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Abstract In this paper, we study Friedmann cosmology
with time-varying vacuum energy density in the context of
Brans–Dicke theory. We consider an isotropic and homo-
geneous flat space, filled with a matter-dominated perfect
fluid and a dynamical cosmological term Λ(t), obeying the
equation of state of the vacuum. As the exact nature of a
possible time-varying vacuum is yet to be found, we explore
Λ(t) given by the phenomenological law Λ(t) = λ + σH ,
where λ and σ are positive constants. We solve the model and
then focus on two different cases ΛH1 and ΛH2 by assum-
ing Λ = λ and Λ = σH , respectively. Notice that ΛH1

is the analog of the standard ΛCDM, but within the Brans–
Dicke cosmology. We find the analytical solution of the main
cosmological functions such as the Hubble parameter, the
scale factor, deceleration and equation of state parameters
for these models. In order to test the viability of the cos-
mological scenarios, we perform two sets of joint observa-
tional analyses of the recent Type Ia supernova data (Pan-
theon), observational measurements of Hubble parameter
data, Baryon acoustic oscillation/Cosmic microwave back-
ground data and Local Hubble constant for each model. For
the sake of comparison, the same data analysis is performed
for the ΛCDM model. Each model shows a transition from
decelerated phase to accelerated phase and can be viewed as
an effective quintessence behavior. Using the model selec-
tion criteria AIC and BIC to distinguish from existing dark
energy models, we find that the Brans–Dicke analog of the Λ-
cosmology (i.e. our model ΛH1) performs at a level compa-
rable to the standard ΛCDM, whereas ΛH2 is less favoured.

a e-mail: cpsphd@rediffmail.com (corresponding author)
b e-mail: sola@fqa.ub.edu

1 Introduction

The recent observational data from Type Ia supernova [1–3],
cosmic microwave background radiation [4], galaxy clus-
tering [5] and other cosmological observations [6–10] sug-
gest that our Universe is currently experiencing a phase of
accelerated expansion. It has been learnt that the Universe
is dominated by dark energy (DE) with negative pressure
which provides the dynamical mechanism for the accelerat-
ing expansion of the Universe. However, the nature of this
substance is still undetermined. The cosmological constant
(CC), initially introduced by Einstein, is a natural candidate
of DE. Such model is also known as standard Lambda-cold
dark matter (ΛCDM) model. In it Λ = const. and sometimes
it is referred to for short as the Λ-cosmology. In this scenario,
DE is associated to the energy density of the quantum vacuum
ρΛ = Λ/8πG. However, it faces a long-standing cosmolog-
ical constant problem [11]. This CC problem stems from
tremendous discrepancy between the theoretical value asso-
ciated with quantum vacuum energy and the value required
to confirm with observations. As a matter of fact, all sorts of
cosmological models predict a large value of the DE and they
require of an unnatural fine tuning to solve such discrepancy.
In this sense the vacuum energy is not to be blamed more
than many other DE models [12]. Although several possible
approaches have been adopted to explain or alleviate the CC
problems [13], there is no convincing fundamental theory
for why vacuum energy dominance happened only recently
and why its value is currently so close to the matter energy
density (the so-called cosmic coincidence problem).

One possibility to mitigate certain aspects of the CC prob-
lem is to consider time evolving vacuum models, Λ = Λ(t).
A great deal of attention was dedicated to this possibility even
before the discovering of the accelerating Universe [14–18].
Λ(t) models may be an important alternative to the ΛCDM
model. The original proposals were essentially phenomeno-
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logical [18], but a new generation of proposals are theoreti-
cally better rooted. They are based on the idea that DE is the
manifestation of vacuum quantum fluctuations in the curved
space-time, after a renormalization in which the divergent
vacuum contribution in the flat space-time is subtracted. The
resulting effective vacuum energy density will depend on
the space-time curvature, decaying from high initial values
to smaller ones as the Universe expands. This idea underlies
e.g. the class of running vacuum models [19,20] (see [12] for
a review and references therein) and it has been supported by
recent calculations in quantum field theory in curved space-
time [21].

In recent years, a large class of flat non-singular Friedmann–
Robertson–Walker type cosmologies, where the vacuum
energy density evolves like a truncated power-series in the
Hubble parameter H, have been discussed in the literature
[22–33]. The functional form of Λ(t) in most of them has
usually been proposed on phenomenological grounds as it
occurs with the vast majority of DE models. In this regard,
a viable form of decaying vacuum energy density, namely
Λ(a) ∝ H , was proposed by Schützhold [22]. Such pro-
posal was subsequently extended in the literature in the form
of the so-called ghost dark energy models [34–37]. These
models together with the aforementioned class of running
vacuum models [12,38] both use expansions of the vacuum
energy density in powers of H , but of a different kind. These
examples show the significant interest raised by the dynam-
ical dark energy models from different perspectives.

In the present paper, we focus our attention on the analyti-
cal and observational aspects of the Λ(t) models in the scalar
tensor theory proposed by Brans and Dicke [39]. Brans–
Dicke (BD) theory was the first gravity theory in which the
dynamics of gravity were described by a scalar field while
spacetime dynamics were represented by the metric tensor.
In this theory, the gravitational constant G is replaced with
a inverse of time-dependent scalar field φ, which couples to
gravity with a coupling parameter ω (Brans–Dicke parame-
ter). This theory passed the experimental tests from the solar
system [40]. In recent years, this theory got a new impetus
as it arises naturally as the low energy limit of many theories
of quantum gravity such as superstring theory or Kaluza–
Klein theory. An attractive feature of BD theory is that the
scalar field is a fundamental element of the theory, quite con-
trary to other models in which the scalar field is introduced
separately in an ad hoc manner. The studies on Friedmann–
Robertson–Walker model in the framework of BD theory
have been carried out in Refs. [41–60].

The aim of the work is to find a cosmological scenario
of the model in BD theory with varying cosmological term
which would be capable to link the dynamics of the early
Universe with that of our late Universe. This work extends
the successful approach recently presented on BD cosmol-
ogy with a rigid cosmological term [61,62], and reinforces

the idea that dynamical models of the vacuum energy can
be very helpful to improve the fit to cosmological and cos-
mographical observations [63–67]. In particular, they help
alleviating the so-called H0 and σ8 tensions [68–71], see e.g.
[72,73] and the very recent work [74]. In the present study,
we compare the consequent cosmological scenario with the
constraints imposed by the observational data of Type Ia
supernova (Pantheon), observational Hubble parameter data,
baryon acoustic oscillations data/cosmic microwave back-
ground and local H0. The analysis of Hubble-redshift rela-
tion has shown a good fit with best fit values of the model
parameters.

The structure of the paper is as follows. In Sect. 2, we
introduce the basic cosmological equations. The solution of
the field equations is presented in Sect. 3 with time varying
cosmological constant. Section 4 describes and places con-
straints on the main parameters of our vacuum models by
performing two sets of joint likelihood analysis consisting of
Type Ia supernova (Pantheon) data, the observational Hubble
parameter data (OHD), baryonic acoustic oscillations/ cos-
mic microwave background (BAOs/CMB) data and local H0.
Section 5 is divided in subsections. In Sect. 5.1, we discuss
the evolution of the cosmological parameters using fitting
values and in Sect. 5.2, the model selection criterion is dis-
cussed. Finally, in Sect. 6, we present the summary of the
work.

