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Abstract Loop quantum cosmology (LQC) is a theory
which renders the Big Bang initial singularity into a quantum
bounce, by means of short-range repulsive quantum effects at
the Planck scale. In this work, we are interested in reproduc-
ing the effective Friedmann equation of LQC, by considering
a generic f (R, P, Q) theory of gravity, where R = gμνRμν

is the Ricci scalar, P = RμνRμν , and Q = RαβμνRαβμν is
the Kretschmann scalar. An order reduction technique allows
us to work in f (R, P, Q) theories which are perturbatively
close to General Relativity, and to deduce a modified Fried-
mann equation in the reduced theory. Requiring that the mod-
ified Friedmann equation mimics the effective Friedmann
equation of LQC, we are able to derive several functional
forms of f (R, P, Q). We discuss the necessary conditions to
obtain viable bouncing cosmologies for the proposed effec-
tive actions of f (R, P, Q) theory of gravity.

1 Introduction

The cosmological model which received a great consensus
from the scientific community is the so-called Big Bang the-
ory. Generally, from purely classical considerations, start-
ing from the present day and ideally moving back in time,
we arrive at a universe that originated from an initial singu-
larity, namely, the Big Bang singularity, where the volume
approaches zero and the energy density and temperature both
diverge. Note, however, that one may consider that the singu-
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larities present in a theory arise from simplified assumptions
and essentially highlight the invalidity of the theory in spe-
cific limits and regions. More specifically, the presence of a
singularity is a characteristic of the model which one is using
to describe a physical system and does not necessarily cor-
respond to an actual physical singularity. Thus, the general-
ized opinion is that singularities may be cured by taking into
account quantum gravity effects, that may become impor-
tant in extreme scenarios in which gravity dominates over
other interactions. Indeed, a quantum theory aimed at solving
this singularity is Loop Quantum Cosmology (LQC) [1–4].
Here, the quantum geometry generates a short-range repul-
sive force which grows dramatically in the Planck regime
(otherwise it is entirely negligible), and which consequently
renders the Big Bang singularity into aquantumbounce [5,6].

Rather than discussing all of the fine details of LQC,
which is indeed not the aim of this paper, we focus on one of
its achievements, namely, the effective Friedmann equation
given by [7]:

H2 = 1

3
κρ

(
1 − ρ

ρc

)
, (1.1)

where H = ȧ/a is the Hubble rate, a = a(t) is the scale
factor, the overdot denotes a derivative with respect to the
cosmological time t , κ = 8π GN/c4, with GN and c being
the Newton constant and the speed of light, respectively,
ρ is the energy density, and ρc = c2

√
3/(32π2γ 3GN	2

P )

corresponds to the critical energy density for the bounce,
with γ ≈ 0.2375 and 	P = √

�GN/c3 being respec-
tively the Barbero–Immirzi parameter [8] and the Planck
length. Throughout this work, we use Planck units, where
c = � = GN = kB = 1.
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Notice that Eq. (1.1) is the standard Friedmann equation
of GR with an additive source, which does not in fact increase
the original degrees of freedom of the theory. Therefore, the
quadratic ρ2 term becomes important at very high energy
densities while, in counterpart, for ρ � ρc, the correction
ρ/ρc becomes negligible and we recover the standard Fried-
mann equation. Indeed, it can also be noted that by taking
the classical limit � → 0, which implies ρc → ∞, and the
effective LQC, Friedmann equation reduces to the classical
one. The bounce takes place when ρ = ρc, which results
in H2 = 0. In fact, another condition we need to impose
in order to have a bounce is that ä/a > 0, implying an
expansion after the contraction phase (see Refs. [9,10]). In
order to estimate ä/a > 0, taking into account a homoge-
neous isotropic cosmological perfect fluid in a Friedmann–
Lemaître–Robertson–Walker (FLRW) metric, it is necessary
to consider the standard energy–momentum conservation
law, given by ρ̇ + 3H(ρ + p) = 0, where p is the isotropic
pressure. Differentiating Eq. (1.1) with respect to the cosmo-
logical time and using the conservation law, it is straightfor-
ward to arrive at an equation for the time derivative for the
Hubble rate, Ḣ = − 1

2κ (ρ + p) (1 − 2ρ/ρc ), which can be
rewritten as

ä

a
= −1

6
κ (ρ + 3p)

(
1 − 2

2ρ + 3p

ρ + 3p

ρ

ρc

)
, (1.2)

which is sometimes denoted as the modified Raychaudhuri
equation [11,12]. It is interesting to notice that by a redef-
inition of the pressure and energy density in terms of new
effective variables [12], given by

ρeff = ρ

(
1 − ρ

ρc

)
, peff = p

(
1 − 2

ρ

ρc

)
− ρ2

ρc
, (1.3)

the Friedmann equations recover their standard form,

H2 = 1

3
κρeff ,

ä

a
= −1

6
κ(ρeff + 3peff) , (1.4)

where ρeff and peff also obey the conservation law, ρ̇eff +
3H(ρeff + peff) = 0 .

One usually assumes a barotropic equation of state, p =
wρ, for the cosmological perfect fluid, where a priori w =
w(ρ) is not constant (e.g. Ref. [13]), so that the conservation
law reduces to ρ̇ = −3H(1+w)ρ, which yields the modified
Friedmann equations, namely, Eq. (1.1) and

ä

a
= −1

6
κρ(1 + 3w)

(
1 − 2

2 + 3w

1 + 3w

ρ

ρc

)
, (1.5)

respectively. The simplest case is for a constant parameter
w, and this is precisely the situation we consider throughout
this work. Evaluating Eq. (1.5) at ρ = ρc, results in ä/a =

1
2κρc(w+1), and considering that ä/a be positive for ρ = ρc,
then it follows that w > −11 (see also Ref. [10]).

In this paper, we take in account the situation described by
the above equations in order to find useful contributions to
build up an effective action for gravity such that it reproduces
the results obtained by LQC but provides General Relativity
(GR) for ρc → ∞. Specifically, our aim is to adopt a metric
“loop-inspired” modified gravity, in an isotropic context,
in order to reproduce the effective Friedmann equation of
LQC. Initially, we consider a general constant equation of
state parameter w, and finally we will fix w = 1 which
corresponds to a massless scalar field in LQC.

To achieve our goal, we follow closely the analysis out-
lined in Refs. [16–20], which is based on a reduction tech-
nique of the order of the differential equations [21–23]. This
approach will allow us to obtain solutions which are per-
turbatively close to GR. Namely, first of all, we note that
Eq. (1.1) can be interpreted as the classical Friedmann equa-
tion with a modified source. Then, taking into account that
the field equations of metric modified theories of gravity
can be written as modified Einstein field equations, namely,
Gμν = κT (m)

μν +T (curv)
μν , where T (curv)

μν is an additive energy–
momentum tensor due to the higher order curvature terms of
the theory (see Refs. [24–31]). This leads us to connect the
LQC corrections of Eq. (1.1) to the additional contributions
coming from the curvature energy–momentum tensor char-
acterizing modified theories of gravity. The identification is
done by using a perturbative approach from GR. Once the
perturbation parameter ε has been introduced, we compare
the term −κρ2/3ρc of Eq. (1.1) to the T (curv)

00 component at
the first perturbative order in ε.2

In particular, in this work, we consider a general
f (R, P, Q) theory of gravity, where R = gμνRμν is the
Ricci scalar, P = RμνRμν , and Q ≡ RαβμνRαβμν is the
Kretschmann, being Rα

βμν the Riemann tensor and being
Rμν = Rλ

μλν the Ricci tensor. However, this type of theo-
ries is characterized by higher-order derivatives of the metric
tensor which generically provide spurious degrees of free-
dom. The order reduction is a way to get around the prob-
lem and provides solutions which are perturbatively close
to GR. The reduction technique consists in a redefinition of
f (R, P, Q) → R + ε ϕ(R, P, Q), where ε is the perturba-
tive parameter.

