hamilto-
nian on both sides of the duality. So we consider the modular
Hamiltonian for the single interval at the boundary in asso-
ciated to the modular flow generators of the vacuum. We
calculate the gravitational charge in associated to the asymp-
totic Killing vectors that preserve the metric boundary con-
ditions. Assuming the first law of the entanglement entropy
to be true, we introduce the matching conditions between the
variables in two side of the duality and we find equality of the
modular Hamiltonian variations and the gravitational charge
variations in two sides of the duality. According to the results
of the present paper we can say with more sure that the dual
theory of the warped AdS3 black hole solution of GMMG is
a Warped CFT.

1 Introduction

One way to generalize the AdS/CFT duality is to use the
warped Anti-se Sitter (WAdS) spacetime in the gravity side
of the theory. This is in the context of the so-called non-
AdS holography. W AdS3 are deformations of AdS3 [1] by
very interesting applications [2–4]. One of the features of the
warped AdS spacetime is that they exist in the near horizon
of extremal Kerr black holes [2] and they realize black holes
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geometries [5]. The SL(2, R) ×U (1) group is the isometry
group of these spaces.

The spacelike warped AdS3 black hole is a solution of the
generalized minimal massive gravity (GMMG) that has been
introduced in the paper [6]. GMMG is a modification of the
minimal massive gravity (MMG) [7] that is an interesting
theory in the context of AdS/CFT correspondence where
introduces a bulk theory with positive-energy propagating
modes [6]. GMMG is a ghost free, pure gravity theory and it
can avoid the so called bulk-boundary clash in a certain region
of its parameter space. MMG and GMMG are examples of
“third-way” consistent theories, i.e. their field equations do
not come from an action, but the Bianchi identity is satisfied
on-shell.

W AdS3/CFT2 duality has been investigated for the first
time in [8]. The authors in [8] investigated the duality based
on the entropy calculations utilizing the Cardy formula (for
more details, one can refer to [9,10] ). Investigation of the
asymptotic behavior and the boundary conditions of the
W AdS3 has been done in [11]. The authors in [12], utilizing
the Lewkowycz-Maldacena procedure, find the holographic
entanglement entropy in the non-(asymptotic) AdS space-
times and they get the result explicitly for the W AdS3/CFT2

case.
The boundary conditions of the W AdS3/WCFT2 duality

as another case of the non-AdS holographies in 3D space-
times has been investigated in [13]. The bulk geometry in the
W AdS3/WCFT2 duality can be considered by the asymp-
totically warped AdS3 spacetime that is dual to the warped
conformal field theories (WCFTs) where the field theoreti-
cal futures of the duality has been investigated in [10,14].
The WCFTs possess a global SL(2, R) × U (1) symmetry
that leaves invariant the vacuum. They are 2d translation-
invariant QFTs with a chiral scaling symmetry that as a local
symmetry have a Virasoro algebra plus a U (1) Kac-Moody
algbera. The SL(2, R) × U (1) symmetry is a subset of the
global symmetries in CFTs given by SL(2, R) × SL(2, R).

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09788-0&domain=pdf
mailto:rezakord@ipm.ir
mailto:m.koohgard@modares.ac.ir


1003 Page 2 of 12 Eur. Phys. J. C (2021) 81 :1003

The local symmetries in CFTs are given by two copies of the
Virasoro algebra [10,15]. WCFTs possess an infinite dimen-
sional group and the modular covariance that allow us to
compute the entropy using a Cardy-like formula [16]. The
entropy of a CFT using the Cardy formula is as follows [10]

SCFT = 2π

√
cR
6
L0 + 2π

√
cL
6
L̄0 (1.1)

where L0 and L̄0 are the charges associated to the SL(2, R)

zero modes. cR and cR are the central charges of the algebra.
A universal result for the asymptotic entropy of a WCFT

is as follows [10]

SWCFT = −4π i P0Pvac
0

k

+4π

√√√√−
(
Lvac

0 − (Pvac
0 )2

k

) (
L0 − P2

0

k

)

(1.2)

where L0 and P0 are the charges associated to SL(2, R)

and U (1) symmetries, respectively. k is the U (1)- level
parameter. “vac” labels the vacuum expectation values of
the charges. These formula (1.1) and (1.2) are analogous to
each other but they are not equal.

The entanglement entropy and the modular Hamiltonian
have important roles in establishment of W AdS/WCFT
duality and in verifying the first law of entanglement entropy.
WCFTs have a non-relativistic nature. This property of the
theory will be evident in the entanglement entropy of an inter-
val in the vacuum, where we review the result of [17] in the
next section. This is based on the Rindler method that relies
on the suitable coordinate maps [17,18]. A Rindler transfor-
mation is a warped conformal transformation that is satisfy
some conditions. This transformation is invariant under a
thermal identification. This is a symmetry of the vacuum and
the vacuum is mapped to a state in the Rindler spacetime.

In parallel to the field theory calculations we have done
in this paper, we investigate the holographic entanglement
entropy and the gravitational charge. The holographic entan-
glement entropy of theW AdS3 under the Dirichlet-Neumann
boundary conditions has been computed in [19], where the
authors have used the Rindler method to find the result. In
order to be able to reproduce the results of [17] in the WCFT,
the authors of [19] have considered an additional parameter
to the Rindler transformations. They have found the result for
the holographic entanglement entropy in dualities beyond the
AdS/CFT. It can be seen the entanglement entropy in this case
is different with the result of the Ryu-Takayanagi prescription
[21,22] which is based on a relation between the spacetime
geometry and the entanglement entropy of the field theory
side of the duality.