2 BD field equations with time-dependent vacuum

The action for BD theory extended to the cosmological con-
stant (CC) in Jordan frame reads as follows [75–77].

S =
∫

d4x
√−g

[
1

16π

(
φR − ω

φ
∇αφ ∇αφ

)
− ρΛ + Lm

]
,

(1)

where φ is the BD scalar field representing the inverse of the
Newton constant, which is allowed to vary with space and
time, ω is the dimensionless constant which is known as a
coupling parameter, or Brans–Dicke parameter, of the theory
and Lm is the matter Lagrangian. It is to be noted that there
is no potential for BD scalar field φ in the original BD theory,
however, we admit the presence of CC term associated with
vacuum energy density, ρΛ.

Variation of this action with respect to the metric gμν and
the BD scalar field φ yield the following field equations,
respectively.

Gμν = Rμν − 1

2
gμνR = 8π

φ

(
Tm

μν − gμνρΛ

) + 8π

φ
T BD

μν

(2)
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and

�φ = 8π

(2ω + 3)

(
Tm μ

μ − 4ρΛ

)
, (3)

where Tm
μν is the energy–momentum tensor of matter and

Tm μ
μ is the trace of Tm

μν , and other symbols have their usual
meaning. It is convenient to introduce the effective energy–
momentum tensor for the two fluids, matter and vacuum
energy density through ˜Tμν = Tμν − gμνρΛ and adopts the
perfect fluid form:

T̃μν = (ρ + p)uμuν + pgμν, (4)

where ρ = ρm + ρΛ and p = pm + pΛ. We assume that
the matter part contains the pressureless contribution of cold
dark matter. The vacuum energy density ρΛ follows the usual
equation of state (EoS) as pΛ = −ρΛ. Also, T BD

μν is the
energy–momentum for the BD scalar which is defined by

T BD
μν = 1

8π

[ω

φ

(
∇μφ∇νφ − 1

2
gμν∇αφ∇αφ

)
+ ∇μ∇νφ

−gμν∇α∇αφ
]
. (5)

Let us start with the homogeneous and isotropic flat Friedmann–
Lemaître–Robertson–Walker (FLRW) line element

ds2 = −dt2 + a2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (6)

where a(t) is the scale factor of the universe. Throughout we
use units such that the speed of light, c = 1.

The field equations (2) and (3) for metric (6) and energy–
momentum tensors (4) and (5) are simplified to

3H2 + 3H
φ̇

φ
− ω

2

φ̇2

φ2 = 8π

φ
ρ, (7)

2Ḣ + 3H2 + φ̈

φ
+ 2H

φ̇

φ
+ ω

2

φ̇2

φ2 = −8π

φ
p, (8)

φ̈ + 3H φ̇ = 8π

(2ω + 3)
(ρ − 3p), (9)

where an overdot denotes derivative with respect to cosmic
time t and H = ȧ/a is the Hubble parameter. The first equa-
tion (7) corresponds to the Friedmann equation and the sec-
ond equation (9) is the equation of motion of the BD scalar
field.

If we ignore the inhomogeneities arising from the (linear)
field perturbations, the BD field can be treated as a perfect
fluid T BD

μν = (ρBD + pBD)uμuν + pBDgμν with energy and
pressure are respectively given by

ρBD = 1

8π

[
ω

2

(
φ̇2

φ

)
− 3H φ̇

]
, (10)

pBD = 1

8π

[
ω

2

(
φ̇2

φ

)
+ 2H φ̇ + φ̈

]
. (11)

Finally, the geometric Bianchi identity of ∇νGμν = 0 in
Eq. (2), which plays a role of the consistency relation, leads
to

∇ν

(
Rμν − 1

2
gμνR

)
= 0 = ∇ν

(
8π

φ
T̃μν + 8π

φ
Tμν
BD

)
.

(12)

One interesting thing about working in Jordan frame is
that the conservation equation holds for matter and scalar
field separately, i.e., equations of motion of matter do not
enter into the BD scalar field. It means that T̃μν obeys the
usual conservation law, ∇ν T̃μν = 0, which takes the form

ρ̇m + 3(ρm + pm)
ȧ

a
= −ρ̇Λ. (13)

In this paper, we study the model dominated by pressure-
less dark matter (pm = 0) in BD theory. It is to be noted that
the equation of state of the vacuum energy density maintains
the usual form pΛ(t) = −ρΛ(t) = −φΛ(t)/8π despite the
fact that Λ(t) evolves with time. Now, from (12) and because
of matter conservation, we are left with1

(
∇ν

{
8π

φ

}
T̃μν + ∇ν

{
8π

φ
Tμν
BD

})
= 0, (14)

which finally gives

ρ̇BD + 3
ȧ

a
(ρBD + pBD) =

(
φ̇

φ

)
(ρ + ρBD) . (15)

Equation (15) is indeed a consistency condition originat-
ing from the Bianchi identity ∇νGμν = 0. It can indeed be
checked that the covariant conservation laws (13) and (15)
can also be obtained upon lengthy but straightforward com-
putation by combining Eqs. (7)–(9), which are identical to
that of general relativity (GR). Although the calculation is
more involved than in GR, the final result turns out to be the
same. Thus, we shall use (7) and (13) to obtain the solution
of the model and finally we use (15) to get the consistency
condition using the fitting values of the model parameters
obtained from observational data (to be discussed in Sect. 4).

1 It may be illustrative to point out here that if one would define the
energy density and pressure of the BD field in a different form, namely
in such a way that they would represent the exact departure of the BD
theory from GR, then the corresponding tensor associated to these new
quantities Tμν

BD would be locally and covariantly conserved as it does
in the case of matter, namely ∇μT

μν
BD = 0. This alternative formulation

has been used in [61,62].
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In the framework of BD cosmology the BD scalar field φ

one usually searches for power-law relation in terms of scale
factor [78–83], namely2

φ = φ0 a(t)ε, (16)

where φ0 and ε are constants. A case of particular interest
is that when ε is small whereas ω is large so that the prod-
uct ωε results of order unity [79,81,82]. This is interesting
because local experiments set a very high lower bound on
ω. This choice with small ε can lead to consistent results
which may justify this specific choice among other possi-
ble choices [79]. The Cassini experiment [40] implies that
ω > 104. Likewise, as previously indicated, a slow frac-
tional variation of φ will lead to a small fraction variation of
G, consistent with observations. Therefore, it is clear that the
interesting case is that one when ε is small whereas ω is large,
so that the product ωε results of order unity. As for ω, it is
usually assumed large, but we do not find ω so large because
we assume that the Cassini bound on this parameter only
applies to the astrophysical domain, not to the cosmological
one. This is admissible because of the possible existence of
screening effects (chameleon etc.) which can operate in the
local domain. These effects do not apply at the cosmologi-
cal level and permit a discussion of the BD framework free
from the stringent Cassini bounds [85,86]. See e.g. [62] for
a detailed discussion.

We also note that in Refs. [81,82] this kind of power-law
solution is used to show that BD cosmology with a cosmo-
logical term can mimic the running vacuum model, which is
very convenient in order to improve the fitting of the cosmo-
logical data [82]. We expect that this feature will also help
here.

