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Abstract We study supersymmetric AdS4 black holes in
matter-coupled N = 3 and N = 4 gauged supergravities
in four dimensions. In N = 3 theory, we consider N = 3
gauged supergravity coupled to three vector multiplets and
SO(3) × SO(3) gauge group. The resulting gauged super-
gravity admits two N = 3 supersymmetric AdS4 vacua
with SO(3) × SO(3) and SO(3) symmetries. We find an
AdS2 × H2 solution with SO(2) × SO(2) symmetry and
an analytic solution interpolating between this geometry and
the SO(3) × SO(3) symmetric AdS4 vacuum. For N = 4
gauged supergravity coupled to six vector multiplets with
SO(4) × SO(4) gauge group, there exist four supersym-
metric AdS4 vacua with SO(4) × SO(4), SO(4) × SO(3),
SO(3)× SO(4) and SO(3)× SO(3) symmetries. We find a
number of AdS2 × S2 and AdS2 × H2 geometries together
with the solutions interpolating between these geometries
and all, but the SO(3) × SO(3), AdS4 vacua. These solu-
tions provide a new class of AdS4 black holes with spherical
and hyperbolic horizons dual to holographic RG flows across
dimensions from N = 3, 4 SCFTs in three dimensions to
superconformal quantum mechanics within the framework
of four-dimensional gauged supergravity.

1 Introduction

String/M-theory has provided a number of insights to various
aspects of quantum gravity for many decades. In particular, a
resolution for a long-standing problem of black hole entropy
has been proposed in [1]. After this pioneering work, many
other papers followed and clarified the issues of microscopic
entropy of asymptotically flat black holes. For asymptotically
AdS4 black holes, a concrete result on the corresponding
microscopic entropy, using AdS/CFT correspondence [2–4],
has appeared recently in [5–7], see also [8–12].
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On the gravity side, an important ingredient along this line
is AdS4 black hole solutions interpolating between asymp-
totic AdS4 and AdS2 ×�2 spaces with �2 being a Riemann
surface. The latter describes the geometry of the black hole
horizon with the values of scalars determined by the attrac-
tor mechanism. These solutions holographically describe
RG flows across dimensions from three-dimensional SCFTs,
dual to the AdS4 vacua, to superconformal quantum mechan-
ics, dual to the AdS2 factor of the horizons. The latter is
obtained from twisted compactifications of the former which
play an important role in computing Bekenstein–Hawking
entropy of the black holes via twisted indices.

In this paper, we are interested in supersymmetric AdS4

black holes with the horizon geometry AdS2 × S2 and
AdS2 × H2 with S2 and H2 being a two-sphere and a two-
dimensional hyperbolic space, respectively. We will work in
matter-coupled N = 3 and N = 4 gauged supergravities.
This type of solutions has been extensively studied in N = 2
gauged supergravity for a long time [13–19], see also [20] for
some results in N = 8 gauged supergravity. Similar studies
in other gauged supergravities have appeared only recently
in [21–24]. In particular, a study of AdS2 × �2 solutions
in N = 3 with only magnetic charges has been initiated in
[21]. We will extend this result by performing a more sys-
tematic analysis and including a possible dyonic generaliza-
tion. We will consider a particular case of N = 3 gauged
supergravity coupled to three vector multiplets with a com-
pact SO(3)× SO(3) gauge group. We will see that only one
magnetic AdS2 × H2 solution with SO(2) × SO(2) sym-
metry exists. This is very similar to solutions in N = 5 and
N = 6 gauged supergravities given in [23,24].

For N = 4 case, we will consider N = 4 gauged super-
gravity coupled to six vector multiplets with SO(4)×SO(4)

gauge group. Unlike the N = 3 theory with a purely electric
gauging, any N = 4 supergravity that admits supersymmet-
ric AdS4 vacua must be dyonically gauged [25]. In this case,
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apart from an AdS2 × H2 solution similar to N = 3, 5, 6
gauged supergravities, there exist a number of supersym-
metric AdS2 × S2 and AdS2 × H2 solutions. It should also
be pointed out that some AdS2 × �2 solutions in N = 4
gauged supergravity obtained from a truncation of eleven-
dimensional supergravity have also been found in [22]. How-
ever, in that case, the gauge group is of non-semisimple
form, and the resulting BPS equations are highly compli-
cated. In the present work, we provide a number of much
simpler examples of supersymmetric AdS4 black holes in
N = 4 gauged supergravity. In particular, the two-form fields
required by the consistency of incorporating magnetic gauge
fields can be truncated out in the present case.

The paper is organized as follows. In Sect. 2, we
will review the structure of N = 3 gauged supergravity
after translating the original construction in group mani-
fold approach to the usual formulae in space-time. This
is followed by a general analysis of relevant BPS equa-
tions for finding supersymmetric AdS4 black hole solutions.
An AdS2 × H2 solution with SO(2) × SO(2) symmetry
together with the full flow solution interpolating between
this fixed point and the supersymmetric AdS4 vacuum with
SO(3)× SO(3) symmetry are also given. Similar analysis is
then performed in Sect. 3 in which we will find a number of
AdS2×S2 and AdS2×H2 fixed points and solutions interpo-
lating between them and supersymmetric AdS4 vacua with
various unbroken symmetries in N = 4 gauged supergravity.
We end the paper by giving conclusions and comments on
the results in Sect. 4.

2 AdS4 black holes from N = 3 gauged supergravity

In this section, we consider matter-coupled N = 3 gauged
supergravity and possible supersymmetric AdS4 black holes.
We begin with a review of N = 3 gauged supergravity and
the analysis of relevant BPS equations. These are followed
by the explicit solutions at the end of the section.

2.1 Matter-coupled N = 3 gauged supergravity

We now give a description of N = 3 gauged supergravity
coupled to n vector multiplets. This has been constructed by
the geometric group manifold approach in [26], see also [27,
28]. However, the final form of the space-time Lagrangian
has not been given, and the supersymmetry transformations
of fermions have been given in a rather implicit form. We
will first collect all these ingredients and specify to the case
of n = 3 vector multiplets later on. The interested reader
can find a more detailed construction and some discussions
on the structure of the scalar manifold and electric-magnetic
duality in [26]. We will mostly follow the notations of [26]

but in a mostly plus signature for the space-time metric and
a slightly different convention for the gauge fields.

For N = 3 supersymmetry in four dimensions, there are
two types of supermultiplets, the gravity and vector multi-
plets. The former consists of the following component fields

(eaμ,ψμA, AA
μ, χ).

eaμ is the graviton, and ψμA are three gravitini. Space-time
and tangent space indices will be denoted by μ, ν, . . . and
a, b, . . . , respectively. The gravity multiplet also contains
three vector fields AA

μ with indices A, B, . . . = 1, 2, 3 denot-
ing the fundamental representation of the SU (3)R part of the
full SU (3)R ×U (1)R R-symmetry. There is also an SU (3)R
singlet spinor field χ .

N = 3 supersymmetry allows the gravity multiplet to
couple to an arbitrary number of vector multiplets, the only
matter fields in this case. The component fields in a vector
multiplet are given by the following field content

(Aμ, λA, λ, zA)

consisting of a vector field Aμ, four spinor fields λ and λA

which are respectively singlet and triplet of SU (3)R , and
three complex scalars zA in the fundamental of SU (3)R . We
will use indices i, j, . . . = 1, . . . , n to label each vector mul-
tiplet.

The fermionic fields are subject to the chirality projection
conditions

ψμA = γ5ψμA, χ = γ5χ, λA = γ5λA, λ = −γ5λ. (1)

These also imply ψ A
μ = −γ5ψ

A
μ and λA = −γ5λ

A for the
corresponding conjugate spinors.

In the matter-coupled supergravity with n vector multi-
plets, there are 3n complex scalar fields ziA parametrizing
the coset space SU (3, n)/SU (3) × SU (n) × U (1). These
scalars are conveniently described by the coset representa-
tive L�

�. The coset representative transforms under the global
G = SU (3, n) and the local H = SU (3) × SU (n) × U (1)

symmetries by left and right multiplications, respectively.
The SU (3, n) indices �,�, . . . will take values 1, . . . , n+3.
On the other hand, it is convenient to split the SU (3) ×
SU (n)×U (1) indices �,�, . . . as (A, i). We can then write
the coset representative as

L�

� = (L A
�, Li

�). (2)

The n + 3 vector fields from both the gravity and vec-
tor multiplets are combined into A�

μ = (AA
μ, Ai

μ). These
are called electric vector fields that appear in the Lagrangian
with the usual Yang–Mills (YM) kinetic terms. Accompa-
nied by the corresponding magnetic dual A�μ, these vector
fields transform in the fundamental representation n + 3 of
the global symmetry group SU (3, n), also called the duality
group.
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For the gaugings of the matter-coupled N = 3 supergrav-
ity, we will follow the original result of [26] since the com-
plete modern approach using the embedding tensor has not
been worked out so far. For general gaugings obtained from
the embedding tensor formalism, both electric and magnetic
gauge fields can participate in the gaugings. The construc-
tion of [26], called electric gaugings, with only electric vector
fields becoming the gauge fields results in gauge groups that
only account for a smaller class of all possible gaugings. All
gauge groups considered in [26] are subgroups of SO(3, n)

which is the electric subgroup of the full global symmetry
SU (3, n).