The general holographic picture of the W AdS3/WCFT2

duality has been analyzed in [20] by introducing the con-
cept of the swing surfaces that can be a modification to the
Ryu-Takayanagi surfaces [21,22] in the beyond AdS/CFT
dualities. The swing surfaces can include two null geodesics
that extend beyond the entangling interval at the boundary
and a spacelike geodesic connecting the null geodesics.

Equality of the gravitational charge related to the isome-
tries of the warped AdS3 spacetime and the modular Hamil-
tonian of WCFT is an evidence to the holography conjecture.
To compute the gravitational charge, we consider the metric
as a spacelike warped AdS3 black hole [23,24]. The met-
ric satisfies the asymptotically warped AdS3 spacetime fall-
off conditions [24,26]. Finding some dictionaries between
the variables in two sides of the holography is an important
step to establish the first law of entanglement entropy. This
step is done by reading off the similar forms of the Fourier
modes of the charges in two sides of the duality. So entangle-
ment entropy can be considered as a test forW AdS3/WCFT
conjecture, where we will study this test in the framework
of GMMG model. In another term we investigate the holo-
graphic entanglement entropy and its first law in the con-
text of W AdS3/WCFT correspondence for asymptotically
warped AdS3 solution of GMMG model.

This paper organized as follows. In Sect. 2, we review
some properties of the WCFTs by defining the warped con-
formal transformations, Virasoro-Kac-Moody charge alge-
bra and the modified form of the algebra. In the preceding
section, we compute the modular flow generator ζ associated
to a single interval in WCFTs on the plane. The modular flow
can be defined as a linear combination of the vacuum symme-
try generators. To find the universal form of the entanglement
entropy, we review the calculation in [17]. We have permis-
sion to use its result in our calculations to implement the
holography. In Sect. 3, we show the first law of the entangle-
ment entropy in the field theory side of the duality. In Sect. 4,
we introduce the warped AdS3 black hole as a GMMG solu-
tion and as an asymptotically warped AdS3 spacetime. The
asymptotic Killing vectors that preserving the boundary con-
ditions will be introduced and the gravitational charge asso-
ciated to this symmetry is computed. In Sect. 5, we find the
first law of the entanglement entropy by introducing some
holographic matching equalities between the variables on
two sides of the W AdS3/CFT2 correspondence. In the last
section, we provide a conclusion for the paper and we give a
summary of our work on this class of non-AdS holography.

2 Warped CFT

We consider the warped conformal field theories (WCFTs)
in two dimensions at the boundary of the gauge gravity dual-
ity. To this end, it is needed to have a good discussion on
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the general properties of these theories. To find an evidence
for the holographic principles, we should have the entangle-
ment entropy and the modular Hamiltonian, that we use the
result of some earlier works. To provide everything we need,
we give a review of the related works in [10,17,27] in this
section.

2.1 Some properties

We consider a two dimensional theory defined on a plane with
coordinates (z, w). The spacetime symmetries are generated
by the following transformations

z′ = f (z′), w′ = w + g(z′), (2.1)

where f (z) and g(z) are two arbitrary functions. The theo-
ries which are invariant under the transformations (2.1) are
known as warped conformal field theories (WCFTs). The
warped conformal transformation (2.1) is generated by two
operators T (z) and P(z). The former is generator of infinites-
imal coordinate transformation in z and the latter is genera-
tor of z-dependent infinitesimal coordinate translations in w.
T (z) and P(z) transform as follows

T ′(z′) =
(

∂z

∂z′

)2 [
T (z) − c

12
{z′, z}

]

+ ∂z

∂z′
∂w

∂z′
P(z) − k

4

(
∂w

∂z′

)2

, (2.2)

P ′(z′) =
(

∂z

∂z′

) [
P(z) + k

2

∂w

∂z′

]
, (2.3)

where {., .} is the Schwarzian derivative as follows

{z′, z} =
(

∂z′

∂z

)−1
∂3z′

∂z3 − 3

2

(
∂z′

∂z

)−2 (
∂2z′

∂z2

)2

. (2.4)

c is the central charge and k is the level of the Virasoro–
Kac–Moody algebra [14]. We can define the charges on the
plane as follows

Ln = − i

2π

∫
dzzn+1T (z),

Pn = − 1

2π

∫
dzzn P(z). (2.5)

These charges satisfy a Virasoro–Kac–Moody algebra
with central charge c and U (1) level k as follows

[Ln, Lm] = (n − m)Ln+m + c

12
n(n2 − 1)δn+m,

[Pn, Pm] = k

2
nδn+m,

[Ln, Pm] = −mPn+m, (2.6)

where δn is the Kronecker delta. The finite transformations
(2.2) and (2.3) preserve the charge algebra (2.6) unchanged

but this is not true for the vacuum expectation values of the
zero-mode charges. These transformations create changes on
the vacuum expectation values that are called the spectral
flow transformations. We are interested to find a mapping
from the plane to the cylinder in coordinate (z′, w′). The
changes in the coordinates are as follows [17]

z = e−i z′ , w = w′ + 2αz′. (2.7)

The Schwarzian derivative is obtained as follows

{z′, z} = 1

2z2 . (2.8)

Using Eqs. (2.2), (2.3), (2.7) and the Schwarzian derivative
(2.8), we find T (z) and P(z) transformations as follows

Pcyl(z′) = i zP(z) − kα (2.9)