With the above assumption, the Eq. (7) is rewritten as

H2 = 2

(6 + 6ε − ωε2)

8π

φ
(ρm + ρΛ), (17)

where H = ȧ/a is the Hubble parameter and Λ = 8πρΛ/φ.
It can be observed that in the limit of ε → 0, the standard
cosmology is recovered. To make the Eq. (17) to have phys-
ical meaning, i.e., to make (6 + 6ε − ωε2) > 0, one has
the following constraint on the value of ε which is given by
3−√

9+6ω
ω

< ε < 3+√
9+6ω
ω

, where ω > 0.
Finally, combining equations (13) and (17), we find

Ḣ + (3 + ε)

2
H2 = 3Λ

(6 + 6ε − ωε2)
. (18)

2 While there is no a priori reason to assume that a power-law solution
is viable, let us notice that the fractional variation of the effective gravi-

tational coupling G = 1
φ

in BD theories is given by Ġ
G = − φ̇

φ
= −εH .

Therefore, for sufficiently small |ε|, this is consistent with the bounds
on the time variation of the gravitational coupling [84]. Other partial
justifications can be checked a posteriori, as we shall see.

In what follows, we investigate the cosmic evolution with a
class of time evolving vacuum models. Notice that up to this
point the above equations are valid for any Λ, not necessarily
a constant, it can be a function of the cosmic time. Recall that
the equation of state remains pΛ(t) = −ρΛ(t). In the next
sections, however, we specify some possible forms.

3 Brans–Dicke theory with time-varying Λ

In this paper we parameterize the functional form of Λ(t)
as a combination of constant term and some multiple of the
Hubble parameter, i.e.,

Λ(t) = λ + σH, (19)

where λ and σ are positive constants. The model with λ = 0,
hence Λ ∝ H , was discussed in Refs. [22,24–26], but only
in the context of GR. In [81,82] this case was studied from
the point of view of its ability to emulate the running vac-
uum model. In the following subsections, we study the two
extreme situations (λ �= 0, σ = 0) and (λ = 0, σ �= 0) in the
BD framework and perform the corresponding observational
analysis. The detailed solution of the general class of models
(19) for any value of λ and σ is given in an Appendix.

3.1 ΛH1-model: the standard Λ cosmology in BD theory

In this section, we consider the Λ = const. cosmology in
the context of BD theory in order to appreciate the differ-
ences with respect to the Λ(t) model explored subsequently.
Assuming σ = 0 in Eq. (19), we have Λ(t) = λ = const.
(hereafter ΛH1-model). Thus, the vacuum term in (19) is
constant and given by

Λ0 = λ = 3ΩΛH2
0 , (20)

where Λ0, H0 and ΩΛ are the current value of vacuum energy
density, Hubble parameter and density parameter at present
epoch t = t0, respectively.

Using (20), the evolution equation (18) reads

d h2

dx
+ (3 + ε)h2 = 18 ΩΛ

(6 + 6ε − ωε2)
, (21)

where h = H/H0 is the dimensionless Hubble parameter and
x = ln a. Solving Eq. (21), we obtain the Hubble function
in terms of redshift z as

H(z) = H0

[
18ΩΛ

(6 + 6ε − ωε2)(3 + ε)

+
(

1 − 18ΩΛ

(6 + 6ε − ωε2)(3 + ε)

)
(1 + z)(3+ε)

]1/2

,

(22)
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where (1 + z) = a0/a. We can check that ε = 0 reduces
Eq. (22) to the corresponding equation in ΛCDM model as
expected. We can define the normalized Hubble expansion
as a function of redshift

h2(z) = H2(z)

H2
0

= ˜ΩΛ1 + ˜Ωm1(1 + z)(3+ε), (23)

where we have used the following parametrization

˜ΩΛ1 = 1 − ˜Ωm1 = 18 ΩΛ

(6 + 6ε − ωε2)(3 + ε)
. (24)

As expected, for ε → 0, we have ˜ΩΛ1 ∼ ΩΛ. Thus, the
traditional cosmology is a particular solution of the ΛH1

model with ε strictly equal to zero.
The scale factor of the Universe, normalized to unity at

the present epoch, is given by

aΛ(t) =
( ˜Ωm1

˜ΩΛ1

)1/(3+ε) [
sinh

(
(3 + ε)

√ ˜ΩΛ1

2
H0t

)]2/(3+ε)

.

(25)

The Hubble parameter in terms of cosmic time t is given by

H(t) = H0

√
˜ΩΛ1 coth

(
(3 + ε)

√ ˜ΩΛ1

2
H0t

)
. (26)

The cosmic time is related with the scale factor as

tΛ(a) = 2

(3 + ε)
√ ˜ΩΛ1H0

sinh−1

⎛
⎝
√

˜ΩΛ1

˜Ωm1
a(3+ε)/2

⎞
⎠ .

(27)

The current age of the Universe is given by

t0Λ = 2

(3 + ε)
√ ˜ΩΛ1H0

sinh−1

⎛
⎝
√

˜ΩΛ1

˜Ωm1

⎞
⎠ . (28)

From (22), one can deduce the deceleration parameter q,
which is defined as q = −aä/ȧ2. It is given by

q(z) = −1 +
(3+ε)

2
˜Ωm1 (1 + z)(3+ε)

˜ΩΛ1 + ˜Ωm1(1 + z)(3+ε)
. (29)

The value of q at present time (z = 0) is given by

q(z = 0) = −1 +
(

3 + ε

2

)
˜Ωm1. (30)

The transition from deceleration to acceleration takes place
for ˜Ωm1 = 2/(3 + ε). For any value ˜Ωm1 < 2/(3 + ε),
the present-day cosmic expansion is accelerating. Now, it is
also possible to find the transition redshift ztr at which the
Universe transits from deceleration to acceleration, i.e.,

ztr =
[

2

(1 + ε)

˜ΩΛ1

˜Ωm1

]1/(3+ε)

− 1. (31)

For ε = 0 we can see that we recover the corresponding value
in the concordance Λ-cosmology with GR, as expected. The
transition time is calculated as

ttr = 2

(3 + ε)
√ ˜ΩΛ1H0

sinh−1

(√
1 + ε

2

)
. (32)

Let us calculate the effective equation of state (EoS) parame-
ter we f f for the compound fluid of the model. An accelerated
expansion of the Universe is possible only if the effective EoS
parameter we f f satisfies 3we f f + 1 < 0. The effective EoS
parameter can be obtained by

we f f = −1 − 1

3

d(ln h2)

dx
, (33)

where x = ln a. Using (23), the EoS parameter (33) is
calculated as

we f f = −1 + (3 + ε) ˜Ωm1

3h2 (1 + z)(3+ε). (34)

The ε-dependent part represents the departure from the GR
result. It is easy to check that the above EoS can be written
as follows:

we f f = −1 + 3 + ε

3

1

1 + ra3+ε
, (35)

where we have defined the ratio r = ˜ΩΛ1/ ˜Ωm1. One can
observe that we f f → −1 in the late time (a � 1), whereas
we f f → ε

3 in the remote past (a → 0). Therefore, the
model corresponds to de Sitter in future time and performs
a transition from a situation of essentially matter domi-
nance (we f f 	 0) into a future one of vacuum dominance
(we f f = −1). The EoS does not cross the phantom divide
line w ≤ −1 which shows that the ΛH2 model is free from
big-rip singularity. The present value of EoS parameter is
obtained by setting a = 1 (z = 0) in the above equation:

we f f (z = 0) = −1 + (3 + ε) ˜Ωm1

3
, (36)

where h(z) = 1 at z = 0. Therefore, the condition for
3we f f (z = 0) + 1 < 0 implies that ˜Ωm1 < 2/(3 + ε).