After gauging a particular subgroup G0 of SO(3, n) ⊂
SU (3, n), the corresponding non-abelian gauge field strengths
are given by

F� = d A� + f�	
�A� ∧ A	 (3)

where f��
	 denote the structure constants of the gauge

group. The gauge generators T� satisfy

[T�, T�] = f 	
��T	. (4)

Indices �,�, . . . can be raised and lowered by the SU (3, n)

invariant tensor

J�� = J�� = (δAB,−δi j ) (5)

which will become the Killing form of the gauge groupG0. In
order for the gaugings to be consistent with supersymmetry,
the structure constants f��	 need to satisfy the following
constraint

f��	 = f �
�� J�	 = f[��	] (6)

which is equivalent to the linear constraint in the embedding
tensor formalism. Some examples of possible gauge groups
are SO(3)×Hn , SO(3, 1)×Hn−3 and SO(2, 2)×Hn−3 with
Hn being an n-dimensional compact subgroup of SO(n) ⊂
SU (n). These gaugings together with possible supersymmet-
ric AdS4 vacua and domain walls have already been studied
in [33].

With the fermion mass terms and the scalar poten-
tial included as required by supersymmetry, the bosonic
Lagrangian of the N = 3 gauged supergravity can be written
as

e−1L = 1

4
R − 1

4
Pi A

μ Pμ
Ai − a��F+�

μν F+�μν

−ā��F−�
μν F−�μν − V . (7)

This Lagrangian is obtained from translating the first-order
Lagrangian in the geometric group manifold approach given
in [26] to the usual space-time Lagrangian. We have also

multiplied the whole Lagrangian by a factor of 3 resulting in
a factor of 3 in the scalar potential given below as compared
to that given in [26].

The self-dual and antiself-dual field strengths are defined
by

F±�
ab = 1

2

(
F�
ab ∓ i

2
εabcd F

�cd
)

(8)

which satisfy the following relations

1

2
εabcd F

±�cd = ±i F±�
ab and F±�

ab = (F∓�
ab )∗. (9)

To write down the explicit form of the scalar matrix a��

in terms of the coset representative, we first identify various
components of the coset representative as

L�
� =

(
L A

B L A
i

L j
B L j

i

)
. (10)

The symmetric matrix a�� can be written as

a�� = (f†−1
h†)�� (11)

in which the matrices f�� = (L�
A, (L�

i )∗) and h�� =
−(J f J )�� are given explicitly by

f�� =
(
LA

B (LA
i )∗

L j
B (L j

i )∗
)

and h�� =
(

LA
B −(LA

i )∗
−L j

B (L j
i )∗

)
.

(12)

The scalar kinetic terms are written in terms of the vielbein
on the SU (3, n)/SU (3) × SU (n) ×U (1) obtained from the
Maurer–Cartan one-form


�

� = (L−1)��dL
�

� + (L−1)�� f�
	AL�

	 (13)

via the components

PA
i = A

i = (i
A)∗. (14)

We also note that the upper and lower indices of SU (3) and
SU (n) are related by complex conjugation. Since L�

� is
an element of SU (3, n), the inverse (L−1)�

�
satisfies the

following relation

(L−1)�� = J�� J��(L�

�)∗. (15)

The composite connections QB
A , Q j

i and Q for the SU (3) ×
SU (n) ×U (1) local symmetry are given by

B
A = QB

A − nδBA Q and 
j
i = Q j

i + 3δ
j
i Q (16)
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with QA
A = Qi

i = 0.
The scalar potential is given by

V = −2SAB S
AB + 2

3
UAU A + 1

6
Ni AN i A + 1

6
Mi B

A MA
i B

= 1

8
|CB

i A|2 + 1

8
|CPQ

i |2 − 1

4

(
|CPQ

A |2 − |CP |2
)

(17)

with CP = −CM
PM . Various components of the fermion-

shift matrices are defined in terms of the “boosted” structure
constants

C�
�	 = L�

�(L−1)�
�

(L−1)	
	
f�	

� and

C�
�	 = J��′ J��′

J		′
(C�′

�′	′)∗ (18)

as

SAB = 1

4

(
εBPQC

PQ
A + εABCC

MC
M

)

= 1

8

(
CPQ

A εBPQ + CPQ
B εAPQ

)
,

U A = −1

4
CMA
M , Ni A = −1

2
εAPQC

PQ
i ,

MB
i A = 1

2
(δBAC

M
iM − 2CB

i A). (19)

Finally, the fermionic supersymmetry transformations
obtained from the rheonomic parametrization of the fermionic
curvatures are given by1

δψμA = DμεA − εABCG
B
μνγ

νεC + SABγμεB, (20)

δχ = −1

4
GA

μνγ
μνεA + U AεA, (21)

δλi = −PA
iμγ μεA + Ni AεA, (22)

δλi A = −PB
iμγ μεABCεC − 1

2
Giμνγ

μνεA + MB
i AεB . (23)

The covariant derivative for εA is defined by

DεA = dεA + 1

4
ωabγabεA + QB

AεB + 1

2
nQεA. (24)

The field strengths appearing in the supersymmetry transfor-
mations are given by

GA
μν = Re a��L�

AF+�
μν = MAB(L−1)�B F

+
�μν, (25)

Gi
μν = Re a��(L�

i )∗F+�
μν = −Mi j (L−1)�j F

−
�μν (26)

where Mi j and MAB are respectively inverse matrices of

Mi j = (L−1)�i (L−1)�j J�� and

MAB = (L−1)�A (L−1)�B J��. (27)

1 We also note an additional factor of 1
2 in the gauge field strengths

due to different conventions for differential forms, namely F�
here =

1
2 F

�
μνdx

μ ∧ dxν while F�
[26] = F�

μνdx
μ ∧ dxν .

2.2 BPS equations for supersymmetric AdS4 black holes

We now look at the BPS equations for supersymmetric AdS4

black holes with the near horizon geometry given by AdS2 ×
�2. The metric ansatz is taken to be

ds2 = −e2 f (r)dt2 + dr2 + e2h(r)(dθ2 + F(θ)2dφ2) (28)

with F(θ) defined by

F(θ) = sin θ and F(θ) = sinh θ (29)

for �2 = S2 and �2 = H2, respectively. The functions
f (r) and h(r) together with all other non-vanishing fields
only depend on the radial coordinate r . With the following
choice of vielbein

et̂ = e f dt, er̂ = dr, eθ̂ = ehdθ, eφ̂ = eh F(θ)dφ,

(30)

it is straightforward to compute non-vanishing components
of the spin connection

ωt̂ r̂ = f ′et̂ , ωθ̂ r̂ = h′eθ̂ ,

ωφ̂r̂ = h′eφ̂ , ωθ̂φ̂ = F ′(θ)

F(θ)
e−heφ̂ . (31)

For clarity, we have used the values of flat indices as
a, b, . . . ,= (t̂, r̂ , θ̂ , φ̂).

In the present paper, we are interested in a simple N = 3
gauged supergravity coupled to n = 3 vector multiplets with
a compact gauge group SO(3)× SO(3). The non-vanishing
components of f��	 are given by

f 	
�� = (g1εABC , g2εi jk). (32)

We also recall that the SO(3) × SO(3) gauge group is elec-
trically gauged with the corresponding gauge fields being the
vector fields appearing in the ungauged Lagrangian with YM
kinetic terms. To avoid confusion, we will call the first SO(3)

factor SO(3)R since this factor is embedded in SU (3)R R-
symmetry.

To preserve some amount of supersymmetry, we imple-
ment a topological twist by turning an SO(2) ∼ U (1) ⊂
SO(3)R ⊂ SU (3)R gauge field along �2. In addition, we
can also turn on an SO(2) ⊂ SO(3) gauge field from the
second SO(3) factor. We will choose these gauge fields to
be A3

μ and A6
μ with the following ansatz

A� = q̃�(r)dt − p�(r)F ′(θ)dφ, � = 3, 6, (33)

for F ′(θ) = dF(θ)
dθ

. The corresponding field strengths are
given by

F� = d A� = q̃�′
dr ∧ dt − p�′

F ′(θ)dr ∧ dφ

+κp�F(θ)dθ ∧ dφ. (34)

Throughout the paper, we will use ′ to denote a derivative
with respect to the radial coordinate r with an exception for
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F ′(θ) = dF(θ)
dθ

. In this equation, we have also introduced a
parameter κ via the relation F ′′(θ) = −κF(θ) with κ = 1
and κ = −1 for �2 = S2 and �2 = H2, respectively.
Imposing the Bianchi’s identity DF� = 0 implies p�′ =
0, so p� are constant and will be identified with magnetic
charges.

It is useful to recall the definition of electric and magnetic
charges given by

q� = 1

4π

∫
�2

G� and p� = 1

4π

∫
�2

F� (35)

withG� = δS
δF� . To further fix the ansatz for the gauge fields,

we consider the Lagrangian for the gauge fields

Lgauge = −1

2
R�� ∗ F� ∧ F� + 1

2
I��F� ∧ F� (36)

in which we have rewritten the relevant terms in the
Lagrangian (7) in differential form language. We have also
used the following definition

R�� = Re a�� and I�� = Im a��. (37)

From the above Lagrangian, we find

G� = −R�� ∗ F� + I��F� (38)

which, together with the above definition of (q�, p�) and
F�

θφ = κp�F(θ), leads to

F�
t̂ r̂ = −e−2h R��(κ I�	 p

	 + q�). (39)

We have written the inverse of R�� as R�� . For later con-
venience, we also note the Maxwell equations obtained from
the Lagrangian (7)

Dν

(
R��F�μν + 1

2
I��e

−1εμνρσ F�
ρσ

)

= Pμ
A
i
(L−1)i

�
f��

	L	
A. (40)

This can be rewritten in form language as

∗DG� = PAi (L−1)i
�
f��

	L	
A (41)

with PAi = PAi
μ dxμ. It should also be emphasized that

the left-hand side is related to a radial derivative of elec-
tric charges via the definition in (35). Therefore, in general,
electric charges are not conserved if the YM currents are
non-vanishing as also pointed out in [17].