In general, the dimensionless parameter ε indicates the
deviation of the model from GR and, ϕ(R, P, Q) repre-
sents a function incorporating all possible corrections to the

1 For classical perfect fluids, we have 0 ≤ w ≤ 1. However, when dark
energy is also taken into account, the range −1 ≤ w ≤ 1 is assumed
(see Refs. [14,15]). Here, we do not want to deal with constraints of w

in general but, in this context, it is immediate that w is strictly greater
than −1.
2 This step will be more rigorously explained in the following part of
the section.
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Einstein–Hilbert action. Thus, ε is designed so that when it
approaches to zero GR is restored. Indeed, in our parame-
terization f (R, P, Q) = R + ε ϕ(R, P, Q), if ε is set to
zero, the action becomes the standard Einstein–Hilbert one.
In this sense, ε indicates the deviations from GR and it can be
absorbed in ϕ(R, P, Q). For the order reduction technique
to be valid, it is necessary that εϕ � R at the range of cur-
vatures considered (here, essentially, R � ρc ∼ l p−2). In
other words, considering the order ε means that we are work-
ing at first order in the correction ϕ(R, P, Q) of the effective
action without reaching the critical quantum regime.

We consider the FLRW metric in order to obtain the first
Friedmann equation, then using the GR field equations as
zeroth-order perturbative equations, we express our geomet-
ric variables, (i.e, R, P and, Q) in terms of energy-matter
fields. In this way, we obtain a modified Friedmann equation
with an additive term depending on the first order of the per-
turbation, H2 = κρ/3 + ε T̄ (curv)

00 /3, where T̄ (curv)
00 is simply

the 0–0 component of T (curv)
μν evaluated at zeroth perturba-

tive order (we will introduce the “bar” notation to indicate
a “reduced quantity”). Consequently, equating ε T̄ (curv)

00 with
the LQC correction −κρ2/ρc of Eq. (1.1), we finally obtain
a differential equation, in which the solutions represent pos-
sible contributions to the Lagrangian which provide the LQC
Friedmann equation (1.1).

The reduction technique allows to control efficiently the
deviation from GR, and it works in a given curvature regime:
we have R ∼ ρ while the deviation from GR is ε ϕ ∼ ρ2/ρc.
Therefore, the approximation we use is valid for R � ρc ∼
l p−2. At ρ 
 ρc the approximation breaks down. Neverthe-
less, our position is that, at stages close to the bounce, the
effective Lagrangian obtained from the effective Friedmann
equation of LQC is still a good approximation describing a
collapsing universe just before and just after the bounce. Gen-
erally, we can say that the approach is valid for ρ ∼ 0.1ρc,
which corresponds to a typical length l ∼ 3l p.

However, it is worth noticing that this approach leads to
another limitation. Indeed, it is only possible to find some
specific (and not all) terms which added to the Einstein–
Hilbert action provide the effective Friedmann equation of
LQC. Therefore, we cannot build the “ultimate” effective
f (R, P, Q) theory of gravity due to the fact that we are
working with a multi-variable function (see also Refs. [16,
17]).

One of our goals is to generalize the results obtained in
the Refs. [16–18] which consider f (R), f (G) and f (R,G),
respectively, where G = Q − 4P + R2 is the Gauss–Bonnet
topological invariant (see Refs. [26,32–38] for more details
about these modified theories of gravity).

The paper is organised as follows. In Sect. 2 we describe
the general action for f (R, P, Q) gravity and the respective
field equations, and then deploy the order reduction tech-

nique. In Sect. 3, we focus on a fixed metric tensor and derive
the modified Friedmann equation together with its reduced
form. In Sect. 4, we propose specific functional forms of
f (R, P, Q) and analyse in great detail the validity of the
parameter range of the functions considered in order to obtain
bouncing cosmologies. Finally, we conclude in Sect. 5.

2 Fourth-order gravity and order reduction technique

Let us consider the following class of gravity theories in a
4-dimensional spacetime,

S = 1

2κ

∫
d4x

√−g f (R, P, Q) + Sm(gμν, ψ) , (2.1)

where the quantities R, P , and Q are the curvature invariants
defined in the Introduction, and Sm(gμν, ψ) is the matter
action, with matter minimally coupled to the metric and ψ

collectively denotes the matter fields. Varying the action (2.1)
with respect to the metric gμν , yields the following gravita-
tional field equations:

f,R Gμν = κTμν + 1

2
gμν f − 1

2
gμν f,R R − ∇μ∇ν f,R + gμν� f,R

−2 f,Q RαβγμR
αβγ

ν + 4∇α∇β [ f,Q Rα
(μν)

β ]
−2 f,P R

α
μRαν + 2∇α∇β [ f,P Rα

(μδβ
ν)]

−�[ f,P Rμν ] − gμν∇α∇β [ f,P Rαβ ] , (2.2)

where ∇α denotes the covariant derivative associated to the
Levi–Civita connection, � = gαβ∇α∇β is the d’Alembert
operator, the comma denotes a partial derivative, i.e., f,R =
∂ f/∂R, while the parenthesis in the subscript indicates the
symmetric part of a tensor with respect to the indices inside
them, i.e., S(ab)c = (Sabc+ Sbac)/2. The energy–momentum
tensor of the matter Tμν is defined in the standard manner,
namely,

Tμν = − 2√−g

δSm
δgμν

. (2.3)

It is worth noticing that important subcases as f (R), f (G),
and f (R,G) are included in f (R, P, Q) theories of gravity.

Modified theories of gravity, such as the one we are going
to analyse in this work, are characterized by the presence of
further degrees of freedom. However, a way to restore the
original degrees of freedom related to GR is by considering
an order reduction, which essentially consists in a parame-
terization of f (R, P, Q) as

f (R, P, Q) = R + 2� + ε ϕ(R, P, Q) , (2.4)
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where � is a cosmological constant term and ε is a dimen-
sionless perturbative parameter. This parameterization is
such that, substituting Eq. (2.4) into Eqs. (2.1) and (2.2),
for ε = 0 provides GR. Thus, it allows us to interpret
f (R, P, Q) gravity as an effective field theory with solutions
perturbatively close to GR, when εϕ � R. The order reduc-
tion technique is then implemented by evaluating Eq. (2.2)
to the first order in ε. However, this is not enough due to
the presence of the Riemann tensor, and one needs a further
simplification. To this effect, we assume that our spacetime
is conformally flat, i.e., there exists always a local reference
frame where the metric is flat (Minkowski metric) up to a
conformal factor. The reason for this assumption is that we
are interested in studying this modified theory of gravity from
a cosmological point of view and, in particular, we will work
with the FLRW metric which always fulfils this property. In a
conformally flat spacetime, the Weyl tensor Cαβμν , which is
the traceless part of the Riemann tensor, vanishes identically.
Thus, it is possible to express the Riemann tensor in terms of
the Ricci tensor and the Ricci scalar only, as follows:

Rαβμν = 1

2

(
gμαRβν + gνβRαμ − gμβ Rαν − gναRβμ

)

+1

6

(
gμβgαν − gμαgβν

)
R . (2.5)

As mentioned in the Introduction, we use a “bar” to indi-
cate a quantity evaluated at the zeroth-order with respect to
ε (the reduced quantity). Then, Eq. (2.2) at the zeroth-order
reduces to

R̄μν − 1

2
gμν R̄ = κTμν − gμν�. (2.6)

Therefore, we get the expression of R at the zeroth-order
with respect to ε considering the trace of Eq. (2.6), given by

R̄ = −4� − κT , (2.7)

and we obtain the reduced forms of Rμν and Rαβμν , by using
Eqs. (2.5)–(2.7), provided by

R̄μν = −�gμν + κTμν − κ

2
gμνT , (2.8)

R̄μναβ = −κ

2

(
gμβTαν + gναTβμ − gμαTβν − gνβTαμ

)

−1

3

(
gμαgνβ − gμβgαν

)
(� + κT ) , (2.9)

respectively, where T = gμνTμν is the trace of the energy–
momentum tensor.