Let us check the consistency condition (15) for the solution
of this model. Using (10), (11) and (17), Eq. (15) can be
rewritten as3

2(ωε − 3)Ḣ + (ωε2 + 6ωε − 12)H2 = 0. (37)

3 It is important to keep in mind that the exact consistency condition is
actually ε times Eq. (37). By dividing out the exact equation by ε we
are assuming that ε �= 0, as in fact it is the case in our fitting result (see
Table 1). However, the presence of the additional factor of ε shows that
Eq. (37) has a smooth limit to GR (for which ε = 0 exactly) and hence
no such equation remains in that limit. Recall that the primary origin of
the consistency condition is Eq. (15), which disappears of course when
there is no BD fluid (10)–(11) .
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Now, using the solution of H obtained in Eq. (22) into (37),
we obtain

(ωε − 3)(3 + ε)(1 − ˜ΩΛ1)a−(3+ε) − (ωε2 + 6ωε − 12)[ ˜ΩΛ1

+(1 − ˜ΩΛ1)a−(3+ε)] = 0. (38)

The above equation gives a relation between the constants
for a = a0 = 1, i.e., at present, which is given by

(ωε − 3)(3 + ε)(1 − ˜ΩΛ1) − (ωε2 + 6ωε − 12) = 0. (39)

It is to be noted that one can use this equation for con-
sistency checkup and not for constraining the parameters. In
Sect. 5, we will present a detail discussion of the solutions
obtained in this section by using best fit values. We will check
explicitly the above consistency condition.

3.2 ΛH2-model: Λ = σH in BD theory

In this section, we assume that the vacuum term is propor-
tional to the Hubble parameter. This kind of cosmological
model is a particular case of Eq. (19) by setting λ = 0 which
is given by (hereafter, ΛH2 model)

Λ(t) = σH. (40)

In Refs. [22,24–26], the authors have studied the FLRW
model with Eq. (40) to describe the late time evolution of
the Universe in the context of GR. In this paper, our aim is to
study the FLRW model with this ansatz in a more dynamical
framework of scalar -tensor theory as described by the Brans
and Dicke theory.

Utilizing this ansatz at the present epoch Λ0 = σH0

and taking into account that the current value of the vac-
uum energy density is Λ0 = 3ΩΛH2

0 , the parameter σ is
obtained to be

σ = 3ΩΛH0. (41)

Using (40), the evolution equation (18) reduces to

dh

dx
+ (3 + ε)

2
h = 3σ

(6 + 6ε − ωε2)H0
. (42)

The solution of (42) is given by

h = 6σ

(6 + 6ε − ωε2)(3 + ε)H0

+
(

1 − 6σ

(6 + 6ε − ωε2)(3 + ε)H0

)
(1 + z)

(3+ε)
2 .

(43)

Using (41) into (43), the Hubble parameter in terms of red-
shift can be given by

H = H0

[
18ΩΛ

(6 + 6ε − ωε2)(3 + ε)

+
(

1 − 18ΩΛ

(6 + 6ε − ωε2)(3 + ε)

)
(1 + z)

(3+ε)
2

]
,

(44)

We can define the normalized Hubble expansion as a function
of redshift

h = H(z)

H0
= ˜ΩΛ2 + ˜Ωm2(1 + z)

(3+ε)
2 , (45)

where we have used the following parametrization

˜ΩΛ2 = 1 − ˜Ωm2 = 18 ΩΛ

(6 + 6ε − ωε2)(3 + ε)
. (46)

Thus, the Hubble rate of ΛH2 is very different from Eq. (23)
of ΛH1 model, which could have the different behavior when
we do the observation. It is to be noted that in the absence
of BD theory (ε = 0), Eq. (45) reduces to the Eq. (70) of
Ref. [28]. The scale factor in normalized unit is given by

a(t) =
[
e

(3+ε)
2

˜ΩΛ2H0 t − 1 + ˜ΩΛ2

˜ΩΛ2

]2/(3+ε)

. (47)

From Eq. (47), it is observed that for small times (small com-
pared to the present time), it can be approximated by

a(t) ∼
(

1 + (3 + ε)

2
H0 t

)2/(3+ε)

, (48)

which has the same time dependence as in the standard flat
BD model with dust. Therefore, the ΛH2 model expands with
decelerated rate in early time. The model predicts the Big-

Bang in the past at the cosmic time: tBB = 2H−1
0

(3+ε) ˜ΩΛ2
ln(1−

˜ΩΛ2). The varying Λ(t) starts dominating just at present
time. In the limit of large times, that is, (3+ε) ˜ΩΛ2H0 t � 1
and a → ∞, Eq. (47) leads to exp( ˜ΩΛ2H0 t), that is, the
model tends to a de Sitter Universe.

The Hubble parameter in terms of cosmic time t is given
by

H(t) = H0 ˜ΩΛ2 e
(3+ε)

2
˜ΩΛ2H0 t

e
(3+ε)

2
˜ΩΛ2H0 t − 1 + ˜ΩΛ2

. (49)

In this model, the cosmic time is related to the scale factor as

t (a) = 2H−1
0

(3 + ε) ˜ΩΛ2
ln[1 + ˜ΩΛ2(a

2/(3+ε) − 1)]. (50)

It is straightforward to calculate the deceleration parameter
in terms of redshift which takes the following form:

q = −1 + (3 + ε) ˜Ωm2 (1 + z)(3+ε)/2

2
[ ˜ΩΛ2 + ˜Ωm2(1 + z)(3+ε)/2

] . (51)
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Note that for z = 0, one finds the current value of deceleration
parameter

q0 = −1 + (3 + ε) ˜Ωm2

2
. (52)

Now, it is easy to check that the transition redshift, defined to
be the zero point of the deceleration parameter, is given by

ztr =
(

2 ˜ΩΛ2

(1 + ε) ˜Ωm2

)2/(3+ε)

− 1. (53)

For ε = 0 we can see that on this occasion we do not recover
the corresponding value in the Λ-cosmology with GR. Com-
pare, in contrast, with Eq. (31) of the ΛH1− model. This
is because model ΛH2 does not have a smooth connection
with the concordance ΛCDM owing to the absence of a rigid
cosmological term in it.

The inflection point takes place at

ttr = 2H−1
0

(3 + ε) ˜ΩΛ2
ln

(
(3 + ε) ˜Ωm2

2

)
. (54)

The effective EoS for this model is given by

we f f = −1 + (3 + ε) ˜Ωm2

3h
(1 + z)(3+ε)/2. (55)

We can observe that we f f → −1 in the late time. There-
fore, the model corresponds to de Sitter in future time. The
EoS does not cross the phantom divide line w ≤ −1 which
shows that the ΛH2 model is free from big-rip singularity.
The present-day value of we f f is obtained as

we f f = −1 + (3 + ε) ˜Ωm2

3
. (56)

From Eq. (56), we can observe that the condition 3we f f +1 <

0 gives ˜Ωm2 < 2/(3 + ε). In particular, if ε = 0, we recover
the expression of all the cosmological parameters obtained
in Ref. [25], where the model was treated within GR.