We are now in a position to perform the analysis of BPS
equations. The analysis is closely parallel to that in N = 2
gauged supergravity given in [14,17]. We will work in Majo-

rana representation with all γ a real but γ5 = iγ t̂γ r̂γ θ̂γ φ̂

purely imaginary. In this representation, the two chiral com-
ponents εA and εA of the Killing spinors are related to each
other by complex conjugation. In addition, in all of the solu-
tions considered in this work, we assume that the Killing
spinors depend only on the radial coordinate r . We are only
interested in solutions with SO(2) × SO(2) and SO(2)diag

symmetries, but in this section, we will consider the general
structure of the BPS equations.

We begin with the BPS equation from the variation δψ
φ̂A

given by

0 = 1

2
h′γ

φ̂r̂εA + 1

2
e−h F

′

F
γ
φ̂θ̂

εA + 
φ̂A

BεB + SABεB

−εABCG
B
φ̂θ̂

γ θ̂ εC . (42)

The matrix SAB is symmetric and can be diagonalized. The
corresponding eigenvalues will lead to the superpotential W
in terms of which the scalar potential can be written. We then
write, without summation on A,

SAB = −1

2
WAδAB (43)

in which WA denote eigenvalues of SAB . It is also useful to
define the central charge matrix as

ZAB = −2εABCG
C
θ̂ φ̂

= −2εABCM
CD(L−1)D

�
(κp�e−2h

−i q̃�′
e− f ). (44)

We now impose the following projector

γ r̂εA = e−i�δABεB or γ r̂εA = ei�δABεB (45)

and rewrite Eq. (42) as

0 = γ
φ̂

[
h′ei�δAB − WAδAB − ZABγ

φ̂θ̂

]
εB

+γ
φ̂

[
F ′(θ)

F(θ)
e−hγ

φ̂θ̂
εA + 2g1εAC

B AC
φ̂
εB

]
. (46)

We have used the explicit form of
φ̂A

B = g1εACDδDB AC
φ̂
εB

which is valid for both cases we are interested in. We now
notice that only the terms in the second bracket of Eq. (46)
depend on θ . Therefore, these terms must cancel against each
other, and using the gauge field ansatz (33), we find that

γ
φ̂θ̂

εA = 2g1εAC
B pCεB . (47)

Since only p3 is non-vanishing, we find that the supersymme-
try corresponding to ε3 must be broken. Imposing the twist
condition
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2g1 p
3 = 1 (48)

and writing εAB3 = ε Â B̂ for Â, B̂ = 1, 2 and ε12 = 1, we
obtain the following projector

γ
θ̂φ̂

ε Â = ε Â
B̂εB̂ . (49)

In this analysis, we have written εA = (ε Â, ε3). We also

remark that indices Â, B̂, . . . of ε Â B̂ and ε Â B̂ are simply

raised and lowered by the Kronecker delta δ Â B̂ and δ Â B̂ .
Using the projector (49) in the first bracket of (46) with

ε3 = 0, we find the BPS condition

(h′ei� − W Â)δ Â B̂ − Z ÂĈεĈ B̂ = 0. (50)

In general, W Â for a particular value of Â gives the super-
potential corresponding to the eigenvalue of SÂB̂ along the

directions of the Killing spinors ε Â. We will simply denote
this eigenvalue by W . Moreover, it turns out that in the cases
we will consider, only G3

μν is non-vanishing. We then find
that

Z ÂĈεĈ B̂ = Zδ Â B̂ (51)

in which we have defined a complex number Z sometimes
called the “central charge” as

Z = 2M3A(L−1)A
�
(κp�e−2h − i q̃�′

e− f ). (52)

With all these, we finally obtain the BPS equation from δψ
φ̂A

h′ei� = W + Z (53)

which implies

h′ = ±|W + Z| and ei� = ± W + Z
|W + Z| . (54)

Using all of the results previously obtained, we can perform
a similar analysis for δψ

θ̂ A. This results, as expected, in the
same BPS equations given in (54).

We now move to the variation δψt̂ Â of the form

0 = 1

2
f ′γt̂γr̂ε Â + At̂ Â

B̂εB̂ + ε ÂĈG
3
t̂ r̂γ

r̂εĈ + SÂB̂γt̂ε
B̂

(55)

with

At̂ A
B = −g1ε Â B̂ A

3
t̂ . (56)

We then impose another projector

γ t̂ε Â = ie−i�ε Â B̂εB̂ . (57)

It should be noted that this is not an independent projector
since it is implied by the γr̂ and γ

θ̂φ̂
projectors given in (45)

and (49) by the relation γ5ε
Â = −ε Â.

We note here that the central charge matrix can also be
written as

ZAB = −2iεABCG
C
t̂r̂

= 2iεABCM
CD(L−1)D

�
(q̃�′

e− f

+iκp�e−2h). (58)

With all the previous results, we can write equation (55) as

[
f ′ − e−i�(W + Z)

]
ε Â B̂ − 2ig1ε Â B̂ A

3
t̂ = 0 (59)

which implies

f ′ = Re
[
e−i�(W − Z)

]
, (60)

and g1A
3
t̂ = −1

2
Im

[
e−i�(W − Z)

]
. (61)

The second equation fixes the form of A3
t .

Finally, we consider the variation δψr̂ A which gives

ε′
Â

− 1

2
e−i�(W − Z)ε Â + 3

2
Qrε Â + Qr Â

B̂εB̂ = 0. (62)

In all the cases we will consider, it turns out that Qr = 0 and
Qr Â

B̂ = 0. Using δψt̂ Â = 0 equation, we can rewrite this
equation as

ε′
Â

= 1

2
( f ′ − 2ig1A

3
t̂ )ε Â (63)

which gives

ε Â = e
f
2 −i

∫
g1A3

t̂
dr

ε
(0)

Â
(64)

with ε
(0)

Â
being r -independent spinors subject to the projec-

tors

γr̂ε
(0)

Â
= δ Â B̂ε(0)B̂ and γ

θ̂φ̂
ε
(0)

Â
= ε Â

B̂ε
(0)

B̂
. (65)

Consistency with the projector (45) leads to a flow equation
for the phase �

�′ + 2ig1A
3
t̂ = 0. (66)

Since all scalars depend only on the radial coordinate
r , the BPS equations obtained from δχ , δλi and δλA

i only
involve γr̂ . By using the projector (45) and phase factor in
(54) in these variations, we eventually obtain flow equations
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for scalars. Before giving the solutions, we end this section
with the conditions for the near horizon geometry AdS2×�2

f ′ = 1

L AdS2

, h′ = 0, (zi
A)′ = 0 (67)

meaning that the function h and all scalars are constant, and
f is linear in r in this limit. We will also choose an upper
sign choice in (54) for definiteness.

2.3 Solutions with SO(2) × SO(2) symmetry

We now consider supersymmetric solutions to the BPS
equations with the general structure given in the previ-
ous section. We begin with explicit parametrization of the
SU (3, 3)/SU (3) × SU (3) ×U (1) coset manifold. It is con-
venient to introduce a basis for GL(6,R) matrices

(e��)�	 = δ��δ�	. (68)

With the structure constants given in (32), the SO(3)R ×
SO(3) gauge generators are given by

(T (1)
A )	� = f 	

A� and (T (2)
i )	� = f 	

i+3,�. (69)

The residual SO(2) × SO(2) symmetry is generated by
T (1)

3 and T (2)
3 . There are two singlet scalars corresponding to

the following SU (3, 3) non-compact generators

Ŷ1 = e36 + e63 and Ŷ2 = ie63 − ie36. (70)

The coset representative can be written as

L = eφ1Ŷ1eφ2Ŷ2 . (71)

In this case, the YM currents vanish, so the electric charges
are constant. The scalar potential is given by

V = −1

2
g2

1e
−2φ1

[
e2φ1 + cosh 2φ2(1 + e4φ1)

]
. (72)

This potential admits a unique N = 3 supersymmetric
vacuum at φ1 = φ2 = 0 with the cosmological constant
V0 = − 3

2g
2
1. The AdS4 radius is given by the relation

L AdS4 =
√

− 3

2V0
= 1

g1
(73)

in which we have taken g1 > 0 for convenience. We also
note that truncating all vector multiplets out gives rise to
pure N = 3 gauged supergravity with SO(3)R gauge group
and cosmological constant − 3

2g
2
1 constructed in [29,30], see

also a more recent result [31] in which pure N = 3 gauged
supergravity is embedded in massive type IIA theory.

The matrix SAB is given by

SAB = −1

2
diag(W1,W1,W2) (74)

in which W1 and W2 are given by

W1 = g1 cosh φ1 cosh φ2,

W2 = g1(cosh φ1 cosh φ2 + i sinh φ1 sinh φ2). (75)

It turns out that only W2 gives the superpotential in terms of
which the scalar potential (72) can be written as, see more
detail in [33],

V = − 1

2 cosh2 2φ2

(
∂W2

∂φ1

)2

− 1

2

(
∂W2

∂φ2

)2

− 3

2
W 2

2 (76)

with W2 = |W2|. In this case, the supersymmetry associated
with ε1,2, which are relevant to the present work, is broken.
For φ2 = 0, W1 can give rise to the superpotential leading to
unbroken supersymmetry along ε1,2, and in this case,W1 and
W2 are equal. We then set φ2 = 0 in the following analysis.
We will also write W = W1 = W2 and φ = φ1. In addition,
it is worth noting that setting pseudo-scalars, corresponding
to imaginary parts of the complex scalars zAi , to zero always
gives I�� = 0. This implies that the components F�

t̂ r̂
are

given only in terms of electric charges and vanish for purely
magnetic solutions.