The last two quantities we need are the reduced form of
our scalar variables, namely,

P̄ = 4�2 + 2κT� + κ2TμνTμν , (2.10)

Q̄ = 8

3
�2 + 4

3
κT� − 1

3
κ2T 2 + 2κ2TμνT

μν . (2.11)

At this point, we have all the ingredients to obtain the order
reduced field equations, at first order in ε, by substituting
Eqs. (2.4)–(2.11) in Eq. (2.2), which finally yields:

Gμν = κTμν + �gμν + ε

[
1

2
gμνϕ̄ − R̄μνϕ̄,R̄

−∇μ∇νϕ̄,R̄ + gμν�ϕ̄,R̄ − 2ϕ̄,Q̄ R̄αβγμ R̄
αβγ

ν

+4∇α∇β(ϕ̄,Q̄ R̄α
(μν)

β)

−2ϕ̄,P̄ R̄
α

μ R̄αν + 2∇α∇β(ϕ̄,P̄ R̄
α

(μδβ
ν))

−�(ϕ̄,P̄ R̄μν) − gμν∇α∇β(ϕ̄,P̄ R̄
αβ)

]
, (2.12)

where ϕ̄ = ϕ(R̄, P̄, Q̄). These are the field equations that
will be used throughout this work, in order to obtain the
effective Friedmann equation (1.1) of LQC in our setting.

3 Modified Friedmann equation and bouncing
cosmology

In order to derive Eq. (1.1), let us consider the FLRW line
element:

ds2 = −dt2 + a(t)2
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θ dφ2

)]
,

(3.1)

where k = −1, 0, 1 corresponds to a hyperbolic, flat, and
hyperspherical spatial curvature, respectively. Furthermore,
consider an energy–momentum tensor describing a homo-
geneous isotropic cosmological perfect fluid, i.e., Tμν =
(ρ + p) uμuν+ p gμν , where uμ is the 4-velocity of the fluid,
with normalization uμuμ = −1, and p and ρ are the isotropic
pressure and energy density, respectively. Moreover, as men-
tioned in the Introduction, we assume a barotropic equation
of state p = wρ, with a constant parameter w > −1, which
corresponds to an accelerated expanding universe in LQC,
where the energy–momentum conservation law,∇μTμν = 0,
provides the following continuity equation

ρ̇ = −3H (1 + w) ρ . (3.2)

Then, Eqs. (2.7), (2.10), and (2.11), can be rewritten in
the following explicit form, respectively,

R̄ = −4� + κ(1 − 3w)ρ , (3.3)

P̄ = 4�2 + 2κ�(3w − 1)ρ + κ2(3w2 + 1)ρ2 , (3.4)

Q̄ = 8

3
�2 + 4

3
κ�(3w − 1)ρ

+1

3
κ2(9w2 + 6w + 5)ρ2 , (3.5)

and by using Eq. (3.2), we obtain their derivatives with
respect to cosmological time, given by
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˙̄R = 3κ(w + 1)(3w − 1)Hρ , (3.6)
˙̄P = 6κ�(w + 1)(1 − 3w)Hρ

−6κ2(w + 1)(1 + 3w2)Hρ2 , (3.7)
˙̄Q = 4κ�(w + 1)(1 − 3w)Hρ

−2κ2(w + 1)(9w2 + 6w + 5)Hρ2 . (3.8)

These are useful for computing the time derivative of ϕ̄

(by a change of variables) and to obtain the final form of the
field equations.

The first Friedmann equation can be derived by consider-
ing the 0–0 component of Eq. (2.2), and the second Fried-
mann equation can be obtained by evaluating one spatial
component of Eq. (2.2). However, for the sake of brevity,
only the first Friedmann equation is given below. Indeed, the
second equation, as we have mentioned above, depends on
the continuity equation and the first Friedmann equation, and
therefore, in the present analysis, it is practically irrelevant.

Taking into account what has been discussed so far, it is
possible to see that the reduced modified Friedmann equation
reads as:

H2 = 1

3
κρ − k

a2 − �

3

+ε

{
− 1

6
ϕ̄ + 1

9

[
4�2 + 2(9w2 + 12w − 1)κρ�

+(−9w2 − 6w + 7)κ2ρ2 + 18(w + 1)(3w − 1)
k

a2 κρ

]
ϕ̄,Q̄

+κρ(w + 1)

[
− 4

9
(3w + 1)(9w2 + 6w + 5)κ3ρ3

+4

3
(3w + 1)(9w2 + 6w + 5)

k

a2 κ2ρ2 + 16

3
(3w2 + 1)�2κρ

+4

3
(3w − 1)(3w2 + 1)�κ2ρ2 + 16

3
(9w2 + 3w + 2)

k

a2 �κρ

+16

9
(3w − 1)�3 + 16

3
(3w − 1)

k

a2 �2
]
ϕ̄,Q̄,Q̄

+1

3

[
2�2 + (6w2 + 9w − 1)κρ� + (−3w2 − 3w + 2)κ2ρ2

+ k

a2 6(w + 1)(3w − 1)κρ

]
ϕ̄,P̄

+κρ(w + 1)

[
− 4

3
(18w3 + 9w2 + 8w + 1)κ3ρ3

+4(18w3 + 9w2 + 8w + 1)
k

a2 κ2ρ2 + 8(15w2 + 2w + 3)
k

a2 �κρ

+4

3
(18w3 − 21w2 + 4w − 5)�κ2ρ2 + 8

3
(15w2 − 4w + 5)�2κρ

+16

3
(3w − 1)�3 + 16(3w − 1)

k

a2 �2
]
ϕ̄,P̄,Q̄

+4κρ(w + 1)

[
− w(3w2 + 1)κ3ρ3 + 3w(3w2 + 1)

k

a2 κ2ρ2

+(3w3 − 6w2 + 2w − 1)κ2�ρ2

+2(3w2 − 2w + 1)κ�2ρ + 4(6w2 − w + 1)
k

a2 �κρ

+(3w − 1)�3 + 3(3w − 1)
k

a2 �2
]
ϕ̄,P̄,P̄

+
[

− 1

6
(3w + 1)κρ − �

3

]
ϕ̄,R̄

+4

3
κρ(w + 1)

[
(9w2 + 3w + 2)κ2ρ2 − (9w2 − 3w + 4)�κρ

−3(9w2 + 3w + 2)
k

a2 κρ − 2(3w − 1)�2 − 6(3w − 1)
k

a2 �

]
ϕ̄,R̄,Q̄

+2κρ(w + 1)

[
(6w2 − w + 1)κ2ρ2 − (6w2 − 7w + 3)�κρ

−3(6w2 − w + 1)
k

a2 κρ − 2(3w − 1)�2κρ − 6(3w − 1)
k

a2 �

]
ϕ̄,R̄,P̄

−κρ(3w − 1)(w + 1)

(
κρ − 3

k

a2 −�

)
ϕ̄,R̄,R̄

}
,

(3.9)

where it was necessary to substitute the zeroth-order expres-
sions of H2 and ä/a which, in general, turn out to be

H2 = 1

3
κρ − k

a2 − �

3
,

ä

a
= −1

2

(
w + 1

3

)
κρ − �

3
.

