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Abstract We consider the Lorentz-violating extended QED
involving all nonminimal dimension-5 additive CPT-odd
terms. For this theory, we investigate the generation of the
Carroll–Field–Jackiw (CFJ) term and its higher-derivative
counterparts of the first order in any of these nonminimal
couplings. The CFJ term is demonstrated to vanish in the
dimensional regularization scheme. We also study the ques-
tion of higher-derivative divergent contributions and demon-
strate that they can be eliminated by considering a given
proportionality between the coefficients.

1 Introduction

The Lorentz-violating (LV) modifications of various field
theory models are introduced through adding new terms pro-
portional to constant vectors or, in general, tensors [1–3].
Many examples of such additive terms have been proposed,
giving origin both to minimal extensions, which involve
only operators of dimensions up to 4, so, they include nei-
ther higher derivatives nor non-renormalizable couplings [4],
and the nonminimal ones where higher-dimension operators
listed in [5–7] are introduced. Among various aspects of new
LV theories, their possible perturbative impacts are of spe-
cial interest justified by the fact that perturbative generation
of first known LV term, that is, the Carroll–Field–Jackiw
(CFJ) term [8], performed in [9], implied formulating a whole
methodology for inducing new LV additive terms in the gauge
sector.

a e-mail: tmariz@fis.ufal.br
b e-mail: rmartinez@fis.ufal.br
c e-mail: jroberto@fisica.ufpb.br
d e-mail: petrov@fisica.ufpb.br (corresponding author)

According to this methodology, one starts with an extended
spinor QED involving additive CPT-odd dimension-5 oper-
ators. As a result, new LV terms for the gauge field are gen-
erated when we consider one-loop corrections. Besides the
CFJ term, also other additive terms in the gauge sector have
been generated in this manner. One can mention, e.g., the
CPT-even aether term [10–13], and the higher-derivative LV
terms, namely, the Myers–Pospelov and the higher-derivative
CFJ-like terms [14,15], with all additive LV couplings being
the minimal ones, except for the magnetic coupling originally
introduced in [16]. An important feature of all these results
consists in the fact that they are all either finite or renormaliz-
able. Nevertheless, it should be noted that in principle, these
terms can arise even if the magnetic coupling is not used, see
[12,14]. Further, perturbative impacts of the CPT-even non-
minimal coupling καβμνψ̄σμνFαβψ were studied in [17,18].

However, it is clear that the quantum impacts of nonmin-
imal couplings naturally need further studies. While a list of
all possible LV vertices with dimensions up to 6 is presented
in [5,6], it was shown in [19] that, although tree-level effects
generated by many of these dimensions-5 and 6 vertices have
been intensively studied, see, e.g., [20–23], only a few of such
vertices have been really treated within the perturbative con-
text up to now. The present study is aimed to follow this line,
explicitly, to study the perturbative corrections in a nonmin-
imal LV extended QED involving all CPT-odd dimension-5
operators proposed in [6].

The structure of the paper looks like follows. In Sect. 2,
we define our model and calculate the effective action. We
perform the one-loop calculations in Sects. 3 and 4 to study
the possible generation of the CFJ term and the cancelation
of the divergences that can appear in higher-derivative terms.
Finally, in Sect. 5, we discuss our results.
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2 Nonminimally extended Lorentz-violating QED

In this paper, we are interested in analyzing the following
nonminimal LV extended QED Lagrangian:

Lψ = ψ̄(i /D − m)ψ

− 1
2m

(5)αβψ̄i D(αi Dβ)ψ + h.c.

− 1
2 im

(5)αβ

5 ψ̄γ5i D(αi Dβ)ψ + h.c.

− 1
2a

(5)μαβψ̄γμi D(αi Dβ)ψ + h.c.

− 1
2b

(5)μαβψ̄γ5γμi D(αi Dβ)ψ + h.c.

− 1
4 H

(5)μναβψ̄σμν i D(αi Dβ)ψ + h.c.