T cyl(z′) = −z2T (z) + c

24
+ 2iαzP(z) − kα2. (2.10)

The modes on the cylinder can be defined as follows

Lcyl
n = − 1

2π

∫
dz′einz′T cyl(z′),

Pcyl
n = − 1

2π

∫
dz′einz′ Pcyl(z′). (2.11)

Substituting Eqs. (2.9) and (2.10) in the charges on the
cylinder, we find these charges in terms of the charges on the
plane as follows

Pcyl
n = Pn + αkδn,0 (2.12)

Lcyl
n = Ln + 2αPn + (α2k − c

24
)δn,0. (2.13)

We can find the vacuum charges on the cylinder using the
above equations in terms of the central charge c and theU (1)

level k, as follows

Pvac
0 ≡ 〈Pcyl

0 〉 = αk (2.14)

Lvac
0 ≡ 〈Lcyl

0 〉 = α2k − c

24
. (2.15)

where 〈.〉 is the notation for the expectation value on the
vacuum states.

There is a modified algebra as follows [10][
L̃n, L̃m

]
= (n − m)L̃n+m + c

12
n(n2 − 1)δn+m,[

P̃n, P̃m
]

= 2n P̃0δn+m,[
L̃n, P̃m

]
= −mP̃n+m + mP̃0δn+m, (2.16)

in which the U (1) level k is charge-dependent. We use this
form of the algebra to analyze the duality in both sides of the
gravity and the field theory. We could return to the original
algebra (2.6) by the following re-definition of the charges
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[10]

P̃n = 2

k
P0Pn − 1

k
P2

0 δn,

L̃n = Ln − 2

k
P0Pn + 1

k
P2

0 δn . (2.17)

2.2 Modular flow in WCFT

In this section we find the modular flow generator associated
with a single interval in WCFT from the generalized Rindler
transformation [17,18,25,27]. To this end, we use a symme-
try transformation of the vacuum state to map an interval I
to a Rindler spacetime. The modular flow generator is con-
sidered as a linear combination of the SL(2, R) ×U (1) that
leaves the vacuum invariant, as follows

ζ = �ai hi (2.18)

where ai are some arbitrary constants. It is needed to satisfy
the invariance of the causal domain under the modular flow
transformations to find the coefficients ai . We consider an
interval I on the vacuum state as follows

∂I = {(z−, w−), (z+, w+)}; lz = z+−z−, lw = w+−w−.

(2.19)

where (z, w) are the coordinates on the plane. This is the
reference plane where the zero-mode charges vanish as

P0|0〉 = L0|0〉 = 0 (2.20)

where |0〉 is the vacuum state. The symmetry generators
SL(2, R) × U (1) that leave the causal domain I invariant
are as follows

ln = −zn+1∂z; n = −1, 0,+1

l̄0 = −∂w, (2.21)

where l̄0 isU (1) generator and ln are the SL(2, R) generators
that satisfy the following algebra[
l−, l+

] = 2l0[
l0, l±

] = ±l±. (2.22)

The modular flow generator as a linear combination of the
vacuum symmetry generators can be writen as follows

ζ = ζ z∂z + ζw∂w = �1
j=−1a j l j + ā0l̄0. (2.23)

To find the coefficients ai , it is needed the modular flow ζ

vanishes at the boundaries of the causal domain. Satisfying
this condition, we find the ai as follows

(a+, a0, a−) = a+
(
1,−(z+ + z−), z+z−

)
. (2.24)

To find the a+, we have the conditions as follows [27]

∂s z(s) = ζ z

z(s) = z(s + i). (2.25)

This is because it is needed that eiζ maps a point in the
causal domain back to itself. We use the first condition in
(2.25) as follows

dz

ds
= −a+(z2 − z+z − z−z + z+z−) (2.26)

where we have used (2.24). By integration of this equation
and introducing the integration constants in c0, we find the
following result for z(s)

z(s) = ea+z+s+c0z− z+ − ea+z−s+c0z z−
ea+z+s+c0z− − ea+z−s+c0z

. (2.27)

Applying the 2nd condition in (2.25), we find the follow-
ing relation that is needed to satisfy this condition

ea+s(z+−z−)i = 1. (2.28)

Using the relation (2.28), we find the form of the a+ as fol-
lows

a+ = 2π

z+ − z−
. (2.29)

Substituting the a+ in (2.24), we find the final form of the
coefficients as follows

(a+, a0, a−) = 2π

z+ − z−
(
1,−(z+ + z−), z+z−

)
. (2.30)

To find the ā0, we pay attention to this point that this is
the coefficient of l̄0 that creates translation along w direction
as follows

w → w − 2π iμ. (2.31)

To map a point in the causal domain back to itself, we
shift the w coordinate an amount 2πμ. Now we find the ā0

as follows [27]

ā0 = 2πμ. (2.32)

Substituting all the coefficients that we have found into
(2.23), we find the modular flow generator in the interval I
as follows

ζ = 2πμl̄0 + 2π

z+ − z−
(
l1 − (z+ + z−)l0 + z+z−l−1

)

= −2πμ∂w − 2π

z+ − z−
(
z+z− − (z+ + z−)z + z2)∂z

(2.33)
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where this is calculated in WCFT using the generalized
Rindler method.