With ε3 = 0, we find that δχ = 0 and δλi = 0 identically.
By using the coset representative (71) with φ2 = 0, we find
a consistent BPS equation for φ from δλA

i provided that one
of these two conditions is satisfied

q3 = q6 = 0 or p6 = q6 = 0. (77)

The first one corresponds to a purely magnetic case while
the second one is a dyonic case with only q3 and p3 non-
vanishing.

Setting q3 = q6 = 0 and using the BPS equations given
in the previous section, we find the following set of BPS
equations

f ′ = 1

2
e−φ−2h

[
g1e

2h − g1e
2φ(p3 − p6)κ

+g1e
2(φ+h) − κ(p3 + p6)

]
, (78)

h′ = |W + Z|
= 1

2
e−φ−2h

[
g1e

2h + g1e
2φ(p3 − p6)κ

+g1e
2(φ+h) + κ(p3 + p6)

]
, (79)

φ′ = −∂|W + Z|
∂φ
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= 1

2
e−φ−2h

[
g1e

2h − g1e
2φ(p3 − p6)κ

−g1e
2(φ+h) + κ(p3 + p6)

]
. (80)

We note that both W and Z are real giving rise to ei� = ±1.
The existence of AdS2 × �2 fixed points requires p6 = 0.
In this case, we find the fixed point given by

φ = φ0, h = 1

2
ln

[
−κp3

g1

]
,

f ′ = 1

L AdS2

= 2g1 cosh φ0 (81)

for a constant φ0. For real h and 2g1 p3 = 1 > 0, we need to
take κ = −1, so this is an AdS2 × H2 fixed point.

For p6 = q6 = 0, we find

W + Z = 1

2
e−φ−2h(1 + e2φ)(e2hg1 + κp3 + iq3) (82)

leading to the BPS equations

f ′ = e−φ−2h(1 + e2φ)(e4hg2
1 − q3

3 − (p3)2)

2
√

(e2hg1 + κp3)2 + q2
3

, (83)

h′ = |W + Z| = 1

2
e−φ−2h(1 + e2φ)

×
√

(κp3 + g1e2h)2 + q2
3 , (84)

φ′ = −∂|W + Z|
∂φ

= −1

2
e−φ−2h(e2φ − 1)

×
√

(κp3 + g1e2h)2 + q2
3 (85)

together with

q̃3 = − q3e−φ+ f (1 + e2φ)

2
√

(e2hg1 + κp3)2 + q2
3

(86)

which fixes the time component of the gauge field ansatz. We
also note that upon using the BPS equations for f ′, h′ and
φ′, we find

q̃3′ = 1

2
q3e

−2φ+ f −2h(1 + e4φ) (87)

in agreement with the gauge field ansatz given in (39).
The existence of AdS2 ×�2 fixed points requires q3 = 0.

This can be clearly seen from the condition h′ = 0. With
q3 = 0, the AdS2 × �2 fixed point is just the AdS2 × H2

vacuum given in (81). We then find that all supersymmetric
black hole solutions will be magnetically charged without
any dyonic generalization.

We now look for a solution interpolating between the
supersymmetric AdS4 vacuum and this AdS2 × H2 criti-
cal point. To find the relevant solution, we can further set

p6 = 0 and q3 = 0 in the two sets of the BPS equations. In
this case, the two sets lead to the same BPS equations which
we repeat here for convenience

f ′ = 1

2
e−φ−2h(1 + e2φ)(g1e

2h − κp3), (88)

h′ = 1

2
e−φ−2h(1 + e2φ)(g1e

2h + κp3), (89)

φ′ = −1

2
e−φ−2h(e2φ − 1)(g1e

2h + κp3). (90)

These equations are very similar to those given in N = 5
and N = 6 gauged supergravities studied in [23,24]. By a
similar analysis, we can obtain an analytic solution

h = φ − ln(1 − e2φ), (91)
f = ln[κp3(1 + e4φ) + (g1 − 2κp3)e2φ]

− ln(1 − e2φ) − φ, (92)
2g1ρ = ln[κp3(1 + e4φ) + (g1 − 2κp3)e2φ] − 2 ln(1 − e2φ)

+2
√

g1

4κp3 − g1
tan−1

[
g1 + 2κp3(e2φ − 1)√

g1(4κp3 − g1)

]
(93)

with the new radial coordinate ρ defined by dρ
dr = e−φ .

As φ ∼ 0, we find that the solution becomes

f ∼ h ∼ g1r and φ ∼ e−g1ρ ∼ e−g1r ∼ e
− r

L AdS4 (94)

which is an asymptotically locally AdS4 preserving the full
N = 3 supersymmetry. On the other hand, for φ ∼ φ0 with

φ0 = 1

2
ln

[
2κp3 − g1 + √

g1(g1 − 4κp3)

2κp3

]
, (95)

the solution approaches the AdS2 × H2 fixed point with

h ∼ 1

2
ln

[
−κp3

g1

]
, φ ∼ e

− r
L AdS2 , f ∼ r

L AdS2

(96)

for L AdS2 = 1
g1

√
κp3

4κp3−g1
.

We end this section by a comment on the solution of pure
N = 3 gauged supergravity in which we set φ = 0 for the
entire solution. This simply gives the following solution

h = 1

2
ln

[
e2g1(r−r0) − κp3

g1

]
and

f = 2g1r − 1

2
ln(e2g1(r−r0) − κp3) (97)

for a constant r0. This solution can be embedded in massive
type IIA theory via S6 truncation given in [31]. Alternatively,
this solution can also be embedded in eleven dimensions
using a consistent truncation on a trisasakian manifold given
in [32].
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2.4 Solutions with SO(2)diag symmetry

We now consider solutions with SO(2)diag symmetry gener-

ated by T (1)
3 +T (2)

3 . There are six singlet scalars correspond-
ing to the following non-compact generators

Ȳ1 = e36 + e63, Ȳ2 = −ie36 + ie63,

Ȳ3 = e25 + e52 + e14 + e41,

Ȳ4 = −ie25 + ie52 − ie14 + ie41,

Ȳ5 = e15 + e51 − e24 − e42,

Ȳ6 = −ie15 + ie51 + ie24 − ie42. (98)

The coset representative is given by

L = eφ1Ȳ1eφ2Ȳ2eφ3Ȳ3eφ4Ȳ4eφ5Ȳ5eφ6Ȳ6 . (99)

In this case, the scalar potential turns out to be highly compli-
cated. We refrain from giving its explicit form here, but it is
useful to note that there are two supersymmetric AdS4 vacua,
see more detail in [33]. The first one is the N = 3 supersym-
metric AdS4 vacuum with all scalars vanishing and the full
SO(3) × SO(3) gauge group unbroken. This is the same as
the AdS4 critical point mentioned in the previous section.
The second one is another N = 3 AdS4 critical point with
SO(3)diag ⊂ SO(3) × SO(3) symmetry given by

φ1 = ±φ3 = 1

2
ln

[
g2 − g1

g1 + g2

]
, V0 = −3

2

g2
1g

2
2

g2
2 − g2

1

(100)

with all other scalars vanishing. We now repeat the same
analysis as in the previous case with an additional condition
g2A6 = g1A3 implementing the SO(2)diag subgroup. This
condition results in the same component Q

φ̂A
B as in the

SO(2) × SO(2) case, so the twist can be performed by the
same procedure. We will not repeat all the details here to
avoid repetition.

As in the previous case, it turns out that all pseudo-scalars
must be truncated out in order to preserve supersymmetry
along ε1 and ε2. Therefore, we need to set φ2 = φ4 = φ6 =
0. Consistency for the scalar equations also requires all elec-
tric charges to vanish resulting in a real phase ei� = ±1. We
will accordingly set q� = 0 and obtain the following BPS
equations

f ′ = 1

16g2
e−φ1

[
g2e

−2φ3−2φ5(1 + e4φ3)(1

+e4φ5)[(g1 + g2)e
2φ1 + g1 − g2]

+4e−2h[(g1 − g2)(e
2hg2 + 2κp3)e2φ1

+(g1 + g2)(e
2hg2 − 2κp3)]

]
, (101)

h′ = 1

16g2
e−φ1

[
g2e

−2φ3−2φ5(1

+e4φ3)(1 + e4φ5)[(g1 + g2)e
2φ1 + g1 − g2]

+4e−2h[(g1 − g2)(e
2hg2 − 2κp3)e2φ1

+(g1 + g2)(e
2hg2 + 2κp3)]

]
, (102)

φ′
1 = − 1

16g2
e−φ1

[
g2e

−2φ3−2φ5(1

+e4φ3)(1 + e4φ5)[(g1 + g2)e
2φ1 + g2 − g1]

−4e−2h[(g1 + g2)(e
2hg2 + 2κp3)

−(g1 − g2)(e
2hg2 − 2κp3)e2φ1 ]

]
, (103)

φ′
3 = −1

2
sech2φ5 sinh 2φ3(g1 cosh φ1 + g2 sinh φ1), (104)

φ′
5 = −1

2
cosh 2φ3 sinh 2φ5(g1 cosh φ1+g2 sinh φ1). (105)

We also note that these equations can be written more com-
pactly as

f ′ = |W − Z|, h′ = |W + Z|, φ′
1 = −∂|W + Z|

∂φ1
,

φ′
3 = −1

2
sech22φ5

∂|W + Z|
∂φ3

, φ′
5 = −1

2

∂|W + Z|
∂φ5

.