Now, using the solution of H obtained in Eq. (44) into
consistent Eq. (37), we obtain

(ωε − 3)(3 + ε)(1 − ˜ΩΛ2)a− (3+ε)
2

− (ωε2 + 6ωε − 12)[ ˜ΩΛ2 + (1 − ˜ΩΛ2)a− (3+ε)
2 ] = 0. (57)

The above equation gives a relation between the constants
for a = a0 = 1, i.e., at present, which reads

(ωε − 3)(3 + ε)(1 − ˜ΩΛ2) − (ωε2 + 6ωε − 12) = 0. (58)

Again, in this model, one can use this equation for consis-
tency checkup and not for constraining the parameters.

4 Parameter estimation

In this section, we present the cosmic observations on the
free parameters of ΛH1 and ΛH2 models. To this end we will
use two joint observational set of data, as described below.
We perform the goodness-of-fit of the models using Markov
Chain Monte Carlo (MCMC) method by employing EMCEE
python package [87]. We also perform the model selection
criteria to determine favoured model. In what follows, we dis-
cuss the observational data which are to be used to constraint
the parameters of the models.

4.1 Hubble data

We use the Hubble data comprising of 36 measurements
which includes 31 measurements from cosmic chronomet-
ric (CC) method [88], three correlated measurements from
BAO signal in galaxy distribution [89], and lastly two mea-
surements from BAO signal in Ly-α forest distribution alone
or cross-correlated with quasistellar objects (QSOs) [90,91].

Thus, the chi-square function corresponding to 33 mea-
surements of CC and Ly-α is defined as

χ2
CC+Lyα =

33∑
i=1

[Hobs(zi ) − Hth(zi )]2

σ 2
i

, (59)

where Hth(zi ) and Hobs(zi ) represents theoretical and
observed values, respectively, and σ 2

i is the standard devi-
ation of each Hobs(zi ) as given in Table 2 of Ref. [92].

Further, the chi-squared corresponds to the 3 galaxy dis-
tribution measurements is given by

χ2
gal = ATC−1A (60)

where C is the covariance matrix given by [89]

C =
⎡
⎣3.65 1.78 0.93

1.78 3.65 2.20
0.93 2.20 4.45

⎤
⎦

and

A =
⎡
⎣Hobs(0.38) − Hth(0.38)

Hobs(0.51) − Hth(0.51)

Hobs(0.61) − Hth(0.61)

⎤
⎦ .

Thus, the combined χ2 function for Hubble data is given by

χ2
H = χ2

CC+Lyα + χ2
gal . (61)

4.2 Type Ia supernovae (Pantheon data)

We use the Pantheon sample, the latest compilation of Type
Ia supernovae (SNe) comprising of 40 binned data points in
the redshift region z ∈ [0.014, 1.62] [93].

123



960 Page 8 of 16 Eur. Phys. J. C (2021) 81 :960

The χ2 function of the Pantheon SNe data is given by

χ2
SNe(Pan) = ΔμT · C−1 · Δμ (62)

in which Δμ = μobs
i − μth , where μobs

i is the observed dis-
tance modulus defined in Ref. [94] and μth , the theoretical
distance modulus that depends on redshift and the cosmo-
logical parameters, is given by

μth = 5 log10[dL(z)/10 pc] + M , (63)

where M is the nuisance parameter. The quantity dL , known
as the dimensionless luminosity distance, is given by [93]

dL(z) = (1 + z)c
∫ z

0

dz′

H(z′, θ)
, (64)

where θ represents the set of model parameters and c is the
speed of light.

It should be noted that the covariance matrix C in (62)
is the sum of the systematic covariance Csys and statistical
matrix Dstat having a diagonal component [93,95].

4.3 BAO/CMB data set

We use the combined baryon acoustic oscillation and cos-
mic microwave background (BAO/CMB) data from differ-
ent observational missions [96]. We have taken the sample
of BAO distances measurements from SDSS(R) [97], the 6dF
Galaxy survey [98], BOSS CMASS [99] and three parallel
measurements from WiggleZ survey [100]. We combine the-
ses results with the Planck 2015 [101].

We use measurements derived from the product of the
CMB acoustic scale, and from the ratio of the BAO dilation
scale to the sound horizon scale at the drag epoch. Thus, we
can write the χ2 function as [96]

χ2
BAO/CMB = ATC−1A (65)

where C−1 is the inverse of the covariance matrix [96] and
A is the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dA(z∗,θ)
Dv(0.106,θ)

− 30.84

dA(z∗,θ)
Dv(0.35,θ)

− 10.33

dA(z∗,θ)
Dv(0.57,θ)

− 6.72

dA(z∗,θ)
Dv(0.44,θ)

− 8.41

dA(z∗,θ)
Dv(0.6,θ)

− 6.66

dA(z∗,θ)
Dv(0.73,θ)

− 5.43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, Dv(z, θ) represents the dilation scale which is given by

Dv(z, θ) =
(

d2
A(z,θ) zc
H(z,θ)

)1/3

. The comoving angular diame-

ter, dA(z, θ) is defined as

dA(z∗, θ) =
∫ z∗

0

dz′

H(z′, θ)
(66)

where z∗ indicates the photon decoupling redshift and hold
the value z∗ = 1090 as per the Planck 2015 results [101].
We have taken the correlation coefficient from Ref. [102].

4.4 Local Hubble constant

We use H0 = 73.5 ± 1.4 km s−1 Mpc−1 which is locally
measured by SH0ES as reported in [103] in our analysis.

In order to constrain the model parameters with the above
data sets we perform a Bayesian Markov Chain Monte Carlo
(MCMC) method. This method is based on the publicly avail-
able EMCEE package [87] for analysing and plotting the
contours. In our calculation, we have minimized the chi-
square for two combinations of data set, which we believe
are helpful for better fit values. The first one is labeled DS1
and contains SNe(Pan) + H(z) + BAO/CMB + H0. The
chi-square function for DS1 reads as χ2

DS1 = χ2
SNe(Pan) +

χ2
H + χ2

BAO/CMB + H0. The second is DS2 which contains
SNe(Pan) + H(z) + BAO/CMB and the total chi-square
function reads as χ2

DS2 = χ2
SNe(Pan) + χ2

H + χ2
BAO/CMB .

5 Results and discussion

In this section, we report the fitting results of the ΛH1, ΛH2

and ΛCDM models using the two data sets DS1 and DS2
defined in the previous section, and discuss the implications
of these results. Figures 1, 2, 3 and 4 show the constrained
parameter space for the ΛH1 and ΛH2 models under con-
sideration at 68.3 and 95.4% confidence level (CL) using
DS1 and DS2 data sets, respectively. The mean fitting results
obtained for both models with ΛCDM using DS1 and DS2
joint analysis are summarized in Table 1. We report uncer-
tainties corresponding to 1σ CL. The transition redshift ztr ,
the present values of deceleration parameter q0, effective EoS
parameter we f f (z = 0), and the present age of the Universe,
t0, for these models are given in Table 2. The χ2, reduced χ2

red
(= χ2/(N−d), where N is the number of observational data
and d is the number of free parameters), the model selection
criterion (AIC, BIC, ΔAIC and ΔBIC) of different models
are listed in Table 3. It is to be noted that we have taken
N = 83 for DS1 and N = 82 for DS2( 40 bin data points
of Pantheon, 36 data points of H(z), 06 of BAO/CMB and
01 of H0) and d = 4 for our joint observational analysis:
(H0, ε, ω,ΩΛ). In what follows, we present the analysis of
data in two parts: the cosmological parameters and the model
selection criterion.