− 1
2m

(5)αβ
F ψ̄Fαβψ

− 1
2 im

(5)αβ

5F ψ̄γ5Fαβψ − 1
2a

(5)μαβ
F ψ̄γμFαβψ

− 1
2b

(5)μαβ
F ψ̄γ5γμFαβψ − 1

4 H
(5)μναβ
F ψ̄σμνFαβψ,

(1)

where Fαβ = ∂αAβ − ∂β Aα , Dμψ = ∂μψ + ieAμψ , and

i D(αi Dβ)ψ = 1
2

(
i Dαi Dβ + i Dβ i Dα

)
ψ

= −∂α∂βψ − ie[Aβ∂α + Aα∂β

+ 1
2 (∂αAβ + ∂β Aα)]ψ + e2AαAβψ. (2)

The expression (1) includes all dimension-5 LV couplings
defined in [6]. In fact, our aim will consist of studying the
CPT-odd contributions to the one-loop effective action of the
gauge field, e.g., for the one-derivative contribution, the CFJ
term. It is clear that exclusively the terms involving odd-rank
constant tensors must be considered since only contractions
of such tensors with the Minkowski metric and the Levi-
Civita symbol, in four-dimensional space-time, could gener-
ate a constant axial vector necessary for forming the CFJ term
(and its higher-derivative counterpart [24]). Therefore, within
this study, we deal with all possible CPT-odd dimension-5
couplings. We note that, as we will see further, such couplings
can generate higher-derivative terms in the pure gauge sector
as well. This allows to reduce our Lagrangian to

Lψ = ψ̄(i /D − m)ψ − 1
2a

(5)μαβψ̄γμi D(αi Dβ)ψ + h.c.

− 1
2b

(5)μαβψ̄γ5γμi D(αi Dβ)ψ + h.c.

− 1
2a

(5)μαβ
F ψ̄γμFαβψ − 1

2b
(5)μαβ
F ψ̄γ5γμFαβψ. (3)

We can as well rewrite the expression (3) as follows:

Lψ = ψ̄[i /∂ + (a(5)μαβ + b(5)μαβγ5)γμ∂α∂β − m − e /A

+ie(a(5)μαβ + b(5)μαβγ5)γμ∇αAβ

−2e(a(5)μαβ
F + b(5)μαβ

F γ5)γμ∂αAβ

−e2(a(5)μαβ + b(5)μαβγ5)γμAαAβ ]ψ, (4)

where we introduced the definition ∇αAβ ≡ 2Aβ∂α +
(∂αAβ).

The corresponding fermionic generating functional is

Z =
∫

Dψ̄Dψei
∫
d4xLψ = ei Seff , (5)

so that, by integrating out the spinor fields, we obtain the
one-loop effective action of the gauge field

Seff = −iTr ln[/p − (a(5)μαβ + b(5)μαβγ5)γμ pα pβ − m

−e /A + e(a(5)μαβ + b(5)μαβγ5)γμ

×∇α(p, k)Aβ + 2ie(a(5)μαβ
F

+b(5)μαβ
F γ5)γμkαAβ − e2(a(5)μαβ

+b(5)μαβγ5)γμAαAβ ]ψ, (6)

with, in the momentum space, ∇α(p, k) = 2pα+kα , i∂αψ =
pαψ , and i∂αAβ = kαAβ . Here, Tr stands for the trace over
the Dirac matrices, as well as the trace over the integration
in momentum and coordinate spaces.

We can expand Eq. (6) in power series in external fields
as

Seff = S(0)
eff +

∞∑

n=1

S(n)
eff , (7)

where S(0)
eff = −iTr ln G−1(p) and

S(n)
eff = i

n
Tr{G(p)[e /A

−e(a(5)μαβ + b(5)μαβγ5)γμ∇α(p, k)Aβ

−2ie(a(5)μαβ
F + b(5)μαβ

F γ5)γμkαAβ

+e2(a(5)μαβ + b(5)μαβγ5)γμAαAβ ]}n, (8)

with

G(p) = 1

/p − (a(5)μαβ + b(5)μαβγ5)γμ pα pβ − m
. (9)