(3.10)

Thus, following Refs. [16–18], we assume spatial flatness
of the spacetime (k = 0), and noticing that � does not con-
tribute to Eq. (1.1), we set � = 0. Thus, the reduced variables
are given by

R̄ = (1 − 3w)κρ , (3.11)

P̄ = (3w2 + 1)κ2ρ2 , (3.12)

Q̄ = 1

3
(9w2 + 6w + 5)κ2ρ2 , (3.13)

while, the first Friedmann equation (3.9) reduces to

H2 = 1

3
κρ + ε

[
−1

6
ϕ̄ + 1

6
(−3w − 1)κρ ϕ̄,R̄

+1

3

(
−3w2 − 3w + 2

)
κ2ρ2ϕ̄,P̄

+1

9

(
−9w2 − 6w + 7

)
κ2ρ2 ϕ̄,Q̄

−(w + 1)(3w − 1)κ2ρ2 ϕ̄,R̄,R̄

−4w(w + 1)
(

3w2 + 1
)

κ4ρ4 ϕ̄,P̄,P̄

−4

9

(
27w4 + 54w3 + 48w2 + 26w + 5

)
κ4ρ4 ϕ̄,Q̄,Q̄

+2(w + 1)
(

6w2 − w + 1
)

κ3ρ3 ϕ̄
, ¯̄R,P̄

+4

3
(w + 1)

(
9w2 + 3w + 2

)
κ3ρ3 ϕ̄,R̄,Q̄

−4

3
(w + 1)

(
18w3 + 9w2 + 8w + 1

)
κ4ρ4 ϕ̄,P̄,Q̄

]
.

(3.14)

Then, comparing the above modified Friedmann equation
with Eq. (1.1), it turns out that ϕ has to satisfy the following
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differential equation,

−1

6
ϕ̄ + 1

6
(−3w − 1)κρ ϕ̄,R̄

+1

3

(
−3w2 − 3w + 2

)
κ2ρ2ϕ̄,P̄

+1

9

(
−9w2 − 6w + 7

)
κ2ρ2 ϕ̄,Q̄

−(w + 1)(3w − 1)κ2ρ2 ϕ̄,R̄,R̄

−4w(w + 1)
(

3w2 + 1
)

κ4ρ4 ϕ̄,P̄,P̄

−4

9

(
27w4 + 54w3 + 48w2 + 26w + 5

)
κ4ρ4 ϕ̄,Q̄,Q̄

+2(w + 1)
(

6w2 − w + 1
)

κ3ρ3 ϕ̄
, ¯̄R,P̄

+4

3
(w + 1)

(
9w2 + 3w + 2

)
κ3ρ3 ϕ̄,R̄,Q̄

−4

3
(w + 1)

(
18w3 + 9w2 + 8w + 1

)
κ4ρ4 ϕ̄,P̄,Q̄

= − κ2ρ2

3εκρc
. (3.15)

In particular, fixing w = 1, the first Friedmann equation
simplifies further to

H2 = 1

3
κρ + ε

(
−1

6
ϕ̄ − 2

3
κρ ϕ̄,R̄ − 4

3
κ2ρ2ϕ̄,P̄ − 8

9
κ2ρ2ϕ̄,Q̄

+24κ3ρ3ϕ̄,R̄,P̄ − 96κ4ρ4ϕ̄,P̄,Q̄ + 112

3
κ3ρ3ϕ̄,R̄,Q̄

−4κ2ρ2ϕ̄,R̄,R̄ − 32κ4ρ4ϕ̄,P̄,P̄ − 640

9
κ4ρ4ϕ̄,Q̄,Q̄

)
,

(3.16)

and the associated differential equation is given by

−1

6
ϕ̄ − 2

3
κρ ϕ̄,R̄ − 4

3
κ2ρ2ϕ̄,P̄ − 8

9
κ2ρ2ϕ̄,Q̄

+24κ3ρ3ϕ̄,R̄,P̄ − 96κ4ρ4ϕ̄,P̄,Q̄

+112

3
κ3ρ3ϕ̄,R̄,Q̄ − 4κ2ρ2ϕ̄,R̄,R̄ − 32κ4ρ4ϕ̄,P̄,P̄

−640

9
κ4ρ4ϕ̄,Q̄,Q̄ = − κ2ρ2

3εκρc
. (3.17)

Equations (3.15) and (3.17) are non-linear second-order
partial differential equations for a three-variable function.
Therefore, it is not possible to determine the general form of
ϕ such that Eqs. (3.14) and (3.16) be equal to Eq. (1.1). Thus,
we need to propose some specific ansatz on f (R, P, Q) and
ϕ, and investigate the conditions under which the action (2.1)
can reproduce a bouncing universe. In this regard, in order to
construct a “loop-inspired modified gravity”,3 notice that R̄
is the only scalar among our variables which can be positive,

3 Here we are considering Eq. (1.1) without further corrections as in
Ref. [39]. Therefore, we are not entitled to consider different cases than
w = 1, if we want to have a strict consistency with LQC.

negative, or equal to zero, while P̄ and Q̄ are strictly positive,
which is transparent from Eqs. (3.11)–(3.13). Therefore, we
should pay special attention to the case in which R̄ = 0,
i.e., w = 1/3. Another particular case is w = −1/3 which
corresponds to Ḡ = 0, where Ḡ = 2

3 R̄
2 − 2 P̄ = − 4

3 (1 +
3w)k2ρ2 is the reduced Gauss–Bonnet term. Finally, recall
that we consider only values of w > −1, due to the condition
of ä/a > 0 for ρ = ρc.

4 Specific functional forms of f (R, P, Q) theory of
gravity

4.1 Solution I

First of all, we aim to generalize the results of Refs. [16,17],
which discuss effective f (R) and f (G) bouncing cosmolo-
gies, assuming f (R) = R+ εϕ(R) and f (G) = R+ εϕ(G),
respectively.4 In Refs. [16,17], the perturbative function ϕ

depends only on a single variable, while in the present work
we are essentially dealing with three variables.

In order to simplify our approach, and to arrive at a situa-
tion similar to f (R) and f (G), we need to find a way to work
with a single variable, which is a generalization of R and G.
To this effect, we define a new variable X = X (R, P, Q),
and “perturb” the GR Lagrangian by using a function of X .
In particular, we assume that

f (R, P, Q) = R + εϕ (X ) , with

X = C1|R|2α + C2 Pα + C3 Q
α , (4.1)

where α is a dimensionless real parameter, and the constants
{Ci } with i = 1, 2, 3 possess the correct dimensions such
that the variable X is dimensionless.5 The variable X is the
most general linear combination of the powers of R, P and
Q we can consider in this context. The reason is that in order
to give a well posed definition of X , all the quantities in
Eq. (4.1) must have homogeneous dimensions. Moreover,
to apply the reduction method of Refs. [16,17], we need an
invertible relation between X and the energy-matter density
ρ. In addition, notice that R can assume positive and negative
values, depending on the value of w, while P and Q are
always positive defined, as mentioned above. Therefore, the
absolute value of R allows us to consider exponents that
take on real values. Finally, it is easy to see that: for α =
1/2, C1 = 1, C2 = 0 = C3, we get X = R; for α =
1, C1 = 1, C2 = −4, C3 = 1, we get X = G.

4 Actually, in both treatments there is also the presence of the cosmo-
logical constant � inside the gravitational action. However, they set
� = 0 for our same reason.
5 In our case, the following dimensional equation holds: [Ci ] =
[κρ]−2α = [ρ]−2α , with i = 1, 2, 3.
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At this point, we want to use the assumption (4.1) to solve
Eq. (3.15). Therefore, we need to write the reduced form of
X . Using Eqs. (3.11)–(3.13), it is straightforward to see that
X̄ is given by

X̄ = C (κρ)2α , where C = C1 |1 − 3w|2α

+C2

(
3w2 + 1

)α + 3−α C3 (9 + 6w + 5)α . (4.2)

We are assuming to work with all possible configurations
of parameters {w > −1, α,Ci } that correspond to a non-
vanishing variable X̄ , i.e., C �= 0. Moreover, let us notice
that the case w = 1/3 (corresponding to R = 0) needs
to be analysed separately. Finally, we point out that, from
the Eq. (4.2), for fixed values of constant parameters we
have sign(X̄ ) = sign(C) where C is constant. Therefore,
X̄ will be either strictly positive definite or strictly negative
definite.