2.3 Entanglement entropy in WCFT

In this section we review the work of [17] that is needed to
implement the hologrpaphy in two sides of the bulk and the
boundary. To calculate the entanglement entropy of a single
interval, the background geometry is considered as a cylinder
with coordinates (t, x). The following identification defines
the spatial circle

(t, x) ∼ (t + L̄, x − L), (2.34)

where the interval domain will be defined as follows

D : (t, x) ∈
[
(
l̄

2
,− l

2
),

(
− l̄

2
,
l

2

)]
(2.35)

The entanglement entropy in D using the density matrix
ρD is defined as follows

SEE = −Tr(ρD log ρD) (2.36)

Using a unitary transformation, the entanglement entropy
is related to a thermal entropy [17,28,29]. For a warped sys-
tem, the only allowed transformation is as follows

tan πx
L

tan πl
2 L

= tanh
π x̃

L
, t + L̄

L
x = t̃ + κ̄

κ
x̃ (2.37)

where κ , κ̄ are arbitrary scales and induces the following
identification in (t̃, x̃) coordinates

H : (t̃, x̃) ∼ (t̃ − i κ̄, x̃ + iκ). (2.38)

The thermal density matrix of the domain H is related to
the density matrix of the interval D under the unitary trans-
formation as follows

ρD = UρHU † (2.39)

where ρH = exp(κ̄Pcyl
0 − κLcyl

0 ). Using this relation
between ρD and ρH, the entanglement entropy can be defined
as follows

SEE = −Tr(ρD log ρD) = Sthermal(H). (2.40)

Introducing a cutoff parameter ε, the regulated interval D
and its mapped domain H can be defined as follows [17]

D : (t, x) ∈
[(

l̄

2
− l̄

l
ε,− l

2
+ ε

)
,

(
− l̄

2
+ l̄

l
ε,

l

2
− ε

)]

(2.41)

and

H : (t̃, x̃) ∈
[(

κ̄

2π
γ − l

2

L̄

L
+ l̄

2
,− κ

2π
γ

)
,

(
− κ̄

2π
γ + l

2

L̄

L
− l̄

2
,

κ

2π
γ

)]
, (2.42)

where

γ = log

(
L

πε
sin

πl

L

)
+ O(ε). (2.43)

To evaluate the thermal entropy, it is needed to find the
partition function for H

Zā|a(θ̄ |θ) (2.44)

where (ā, a) and (θ̄ , θ) are defined by the following indeti-
fications

(t̃, x̃) ∼ (t̃ + 2π ā, x̃ − 2πa) ∼ (t̃ + 2πθ̄, x̃ − 2πθ) (2.45)

with

2πa = κ

π
γ, 2π ā= κ̄

π
γ− L̄

L
l+ l̄, 2πθ = −iκ, 2πθ̄ = −i κ̄ .

(2.46)

The thermal entropy is defined as follows

Sā|a(θ̄ |θ) = (1 − θ∂θ − θ̄∂θ̄ ) log Zā|a(θ̄ |θ). (2.47)

It could be seen the entropy is an observable that is inde-
pendent of all observers. Changing the coordinates as follows

x̂ = x̃

a
, t̂ = t̃ + ā

a
x̃, (2.48)

the equality between the entropies is as follows [17]

Sā|a(θ̄ |θ) = Ŝ

(
θ̄ − θ

a
ā|θ
a

)
. (2.49)
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In the coordinates (t̂, x̂), the partition function can be cal-
culated as follows [17]

Ẑ(ρ, τ ) = eiπ
k
2

ρ2

τ Ẑ

(
ρ

τ
| − 1

τ

)

= eiπ
κ
2

ρ2

τ e2π i ρ
τ
Pvac

0 +2π i 1
τ
Lvac

0 + · · · . (2.50)

where

τ = −i
π

γ
, ρ = − i

2γ

(
L̄

L
l − l̄

)
(2.51)

In the 2nd equality in (2.50), the vacuum dominates the
sum. Ẑ(ρ, τ ) is the partition function with (ā, a) = (0, 1) as
a canonical partition function.

The thermal entropy has the following relation with the Ẑ
partition function,

Ŝ(ρ|τ) = (1 − τ∂τ − ρ∂ρ) log Ẑ(ρ|τ). (2.52)

Using this relation, the thermal entropy can be defined as
follows

Ŝ(ρ|τ) = i Pvac
0 l(

L̄

L
− l̄

l
) − 4Lvac

0 log

(
L

πε
sin

πl

L

)
(2.53)

Substituting the thermal entropy in (2.40), we find the
entanglement entropy as follows

SEE = i Pvac
0 l

(
L̄

L
− l̄

l

)
− 4Lvac

0 log

(
L

πε
sin

πl

L

)
(2.54)

where Pvac
0 and Lvac

0 are the vacuum charge values on the
cylinder. To evaluate the entanglement entropy of one seg-
ment in the WCFT at finite temperature, all we need to do is
changing the map that we used before, as follows [17]

tanh πx
L

tanh πl
2 L

= tanh
π x̃

L
, t + β̄

β
x = t̃ + κ̄

κ
x̃ (2.55)

To find the entropy, we just to use the replacement L → iβ
and L̄ → i β̄. With this replacement in (2.54), we find the
entanglement entropy as follows

SEE = i Pvac
0 l

(
β̄

β
− l̄

l

)
− 4Lvac

0 log

(
β

πε
sinh

πl

β

)
.