5.1 Cosmological parameters

The evolution of the deceleration parameter, q, with the red-
shift for the best-fit values of the parameters is shown in
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Fig. 1 One dimensional and two-dimensional marginalized confidence regions for the model parameters of ΛH1 from DS1 data set

Fig. 5. It is observed that there is a sign change in each tra-
jectory of q(z) from positive to negative showing that the
Universe transits from decelerated phase to accelerated phase
(positive values of q indicate decelerating expansion while
negative values indicate an accelerating evolution). We find
that the ΛH1-model transits at around ztr = 0.574+0.360

−0.324 with

DS1 data and ztr = 0.601+0.339
−0.343 with DS2 data, which are lit-

tle smaller than ΛCDM model. However, model ΛH2 transits
at around ztr = 0.821+0.201

0.103 with DS1 data and 0.763+0.245
−0.167

with DS2 data, which are higher than the transition value of
ΛCDM model. The present-day values of q0 and the tran-
sition redshift ztr are listed in Table 2. It is found that the
present value of q for ΛH1 is q0 = −0.580+0.210

−0.160 using DS1

data and q0 = −0.610+0.176
−0.190 using DS2 data. However, the

present values of q for ΛH2 model are q0 = −0.421+0.386
−0.288

and −0.388+0.294
−0.630 using DS1 and DS2 data, respectively.

We observe that both the values of q0 for data set DS1 and
DS2 in ΛH1 model are very close to observational constraint
q0 	 −0.63 ± 0.12 [104,105], and are smaller than these
values in ΛH2 model. It is to be noted that q tends to −1 in
late times for both the models.

The evolution of the effective EoS parameter we f f with
redshift z is plotted in Fig. 6 for the different models with
their respective best fit values. The present values of ωe f f are
listed in Table 2 for data sets DS1 and DS2. The present val-
ues of we f f for ΛH1 model are we f f (z = 0) = −0.675+0.173

−0.123

and we f f (z = 0) = −0.680+0.172
−0.120 whereas for ΛH2 model,

we have we f f (z = 0) = −0.615+0.257
−0.259 and we f f (z = 0) =

−0.592+0.196
−0.435 for the data sets DS1 and DS2, respectively.

These values are comparatively higher than the ΛCDM
model. It is also observed from Fig. 6 that we f f becomes pos-
itive at high redshifts, which represents the early decelerated
phase. In late times, we f f approaches to −1 for all these mod-
els, thus leading to Einstein-de-Sitter behavior. These mod-
els do not cross the phantom-divide line we f f = −1, which
shows that they are free from big-rip singularity. Thus, we f f

can easily accommodates both phases of the cosmic evolu-
tion, i.e., early decelerated phase and late-time accelerated
phase.

The evolutions of the age of the Universe with redshift for
the best estimates of model parameters using DS1 and DS2
data sets are given in Table 2. The age of the Universe for
ΛH1 and ΛH2 models are t0 = 13.69+1.829

−1.548 Gyrs and t0 =
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Fig. 2 One dimensional and two-dimensional marginalized confidence regions for the model parameters of ΛH1 from DS2 data set

14.18+1.419
−1.421 Gyrs for DS1 data set, and t0 = 13.73+1.941

−1.419 Gyrs

and t0 = 14.14+1.502
−1.513 Gyrs for DS2 data set, respectively. In

our finding, the large errors on the ages of the Universe for
models are reported.

From Table 1, we observe that the current Hubble constant
H0 for ΛH1, ΛH2 and ΛCDM models constrained from DS2
are a bit higher than the constrained observed from the Planck
mission (H0 = 67.8 ± 0.9 km s−1 Mpc−1) [106]. However,
the addition of local H0, namely DS1 data set, makes the con-
straint on H0 bigger for these models. It is to be noted that the
improved local measurement H0 = 73.5±1.4 km s−1 Mpc−1

reported by SH0ES [103] exhibits a strong tension with the
Planck mission data [107]. Let us note that in the paper [108]
it has been shown that true quintessence models show a pref-
erence for lower values of H0 relative to the ΛCDM model;
and this is true even for coupled quintessence, as recently
shown in [109]. Let us, however, emphasize that there are
dynamical DE models in the market which show an effec-
tive quintessence behavior (i.e. they mimic quintessence in
that the DE density diminishes with the expansion) but they
are nevertheless very different from true quintessence mod-
els based on scalar fields. Some of these models mimicking

quintessence behavior can have an impact on the H0 tension
(and even on the σ8) one. Such is the case e.g. for the running
vacuum models (RVMs), see the recent work [74]. It is also
interesting to remark that BD cosmology can help to relax
these tensions, as shown in [61,62], the reason being that
BD cosmology with a CC term can mimic the RVM behav-
ior [81]. Our present study further reinforces such welcome
property of BD models possessing vacuum energy.

Figures 7 and 8 display the Hubble diagram with the error
bar of Hubble data set in the range z ∈ (0, 4) for DS1 and
DS2 data sets. For the sake of comparison, the flat ΛCDM
scenario is also shown. The evolutions of H(z) of ΛH1 and
ΛH2 model are comparatively similar to the ΛCDM model.
At low redshifts, the cosmological evolutions of models ΛH1

and ΛH2 are consistent with the Hubble data.

5.2 Model selection

Taking into account that models ΛH1 and ΛH2 have the
same number of extra parameters (λ and σ , respectively),
we could directly compare them on the basis of computing
the minimum χ2 values for each model. But when we com-
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Fig. 3 One dimensional and two-dimensional marginalized confidence regions for the model parameters of ΛH2 from DS1 data set

pare them with the concordance ΛCDM model, the χ2 com-
parison becomes unfair because in the context of BD theory
the number of parameters is different. In our approach two
more parameters, ε and ω, have to be considered which are
not involved in the concordance model. For this reason we
employ the Akaike Information Criterion (AIC) [110] and
the Bayesian Information Criterion (BIC) [111] so as to do
a fairer model comparison, see e.g. [112] for a review. The
AIC parameter is defined through the relation

AIC = χ2
min + 2d, (67)

where d is the number of free parameters in the model and
χ2
min is the minimum value of the χ2 function. We calculate

ΔAICi = AICi − AIC j , where i, j denote respectively
the model i and model j . This is interpreted as “evidence
in favour” of the model i compared to the model j . The
preferred model for this criterion is one with the smaller
value of AIC.

On the other hand, the BIC is defined through the relation

BIC = χ2
min + d ln N , (68)

where N is the number of data points. Similar to ΔAIC , we
have ΔBIC = BICi − BIC j . This can be interpreted as
“evidence against” the model i compared to the model j .

To be more precise, a model having 0 ≤ ΔAIC < 2 and
0 ≤ ΔBIC < 2 receives “strong evidence in favour”. In
contrast, for 2 < ΔAIC < 4 and for 2 ≤ ΔBIC < 6,
the model has “average evidence in favour”, whereas for 4 <

ΔAIC < 7 and 6 ≤ ΔBIC < 10, the model is considered to
have “less evidence in favour”; and, finally, for ΔAIC > 10
or ΔBIC > 10, the model receives no significant support
since it has “no evidence in favour” [112].