We can now obtain the reduced Friedmann equation (3.14)
by making a change of variable, from R, P, Q to X =
X (R, P, Q). Thus, we obtain the following equation

H2 = 1

3
κρ

+ ε

{
− 1

6
ϕ(X̄ ) + A ϕ′(X̄ )(κρ)2α + B ϕ′′(X̄ )(κρ)4α

}
,

(4.3)

where the prime corresponds to the derivative with respect
to the variable X̄ , while A and B are coefficients defined
as

A =
[

3α

(
C2(2 − 3(4α − 3)w(w + 1))

(
3w2 + 1

)α−1

+3−αC3

(
9w2 + 6w + 5

)α−1
(−12α(w + 1)(3w + 1)

+3w(9w + 14) + 19)

−C1 |1 − 3w|2α (12α(w + 1) − 9w − 7)

3w − 1

)]

× 3−α
[
C2

(
9w2 + 3

)α + 3αC1 |1 − 3w|2α

+C3

(
(3w + 1)2 + 4

)α]−1
, (4.4)

B =
[

4α2(w + 1)

(
(3w − 1)

(
C2

2w
(

9w2 + 6w + 5
) (

9w2 + 3
)2α

+C2
3

(
9w3 + 3w2 + 3w + 1

) (
9w2 + 6w + 5

)2α

+3αC2C3

(
18w3 + 9w2 + 8w + 1

)

×
(

27w4 + 18w3 + 24w2 + 6w + 5
)α)

+3αC1

(
C2

(
54w4 + 27w3 + 33w2 + w + 5

) (
9w2 + 3

)α

+2C3

(
27w4 + 9w3 + 15w2 + 3w + 2

)
×

×
(

9w2 + 6w + 5
)α)

|1 − 3w|2α

+9αC2
1

(
27w4 + 18w3 + 24w2 + 6w + 5

)
|1 − 3w|4α

)]

×
[
(3w − 1)

(
3w2 + 1

) (
9w2 + 6w + 5

)

×
(

3αC1 |1 − 3w|2α + C2

(
9w2 + 3

)α + C3

(
(3w + 1)2 + 4

)α)
2
]−1

.

(4.5)

Then, following an analogous procedure as done in
Refs. [16–18], we compare Eq. (4.3) with Eq. (1.1), in order
to obtain a differential equation for ϕ(X̄ ), i.e., a new version
of Eq. (3.15) with the variable X̄ . However, as in Eq. (3.15),
we have the presence of ρ as well as X̄ . Thus, using Eq. (4.2),
we can rewrite ρ as a function of X̄ . In this way we obtain
a second order differential equation for ϕ(X̄ ) which can be
written in the following form:

−1

6
ϕ(X̄ ) + A

C
X̄ϕ′(X̄ ) + B

C2 X̄ 2ϕ′′(X̄ ) = −
∣∣X̄ ∣∣ 1

α

3 |C | 1
α εκρc

.

(4.6)

The above differential equation is a second order non-
homogeneous Euler–Cauchy equation. This is highly signif-
icant because we already know all possible homogeneous
and particular solutions, without entering too much into the
possible values of the parameters {w, α,Ci }.

Before proceeding into the analysis of Eq. (4.6), we stress
that by choosing {α, Ci } such that X = R or X = G,
Eq. (4.6) turns out to be the differential equation of Ref. [16]
or the one of Ref. [17]. Indeed both differential equations of
Refs. [16,17] are a second order non-homogeneous Euler–
Cauchy equation. As we will see, the different solutions
depend on the coefficients of the differential equation.

In this regard, let us rewrite Eq. (4.6) in a more appropriate
and useful form, defining x = ∣∣X̄ ∣∣ (dimensionless positive
defined variable) and y(x) = ϕ(X̄ ) :

−1

6
y(x) + A

C
xy′(x) + B

C2 x2y′′(x) = − x
1
α

3 |C | 1
α εκρc

.

(4.7)

At this point, we can distinguish two general nontrivial
cases depending on the coefficient of the second order term:
B �= 0 and B = 0.

Assuming B �= 0 and multiplying by C2/B, the differen-
tial equation (4.7) reads as

x2y′′(x) + axy′(x) + by(x) = cx1/α , (4.8)

where

a = CA

B
, b = −C2

6B
, c = − 1

3B |C | 1
α
−2 εκρc

.

(4.9)
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In this case, the classification of the homogeneous solutions
is based on the roots of the characteristic equation associated
to Eq. (4.8),

λ2 + (a − 1)λ + b = 0 , (4.10)

which is obtained by substituting the trial solution y0 = xλ

into Eq. (4.8) setting the right-hand side equal to zero. There-
fore, it results that:

• If we have two distinct real roots, λ1,2 = 1

2
(1 − a

±√
(a − 1)2 − 4b

)
, the homogeneous solution is yh =

cλ1x
λ1 + cλ2x

λ2 ;
• If we have one repeated real root, λ = −√

b, then the
homogeneous solution is given yh = c1xλ + c2xλ ln x ;

• If we have two complex roots, λ1,2 = 1

2
(1 − a

±i
√

4b − (a − 1)2
)

, then the homogeneous solution

is yh = c1x1−a cos
[
(4b − (a − 1)2) ln x

] + c2x1−a

sin
[
(4b − (a − 1)2) ln x

]
.

Regarding the particular solution of Eq. (4.8), we have the
following possibilities:

• If 1/α is not equal to any root of the characteristic equa-

tion, then the particular solution is yp(x) ∝ x
1
α ;

• If 1/α is equal to a root of the characteristic equation, then

the particular solution is given by yp(x) ∝ x
1
α (ln x)β ,

where β is the multiplicity of the root.6

Now, let us assume B = 0. Thus, Eq. (4.7) takes the
following form

−1

6
y(x) + A

C
xy′(x) = − x1/α

3εκρc |C |1/α
. (4.11)

In this case, we only have one (real) solution for the char-

acteristic equation, λ = C

6A
. Therefore, we only have one

homogeneous solution, yh = xλ , and two possible particular
solutions, given by:

• If 1/α is not equal to the root of the characteristic equa-
tion, then the particular solution is yp(x) ∝ x1/α ;

• If 1/α is equal to the root of the characteristic equation,
then the particular solution is given yp(x) ∝ x1/α ln x .

At this point, let us focus on a particular value of α. It
is interesting to further analyse the ansatz Eq. (4.1) in the

6 Being Eq. (4.8) of the second order, in this case β can be only equal
to 1 or 2.

case of α = 1, which represents the easiest generalization of
Refs. [16,17]. In this case, we have

X̄ = C (κρ)2 , where C = C1(3w − 1)2 + C2

(
3w2 + 1

)

+1

3
C3

(
9w2 + 6w + 5

)
, (4.12)

and, requiring that X̄ �= 0 , we must exclude the following
configurations:

C2 = −2C3 ∧ C1 = C3

3
, (4.13)

3C1 + C2 + C3 �= 0 ∧

w =
3C1 − C3 ±

√
−3C2

2 − 12C1C2 − 8C3C2 − 4C2
3 − 24C1C3

3 (3C1 + C2 + C3)
,

(4.14)

3C1 + C2 + C3 = 0 ∧ C2 + 2C3 �= 0 ∧ w = −1

3
. (4.15)

In particular, if the first condition holds, the constant C in
Eq. (4.12) is identically zero for any value of w, if 3C1 +
C2 + C3 = 0 we have C = 2 (C2 + 2C3) (3w + 1), and for
w = −1/3 we get C = 4(3C1 + C2 + C3).