(2.56)

3 The first law of entanglement entropy in WCFT

The modular Hamiltonian has the following relation with the
partition function

Z = Tr exp(−Hζ ) = Tr exp
[
2π iρPcyl

0 −2π iτ Lcyl
0

]
(3.1)

where we have used the following relation [17]

Zā|a(τ̄ |τ)

= Trā|a
(

exp
(
2π i τ̄ Pcyl

0 − 2π iτ Lcyl
0

))
(3.2)

Using the relation (3.1), we find the charge Hζ as follows

Hζ = 2π iρPcyl
0 − 2π iτ Lcyl

0 − log Z

= − 1

2π

∫
dx̂

{
2π iρ P̂(x̂) − 2π iτ T̂ (x̂)

} − log Z , (3.3)

where in the 2nd line, we use the Lcyl
n and Pcyl

n definitions on
the cylinder (2.11). Hζ is the charge related to the modular
flow generator vector ζ (2.33) that is given in the former
Sect. 2.3. The modular Hamiltonian is given by the following
relation [27]

Hmod = Hζ + const. (3.4)

where the constant term makes the trace of the thermal
density matrix ρD equal to one. To find the charge Hζ using
(3.1), we add log Z term to make the trace of the thermal
density matrix equal to one. The modular Hamiltonian in
terms of the (t, x) coordinates variables can be obtained from
(3.3). To this end, we should perform a series of warped
conformal transformations (t̂, x̂) → (t̄, x̄) → (t, x) using
(2.2) and (2.3). The modular Hamiltonian Hmod can be find
as follows [27]

Hmod =
∫ x+

x−
dx

{
2iαP(x) + β

2π

×
[

cosh π(2x−l)
β

− cosh πl
β

sinh πl
β

] [
T (x) − β̄

β
P(x)

]}

+ikαl̄ −
[
c

12
− k

8π2 β̄2
] [

πl

β
cosh

πl

β
− 1

]

(3.5)

where α is defined as a characteristic parameter of the change
of the coordinates (2.7) between the plane and the cylinder.
Consequently, the variation of the modular Hamiltonian can
be find as follows

δHmod =
∫ x+

x−
dx

{
2iαδP(x) + β

2π

×
[

cosh π(2x−l)
β

− cosh πl
β

sinh πl
β

] [
δT (x) − β̄

β
δP(x)

]

+ ikα

l
δl̄

}
(3.6)
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Using the Lcyl
n and Pcyl

n definitions on the cylinder (2.11),
we could find the result as follows

δT (x) = −δLcyl
0 ,

δP(x) = −δPcyl
0 . (3.7)

Substituting these relations into the modular Hamiltonian
variation (3.6), we could find the variation as follows

δHmod = iαkδl̄ − 2iαlδPcyl
0

− β2

4π2

(
2 − 2πl

β
coth

πl

β

) (
δLcyl

0 − β̄

β
δPcyl

0

)

= i Pvac
0 δl̄ − 2iαlδPcyl

0 − β2

4π2

×
(

2 − 2πl

β
coth

πl

β

) (
δLcyl

0 − β̄

β
δPcyl

0

)
(3.8)

where we have used the definition of Pvac
0 (2.14) in the 2nd

line. The first law of entanglement entropy is a statement on
the equality of the entanglement entropy variations with the
modular Hamiltonian variations as follows [27]

δSEE = δ〈Hmod〉 (3.9)

where we have the modular Hamiltonian variation δHmod in
(3.8). To show this law is satisfied in the warped CFTs, we
need the variation of the entanglement entropy. The variation
of the entanglement entropy (2.56) can be found as follows

δSEE = i Pvac
0 lδ

(
β̄

β

)

−i Pvac
0 δl̄ − 4Lvac

0

(
1 − πl

β
coth

πl

β

)
δβ

β
(3.10)

Substituting the following relations in (3.10) [27]

δβ

β3 = −3

c

1

π2 δ

(
Lcyl

0 − (Pcyl
0 )2

k

)
,

δ

(
β̄

β

)
= 2

k
δPcyl

0 , (3.11)

we could find the variation of the entanglement entropy as
follows

δSEE = i Pvac
0 δl̄ − 2iαlδPcyl

0

− β2

4π2

(
2 − 2πl

β
coth

πl

β

)(
δLcyl

0 − β̄

β
δPcyl

0

)

(3.12)

Comparing the entanglement entropy variation (3.12) and
the variation of the modular Hamiltonian (3.8), we find these
results are equal to each other. This is a proof of the first law
of the entanglement entropy (3.9).

If we could find δl̄ relation as follows

δl̄ = f (l, Pvac
0 , Pcyl

0 )δPcyl
0 , (3.13)

where f (l, Pvac
0 , Pcyl

0 ) is a function of the l, Pvac
0 and Pcyl

0 ,
we can introduce the following functions K (x) and Y (x) into
(3.12)

K (x) =
(

β̄

β

) [
i Pvac

0 f (l, Pvac
0 , Pcyl

0 )

(
β

β̄

)

−2iαl

(
β

β̄

)
+ β2

4π2

(
2 − 2πl

β
coth

πl

β

)]
(3.14)

and

Y (x) = − β2

4π2

(
2 − 2πl

β
coth

πl

β

)
, (3.15)

then we have the entropy variation as follows

δSEE = K (x)δPcyl
0 + Y (x)δLcyl

0 . (3.16)

We find the explicit form of the variation of l̄ (3.13) in the
Sect. 4. Substituting the cylinder charges (2.11) into (3.16),
we find the following form of the entropy variation

δSEE = − 1

2π

∫
dx{K (x)δP + Y (x)δT }. (3.17)