(106)

For AdS2×�2 fixed points to exist, we immediately see from
φ′

3 and φ′
5 equations that there are two possibilities; φ3 =

φ5 = 0 or φ1 = 1
2 ln

[
g2−g1
g2+g1

]
. However, both of these choices

do not lead to any AdS2 × �2 fixed point, so there are no
supersymmetric AdS4 black holes with SO(2)diag symmetry.

At this point, it should be noted that similar BPS equations
have been considered in [21] with more vector multiplets
(n = 8), and a number of AdS2 × �2 fixed points have been
given. A truncation of that results to three vector multiplets
can be performed resulting in the BPS equations given above.
It is worth pointing out here that there is a sign error in the BPS
equations considered in [21] regarding to the contribution
of the gauge fields to the supersymmetry transformations.
The corresponding equations from the present analysis are
correct and compatible with the second-order field equations.
Therefore, the AdS2 × �2 fixed points with SO(2)diag ×
SO(2) symmetry found in [21] do not exist.

3 AdS4 black holes from N = 4 gauged supergravity

In this section, we repeat the same analysis as in the previ-
ous section for matter-coupled N = 4 gauged supergravity.
Unlike the N = 3 gauged supergravity considered in the
previous section, gaugings of N = 4 supergravity that can
give rise to supersymmetric AdS4 vacua need to be dyonic,
involving both electric and magnetic vector fields. However,
there always exists a symplectic frame in which the result-
ing gaugings are purely electric. As in the previous section,
we will begin with a review of N = 4 gauged supergravity
coupled to n vector multiplets.
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3.1 Matter-coupled N = 4 gauged supergravity

Unlike the N = 3 gauged supergravity, N = 4 gauged super-
gravity has completely been constructed in the embedding
tensor formalism in [34]. We will mainly follow the con-
struction and notation used in [34].

Similar to the N = 3 theory, N = 4 supersymmetry in
four dimensions only allows for the graviton and vector mul-
tiplets. Unlike N = 3 supersymmetry, the graviton multiplet
in N = 4 supersymmetry does contain scalars with the full
field content given by

(eμ̂
μ, ψ i

μ, Am
μ, χ i , τ ). (107)

The component fields are given by the graviton eμ̂
μ, four

gravitini ψ i
μ, six vectors Am

μ , four spin- 1
2 fields χ i and one

complex scalar τ parametrizing the SL(2,R)/SO(2) coset.
In this case, indices m, n = 1, . . . , 6 and i, j = 1, 2, 3, 4
respectively describe the vector and chiral spinor represen-
tations of the SO(6)R ∼ SU (4)R R-symmetry. The former
is equivalent to a second-rank anti-symmetric tensor repre-
sentation of SU (4)R . Furthermore, in this section, we denote
flat space-time indices by μ̂, ν̂, . . . to avoid confusion with
indices labeling the vector multiplets to be introduced later.

As in the N = 3 theory, the supergravity multiplet can
couple to an arbitrary number n of vector multiplets. Each
vector multiplet will be labeled by indices a, b = 1, . . . , n
and contain the following field content

(Aa
μ, λia, φma) (108)

corresponding to vector fields Aa
μ, gaugini λia and scalars

φma . The 6n scalar fields can be described by SO(6, n)/

SO(6) × SO(n) coset. We also note the well-known fact
that the field contents of the vector multiplet in N = 3 and
N = 4 supersymmetries are the same.

All fermionic fields and supersymmetry parameters that
transform in the fundamental representation of SU (4)R R-
symmetry are subject to the chirality projections

γ5ψ
i
μ = ψ i

μ, γ5χ
i = −χ i , γ5λ

i = λi . (109)

Similarly, the conjugate fields transforming in the anti-
fundamental representation of SU (4)R satisfy

γ5ψμi = −ψμi , γ5χi = χi , γ5λi = −λi . (110)

The most general gaugings of the matter-coupled N = 4
supergravity can be efficiently described by the embedding
tensor �. There are two components of the embedding tensor
ξαM and fαMN P with α = (+,−) and M, N = (m, a) =
1, . . . , n + 6 denoting respectively fundamental representa-
tions of SL(2,R)× SO(6, n) global symmetry. The electric

vector fields AM+ = (Am
μ, Aa

μ) together with their magnetic
dual AM−, collectively denoted by AMα , form a doublet of
SL(2,R). The existence of AdS4 vacua requires ξαM = 0
[25], so we will consider gaugings with only fαMN P non-
vanishing and set ξαM to zero from now on.

The embedding tensor implements the minimal coupling
to various fields via the covariant derivative

Dμ = ∇μ − gAMα
μ f N P

αM tN P (111)

where ∇μ is the space-time covariant derivative including
(possibly) the spin connections. tMN denote SO(6, n) gen-
erators which can be chosen as

(tMN )
Q
P = 2δ

Q
[MηN ]P , (112)

with ηMN = diag(−1,−1,−1,−1,−, 1−, 1, 1, 1, . . . , 1)

being the SO(6, n) invariant tensor. The gauge coupling con-
stant g can also be absorbed in the definition of the embedding
tensor fαMN P .

In addition to ξαM = 0, the existence of AdS4 vacua
requires the gaugings to be dyonic involving both electric
and magnetic vector fields. In this case, both AM+ and AM−
enter the Lagrangian, and fαMN P with α = ± are non-
vanishing. Consistency requires the presence of two-form
fields when magnetic vector fields are included. In the case of
ξαM = 0, the two-forms transform as an anti-symmetric ten-
sor under SO(6, n) and will be denoted by BMN

μν = B[MN ]
μν .

The two-forms are also needed to define covariant gauge field
strengths given by

HM± = d AM± − 1

2
ηMQ fαQN P A

Nα ∧ AP±

±1

2
ηMQ f∓QN P B

N P . (113)

In particular, for non-vanishing f−MN P the electric field
strengths HM+ acquire a contribution from the two-form
fields.

The scalar coset manifold SL(2,R)/SO(2) in the gravi-
ton multiplet can be described by a coset representative

Vα = 1√
Imτ

(
τ

1

)
(114)

or equivalently by a symmetric matrix

Mαβ = Re(VαV∗
β) = 1

Imτ

( |τ |2 Reτ
Reτ 1

)
. (115)

We also note the relation Im(VαV∗
β) = εαβ . The complex

scalar τ can in turn be written in terms of the dilaton φ and
the axion χ as

τ = χ + ieφ. (116)
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For the SO(6, n)/SO(6)× SO(n) coset from vector mul-
tiplets, we introduce the coset representative V A

M transform-
ing by left and right multiplications under SO(6, n) and
SO(6) × SO(n), respectively. The SO(6) × SO(n) index
will be split as A = (m, a) according to which the coset
representative can be written as

V A
M = (Vm

M ,Va
M ). (117)

Being an element of SO(6, n), the matrix V A
M satisfies the

relation

ηMN = −Vm
MVm

N + Va
MVa

N . (118)

The SO(6, n)/SO(6)×SO(n) coset can also be parametrized
in terms of a symmetric matrix defined by

MMN = Vm
MVm

N + Va
MVa

N (119)

with a manifest SO(6) × SO(n) invariance.
The bosonic Lagrangian of the N = 4 gauged supergrav-

ity for ξαM = 0 is given by

e−1L = 1

2
R + 1

16
DμMMNDμMMN

− 1

4(Imτ)2 ∂μτ∂μτ ∗ − V

−1

4
Im τMMNHM+

μν HN+μν

−1

8
Re τe−1εμνρσ ηMNHM+

μν HN+
ρσ

−1

2

[
f−MN P A

M−
μ AN+

ν ∂ρ A
P−
σ

+1

4
fαMNR fβPQSη

RS AMα
μ AN+

ν APβ
ρ AQ−

σ

−1

4
f−MN P B

N P
μν

(
2∂ρ A

M−
σ

−1

2
ηMS fαSQR A

Qα
ρ AR−

σ

)

− 1

16
f+MNR f−PQSη

RS BMN
μν BPQ

ρσ

]
e−1εμνρσ

(120)

where e is the vielbein determinant.
The scalar potential is given by

V = g2

16

[
fαMN P fβQRSM

αβ

[
1

3
MMQMNRMPS

+
(

2

3
ηMQ − MMQ

)
ηN RηPS

]

−4

9
fαMN P fβQRSε

αβMMNPQRS
]

(121)

where MMN is the inverse of MMN , and MMNPQRS is
defined by

MMNPQRS = εmnpqrsVm
MVn

NV p
PVq

QVr
RVs

S (122)

with indices raised by ηMN . The covariant derivative of MMN

is defined by

DMMN = dMMN + 2APαηQR fαQP(MMN )R . (123)

The magnetic vectors and two-form fields do not have
kinetic terms. They are auxiliary fields and enter the
Lagrangian through topological terms. The corresponding
field equations give rise to the duality relation between two-
forms and scalars and the electric-magnetic duality between
AM+ and AM−, respectively. The field equations resulting
from varying the Lagrangian with respect to AM±

μ and BMN
μν

are given by

ηMN ∗ DHN− = −1

4
f+MP

NMNQDMQP , (124)

ηMN ∗ DHN+ = 1

4
f−MP

NMNQDMQP , (125)