Since, for this step, we are interested in the induced CPT-
odd terms, we need to work only with terms of first order
in a(5)μαβ , b(5)μαβ , a(5)μαβ

F , b(5)μαβ
F , and second order in

Aμ. After evaluating the trace over the coordinate space, by
using the key identity of the derivative expansion method
Aμ(x)G(p) = G(p − k)Aμ(x) [25] and integrating over
momenta, we can write two lower contributions to the one-
loop result for the quadratic action Aμ as

S(1)
eff = i

∫
d4x
μν

1 AμAν, (10)

with



μν
1 = e2

∫
d4 p

(2π)4 tr G(p)(a(5)λμν + b(5)λμνγ5)γλ, (11)

and

S(2)
eff = i

2

∫
d4x(
μν

2 +

μν
3 + 


μν
4 + 


μν
5 + 


μν
6 )AμAν,

(12)
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with



μν
2 = −e2

∫
d4 p

(2π)4 tr G(p)(a(5)κλμ

+b(5)κλμγ5)γκ∇λ(p, k)G(p − k)γ ν, (13a)



μν
3 = −e2

∫
d4 p

(2π)4 tr G(p)γ μG(p − k)(a(5)κλν

+b(5)κλνγ5)γκ∇λ(p − k,−k), (13b)



μν
4 = e2

∫
d4 p

(2π)4 tr G(p)γ μG(p − k)γ ν, (13c)



μν
5 = −2ie2

∫
d4 p

(2π)4 tr G(p)(a(5)κλμ
F

+b(5)κλμ
F γ5)γκkλG(p − k)γ ν, (13d)



μν
6 = −2ie2

∫
d4 p

(2π)4 tr G(p)γ μG(p − k)(a(5)κλν
F

+b(5)κλν
F γ5)γκ(−kλ). (13e)

Let us now single out the contributions of the first order in the
coefficients for Lorentz violation. For this, we must first take
into account the expansion of the propagator G(p), given by

G(p) = S(p) + S(p)(a(5)μαβ

+b(5)μαβγ5)γμ pα pβ S(p) + · · · , (14)

with S(p) = (/p + m)−1. Then, we can rewrite the above
expressions as follows:



μν
1 = e2

∫
d4 p

(2π)4 tr S(p)(a(5)λμν + b(5)λμνγ5)γλ, (15a)



μν
2 = −e2

∫
d4 p

(2π)4 tr S(p)(a(5)ακμ

+b(5)ακμγ5)γα∇κ(p, k)S(p − k)γ ν, (15b)



μν
3 = −e2

∫
d4 p

(2π)4 tr S(p)γ μS(p − k)(a(5)ακν

+b(5)ακνγ5)γα∇κ(p − k,−k), (15c)



μν
4 = e2

∫
d4 p

(2π)4 tr
[
S(p)(a(5)ακλ

+b(5)ακλγ5)γα pκ pλS(p)γ μS(p − k)γ ν

+S(p)γ μS(p − k)(a(5)ακλ

+b(5)ακλγ5)γα(p − k)κ(p − k)λS(p − k)γ ν
]
,

(15d)



μν
5 = −2ie2

∫
d4 p

(2π)4 tr S(p)(a(5)ακμ
F

+b(5)ακμ
F γ5)γαkκ S(p − k)γ ν, (15e)



μν
6 = −2ie2

∫
d4 p

(2π)4 tr S(p)γ μS(p − k)(a(5)ακν
F

+b(5)ακν
F γ5)γα(−kκ). (15f)

It is easy to see, trivially, that 

μν
1 vanishes.

In the next sections, let us analyze the questions of gen-
erating the CFJ term and potential divergences that can arise
in higher-derivative terms.

3 Derivative expansion

This section aims to obtain the low-energy effective action
in our theory, i.e., the CFJ action. To do it, we employ
the derivative expansion framework [25] and keep only the
one-derivative term which is sufficient for our purposes. We
note that to obtain the CFJ term, we must have the Levi-
Civita symbol contracted to an axial vector. Both a(5)μαβ and
b(5)μαβ
F cannot yield such a structure. Indeed, neither a(5)μαβ

nor b(5)μαβ
F can be represented in the form of a constant

axial vector multiplied, by some invariant tensor, either the
Levi-Civita symbol (for a(5)μαβ ) or Minkowski metric (for
b(5)μαβ
F ), in the manner allowing to yield the CFJ term. So,

we rest with couplings proportional to b(5)ακμ and a(5)ακμ
F .