In Table 3, we present the values of χ2, AIC, BIC and
their differences for the discussed models. From Table 3, we
find that ΛH1 has ΔAIC∼ 2.16 and ΔAIC∼ 2.59, whereas
it has ΔBIC∼ 4.58 and ΔBIC∼ 4.99 from DS1 and DS2
data sets, respectively. We see that the ΛH1 model is in the
range of 2 ≤ ΔAIC < 4 and 2 ≤ ΔBIC < 6. Thus, this
model shows average evidence in favour. However, the ΛH2

model has ΔAIC∼ 4.16 and ΔAIC∼ 6.73, and ΔBIC∼ 6.58
and ΔBIC∼ 9.13 from DS1 and DS2 data sets, respectively.
Since, this model shows the differences in the range of 4 <

ΔAIC < 7 and 6 ≤ ΔBIC < 10, therefore, this model has
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Fig. 4 One dimensional and two-dimensional marginalized confidence regions for the model parameters of ΛH2 from DS2 data set

Table 1 The fitting values for the considered models (ΛH1, ΛH2 and ΛCDM) obtained from two different joint analysis of data sets, namely
DS1:SNe(Pan) + H(z) + BAO/CMB + H0 and DS2:SNe(Pan) + H(z) + BAO/CMB

Parameter DS1 DS2
ΛH1 ΛH2 ΛCDM ΛH1 ΛH2 ΛCDM

H0 71.090+0.743
−0.627 70.858+0.729

−0.969 71.545+1.175
−0.820 69.603+1.081

−1.100 68.643+0.942
−1.111 68.545+2.102

−1.742

ε 0.070+0.005
−0.005 0.406+0.053

−0.055 − 0.068+0.005
−0.004 0.344+0.051

−0.044 −
ω 25.40+0.004

−0.003 15.783+7.744
−7.968 − 26.231+0.002

−0.003 15.801+8.492
−10.684 −

ΩΛ 0.73+0.133
−0.183 0.74+0.102

−0.229 0.68+0.015
−0.010 0.72+0.142

−0.169 0.76+0.148
−0.123 0.69+0.032

−0.028

Table 2 The numerical values of atr , ztr , q0, we f f (z = 0) and t0 using best-fit results of model parameters

Values DS1 DS2
ΛH1 ΛH2 ΛCDM ΛH1 ΛH2 ΛCDM

ztr 0.574+0.360
−0.324 0.821+0.201

−0.103 0.701+0.024
−0.020 0.601+0.339

−0.343 0.763+0.245
−0.167 0.672+0.028

−0.025

q0 −0.580+0.210
−0.160 −0.421+0.386

−0.288 −0.594+0.014
−0.018 −0.610+0.170

−0.190 −0.388+0.294
−0.630 −0.554+0.024

−0.030

we f f (z = 0) −0.675+0.173
−0.123 −0.615+0.257

−0.259 −0.729+0.009
−0.012 −0.680+0.172

−0.120 −0.592+0.196
−0.435 −0.703+0.016

−0.020

t0 (in Gyrs) 13.69+1.829
−1.548 14.18+1.419

−1.421 13.48+0.450
−0.230 13.73+1.941

−1.419 14.14+1.502
−1.513 13.69+0.09

−0.09
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Table 3 Summary of χ2, χ2
red , AIC and BIC values and their differences from the reference model of ΛCDM obtained from joint analysis of

DS1 and DS2 data sets

Data Model χ2 χ2
red AIC BIC ΔAIC ΔBIC

DS1 ΛCDM 34.78 0.43 40.78 48.04 0 0

ΛH1 34.94 0.44 42.94 52.62 2.16 4.58

ΛH2 36.94 0.47 44.94 54.62 4.16 6.58

DS2 ΛCDM 34.69 0.44 40.69 47.91 0 0

ΛH1 35.28 0.45 43.28 52.90 2.59 4.99

ΛH2 39.42 0.51 47.42 57.04 6.73 9.13

Fig. 5 The redshift evolution of the deceleration parameter for ΛH1
and ΛH2 models obtained from observational data sets DS1 and DS2.
A dot denotes the current value of q (hence q0)

“less evidence in favour”. The AIC and BIC impose a strict
penalty against the presence of additional parameters.

In Table 3, we give the values of χ2
min . We find, among

the models, the ΛCDM model is still the best one in fitting
the current observational data. The ΛCDM has least number
of parameters, but it gets the smallest χ2

min value in this fit.
The ΛH1 and ΛH2 models have one more parameter than the
ΛCDM model. However, ΛH1 yields very close χ2

min values
to that of ΛCDM from the two datasets ,DS1 and DS2, whilst
ΛH2 renders corresponding higher values. The reduced χ2

red
of both the models is less than one (cf. Table 3), so overall
these two models can be considered in good agreement with
the ΛCDM model and data are consistent with the considered
models. Model ΛH1 seems to be the closest. Therefore, our
analysis suggests that the BD version of the Λ-cosmology is
on an essentially equal footing position as compared to the
concordance model in the light of our fits.

6 Conclusion

Among the many proposals to describe the late time accel-
eration of the Universe, the cosmological constant (CC) is
the simplest candidate to provide an explanation. It defines
the standard or concordance ΛCDM model, and it is referred
to also as the Λ-cosmology. In this paper, we have studied

Fig. 6 The redshift evolution of effective EoS parameter for ΛH1 and
ΛH2 models using DS1 and DS2 data sets. A dot denotes the present
value of the EoS parameter

Fig. 7 Variation of the Hubble function as a function of the redshift z
for the best-fit value of the models using DS1 data set. The observational
36 H(z) points are shown with error bars (grey colour). The variation of
the Hubble function in the standard ΛCDM model is also represented
as the solid curve

if the Λ-cosmology, which in its standard version is imple-
mented through general relativity (GR), can be realized too
in the context of Brans–Dicke (BD) gravity and with a sim-
ilar or better level of achievement. We have assumed, as in
many other studies in the literature, that the local constraints
imposed on BD gravity can be avoided by resorting to the
presence of screening forces, which do not affect the study
of cosmology at the level of the large scales. To make our
study of BD cosmology more complete, we have explored
the possibility to add some dynamical component to the vac-
uum energy in the BD framework. For such purpose we have
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Fig. 8 Variation of the Hubble function as a function of the redshift z
for the best-fit value of the models using Ds2 data set. The observational
36 H(z) points are shown with error bars (grey colour). The variation of
the Hubble function in the standard ΛCDM model is also represented
as the solid curve

explored theoretical and observational features of a simple
class of cosmological models driven by a time-varying vac-
uum energy density for a spatially flat FRW spacetime in BD
theory, hence beyond the GR paradigm underlying the stan-
dard ΛCDM model. Such class of models is characterized
by a time-evolving CC of the form Λ = λ + σH . We have
solved these models searching for power-law solutions and
checked the consistency of the obtained solutions. We have
separately solved the two particular cases Λ = λ (model
ΛH1) and Λ = σH (model ΛH2) as well as the general case
with arbitrary λ and σ . For the numerical analysis we have
used the latest observational measurements of SnIa (Pan-
theon), H(z), BAO/CMB and local H0. The corresponding
results are presented in Table 1 while Figs. 1, 2, 3 and 4 show
the confidence contours for the different parameters. The two
models ΛH1 and ΛH2 have been analyzed using two data sets
DS1 and DS2, where the local H0 value is only included in
the first set. Upon using the model selection criteria AIC and
BIC, we find that for both data sets the phenomenological
performance of model ΛH1 is better than that of ΛH2, but
both models are acceptable for the description of the data.
The more general model Λ = λ + σH only interpolates
between the two former ones. Since the description of the
data does not improve with a nonvanishing value of σ , we
conclude that the BD version of the Λ-cosmology is the pre-
ferred option and it proves comparable to the conventional
ΛCDM in light of our fitting results.