HM− = Im τMMNηN P ∗ HP+ − Re τHM+ (126)

written in differential form language for computational con-
venience. By substituting HM− from (126) in (124), we
obtain the usual Yang–Mills equations for HM+ while equa-
tion (125) simply gives the relation between the Hodge dual
of the three-form field strengths and the scalars due to the
usual Bianchi identity of the gauge field strengths defined by

FM± = d AM± − 1

2
ηMQ fαQN P A

Nα ∧ AP±. (127)

The supersymmetry transformations of fermionic fields
are given by

δψ i
μ = 2Dμεi − 2

3
gAi j

1 γμε j

+ i

4
(Vα)∗VM

i jHMα
νρ γ νργμε j , (128)

δχ i = −εαβVαDμVβγ μεi − 4

3
igAi j

2 ε j

+1

2
VαVM

i jHMα
μν γ μνε j , (129)

δλia = 2iVM
a DμV i j

Mγ με j − 2igAi
2ajε

j

−1

4
VαVMaHMα

μν γ μνεi (130)

with the fermion shift matrices defined by

Ai j
1 = εαβ(Vα)∗VM

kl V ik
N V jl

P f N P
βM ,

Ai j
2 = εαβVαVM

kl V ik
N V jl

P f N P
βM ,
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A j
2ai = εαβVαVa

MVik
NV jk

P f PβMN (131)

where V i j
M is defined in terms of the ‘t Hooft matrices Gi j

m

and Vm
M as

V i j
M = 1

2
Vm
MGi j

m (132)

and similarly for its inverse

Vi j
M = −1

2
Vm

M (Gi j
m )∗. (133)

We note that Gi j
m satisfy the relations

Gmi j = (Gi j
m )∗ = 1

2
εi jklG

kl
m . (134)

We will choose the explicit form of these matrices as follows

Gi j
1 =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ , Gi j

2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ ,

Gi j
3 =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎤
⎥⎥⎦ , Gi j

4 =

⎡
⎢⎢⎣

0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

⎤
⎥⎥⎦ ,

Gi j
5 =

⎡
⎢⎢⎣

0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0

⎤
⎥⎥⎦ , Gi j

6 =

⎡
⎢⎢⎣

0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

⎤
⎥⎥⎦ . (135)

The covariant derivative of εi is given by

Dμεi = ∂μεi + 1

4
ωμ

μ̂ν̂γμ̂ν̂ε
i + Qμj

iε j . (136)

Finally, it should be noted that the scalar potential can be
written in terms of A1 and A2 tensors as

V = −1

3
Ai j

1 A1i j + 1

9
Ai j

2 A2i j + 1

2
A j

2ai A
i
2aj (137)

which is usually referred to as supersymmetric Ward’s iden-
tity. We also recall that upper and lower i, j, . . . indices are
related by complex conjugation.

We end this section by giving some relations which are
very useful in deriving the BPS equations in subsequent anal-
ysis. With the explicit form ofVα given in (114) and equation
(126), it is straightforward to derive the following identities

iVαVM
i jHMα

μν γ μν = −(V−)−1VM
i jHM+

μν γ μν(1 − γ5), (138)

iVαVM
aHMα

μν γ μν = −(V−)−1VM
aHM+

μν γ μν(1 + γ5), (139)

i(Vα)∗VM
i jHMα

μν γ μνγρ = (V−)−1VM
i jHM+

μν γ μνγρ(1 − γ5)

(140)

in which we have used the following relations for the
SO(6, n) coset representative [35]

ηMN = −1

2
εi jklVM

i jVN
kl + VM

aVN
a, VM

aVi j
M = 0,

VM
i jVkl

M = −1

2
(δikδ

j
l − δil δ

j
k ), VM

aVb
M = δab . (141)

It should be noted that these relations are slightly different
from those given in [34] due to a different convention on Vα

in terms of the scalar τ namely Vα used in this paper satisfies
V+/V− = τ while that used in [34] gives V+/V− = τ ∗.

3.2 Solutions with SO(2) × SO(2) × SO(2) × SO(2)

symmetry

In this paper, we are interested in N = 4 gauged supergravity
withn = 6 vector multiplets and SO(4)×SO(4) ∼ SO(3)×
SO(3) × SO(3) × SO(3) gauge group. The corresponding
embedding tensor takes the following form [36]

f+m̂n̂ p̂ = g1εm̂n̂ p̂, f+âb̂ĉ = g̃1εâb̂ĉ,

f−m̃ñ p̃ = g2εm̃ñ p̃, f−ãb̃c̃ = g̃2εãb̃c̃. (142)

We have used the convention on the SO(6, 6) index M =
(m, a) = (m̂, m̃, â, ã) with m̂ = 1, 2, 3, m̃ = 4, 5, 6,
â = 7, 8, 9 and ã = 10, 11, 12. The two SO(4) factors
are electrically and magnetically embedded in SO(6, 6) and
will be denoted by SO(4)+ × SO(4)−. In terms of the
SO(3) factors corresponding to the embedding tensor in
(142), we will write the gauge group as SO(3)+×SO(3)−×
SO(3)+ × SO(3)− with the first two factors embedded in
the SU (4)R ∼ SO(6)R .

We now consider solutions preserving SO(2)× SO(2)×
SO(2) × SO(2) symmetry. To proceed further, we first give
an explicit parametrization of the SO(6, 6)/SO(6)× SO(6)

coset. The scalar sector of SO(2)×SO(2)×SO(2)×SO(2)

singlets have already been studied recently in [37]. We will
mostly take various results from [37] in which more details
can be found. By using SO(6, 6) generators in the fundamen-
tal representation of the form given in (112), we can identify
the SO(6, 6) non-compact generators as

Yma = tm,a+6. (143)

There are four SO(2) × SO(2) × SO(2) × SO(2) singlet
scalars from the SO(6, 6)/SO(6) × SO(6) coset. With the
SO(2) × SO(2) × SO(2) × SO(2) generators chosen to
be X+3, X−6, X+9 and X−12, the non-compact generators
corresponding to these singlets are given by Y33, Y36, Y63 and
Y66 in terms of which the coset representative can be written
as

V = eφ1Y33eφ2Y36eφ3Y63eφ4Y66 . (144)
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Together with the dilaton and axion, there are six scalars in
the SO(2) × SO(2) × SO(2) × SO(2) sector. The scalar
potential for these singlet scalars is given by

V = −1

2
e−φ(g2

1 + e2φg2
2 + g2

2χ2)

−2g1g2 cosh φ1 cosh φ2 cosh φ3 cosh φ4 (145)

which admits a unique AdS4 critical point at

φ = ln

[
g1

g2

]
and φ1 = φ2 = φ3 = φ4 = χ = 0 (146)

with the cosmological constant and AdS4 radius given by

V0 = −3g1g2 and L =
√

− 3

V0
= 1√

g1g2
. (147)

This AdS4 vacuum preserves N = 4 supersymmetry and the
full SO(4) × SO(4) symmetry. We can also choose g2 =
g1 = g, by shifting the dilaton, to make the dilaton vanish at
this critical point. Holographic RG flows and Janus solutions
in this sector have been extensively studied in [37]. In the
present work, we look for supersymmetric AdS4 black holes
with the horizons of AdS2 × �2 geometry. The analysis is
parallel to the N = 3 case considered in the previous section
with some modifications to incorporate the magnetic gauge
fields. Similar analyses can be found in [18,19,22,38] in
the contexts of N = 2 and N = 4 gauged supergravities,
respectively. We will closely follow the procedure in [22].

We first consider the ansatz for SO(2)×SO(2)×SO(2)×
SO(2) gauge fields of the form

AM+ = AM
t dt − pM F ′(θ)dφ, M = 3, 6, 9, 12 (148)

AM− = ÃM
t dt − eM F ′(θ)dφ. (149)

We also note that the gauge fields participating in the SO(4)×
SO(4) gauging are given by A3+, A6−, A9+ and A12− while
the above ansatz includes all of their electric-magnetic duals.
The ansatz for relevant two-form fields is given by

B12 = b3(r)F(θ)dθ ∧ dφ, B45 = b6(r)F(θ)dθ ∧ dφ,

B78 = b9(r)F(θ)dθ ∧ dφ, B10,11 = b12(r)F(θ)dθ ∧ dφ.

(150)

The metric ansatz is still given by (28). In addition, to avoid
some confusion and make various expressions less cumber-
some, we will denote the magnetic charges with a subscript,
pM = (p3, p6, p9, p12).

With the embedding tensor (142), it is straightforward to
compute the covariant gauge field strengths

H3+ = A3′
t dr ∧ dt + κp3F(θ)dθ ∧ dφ,

H3− = Ã3′
t dr ∧ dt + (κe3 − g1b3)F(θ)dθ ∧ dφ,

H6+ = A6′
t dr ∧ dt + (κp6 + g̃1b6)F(θ)dθ ∧ dφ,

H6− = Ã6′
t dr ∧ dt + κe6F(θ)dθ ∧ dφ,

H9+ = A9′
t dr ∧ dt + κp9F(θ)dθ ∧ dφ,

H9− = Ã9′
t dr ∧ dt + (κe9 − g2b9)F(θ)dθ ∧ dφ,

H12+ = A12′
t dr ∧ dt + (κp12 + g̃2b12)F(θ)dθ ∧ dφ,

H12− = Ã12′
t dr ∧ dt + κe12F(θ)dθ ∧ dφ. (151)

In this SO(2)× SO(2)× SO(2)× SO(2) sector, it turns out
that all components of YM current are zero

f±MP
N MNQDMQP = 0. (152)

Equations (124) and (125) then imply that DHM± = 0.
Therefore, we find that all the fields bi (r) and electric charges
ei are constant.