Then, using the expansion

S(p − k) = S(p) + S(p)/kS(p) + · · · (16)

in the expressions (15), we get 

μν
2 → 


μν
CFJ2 = 


μν
2,1 +



μν
2,2, where



μν
2,1 = −e2

∫
d4 p

(2π)4 tr S(p)b(5)ακμγ5γα∇κ(p, k)S(p)γ ν,

(17a)



μν
2,2 = −e2

∫
d4 p

(2π)4 tr S(p)b(5)ακμ

×γ5γα∇κ(p, 0)S(p)/kS(p)γ ν, (17b)

as well as 

μν
3 → 


μν
CFJ3 = 


μν
3,1 + 


μν
3,2, with



μν
3,1 = −e2

∫
d4 p

(2π)4 tr S(p)γ μS(p)b(5)ακν

×γ5γα∇κ(p − k,−k), (18a)



μν
3,2 = −e2

∫
d4 p

(2π)4 tr S(p)γ μS(p)/kS(p)b(5)ακν

×γ5γα∇κ(p, 0), (18b)

and 

μν
4 → 


μν
CFJ4 = 


μν
4,1 + 


μν
4,2 + 


μν
4,3 + 


μν
4,4 + 


μν
4,5,

with



μν
4,1 = e2

∫
d4 p

(2π)4 trS(p)b(5)ακλγ5γα pκ pλS(p)

×γ μS(p)/kS(p)γ ν, (19a)



μν
4,2 = e2

∫
d4 p

(2π)4 trS(p)γ μS(p)/kS(p)b(5)ακλ

×γ5γα pκ pλS(p)γ ν, (19b)
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μν
4,3 = e2

∫
d4 p

(2π)4 trS(p)γ μS(p)b(5)ακλγ5

×γα(−kκ)pλS(p)γ ν, (19c)



μν
4,4 = e2

∫
d4 p

(2π)4 trS(p)γ μS(p)b(5)ακλγ5

×γα pκ(−kλ)S(p)γ ν, (19d)



μν
4,5 = e2

∫
d4 p

(2π)4 trS(p)γ μS(p)b(5)ακλγ5

×γα pκ pλS(p)/kS(p)γ ν, (19e)

and finally, 

μν
5 → 


μν
CFJ5 = 


μν
5,1 and 


μν
6 → 


μν
CFJ6 =



μν
6,1, where



μν
5,1 = −2ie2

∫
d4 p

(2π)4 tr S(p)a(5)ακμ
F γαkκ S(p)γ ν, (20a)



μν
6,1 = −2ie2

∫
d4 p

(2π)4 tr S(p)γ μS(p)a(5)ακν
F γα(−kκ).

(20b)

Calculating the trace, considering the replacement
d4 p/(2π)4 → μ4−DdD p/(2π)D , and using the identities

∫
dD p

(2π)D
pμ pν f (p

2) = gμν

D

∫
dD p

(2π)D
p2 f (p2), (21a)

∫
dD p

(2π)D
pκ pλ pμ pν f (p

2)

= gκλgμν + gκμgλν + gκνgλμ

D(D + 2)

∫
dD p

(2π)D
p4 f (p2),

(21b)

we find that the relevant contributions are



μν
CFJ2 = 8ie2

D
μ4−D

∫
dD p

(2π)D

p2

(p2 − m2)2 b
(5)ακλ

×gλ
μkβεαβκ

ν, (22a)



μν
CFJ3 = −8ie2

D
μ4−D

∫
dD p

(2π)D

p2

(p2 − m2)2 b
(5)ακλ

×gλ
νkβεαβκ

μ, (22b)