For later use, we find the variation of the entanglement
entropy using the charges in the modified form (2.17). To
this end, we find the relation between the variation of the
charges P̃n and L̃n in the modified form and the variation of
the charges Pn and Ln on the plane as follows

δ P̃0 = 2P0

k
δP0

δ L̃0 + δ P̃0 = δL0, (3.18)

where we have used the relation (2.17) when n = 0. The
relation between the variations of the cylinder charges and
the variations of the plane charges can be found as follows

δPcyl
0 = δP0

δLcyl
0 = δL0 + 2αδP0, (3.19)

where we have used (2.12) and (2.13). Using (3.18) and
(3.19), we could find the following relations between the
charges on the cylinder and the charges in the modified form

δPcyl
0 = k

2(Pcyl
0 − αk)

δ P̃0

δLcyl
0 = δ L̃0 + Pcyl

0

Pcyl
0 − αk

δ P̃0. (3.20)

The relation between the variation of the zero-mode
charges and the variation of the currents can be found as
follows

δ P̃0 = −δ P̃, δPcyl
0 = −δP,

δ L̃0 = −δT̃ , δLcyl
0 = −δT, (3.21)
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where we have used (2.11) and the following relation for the
modified charge.

L̃0 = − 1

2π

∫
dz′T̃ (z′),

P̃0 = − 1

2π

∫
dz′ P̃(z′). (3.22)

Substituting (3.21) into (3.20), we have the following
result

δP = k

2(Pcyl
0 − αk)

δ P̃

δT = δT̃ + Pcyl
0

Pcyl
0 − αk

δ P̃ . (3.23)

Substituting (3.23) into the entanglement entropy (3.17),
we find the modified form of the entropy as follows

δSEE = − 1

2π

∫
dx

×
{(

K (x)k + 2Pcyl
0 Y (x)

2(Pcyl
0 − αk)

)
δ P̃(x) + Y (x)δT̃ (x)

}
.

(3.24)

Now, we find the new form of the entanglement entropy
as follows

δSEE = − 1

2π

∫
dx

{
K̃ (x)δ P̃(x) + Ỹ (x)δT̃ (x)

}
. (3.25)

where we have defined K̃ (x) and Ỹ (x) as follows

K̃ (x) = K (x)k + 2Pcyl
0 Y (x)

2(Pcyl
0 − αk)

(3.26)

and

Ỹ (x) = Y (x). (3.27)

4 Warped AdS black holes solution of GMMG

Generalized minimal massive gravity (GMMG) was intro-
duced in [6], providing a new example of a theory that
avoids the bulk-boundary clash and therefore, as minimal
massive gravity (MMG) [7], the theory possesses both, posi-
tive energy excitations around the maximally AdS3 vacuum
as well as a positive central charge in the dual CFT. Since
these theories avoid the bulk-boundary clash, they provide
excellent areas to explore the structure of asymptotically AdS
solutions, asymptotic symmetries, their algebra and other
holographically inspired questions. The warped AdS3 black

hole is a solution of the GMMG. The metric of this black
hole is given by [23,24]

ds2 = l2
(

− N (r)2dt ′2 + dr2

4N (r)2R(r)2

+R(r)2(dφ + Nφ(r)dt ′
)2

)
(4.1)

where t ′, r and φ are time-, radial- and angular-coordinates,
respectively. We have used the t ′-symbol instead of the t-
symbol for the time coordinate, so as not to be confused with
boundary calculations. l is the AdS3 space radius. For the
spacelike warped AdS3 black hole we have the following
definitions

R(r)2 = 1

4
α2r

[
(1 − ν2)r + ν2(r+ + r−) + 2ν

√
r+r−

]
(4.2)

N (r)2 = α2ν2 (r − r+)(r − r−)

4R(r)2 , (4.3)

Nφ(r) = |α|r + ν
√
r+r−

2R(r)2 , (4.4)

where r+ and r− are the outer and inner horizon radiuses of
the black hole, respectively. The metric (4.1) has the sym-
metry group SL(2, R) × U (1) as the isometry group of the
spacetime. This is the global part of the symmetry group of
the Warped CFT. The appropriate boundary conditions to
introduce asymptotically spacelike warped AdS3 spacetime,
is considered as follows [24,26]

gt ′t ′ = l2, gtr = O(r−3), grφ = O(r−2),

gt ′φ = 1

2
l2|α|[r + Atφ(φ) + 1

r
Btφ(φ)

]
,

grr = l2

α2ν2

[
1

r2 + 1

r3 Arr (φ) + 1

r4 Brr (φ) + O(r−5)

]
,

gφφ = 1

4
l2α

[
(1 − ν2)r2 + r Aφφ(φ) + Bφφ(φ)

] + O(r−1)

(4.5)

These boundary conditions are in consistent with the met-
ric (4.1) by the r -dependent functions defined in (4.2), (4.3)
and (4.4). The warped AdS3 black hole is an asymptotically
spacelike warped AdS3 spacetime. The asymptotic Killing
vectors that generate the fluctuations preservintg the bound-
ary conditions (4.5) are as follows [24]

ξ t
′
(K,Y) = K(φ) − 2∂2

φY(φ)

|α|3ν4r
+ O(r−2),

ξ r (K,Y) = −r∂φY(φ) + O(r−2),

ξφ(K,Y) = Y(φ) + 2∂2
φY(φ)

α4ν4r2 + O(r−3), (4.6)

where K(φ) and Y(φ) are two arbitrary periodic func-
tions. The corresponding conserved charge to the asymptotic
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Killing vectors (4.6) is given in [24] as follows