As pointed out in [37], supersymmetric solutions with
SO(2)× SO(2)× SO(2)× SO(2) symmetry can arise from
two possibilities, χ = φ2 = φ3 = 0 or χ = φ1 = φ4 = 0.
For definiteness, we will choose the first possibility. Choos-
ing the second one results in relabeling the scalars. With
Re τ = χ = 0, Eq. (126) gives

A3′
t = e f −φ−2h [(κe3 − g1b3) cosh 2φ1

+(κe9 − g2b9) sinh 2φ1] ,

A6′
t = κe f −φ−2h(e6 cosh 2φ4 + e12 sinh 2φ4),

A9′
t = −e f −φ−2h [(κe9 − g2b9) cosh 2φ1

+(κe3 − g1b3) sinh 2φ1] ,

A12′
t = −κe f −φ−2h(e12 cosh 2φ4 + e6 sinh 2φ4),

Ã3′
t = −κe f +φ−2h(p3 cosh 2φ1 + p9 sinh 2φ1),

Ã6′
t = −e f +φ−2h [

(κp6 + g̃1b6) cosh 2φ4

+(κp12 + g̃2b12) sinh 2φ4
]
,

Ã9′
t = κe f +φ−2h(p9 cosh 2φ1 + p3 sinh 2φ1),

Ã12′
t = e f +φ−2h [

(κp12 + g̃2b12) cosh 2φ4

+(κp6 + g̃1b6) sinh 2φ4
]
. (153)

All these relations fix the ansatz for the HMα
0r components of

the field strengths in terms of scalars and various charges.
We now consider topological twists along �2. The scalar

coset representative (144) gives the composite connection of
the form

Qμi
j = 1

2
g1A

3+
μ (iσ2 ⊗ σ1)i

j + 1

2
g2A

6−
μ (σ1 ⊗ iσ2)i

j (154)

with σa , a = 1, 2, 3, are usual Pauli matrices. To perform a
twist, we consider relevant terms in the variation δψ i

φ̂
of the

form
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1

2
e−h F

′(θ)

F(θ)

[
γ
φ̂θ̂

δij − g1 p3(iσ2 ⊗ σ1) j
i − g2e6(σ1 ⊗ iσ2) j

i
]
ε j = 0.

(155)

There are a few possibilities to satisfy this condition. These
are given by the following two main categories:

• N = 4 twists: By setting either p3 = 0 or e6 = 0, all
four εi can be non-vanishing. These two choices lead to
the following twist conditions and projectors

e6 = 0; g1 p3 = 1, γ
θ̂φ̂

εi = (iσ2 ⊗ σ1)
i
jε

j , (156)

p3 = 0; g2e6 = 1, γ
θ̂φ̂

εi = (σ1 ⊗ σ2)
i
jε

j . (157)

We will refer to these two cases as N = 4 twists which
have a similar structure to the N = 3 theory.

• N = 2 twists: By using the relation

(σ3 ⊗ σ3)(σ1 ⊗ iσ2) = (σ1 ⊗ iσ2)(σ3 ⊗ σ3) = iσ2 ⊗ σ1,

(158)

we can rewrite the condition (155) as

γ
φ̂θ̂

εi =
[
g1 p3(σ3 ⊗ σ3) j

k + g2e6δ
k
j

]
(σ1 ⊗ iσ2)k

iε j .

(159)

This can be solved by imposing the following conditions

g1 p3 + g2e6 = 1, γ
θ̂φ̂

εi = (σ1 ⊗ iσ2)
i
jε

j ,

(σ3 ⊗ σ3)
i
jε

j = εi . (160)

The last projector simply sets ε2 = ε3 = 0 reducing half
of the original supersymmetry. Accordingly, we will call
this case N = 2 twists.

We also note that the situation is very similar to AdS5 black
strings in five-dimensional N = 4 gauged supergravity con-
sidered in [39]. In addition, the two possibilities of N = 4
twists correspond to the H -twist and C-twist of the dual
N = 4 SCFT in three dimensions considered in [40].

By a similar analysis performed in the N = 3 theory, we
find a general structure of the BPS equations given by

h′ = |W + Z| and f ′ = Re [e−i�(W − Z)] (161)

together with an algebraic constraint

g1A
3
t + g2A

6
t = e f Im [e−i�(W − Z)]. (162)

In these equations, W is the superpotential obtained from the
eigenvalue of the Ai j

1 tensor along the Killing spinors, and Z

is the central charge as in the previous section. We have also
imposed the following projector

γr̂εi = ei�δi jε
j with ei� = W + Z

|W + Z| . (163)

Using this projector in the supersymmetry transformations
δχ i and δλia leads to the BPS equations for scalars in the
gravity and vector multiplets, respectively.

3.2.1 Solutions with N = 4 twists

We begin with the case of N = 4 twist by A3+. In addition
to setting e6 = 0, unbroken N = 4 supersymmetry also
requires

b6 = b12 = e12 = p6 = p12 = 0. (164)

Moreover, consistency of the scalar equations imposes fur-
ther conditions of the form

e3 = e9 = b3 = b9 = 0. (165)

All these lead to the following set of consistent BPS equations

f ′ = |W − Z|
= 1

2
e− φ

2
[
g2 cosh φ1 + eφg2 cosh φ4

−κeφ−2h(p3 cosh φ1 + p9 sinh φ1)
]
, (166)

h′ = |W + Z|
= 1

2
e− φ

2
[
g2 cosh φ1 + eφg2 cosh φ4

+κeφ−2h(p3 cosh φ1 + p9 sinh φ1)
]
, (167)

φ′
1 = −2

∂|W + Z|
∂φ1

= −e−2h− φ
2

[
eφκ(p3 sinh φ1 + p9 cosh φ1)

+e2hg1 sinh φ1

]
, (168)

φ′
4 = −2

∂|W + Z|
∂φ4

= −g2e
φ
2 sinh φ4, (169)

φ′ = −4
∂|W + Z|

∂φ

= e− φ
2

[
g1 cosh φ1 − eφ−2h(g2e

2h cosh φ4

+κp3 cosh φ1 + κp9 sinh φ1)
]
. (170)

However, there do not exist any AdS2 × �2 fixed points in
these equations.

We then look at the case of N = 4 twist by A6− in which
consistency similarly requires the following conditions
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b3 = b9 = e3 = e9 = p9 = b6 = b12 = p6 = p12 = 0.

(171)

The BPS equations are given by

f ′ = 1

2
e− φ

2
[
g1 cosh φ1 + eφg2 cosh φ4

−κe−2h(e6 cosh φ4 + e12 sinh φ4)
]
, (172)

h = 1

2
e− φ

2
[
g1 cosh φ1 + eφg2 cosh φ4

+κe−2h(e6 cosh φ4 + e12 sinh φ4)
]
, (173)

φ′
1 = −g1e

− φ
2 sinh φ1, (174)

φ′
4 = −e−2h− φ

2 [(e2h+φ + κe6) sinh φ4 + κe12 cosh φ4],
(175)

φ′ = e−2h− φ
2

[
e2hg1 cosh φ1 + (κe6 − g2e

2h+φ) cosh φ4

+κe12 sinh φ4] (176)

which do not admit any AdS2 × �2 fixed points as in the
case of A3+ twist.

3.2.2 Solutions with N = 2 twists

We now move to a more interesting and more complicated
case of N = 2 twists by both A3+ and A6−. The resulting
BPS conditions are much more involved than those in the
previous case. However, we are able to find a number of
solutions for special values of electric and magnetic charges.

• Solutions from pure N = 4 gauged supergravity

We will begin with a simple case of pure N = 4 gauged
supergravity with φ1 = φ4 = 0 and A9+ = A12− = 0.

In this case, the constraint (162) requires e3 = p6 = 0,
and we find

W = 1

2
e− φ

2 [g1 + g2e
φ + ig2χ ], (177)

Z = 1

2
e− φ

2 −2hκ[e6 + p3e
φ + i p3χ ]. (178)

We then find the following BPS equations

χ ′ = −4e2φ ∂|W + Z|
∂χ

= − e−4h+φ(κg2e2h + p3)
2χ

|W + Z| , (179)

φ′ = −4
∂|W + Z|

∂φ

= e−4h−φ

2|W + Z|
[
(e6 + κg1e

2h)2 − (κg2e
2h + p3)

2(e2φ − χ2)
]
,

(180)

h′ = |W + Z|, (181)

f ′ = e−4h−φ

4|W + Z|
[
e4h(g1 + g2e

φ)2 − (e6 + p3e
φ)2

+(e4hg2
2 − p2

3)2χ2
]

(182)

with

|W + Z| = 1

2
e−2h− φ

2

×
√

[e2h(g1 + eφg2) + κe6 + κp3eφ]2 + (e2hg2 + κp3)2χ2.