Then, the equation for y(x) results in:

a0 y(x) + a1 x y′(x) + a2 x
2 y′′(x) = x

εκρc
, (4.16)

where

a0 = 1

6

(
C2

(
9w2 + 3

) + C3
(
9w2 + 6w + 5

) + 3C1(1 − 3w)2) ,

(4.17)

a1 = 1

3

(
3C2

(
3w2 + 3w − 2

) + C3
(
9w2 + 6w − 7

)
+3C1(3w − 1)(3w + 5)) , (4.18)

a2 = 4(w + 1) (3C1(3w − 1) + 3 (C2 + C3) w + C3) . (4.19)

Again, we have to distinguish the case where the coefficient
of the second order term is different from zero, a2 �= 0, from
the a2 = 0 case. The latter can only be realized by setting
{3C1 + C2 + C3 �= 0 ∧ w = 3C1−C3

3(3C1+C2+C3)
}, excluding

configurations of parameters such that {C2 = −2C3 ∧ C1 =
C3/3} which implies C = 0 in Eq. (4.2), and w = −1. The
former is more interesting because it is the case of f (R) and
f (G). Therefore, let us focus on it.

From the previous discussion of Eq. (4.8), we already
know that there are three possible particular solutions for
our problem: yp1(x) ∝ x , yp2(x) ∝ x ln x and yp3(x) ∝
x(ln x)2. The easiest way to obtain the proportionality con-
stant related to each particular solution is by substituting
those prototypes of solutions in Eq. (4.16). This procedure
allows us to outline the following classification:

123



Eur. Phys. J. C (2021) 81 :975 Page 9 of 15 975

• For 3C1 + C2 + C3 �= 0 and w �= 1/3, we get:

yp1(x) = 2x

3 (3C1 + C2 + C3) (1 + w) (3w − 1) εκρc
.

(4.20)

The complete solution can be written in the following
general form

ϕ(X ) = 2 |X |
3 (3C1 + C2 + C3) (1 + w) (3w − 1) εκρc

+A |X |(−b−√
�)/(2a) + B |X |(−b+√

�)/(2a) , (4.21)

where A and B are integration constants, while a, b, and
� are given by, respectively,

a = 12(w + 1) (C1(9w − 3) + 3 (C2 + C3) w + C3) ,

(4.22)

b = −3C1(3w − 1)(9w + 7) − 3C2(9w(w + 1) + 2)

−C3(3w(9w + 14) + 19) , (4.23)

� = 9C2
1 (3w − 1)2 (

9w2 + 78w + 73
)

+6C3C1(3w − 1)(3w + 1)
(
9w2 + 90w + 85

)
+18C2C1(3w − 1)

(
9w3 + 84w2 + 81w + 2

)
+9C2

2

(
9w4 + 90w3 + 93w2 + 12w + 4

)
+C2

3

(
81w4 + 972w3 + 1638w2 + 972w + 241

)
+6C2C3

(
27w4 + 297w3 + 399w2 + 147w + 26

)
.

(4.24)

• For 3C1 +C2 +C3 = 0, C2 + 2C3 �= 0, and w �= ±1/3,
we get:

yp2.1(x) = 3x ln x

(C2 + 2C3) (9w + 11)εκρc
. (4.25)

In this case, the complete solution turns out to be:

ϕ(X ) = 3|X | ln |X |
(C2 + 2C3) (9w + 11)εκρc

+A |X |(3w+1)/[12(w+1)] + B |X | , (4.26)

where A and B are integration constants.
• For w = 1/3 and C2 + 2C3 �= 0, the above equation

reduces to

yp2.2(x) = 3x ln x

14 (C2 + 2C3) εκρc
. (4.27)

The complete solution is then

ϕ(X ) = 3|X | ln |X |
14 (C2 + 2C3) εκρc

+ A |X |1/8 + B |X | ,
(4.28)

which is analogous to the previous solution but differs to
it as here we have no definition of C1 (which is the coef-
ficient of R2). Therefore, C2 and C3 are not proportional
to each other, in general.

Thus, our differential equation does not admit the solu-
tion yp3(x) ∝ x(ln x)2, because by substituting yp3(x) ∝
x(ln x)2 in Eq. (4.16) we obtain as the only possibility x = 0,
which is not an admitted value.

All the above solutions generalize the results obtained in
Refs. [16,17]. The f (R) bouncing cosmology belongs to the
first class of solutions of ϕ(X ), with 3C1 +C2 +C3 �= 0 and
w �= 1/3, while the f (G) bouncing cosmology belongs to the
second class of solutions of ϕ(X ), with 3C1 +C2 +C3 = 0,
C2 + 2C3 �= 0, and w �= −1/3.

In order to be complete in our analysis, it is worth saying
that in the case of a2 = 0, i.e., {3C1 +C2 +C3 �= 0 ∧ w =

3C1−C3
3(3C1+C2+C3)

}, we only have one solution:

ϕ(X )= 2 (3C1 + C2 + C3) |X |
(C2 + 2C3) (12C1 + 3C2 + 2C3) εκρc

+A |X |1/4 ,

(4.29)

where A is an integration constant, and the parameters {Ci }
cannot be chosen such that the denominator of the solution
is zero.

Let us consider the case of fixing w = 1 in Eq. (4.16). It
is straightforward to write the three possible solutions taking
into account that the coefficient of the second order term is
a2 = 8(6C1 + 3C2 + 4C3):

• For 6C1 + 3C2 + 4C3 �= 0 and 3C1 +C2 +C3 �= 0, we
get:

ϕ(X ) = |X |
6 (3C1 + C2 + C3) εκρc

+A |X |(−b−√
�)/(2a) + B |X |(−b+√

�)/(2a) ,

(4.30)

where

a = 6 (6C1 + 3C2 + 4C3) , (4.31)

b = −24C1 − 15C2 − 22C3, (4.32)

� = 360C2
1 + 396C2C1 + 552C3C1

+117C2
2 + 244C2

3 + 336C2C3 , (4.33)
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with A and B being integration constants.
• For 6C1 + 3C2 + 4C3 �= 0 and 3C1 + C2 + C3 = 0 we

arrive at

ϕ(X ) = 3 |X | ln |X |
20 (6C1 + C2) εκρc

+ A |X |1/6 + B |X |,
(4.34)

where A and B are integration constants.
• For 6C1 +3C2 +4C3 = 0 and C2 +2C3 �= 0, we deduce

ϕ(X ) = − |X |
3 (C2 + 2C3) εκρc

+ A |X |1/4 , (4.35)

where A is an integration constant.

4.2 Solution II

Let us continue the discussion by proposing a further spe-
cific solution for Eq. (3.15). By analogy to Ref. [18], let us
assume that ϕ has a power-law form. In particular, in Ref. [18]
the authors propose a solution of the form ϕ(R,G) =
C |G|α|R|β . Here, in order to generalize this solution, we
assume the following power-law form:

ϕ(R, P, Q) = C0 |R|αPβ Qγ |C1R
2 + C2P + C3Q|δ ,

(4.36)

where {Ci }, with i = 1, 2, 3, and α, β, γ, δ are real dimen-
sionless parameters, while C0 has dimensions such that ϕ is
proportional to an energy density 7 (as well as R).

Our aim is to determine the expression of the constant C0

such that Eq. (4.36) is a solution for Eq. (3.15). Therefore, we
want to obtain the dependence of C0 on the other parameters
{C1,C2,C3, α, β, γ, δ}. Obviously, for particular choices of
the parameters we already know the value of the constant C0

by taking into account the discussion of the previous ansatz
and the results presented in Refs. [16–18].

It is important to notice that we need to exclude cases in
which the above function is identically zero. Therefore, using
the reduced form of variables, Eqs. (3.11)–(3.13), it possible

7 Because ε is a real dimensionless parameter, R and ϕ must have the
same dimension so that the action is well-defined.

to see we need to exclude the following configurations of
parameters:

w = 1

3
, (4.37)

C2 = −2C3 ∧ C1 = C3

3
, (4.38)

3C1 + C2 + C3 �= 0 ∧

w =
3C1 − C3 ±

√
−3C2

2 − 12C1C2 − 8C3C2 − 4C2
3 − 24C1C3

3 (3C1 + C2 + C3)
,

(4.39)
3C1 + C2 + C3 = 0 ∧ C2 + 2C3 �= 0 ∧

w = −1

3
. (4.40)

In particular, the first condition is related to R̄ = 0,
while the last three conditions correspond to C1 R̄2 +
C2 P̄ + C3 Q̄ �= 0, i.e., 3C1(3w − 1)2 + 3C2

(
3w2 + 1

) +
C3

(
9w2 + 6w + 5

) �= 0.
Substituting Eq. (4.36) in Eq. (3.15), we get the following

dimensional constraint:

α = 2 − 2(β + γ + δ) . (4.41)

This arises from the fact that for Eq. (4.36) be a solution of
Eq. (3.15) we have to impose ρα+2(β+γ+δ) ∝ ρ2, so that this
constrains C0 to have dimension [C0] = [ρ]−1.