μν
CFJ4 = 4ie2

D
μ4−D

∫
dD p

(2π)D

p2

(p2 − m2)2 b
(5)ακλ

× (
3gλκk

βεμν
αβ

+kκεμν
αλ + kλε

μν
ακ

) − 16ie2

D(D + 2)
μ4−D

×
∫

dD p

(2π)D

p4

(p2 − m2)3 b
(5)ακλ

(
3gλκkβεμν

αβ

−gκ
μkβενβ

λα − gλ
μkβενβ

κα + gκ
νkβεμβ

λα

+gλ
νkβεμβ

κα +kκεμν
αλ + kλε

μν
ακ

)
, (22c)



μν
CFJ5 = −8ie2

D
μ4−D

∫
dD p

(2π)D

1

(p2 − m2)2 a
(5)ακλ
F

×
(

2p2 − D(p2 − m2)
)
gα

νkκgλ
μ, (22d)



μν
CFJ6 = 8ie2

D
μ4−D

∫
dD p

(2π)D

1

(p2 − m2)2

×a(5)ακλ
F

(
2p2 − D(p2 − m2)

)
gα

μkκgλ
ν, (22e)

with 

μν
CFJ = 


μν
CFJ2 + 


μν
CFJ3 + 


μν
CFJ4 + 


μν
CFJ5 + 


μν
CFJ6.

These contributions will be evaluated one by one employ-
ing dimensional regularization. First, the tensors 


μν
CFJ2 and



μν
CFJ3 turn out to be



μν
CFJ2 + 


μν
CFJ3 = b(5)ακλ22−Dπ− D

2 e2μ4−DmD−2

×�

(
1 − D

2

)

×kβ
(
gλ

μεαβκ
ν − gλ

νεαβκ
μ
)
, (23)

where the gamma function �
(
1 − D

2

)
displays divergent

behavior in D = 4. Next, the tensor 

μν
CFJ4 yields



μν
CFJ4 = −b(5)ακλ21−Dπ− D

2 e2μ4−DmD−2�

(
1 − D

2

)

×kβ
(
gλ

μεαβκ
ν + gκ

μεαβλ
ν

−gλ
νεαβκ

μ − gκ
νεαβλ

μ
)
. (24)

Using the fact that b(5)ακλ is a symmetric tensor, i.e.,
b(5)αλκ = b(5)ακλ, we can rewrite 


μν
CF J4 as



μν
CFJ4 = −b(5)ακλ22−Dπ− D

2 e2μ4−DmD−2�

(
1 − D

2

)

×kβ
(
gλ

μεαβκ
ν − gλ

νεαβκ
μ
)
. (25)

The remaining contributions 

μν
CFJ5 and 


μν
CFJ6 vanish after

the loop integration for any value of D, i.e.,



μν
CFJ5 + 


μν
CFJ6 = 0. (26)

It is easy to see that the sum of all contributions is identically
zero so that



μν
CFJ = 


μν
CFJ2 + 


μν
CFJ3 + 


μν
CFJ4 + 


μν
CFJ5 + 


μν
CFJ6 = 0.

(27)

At the same time, if we had used the symmetrizations
pμ pν → 1

4gμν p2 and pκ pλ pμ pν → 1
24 (gκλgμν+gκμgλν+

gκνgλμ)p4 instead of (21), we could have a non-zero result,
given by



μν
CFJ = −e2m2

4π2

(
3bα − 2aα

F

)
kβεα

βμν, (28)

where we have assumed our third-rank constant tensors to
look like

b(5)μαβ = bμgαβ + bαgμβ + bβgμα, (29a)

a(5)μαβ
F = εμαβ

γ aγ

F . (29b)

The explanation for this choice, which we use in the next
section, looks like follows. While, by definition [6], the only
restriction on the coefficients b(5)μαβ and a(5)μαβ

F is their

123
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symmetry or antisymmetry correspondingly with respect to
the second and third indices, we require these coefficients to
be completely characterized by a single axial vector, first,
in order to obtain the CFJ term known to be completely
described by such a vector, second, for the sake of simplicity.
In principle, this calculation, and studies of other perturbative
corrections arising in our theory, can be done for an arbitrary
form of these coefficients as well.