Q(K,Y) = P(K) + L(Y), (4.7)

where

P(K) = − |α|
96π

cU

∫ 2π

0
K(φ)

[
Arr (φ)+2Atφ(φ)

]
dφ, (4.8)

and

L(Y) = α4ν4

768π
cV

∫ 2π

0
Y(φ)

[
−3Arr (φ)2 + 4Brr (φ)

+ 16Btφ(φ)
]
dφ, (4.9)

where

cU = 3l|α|ν2

G

{
σ + ω

μ

(
H1 + l2H2

)

+ 1

m2

(
F1 + l2F2

) − |α|
2μl

}
, (4.10)

cV = 3l

|α|ν2G

{
σ + ω

μ

(
H1 + l2H2

)

+ 1

m2

(
F1 + l2F2

) − |α|
2μl

(
1 − 2ν2)}. (4.11)

H1, H2, F1 and F2 are constant parameters. σ is a sign
andm is the mass parameter of New Massive Gravity (NMG)
term [30] in the Lagrangian of GMMG model. ω is a dimen-
sionless parameter. Introducing M(φ) and J (φ) as follows

M(φ) = Arr (φ) + 2Atφ(φ),

J (φ) = −3Arr (φ)2 + 4Brr (φ) + 16Btφ(φ), (4.12)

we could change the form of P(K) and L(Y) in (4.8) and
(4.9), respectively as follows

P(K) = − |α|
96π

cU

∫ 2π

0
K(φ)M(φ)dφ, (4.13)

and

L(Y) = α4ν4

768π
cV

∫ 2π

0
Y(φ)J (φ)dφ, (4.14)

In the case of the warped black hole (4.1), we have

Arr = r+ + r−, Atφ = ν
√
r+r−,

Brr = r2+ + r2− + r+r−, Btφ = 0. (4.15)

We define the Fourier modes as follows

Pm = Q(eimφ, 0) = P(eimφ),

Lm = Q(0, eimφ) = L(eimφ). (4.16)

Using this definition, the charges can be found as follows

Pm(K) = − |α|
96π

cU

∫ 2π

0
K(φ)M(φ)eimφdφ, (4.17)

and

Lm(Y) = α4ν4

768π
cV

∫ 2π

0
Y(φ)J (φ)eimφdφ. (4.18)

The charge algebra can be written as follows [24]

[Ln,Lm] = (n − m)Ln+m + cV
12

n(n2 − 1)δn+m,

[Pn,Pm] = −cU
12

P0δn+m,

[Ln,Pm] = −mPn+m + m

2
P0δn+m . (4.19)

This charge algebra is the same as the modified algebra
(2.16) that we have used in the field theory side provided that
we introduce the following state-dependent map between the
bulk (φ, t ′) coordinates and the boundary (x, t) coordinates
[19,27]

φ = x, t ′ = x + kt

2P0
, (4.20)

as a result, a mapping needs to be exist between the gravita-
tional charges on the bulk and the warped conformal charges
on the boundary, that we find the mapping in the next section.
This correspondence between the charge algebras on the bulk
and the boundary is an evidence for the W AdS3/WCFT2

duality. Using (4.8) and (4.9) and from (4.15), we can find
the eigenvalues of the Pm and Lm as follows

pm = −|α|cU
48

(r+ + r− + 2ν
√
r+r−)δm, (4.21)

lm = α4ν4cV
384

(r+ − r−)2δm . (4.22)

5 The first law of entanglement entropy in WAdS3

We can write the gravitational charge of the GMMG as fol-
lows [24]

Q(K,Y) = − |α|
96π

cU

∫ 2π

0
K(φ)M(φ)dφ

+ α4ν4

768π
cV

∫ 2π

0
Y(φ)J (φ)dφ (5.1)

where we have used (4.7),(4.13) and (4.14) and as we have
mentioned previously K(φ) and Y(φ) are two arbitrary peri-
odic functions. The M(φ) and J (φ) function have been spec-
ified in (4.12). The fourier modes of the gravitational charge
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can be found as follows

Qm(K,Y) = − |α|
96π

cU

∫ 2π

0
K(φ)M(φ)eimφdφ

+ α4ν4

768π
cV

∫ 2π

0
Y(φ)J (φ)eimφdφ (5.2)

The gravitational charge variations of (5.1) can be found as
follows

δQ(K,Y) = − |α|
96π

cU

∫ 2π

0
K(φ)δM(φ)dφ

+ α4ν4

768π
cV

∫ 2π

0
Y(φ)δ J (φ)dφ (5.3)

where we have considered the variations of lengths of bulk
coordinates as follows

δlφ = 0, δlt ′ = 0. (5.4)

Utilizing the relation between the bulk and the boundary
coordinates in (4.20), we could find the following dictionary
between the bulk and the boundary lengths of the coordinates

lφ = l,

lt ′ = l + k

2P0
l̄. (5.5)

We could find the variations of the bulk and the boundary
lengths, utilizing (5.5), as follows

δlφ = δl = 0,

0 = k

2P0
δl̄ − kl̄

2P2
0

δP0. (5.6)

where we have used (5.4) into the above relations. Substitut-
ing the following relation into (5.6)

l̄ = 2P0

k
(lt ′ − l), (5.7)

where we have obtained from (5.5), we could find the δl̄
relation as follows

δl̄ = 2

k
(lt ′ − l)δP0. (5.8)

As one can see in the rest of this section, we have found
the dictionary between the bulk and the boundary charges in
(5.15) that can be used to change the δl̄ relation as follows