Using the above condition, the ansatz (4.36) reproduces
the bouncing universe of LQC by requiring that the constant
C0 is given by:

C0 = 2

εκρc

3γ+δ(3w − 1)2(β+γ+δ)−1(3w2 + 1)1−β(9w2 + 6w + 5)1−γ |UX |−δUX
UX

(
Uββ +Uγ γ +Uw

) +Uδδ
, (4.42)

where

UX =
(

3C1(1 − 3w)2 + 3C2

(
3w2 + 1

)

+C3

(
9w2 + 6w + 5

))
,

(4.43)

Uβ = −6(w + 1)(3w − 1)(3w + 1)
(

9w2 + 6w + 5
)

,

(4.44)

Uγ = −36(w + 1)(3w − 1)(3w + 1)
(

3w2 + 1
)

,

(4.45)

Uw = +9(w + 1)(3w − 1)
(

9w2 + 6w + 5
) (

3w2 + 1
)

,

(4.46)

Uδ = −18 (C2 + 2C3) (w + 1)(3w − 1)(3w + 1)

×
(

3w2 + 1
) (

9w2 + 6w + 5
)

. (4.47)

The choice of the parameters must be such that the con-
stant C0 be well-defined. Therefore, we exclude all the con-
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figurations of parameters such that the denominator is iden-
tically zero, namely:

• For (C2 + 2C3) (3w + 1) �= 0, the denominator of
Eq. (4.42) vanishes when

δ = UX
(
3
(
3w2 + 1

) (−4γ (3w + 1) + 9w2 + 6w + 5
) − 2β(3w + 1)

(
9w2 + 6w + 5

))
6 (C2 + 2C3) (3w + 1)

(
3w2 + 1

) (
9w2 + 6w + 5

) . (4.48)

• For C2 + 2C3 = 0 and w �= −1/3, the denominator of
Eq. (4.42) vanishes when we have

γ =
(
9w2 + 6w + 5

) (−6βw − 2β + 9w2 + 3
)

12(3w + 1)
(
3w2 + 1

) .

(4.49)

Notice that for the specific case of w = −1/3, the denom-
inator of Eq. (4.42) vanishes when 3C1 + C2 + C3 = 0, but
this condition is in fact excluded from the beginning.

However, we are mainly interested in the case w = 1,
where the constant C0 takes the form

C0 = − 3γ+δ−1 51−γ (3C1 + 3C2 + 5C3) |3C1 + 3C2 + 5C3| −δ

2εκρc ((3C1 + 3C2 + 5C3) (10β + 12γ − 15) + 30 (C2 + 2C3) δ)
. (4.50)

To conclude the discussion of this case, it is worth saying
that by removing the dependence on R in the ansatz, i.e.
ϕ(R, P, Q) = C0 PβQγ |C2P + C3Q|δ , and fixing w =
1/3, it is possible to see that there is no value of C0 such that
the power-law form of ϕ(P, Q) satisfies Eq. (3.15).

4.3 Solution III

Finally, as last ansatz, we introduce a logarithmic depen-
dence, as done in Ref. [18] where ϕ(R,G) = G ln(|R|α|G|β).
The reason of the latter assumption comes from the forms of
particular solutions obtained in Refs. [16,17], which have
been generalized in Sect. 4.1. In particular, we propose the
following solution:

ϕ(R, P, Q) = C0 |R|α1 Pβ1 Qγ1 |C1R
2 + C2P + C3Q|δ1

ln
(
Cρ |R|α2 Pβ2 Qγ2 |C4R

2 + C5P + C6Q|δ2
)

, (4.51)

where {Ci , α j , β j , γ j , δ j }, with i = 1, 2, 3 and j = 1, 2,
are real parameters, while the constant Cρ is used to render
dimensionless the argument of the logarithm.8

As in the previous case, we get the non-vanishing condi-
tions of the solution by considering the reduced form of the

variables, Eqs. (3.11)–(3.13). Therefore, we consider config-
urations such that

w �= 1/3 , (4.52)

3(1 − 3w)2C1 + 3
(

3w2 + 1
)
C2

+(9w2 + 6w + 5)C3 �= 0 , (4.53)

3(1 − 3w)2C4 + 3
(

3w2 + 1
)
C5

+(9w2 + 6w + 5)C6 �= 0 , (4.54)

where the first one is the non-vanishing condition of R̄, while
the second and the third ones are the non-vanishing condi-
tions of |C1 R̄2 + C2 P̄ + C3 Q̄| and |C4 R̄2 + C5 P̄ + C6 Q̄|,
respectively.

When we replace Eq. (4.51) in Eq. (3.15), we also obtain a
dimensional constraint α1 = 2 −2(β1 +γ1 + δ1). Moreover,
for Eq. (4.51) to be a solution of Eq. (3.15), we need to impose
the following condition:

[
C2

(
9ω2 + 3

)
+ C3

(
9ω2 + 6ω + 5

)
+ 3C1(1 − 3ω)2

]

×
[
−2β1(3ω + 1)

(
9ω2 + 6ω + 5

)

−12γ1(3ω + 1)
(

3ω2 + 1
)

+3
(

3ω2 + 1
) (

9ω2 + 6ω + 5
)]

8 The constant Cρ has dimension [Cρ ] = [κρ]−α2−2(β2−γ2−δ2) =
[ρ]−α2−2(β2+γ2+δ2); one could assume Cρ = (κρc)

−α2−2(β2+γ2+δ2), for
instance.
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−6 (C2 + 2C3) δ1(3ω + 1)
(

3ω2 + 1
)

×
(

9ω2 + 6ω + 5
)

= 0 . (4.55)

The above condition comes from the substitution of
Eq. (4.51) in Eq. (3.15) and guarantees C0 is a constant.
For this specific case, from Eq. (4.55), we can distinguish
the following two cases:

• For C2 + 2C3 �= 0 and w �= −1/3, we have

δ1 = UX 1
((

9w2 + 6w + 5
) (−2β1(3w + 1) + 9w2 + 3

) − 12γ1(3w + 1)
(
3w2 + 1

))
6 (C2 + 2C3) (3w + 1)

(
3w2 + 1

) (
9w2 + 6w + 5

) , (4.56)

where UX 1 = 3(1 − 3w)2C1 + 3
(
3w2 + 1

)
C2 +(

9w2 + 6w + 5
)
C3.

• For C2 + 2C3 = 0 and w �= −1/3, we have

γ1 =
(
9w2 + 6w + 5

) (
3(3w2 + 1) − 2(3w − 1)β1

)
12(3w + 1)

(
3w2 + 1

) .

(4.57)

Actually, there is another case where Eq. (4.55) is satisfied,
namely, for w = −1/3 which corresponds to Ḡ = 0, as seen
in Sect. 3. However, we will see this value corresponds to a
constant C0 = 0 and therefore it is not an acceptable value
for w.