We see that our result seems to be ambiguous. Neverthe-
less, more studies are needed concerning this issue. As we
will see further, no CFJ term is generated in another frame-
work, using dimensional regularization and definite sym-
metrizations (21).

4 Feynman parametrization

So, as we saw above, in the dimensional regularization
scheme, no contribution was generated for 
μν = 


μν
2 +



μν
3 + 


μν
4 + 


μν
5 + 


μν
6 in minimal order of O(k2/m2).

Thus, let us now consider the higher-order terms of equa-
tions (15) by employing, instead of taking into account only
the first term in the derivative expansion of propagators, the
Feynman parametrization and dimensional regularization for
the expressions involving exact propagators. It is easy to
observe that, by power counting, potential divergences can
appear in these higher-order contributions, particularly in the
higher-derivative CFJ term.

In this way, after considering the splitting



μν
2 = 


μν
2a + 


μν
2b , (30a)



μν
3 = 


μν
3a + 


μν
3b , (30b)



μν
4 = 


μν
4a,1 + 


μν
4a,2 + 


μν
4b,1 + 


μν
4b,2, (30c)



μν
5 = 


μν
5aF

+ 

μν
5bF

, (30d)



μν
6 = 


μν
6aF

+ 

μν
6bF

, (30e)

introducing the Feynman parameter x , and calculating the
trace, for the coefficient b(5)ακλ, we obtain



μν
2b = 4ie2μ4−D

∫ 1

0
dx

∫
dD p

(2π)D

×gλ
μ(kκ + 2qκ)

(p2 − M2)2 b(5)ακλεα
νστ kσqτ , (31a)



μν
3b = 4ie2μ4−D

∫ 1

0
dx

∫
dD p

(2π)D

×gλ
ν(3kκ − 2qκ)

(p2 − M2)2 b(5)ακλεα
μστ kσqτ , (31b)



μν
4b,1 = −4ie2μ4−D

∫ 1

0
dx 2x

∫
dD p

(2π)D

× qκqλ

(p2 − M2)3 b
(5)ακλ((m2 − q2)εα

μνσ kσ

+(2k · q + m2 − q2)εα
μνσqσ − 2qνεα

μστ kσqτ

+2qμεα
νστ kσqτ ), (31c)



μν
4b,2 = 4ie2μ4−D

∫ 1

0
dx 2(x − 1)

∫
dD p

(2π)D

× (kκ − qκ)(kλ − qλ)

(p2 − M2)3 b(5)ακλ

×(−(k2 + m2 − q2)εα
μνσqσ

+2((kν − qν)εα
μστ

+(qμ − kμ)εα
νστ )kσqτ

+2(k · q + m2 − q2)εα
μνσ kσ ), (31d)

and, for the coefficient a(5)ακλ
F , we get



μν
5aF

= −8ie2μ4−D
∫ 1

0
dx

∫
dD p

(2π)D

kκgλ
μ

(p2 − M2)2

× a(5)ακλ
F

(
gα

ν
(
k · q + m2 − q2

)

−qα

(
kν − 2pν

) − kαq
ν
)
, (32a)



μν
6aF

= 8ie2μ4−D
∫ 1

0
dx

∫
dD p

(2π)D

kκgλ
ν

(p2 − M2)2

× a(5)ακλ
F

(
gα

μ
(
k · q + m2 − q2

)

−qα

(
kμ − 2qμ

) − kαq
μ
)
, (32b)

where qμ = pμ + (1 − x)kμ is the shifted internal momen-
tum and M2 = m2 + x(x − 1)k2. Regarding the coefficient
b(5)ακμ
F , after calculating the trace, 


μν
5aF

and 

μν
6aF

display
results involving only odd orders in the internal momentum
pμ. Therefore, the integrals over momenta and correspond-
ing contributions to the effective action are equal to zero,
i.e., 