The observational analysis shows that both the models
ΛH1 and ΛH2 exhibit the same characteristics concerning
the evolution of the Universe, i.e., they describe the transition
from a decelerated to an accelerated phase. In both cases the
effective equation of state (EoS) performs an evolution from
we f f = 0 in the remote past to we f f = −1 in the remote
future without crossing the phantom divide w = −1. At late-
time, the deceleration parameter q tends also to −1, showing
that these models predict de Sitter behavior in the future.
In the case of ΛH1, the current value is q0 	 −0.6, thus

similarly to the concordance model, whereas for model ΛH2

it is smaller in absolute value (q0 	 −0.4), see Table 2 for
detailed results.

Using the fitting values of the parameters listed in Table 1
into the consistency relation (39), it has been found that the
ΛH1 model has ΩΛ = 0.728+0.213

−0.173 with DS1 data set and

ΩΛ = 0.733+0.222
−0.146 with DS2 data set. The errors are sizeable,

but even at the level of the best fit values these results are per-
fectly consistent with those obtained from the observations
using DS1 and DS2 data sets, viz., ΩΛ = 0.73+0.133

−0.183 and

ΩΛ = 0.72+0.142
−0.169, respectively (cf. Table 1). As for model

ΛH2, using the fitting values of that table into the consistency
relation (58) we findΩΛ = −1.658+0.826

−11.361 with DS1 data and

ΩΛ = −2.025+0.985
−2.722 with DS2 data set. These numerical val-

ues are inconsistent with the fitting values of ΩΛ obtained for
DS1 and DS2. The latter remain nonetheless in the approx-
imate range ΩΛ = 0.72 − 0.77 (using the errors) for both
data sets (cf. Table 1). Therefore, we find that in the con-
text of our analysis the performance of model ΛH1 is very
similar to that of the standard ΛCDM model. At the level of
information criteria it is at the border line of not implying
any significant difference with the standard Λ-cosmology.
On the other hand, ΛH1 satisfies remarkably well the con-
sistency equation (39). In stark contrast, despite the quality
fit of the ΛH2 is lesser, it is still a reasonable one for the
DS1 data while it is not so good for DS2. In addition, the
model does not adapt to the consistency condition (58). We
should emphasize that this is not caused by any analytical
inconsistency in our study, the discrepancy is only numeri-
cal because of assuming a power-law relation between the
scalar field and the scale factor. Such relation may not be
a perfect choice for the solutions of the BD field equations
in the case of the ΛH2 model, and this means that a more
general family of solutions is needed. Let us, however, note
that it is difficult to explore other kind of analytical solutions
for the complicated system of BD equations and one may be
forced to go fully numerical in this case. The dynamics of
model ΛH1, instead, adapts well to the power-law solution
since the numerical consistency is manifest. Recall from the
footnote on page 9 that model ΛH1 has a smooth analytic
limit to GR for ε → 0. In the case of model ΛH2 we do
not expect such limit to hold since its effective cosmological
term is not constant at any time and hence there is no smooth
connection with the concordance ΛCDM model. This can
also explain why this model does not adapt equally well to
the same power-law family of solutions as for model ΛH1.

The main conclusion of our study is in our opinion sig-
nificant. We have shown that model ΛH1, namely the Λ-
cosmology in the context of the BD theory, is more favored
than ΛH2 and is comparable to the concordance ΛCDM
model within GR. Since for model ΛH1 the consistency rela-
tion is fully realized also at the numerical level we can say
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that this claim is robust. In the case of model ΛH2 it is only
indicative. This does not preclude, however, the possibility
that other forms of dynamical Λ can improve the perfor-
mance of BD theory as compared to the standard ΛCDM
model. In the meantime our analysis shows that of all the
possible dynamical models Λ = λ + σH within the BD
paradigm, the most promising ones are those with σ 	 0.
Notwithstanding, this conclusion should not be interpreted
as saying that a rigid cosmological term in BD theory is
equivalent to the effect of a rigid cosmological term in GR.
As previously noted, model ΛH1 despite it being associated
to a rigid cosmological constant term in the BD context, it
is perceived as a running vacuum model from the point of
view of GR . This fact is helpful since it is known that the
running vacuum model performs a fit to the overall cosmo-
logical data which is competitive with that of the concordance
model [74]. Only future studies can reveal if Brans–Dicke
gravity with a rigid cosmological term can be fully competi-
tive with GR in all aspects of the observational cosmological
data, and to which extent it may be necessary to introduce
a dynamical component in it. Here we have shown that the
Λ-cosmology in such BD context is not second rate as com-
pared to the GR version, and that the addition of the simplest
possible dynamical component to the vacuum energy does
not perturb exceedingly this conclusion.
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Appendix A: Time-varying model Λ = λ + σ H within
the BD theory

In this appendix, we briefly provide the analytical solution
of the time varying Λ(t) model Λ = λ + σH , as defined in

Eq. (19) of the main text, in its general form, i.e. for arbitrary
values of λ �= 0 and σ �= 0, and within the Brans–Dicke
context.

Using this form of Λ(t) into Eq. (18), the evolution equa-
tion for the Hubble function can be rewritten as

Ḣ + (3 + ε)

2
H2 − 3σ

(6 + 6ε − ωε2)
H − 3λ

(6 + 6ε − ωε2)
= 0.

(69)

The solution to this differential equation reads as follows:

H = H0

[
3σ

(6 + 6ε − ωε2)(3 + ε)
+ α

(
e(3+ε)α t + 1

e(3+ε)α t − 1

)]
,

(70)

where α =
√

9σ 2+6λ(6+6ε−ωε2)(3+ε)

(6+6ε−ωε2)(3+ε)
.

The solution of the scale factor is given by

a(t) =
(
e(3+ε)α t − 1

) 1
3+ε

e

(
3

(6+6ε−ωε2)(3+ε)
−1

)
α t

. (71)

In this case, the deceleration parameter is obtained as

q = −1 + 2α2(3 + ε) e(3+ε)α t

(
3σ

(6+6ε−ωε2)(3+ε)
+ α

(
e(3+ε)α t+1
e(3+ε)α t−1

))2 (
e(3+ε)α t − 1

)2
.

(72)

Lastly, the effective EoS parameter can be worked out with
the following result:

we f = −1 + 2

3

2α2(3 + ε) e(3+ε)α t

(
3σ

(6+6ε−ωε2)(3+ε)
+ α

(
e(3+ε)α t+1
e(3+ε)α t−1

))2 (
e(3+ε)α t − 1

)2
.

(73)

The above solution of cosmological parameters are found
in terms of exponential form which show that the model can
accommodate the late time acceleration. It can also be shown
that ΛH1 and ΛH2 models are particular solutions of the
above general vacuum model.
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