δl̄ = 2

k
(lt ′ − l)δ P̃0, (5.9)

where the δ P̃0 and δPcyl
0 have a relation as in (3.20) that can

be utilized to find the following relation for the δl̄

δl̄ = 4

k2 (lt ′ − l)
(
Pcyl

0 − αk
)

δPcyl
0 . (5.10)

So our conjectural relation for δl̄ in (3.13) is confirmed,
and the explicit form of the f (l, Pvac

0 , Pcyl
0 ) can be found as

follows

f
(
l, Pvac

0 , Pcyl
0

)
= 4

k2 (lt ′ − l)(Pcyl
0 − αk)

= 4α2

(Pvac
0 )2 (lt ′ − l)(Pcyl

0 − Pvac
0 ). (5.11)

where we have used (2.14) into the second line of the above
relation.

We assume the first law of the entanglement entropy to be
true in the gravity side of theW AdS3/WCFT in the GMMG
case (as in the Enstein gravity case in [19,20]). Modular
Hamiltonian is the same as gravitational charge (5.3), and
since we have assumed the first law of entropy to be true,
we can write the relation between the holographic entangle-
ment entropy variation δSHEE and the gravitational charge
variation as follows 1.

δSHEE = δQ. (5.12)

Now we can complete the dictionaries between the fields
in two sides of the duality. The algebra (4.19) of the charges
that generate the isometries of the warped AdS3 black hole
in GMMG has an equal form with the charge algebra (2.16)
in WCFT. This correspondence between the bulk and the
boundary symmetry is an indication of the W AdS3/WCFT2

holography. We could find the following dictionary between
the bulk and the boundary variables,

− 1

2π
P̃ = − |α|

96π
cU M(φ) (5.13)

1

2π
T̃ = − α4ν4

768π
cV J (φ). (5.14)

Using these matching relations between the bulk and the
boundary variables, we find the following correspondence
between the charges in two sides of the duality

Pm → P̃m (5.15)

Lm → L̃m . (5.16)

Substituting the dictionary variables (5.13) and (5.14) into
the gravitational charge (5.3), we find the following relation

δQ = δ〈Hζ 〉, (5.17)

that it is another evidence for the duality is considered in this
paper. Using the dictionary (5.13) and (5.14), the equality
between the entanglement entropy (3.25) in WCFT and the
holographic entanglement entropy (5.12) is also established
easily. From the equality, SEE = SHEE , and using (3.9) and

1 Here we should mention that it is interesting task to one try to apply
the proposal and formula (2.29) in the paper [20] to obtain holographic
entanglement entropy in the framework of GMMG model
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(5.17), we implement our claim on the establishment of the
first law of the entanglement entropy in theW AdS3/WCFT2

duality that its final form is as follows

δSEE = δHζ = δQ = δSHEE . (5.18)

So we have provided a holographic computation of the first
law of entanglement entropy for WAdS under the boundary
condition (4.5). Our bulk results in this section agree with
those of WCFT results in Sect. 3, and this is another evidence
of the conjectured WAdS/WCFT correspondence.

6 Conclusion

In this work, we studied one class of the non-AdS hologra-
phies. We studied the entanglement entropy and 1st law in
the W AdS3/WCFT correspondence in the context of Gen-
eralized Minimal Massive Gravity. This generalizes similar
studies of W AdS3/WCFT in the Einstein gravity. Previ-
ously we have studied the Flat3/BMSFT2 holography in
the framework of GMMG model [31]. The field theory at the
boundary was considered a theory with BMS3-symmetry
[32–34]. The asymptotic symmetry of the bulk side of the
duality was the same as the vacuum symmetry of the field
theory side. By computing the gravitational charge in the bulk
and the modular Hamiltonian at the boundary, we succeeded
to show the first law of the entanglement entropy. In this new
work, we considered another class of the duality where the
filed theory at the boundary is a warped CFT2 [10,14]. In
the bulk, the spacelike warped AdS3 black hole [24] as a
solution of the GMMG was considered.

The charge algebra of the WCFT2 is a Virasoro-Kac-
Moody algebra and this is the same as the asymptotic charge
algebra of the bulk at the boundary limit [24]. This is a per-
mission to consider the duality as a true one. We used the
modular invariance of the WCFT to compute the modular
flow generator at the boundary’s vacuum. This was computed
using the generalized Rindler transformaton [18,25]. The
modular flow generator was computed in (2.33). To find an
evidence for the holography, we needed the modular Hamil-
tonian and the entanglement entropy in the field theory side.
Because of the universal form of the entropy of the WCFT in
an interval, we used the result of [17]. We expanded this result
in details to see the importance of the warped symmetry in
calculation of the entanglement entropy.

We showed the first law of the entanglement entropy (3.9)
at the boundary that states the equality of the entanglement
entropy and the modular Hamiltonian variations. This form
of the first law can be implemented by some variations in
the bulk. For the bulk, we used the metric (4.1) that is an
asymptotically warped AdS3 black hole with the r -dependent
function (4.2), (4.3) and (4.4). We found the gravitational

charge (4.7) with (4.8) and (4.9). To establish the first law of
the entanglement entropy, introducing the definitions (4.12),
we found the gravitational charge variations in (5.3). This
was equal to the holographic entanglement entropy in (5.12).
Finding the relations (5.13) and (5.14) between the variables
in two sides of the duality, as a holographic dictionary, we
found the completed form of the first law of the entanglement
entropy (5.18).
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