μν
aF = 


μν
5aF

+ 

μν
6aF

= 0. This is one more argument
in favor of vanishing the CFJ-like contributions involving
b(5)ακμ
F , which we already noted above. The results for the

coefficient a(5)ακμ will be discussed below.
Now, defining 


μν
b = 


μν
2b + 


μν
3b + 


μν
4b,1 + 


μν
4b,2 and



μν
aF = 


μν
5aF

+ 

μν
6aF

, using Eq. (21), and singling out the
divergent terms of the Eqs. (31) and (32), we arrive at



μν
b = − e2m2

4π2ε′ b
(5)ακλ(gκ

μkβεν
λαβ − gλ

μkβεν
καβ

+gλ
νkβεμ

καβ − gκ
νkβεμ

λαβ)

+ e2k2

24π2ε′ b
(5)ακλ(2gκλk

βεμν
αβ

+2kλε
μν

ακ + 2kκεμν
αλ + gκ

μkβενβ
λα

+gλ
νkβεμβ

κα − gκ
νkβεμβ

λα − gλ
μkβενβ

κα)

− e2

12π2ε′ b
(5)ακλ(2kκkλk

βεμν
αβ

−kν(kλkβεμβ
κα + kκkβεμβ

λα)

+kμ(kλkβενβ
κα + kκkβενβ

λα)) + finite terms (33)
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and


μν
aF = − e2

3π2ε′ a
(5)ακλ
F kκ

(
gλ

μkαk
ν − k2gα

νgλ
μ

+gλ
ν
(
k2gα

μ − kαk
μ
))

+ finite terms, (34)

where 1
ε′ = 1

ε
− ln m

μ′ , with ε = 4 − D and μ′2 = 4πμ2e−γ .
Then, considering the decompositions (29) for the coeffi-
cients b(5)ακλ and a(5)ακλ

F , we obtain



μν
b + 
μν

aF = − e2k2

3π2ε′ (2a
α
F − bα)kβεα

βμν + finite terms,

(35)

which has the tensorial structure of a higher-derivative CFJ
term [24]. Finally, in order to eliminate these divergent terms,
we can consider, e.g., aκ

F = 1
2b

κ .
With this choice, the finite contribution assumes the form



μν
b + 
μν

aF = e2

12π2

⎡

⎣k2 + 6m2

− 24m4
√
k2

(
4m2 − k2

) cot−1

⎛

⎝

√
4m2

k2 − 1

⎞

⎠

⎤

⎦ bαkβεαβμν.

(36)

We can easily verify the derivative expansion result (27) by
taking the limit k2 � m2 (m �= 0) in the above Eq. (36), i.e.,
we get



μν
b + 
μν

aF = − e2

60π2m2 k
4bαkβεαβμν + O

(
k6

m6

)
, (37)

which means that the corresponding CFJ term is zero, as
expected. Note that the higher-derivative CFJ term is zero as
well. Interestingly, in this case, the dimension-5 LV opera-
tors generate the higher-derivative terms beginning from five
derivatives, while lower-derivative terms vanish. This situa-
tion can be compared with that in [14], where the dimension-3
LV operator generates the higher-derivative terms beginning
from three derivatives while the one-derivative term vanishes
within the dimensional regularization scheme.

Now, let us discuss the results for the coefficient a(5)ακλ.
After calculating the trace and introducing the Feynman
parameter x , we obtain



μν
2a = −4e2μ4−D

∫ 1

0
dx

∫
dD p

(2π)D

gλ
μ (kκ + 2qκ)

(p2 − M2)2

×a(5)ακλ(gα
ν × (k · q + m2 − q2)

−qα(kν − 2qν) − kαq
ν), (38a)



μν
3a = 4e2μ4−D

∫ 1

0
dx

∫
dD p

(2π)D

gλ
ν (3kκ − 2qκ)

(p2 − M2)2

× a(5)ακλ(gα
μ

(
k · q + m2 − q2

)

−qα

(
kμ − 2qμ

) − kαq
μ), (38b)



μν
4a,1 = 4e2μ4−D

∫ 1

0
dx 2x

∫
dD p

(2π)D

qκqλ

(p2 − M2)3 a
(5)ακλ

×
(
kα

(
m2 − q2

)
gμν − (

gα
μ

(
kν − qν

)