When one of the above conditions holds, it is possible to
see that the ansatz (4.51) reproduces the bouncing universe
of LQC by requiring that the constant C0 reads

C0 = −2 3γ1+δ1(3w + 1)(1 − 3w)2(β1+γ1+δ1)−1
(
3w2 + 1

)1−β1
(
9w2 + 6w + 5

)1−γ1 UX 2|UX 1|−δ1

εκρc
(
UX 2

(
Uαα2 +Uββ2 +Uγ γ2

) +Uδδ2
) , (4.58)

where

UX 1 = 3(1 − 3w)2C1 + 3
(

3w2 + 1
)
C2

+
(

9w2 + 6w + 5
)
C3 , (4.59)

UX 2 = 3(1 − 3w)2C4 + 3
(

3w2 + 1
)
C5

+
(

9w2 + 6w + 5
)
C6 , (4.60)

Uα =
(

3w2 + 1
) (

9w2 + 6w + 5
)

×
(

27w2 + 30w − 1
)

, (4.61)

Uβ = 2(3w − 1)
(

9w2 + 6w + 5
)

×
(

27w3 + 30w2 + 3w + 4
)

, (4.62)

Uγ = 2(3w − 1)
(

3w2 + 1
)

×
(

81w3 + 117w2 + 51w + 23
)

, (4.63)

Uδ = 2(3w − 1)
(

3w2 + 1
) (

9w2 + 6w + 5
)

×
[
3(3w − 1)

(
27w2 + 30w − 1

)
C4

+3
(

27w3 + 30w2 + 3w + 4
)
C5

+
(

81w3 + 117w2 + 51w + 23
)
C6

]
. (4.64)

For the sake of brevity, we omit writing all the configura-
tions of the parameters which renders the denominator zero,
and therefore, which must be excluded.

To complete the discussion of this case, let us remove
the dependence on R in Eq. (4.51), i.e., ϕ(P, Q) =
C0 Pβ1 Qγ1 |C2P + C3Q|δ1 ln

(
P̃β2 Q̃γ2 |C5 P̃ + C6 Q̃|δ2

)
,

and fix w = 1/3. In this way we get the following equation
for C0:

C0 = 3 2β1+δ1−2 |C2 + 2C3| −δ1

7εκρc (β2 + γ2 + δ2)
, (4.65)

where the dimensional constraint β1 + γ1 + δ1 = 2 must be
satisfied.

Finally, let us focus on the case w = 1. The following
condition has to be satisfied in order to guarantee that C0

is constant and, therefore, in order to get a cosmological
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bounce:

(3C1 + 3C2 + 5C3) (10β1 + 12γ1 − 15)

+30 (C2 + 2C3) δ1 = 0 . (4.66)

From the last equation, we can distinguish two cases:

• For C2 + 2C3 �= 0, we have

δ1 = − (3C1 + 3C2 + 5C3) (10β1 + 12γ1 − 15)

30 (C2 + 2C3)
.

(4.67)

• For C2 + 2C3 = 0, we have

γ1 = − 5

12
(2β1 − 3) . (4.68)

Therefore, when one of the above conditions holds, it is
possible to see that the ansatz in Eq. (4.51) reproduces the
bouncing universe of LQC, by requiring that (for w = 1) the
constant C0 is given by

C0 = 51−γ1 (3C4 + 3C5 + 5C6) 3γ1+δ1 |3C1 + 3C2 + 5C3| −δ1

2εκρc ((3C4 + 3C5 + 5C6) (35α2 + 40β2 + 34γ2) + 10 (21C4 + 12C5 + 17C6) δ2)
, (4.69)

where it is necessary to exclude configurations of parameters
which correspond to a vanishing denominator.

5 Discussion and conclusions

In this paper, we found specific cosmological models, com-
ing from f (R, P, Q) modified theory of gravity, reproduc-
ing the effective Friedmann equation of LQC. To obtain
the result, we applied an order reduction technique [16–
18,21–23], which consists in rewriting f (R, P, Q) → R +
ε ϕ(R, P, Q), and in expressing the geometric variables, R,
P and Q, in terms of energy-matter fields (at the zeroth per-
turbation order). This approach allows one to find additive
contributions to the Ricci scalar such that the theory is per-
turbatively close to GR. These terms can be seen as GR cor-
rections at the energy scales associated to the early universe,
that is close to the Planck scale.

It is worth noticing that our approach is semi-classical,
and those terms become important as we get closer to the
bounce – but not too much, i.e., ρ ∼ 0.1ρc. In fact, in cor-
respondence of the bounce, the small ε approximation is no
longer valid, and the reduction of the order can no longer
be performed in the way discussed above. Namely, correc-
tive terms are more important (but not predominate) as we
get closer to the bounce where the above treatment fails.
By writing f (R, P, Q) = R + ε ϕ(R, P, Q) with small ε,

we consider all possible corrections to the Einstein–Hilbert
action in a regime where the contribution of R dominates
over the small corrections. Such deviations from GR charac-
terize the bounce when R � ρc ∼ lP−2. In summary, the
approach is based on two main ideas: (1) Assuming that GR
is an incomplete theory, we want to extend semi-classically
the Einstein’s theory considering deviations from GR due to
high order curvature effects – therefore any new phenomenol-
ogy is still a gravitational effect mediated by the curvature.
(2) Since we want to deal with metric f (R, P, Q) theory of
gravity, not as an exact but as an effective field theory, whose
solution ought to be perturbatively close to GR, we have to
perform an order reduction to the field equations such to do
away with the spurious degrees of freedom. The result is an
effective Lagrangian which can mimic the effective Fried-
mann equation of LQC far enough from the bounce. In this
way, the search for bouncing solutions which are perturba-
tively close to GR can lead us to solutions that can be trusted
reasonably close to the bounce. On the other hand, the effec-
tive Friedmann equation of LQC, from loop quantum gravity,
is supposed correct at the bounce itself. We rely on the essen-

tial features of a fundamental theory, yet to be formulated,
viewed as an effective theory. In the region where the expan-
sion is no more valid, too close to the bounce (i.e., R ∼ ε ϕ),
one can invoke loop quantum gravity solutions. The final fun-
damental theory, when formulated, would give the features
of the bouncing solution described by our Lagrangian and
described by loop quantum gravity at the bounce.

The analysis carried out in this work generalizes the results
obtained in previous works for f (R), f (G) and f (R,G)

modified theories of gravity [16–18]. It is easy to see that
results we have obtained can be reduces to those obtained
in the previous works. However, it is also possible to fur-
ther generalize the approaches in Refs. [16–18], by consid-
ering other modified theories of gravity, in the context of
“modified-LQC Friedmann equations” [39], in an analogous
manner as carried out in Ref. [20], in order to further extend
the analysis carried out here.

At this point, it is also important to make some remark
on the problem of ghosts that characterize f (R, P, Q) the-
ories. As emphasized in Ref. [40], for the specific case of
quadratic curvature invariants in 4-dimensional action, there
are eight dynamical degrees of freedom of the metric tensor.
Two of these excitations are associated to the standard mass-
less spin-2 graviton, five of them are related to a massive
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spin-2 particle, and the last corresponds to a massive scalar
particle. Since the massive spin-2 particle has a negative defi-
nite linearized energy, then it is usually interpreted as a ghost
of the theory (see Refs. [37,41,42]). One can assume that
some still unknown mechanism (such as effects due to extra-
dimensions) modify the theory so that ghosts do not appear at
cosmological time scales [43]. It is also possible to consider
quadratic curvature terms in the action with infinite covariant
derivatives in such a way that it results ghost-free when the
linearized problem is taken into account [44]. However, our
case is quite different than the general f (R, P, Q) theories,
in the sense that we performed a perturbative approach to
the Einstein–Hilbert action, in proximity to the Planck scale,
by parameterizing f (R, P, Q) = R + εϕ(R, P, Q), with
εϕ � R. This gives us the possibility to not consider the
problems related to the presence of instabilities and ghosts.

Finally, it is also important to stress that, in the present
work, we did not consider the most general effective action
for f (R, P, Q) gravity leading to bouncing cosmologies,
which would be indeed technically very challenging.

In a future work, we aim to extend the present analysis to
the general context of modified loop quantum cosmology.
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