+ gα
ν
(
kμ − qμ

)) (
m2 − q2

)

+qα(gμν(2k · q + m2 − q2) − 2kνqμ

−2qν(kμ − 2qμ))), (38c)



μν
4a,2 = 4e2μ4−D

∫ 1

0
dx 2(x − 1)

∫
dD p

(2π)D

× (kκ − qκ) (kλ − qλ)

(p2 − M2)3 a(5)ακλ
((
qνgα

μ + qμgα
ν
)

×(−k2 + 2k · q + m2 − q2)

−2kα(gμν(k · q + m2 − q2)

−kνqμ − qν((kμ − 2qμ)))

+qα(gμν(k2 + m2 − q2)

−2kνqμ − 2qν(kμ − 2qμ))). (38d)

with again qμ = pμ+(1−x)kμ and M2 = m2 +x(x−1)k2.
Thus, by setting 


μν
a = 


μν
2a + 


μν
3a + 


μν
4a,1 + 


μν
4a,2, we

can write 

μν
a as


μν
a = ie2

3π2ε′ a
(5)ακλkκ(gλ

μkαk
ν − k2gα

νgλ
μ

+gλ
ν(k2gα

μ − kαk
μ)) + finite terms, (39)

where we have singled out the divergent part. This expression
vanishes if we assume a(5)ακλ to be symmetric in two last
indices, e.g., by considering

a(5)ακλ = aκgαλ + aλgακ . (40)

With this choice, the finite part vanishes as well, so, 
μν
a = 0.

Therefore, rewriting 
μν = 

μν
a + 


μν
b + 


μν
aF + 


μν
bF

,
we have obtained the higher-derivative contributions to the
effective action in the CPT-odd sector (3), given by


μν = e2

12π2

⎡

⎣k2 + 6m2

− 24m4
√
k2

(
4m2 − k2

) cot−1

⎛

⎝

√
4m2

k2 − 1

⎞

⎠

⎤

⎦ bαkβεαβμν.

(41)

Considering behaviour of this result in the k → 0 limit,
we conclude that the CFJ term is not generated, which agrees
with the result (27) obtained within the derivative expansion
approach. It is also worth commenting that the divergent con-
tributions can be canceled by imposing a given proportion-
ality between the coefficients aμ

F and bμ.
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5 Summary

Let us discuss our results. In this paper, we considered
the LV extended QED involving all nonminimal CPT-odd
dimension-5 couplings, whose perturbative impacts have not
been ever considered. For this theory, we studied the pos-
sibility of perturbative generation of the LV terms, among
them the CFJ term. We performed the explicit calculations
within two frameworks, namely, the derivative expansion and
Feynman parametrization approaches. We explicitly demon-
strated that no generation of the term CFJ occurs when we
consider the dimensional regularization scheme, which is
consistent with claims made in [26,27].

One important conclusion of our paper is the confirma-
tion that LV theories with nonminimal (nonrenormalizable)
couplings can yield finite results. A similar situation was
earlier shown to take place for the magnetic coupling gen-
erating finite aether and three-derivative terms [10,12,14].
Another important conclusion is that we found one more
manner allowing to generate finite higher-derivative CPT-
odd terms, based on coupling different from that one used in
[14].

Natural extensions and continuations of our paper can
be developed. First, it is natural to study higher orders in
derivative expansions of the effective action in the nonmin-
imal LV QED, especially, it is interesting to generalize our
results through obtaining the aether term with the use of the
dimension-5 coupling considered in this paper applying var-
ious prescriptions, and check whether this term, for certain
couplings, could be finite and ambiguous, or even vanish in
some of the regularization schemes. Second, it is natural to
investigate perturbative impacts of other dimensions-5 and 6
LV operators, which do not yield the CFJ contribution and
therefore were not treated in this paper, and thus, extend the
tables relating couplings and new terms in the gauge sector
generated with their use, presented in [19]. We plan to pursue
these aims in our next papers.
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