(183)

From these equations, we find an AdS2 × H2 fixed point
given by

h = 1

2
ln

[
−κp3

g2

]
, L AdS2 = 1

g1e− φ0
2 + g2e

φ0
2

(184)

for constants φ = φ0 and χ = χ0 provided that g2e6 = g1 p3.
We note that for χ = 0, the above BPS equations and the
AdS2 × H2 fixed point are the same as those considered in
[41] with an appropriate change of symplectic frame to purely
electric SO(4) gauge group. We have slightly generalized the
equations in [41] by including a non-vanishing axion. We
now give the flow solutions interpolating between the AdS4

vacuum and the AdS2 ×H2 geometry. Before giving explicit
solutions, we first simplify the expressions by setting g2 = g1

according to which the twist condition gives p3 = e6 = 1
2g1

.
For χ = 0 and κ = −1, we find a much simpler set of

BPS equations

φ′ = −e−2h− φ
2 (eφ − 1)(e2hg1 − p3), (185)

h′ = 1

2
e−2h− φ

2 (1 + eφ)(e2hg1 − p3), (186)

f ′ = 1

2
e−2h− φ

2 (1 + eφ)(e2hg1 + p3). (187)

These equations take a very similar form to those of N = 5, 6
gauged supergravities and N = 3 gauged supergravity given
in the previous section. We then expect that the resulting
solutions are related to each other by truncations of N =
6 gauged supergravity to gauged supergravities with lower
amounts of supersymmetry. The solution is given by

g1(r − r0) = tanh−1

√
1 + cosh φ

2

−2
√

p3

g1 + 4p3
tanh−1

√
2p3(1 + cosh φ)

g1 + 4p3
, (188)

h = φ

2
− ln(1 − eφ), (189)

f = ln
[
p3(1 + e2φ) − (g1 + 2p3)e

φ
]

− ln(1 − eφ) − φ

2
.

(190)
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This solution flows to the AdS2 × H2 fixed point (184) for
φ0 given by

φ0 = ln

[√
g1(g1 + 4p3)

4p2
3

+ g1

2p3
+ 1

]
. (191)

For χ �= 0, we have the BPS equations

f ′ = 1

2
e−2h− φ

2 (e2hg1 + p3)

√
(1 + eφ)2 + χ2, (192)

h′ = 1

2
e−2h− φ

2 (e2hg1 − p3)

√
(1 + eφ)2 + χ2, (193)

φ′ = e−2h− φ
2 (e2hg1 − p3)(1 − e2φ + χ2)√

(1 + eφ)2 + χ2
, (194)

χ ′ = −2e−2h+ 3φ
2 (e2hg1 − p3)χ√

(1 + eφ)2 + χ2
(195)

with the solution given by

φ = 1

2
ln(1 − χ2 + C0χ), (196)

f = ln(e2hg1 − p3) − h, (197)

h = 1

8
ln

[
1 + C0χ − χ2

χ4

]

+1

4
ln

[
2 + C0χ + 2

√
1 + C0χ − χ2

]
(198)

for a constantC0. However, we are not able to find an analytic
solution for χ(r). The solution flows to the AdS2 ×H2 fixed
point if

χ0 = g1C̃[C̃2 − 2p2
3 + g1C0C̃]

2(g2
1C̃

2 + p4
3)

(199)

with C̃ =
√
g2

1(4 + C2
0 ) + 4p2

3.

• Solutions from matter-coupled N = 4 gauged supergrav-
ity

We now consider solutions from matter-coupled N = 4
gauged supergravity with φ1, φ4 �= 0. Consistency for set-
ting φ2 = φ3 = 0 in δλia conditions also requires setting
A9+ = 0. The residual symmetry of the solutions in this
case is then enhanced to SO(2)× SO(2)× SO(3)× SO(2).
With all these, we find two sets of BPS equations consistent
with the constraint (162). These are given by

i : χ = φ2 = 0, e3 = p6 = p12 = 0, (200)

ii : χ = φ4 = 0, e3 = p6 = e12 = 0. (201)

� Case i:
In this case, we find the following BPS equations

f ′ = 1

4
e−2h− φ

2 −φ4
[
eφ[e2hg2(1 + e2φ4 ) − 2κp3e

φ4 ]

+2g1e
2h+φ4 + κe12(1 − e2φ4 ) − κe6(1 + e2φ4 )

]
, (202)

h′ = 1

4
e−2h− φ

2 −φ4
[
eφ[e2hg2(1 + e2φ4 ) + 2κp3e

φ4 ]
+2g1e

2h+φ4 − κe12(1 − e2φ4 ) + κe6(1 + e2φ4 )
]
, (203)

φ′ = −1

4
e−2h− φ

2 −φ4
[
e2h+φg2 − 2g1e

2h+φ4 + e2h+φ+2φ4g2

+κ(e12 − e6) − κ(e12 + e6)e
2φ4 + 2κp3e

φ+φ4
]
, (204)

φ′
4 = −1

2
e−2h− φ

2 −φ4
[
e2h+φg2(e

2φ4 − 1)

+κ(e12 − e6) + κ(e12 + e6)e
2φ4

]
. (205)

There is a family of AdS2 × �2 fixed points given by

φ = ln

[
(1 + e2φ4 )[e12(1 + e2φ4 ) + e6(e2φ4 − 1)]

2p3(e2φ4 − 1)

]
− φ4,

h = φ4

2
− 1

2
ln

[
− g2(1 + e2φ4 )

2κp3

]
,

φ4 = 1

2
ln

⎡
⎣2g1 p3 − e6g2 +

√
e2

12g
2
2 + 4g1 p3(g1 p3 − g2e6)

g2(e12 + e6)

⎤
⎦ .

(206)

It can be verified that for appropriate values of the parameters,
this critical point is valid for both κ = 1 and κ = −1 resulting
in a class of AdS2 × S2 and AdS2 × H2 geometries. Since
p12 = 0 in this case, the solutions carry only electric charges
of A12−.

Examples of solutions interpolating between AdS4 and
AdS2 × H2 vacua with

g2 = g1 = 1, p3 = 3

2
, κ = −1 (207)

and e12 = 1, 2, 3 are shown in Fig. 1. We also note that the
value of e6 is fixed by the twist condition g1(p3 + e6) = 1.

A number of interpolating solutions between AdS4 and
AdS2 × S2 critical points are shown in Fig. 2 with the fol-
lowing numerical values

g2 = g1 = 1, p3 = −2, κ = 1 (208)

and e12 = 4, 6, 8.
� Case ii:

In this case, the solutions carry magnetic charges of A12−,
and the resulting BPS equations are given by

f ′ = 1

4
e−2h− φ

2 −φ2
[
e2h(g1 + g1e

2φ2 + 2g2e
φ+φ2 ) − 2κe6e

φ2

+κeφ(p12 − p3) − κ(p12 + p3)e
φ+φ2

]
, (209)

h′ = 1

4
e−2h− φ

2 −φ2
[
e2h(g1 + g1e

2φ2 + 2g2e
φ+φ2 ) + 2κe6e

φ2

−κeφ(p12 − p3) + κ(p12 + p3)e
φ+φ2

]
, (210)

φ′ = 1

2
e−2h− φ

2 −φ2
[
e2hg1(1 + e2φ2 ) − 2g2e

2h+φ+φ2 + 2κe6e
φ2

+κ(p12 − p3)e
φ − κ(p12 + p3)e

2φ4+φ
]
, (211)
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(a) (b)

(c) (d)

Fig. 1 Supersymmetric AdS4 black holes with AdS2 × H2 horizon for g2 = g1 = 1, p3 = 3
2 , κ = −1 and e12 = 1 (red), 2 (green), 3 (blue)

φ′
2 = −1

2
e− φ

2 −φ2
[
g1(e

2φ2 − 1)

+κe−2h+φ[p12 − p3 + (p12 + p3)e
2φ2 ]

]
. (212)

From these equations, we find a family of AdS2 × �2 fixed
points given by

φ = ln

[
2e6e2φ2 (e2φ2 − 1)

(1 + e2φ2 )[p12 − p3 + (p12 + p3)e2φ2 ]
]

,

h = φ2

2
− 1

2
ln

[
− g1(1 + e2φ2 )

2κe6

]
,

φ2 = 1

2
ln

⎡
⎣2e6g2 − g1 p3 +

√
4e2

6g
2
2 + g2

1 p
2
12 − 4e6 p3g1g2

g1(p12 + p3)

⎤
⎦ .

(213)

Similar to the previous case, both AdS2 ×S2 and AdS2 ×H2

geometries are possible depending on the values of various
parameters. Examples of flow solutions from the AdS4 vac-
uum to AdS2 × H2 fixed points with

g2 = g1 = 1, p3 = 1

4
, κ = −1 (214)

and p12 = 1, 2, 3 are given in Fig. 3. For flow solutions to
AdS2×S2 fixed points, we give some representative solutions
for p12 = 3, 6, 9 and

g2 = g1 = 1, p3 = 2, κ = 1 (215)

in Fig. 4.

3.3 Solutions with SO(2)diag × SO(2)diag symmetry

In this section, we repeat the same analysis for a smaller
residual symmetry SO(2)diag × SO(2)diag. As we will see,
a new feature is the appearance of a number of non-trivial
supersymmetric AdS4 vacua. All of these vacua are not new
but have recently been found in [42] to which we refer for
more details. Since the analysis of SO(2)diag × SO(2)diag

singlet scalars has not previously appeared, we will give more
detail than the SO(2) × SO(2) × SO(2) × SO(2) sector
considered in the previous section.

We begin with the scalars from SO(6, 6)/SO(6)×SO(6)

coset which contains six singlets corresponding to the follow-
ing non-compact generators

Y11, Y11 + Y22, Y12 − Y21, Y66,
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(a) (b)

(c) (d)

Fig. 2 Supersymmetric AdS4 black holes with AdS2 × S2 horizon for g2 = g1 = 1, p3 = −2, κ = 1 and e12 = 4 (red), 6 (green), 8 (blue)

Y44 + Y55, Y45 − Y54. (216)

The coset representative can be then written as

V = eφ1Y11eφ2(Y11+Y22)eφ3(Y12−Y21)eφ4Y66

eφ5(Y44+Y55)eφ6(Y45−Y54). (217)

With this coset representative, scalar kinetic terms are given
by

e−1Lkin = −1

4
(φ′2 − e−2φχ ′2) − 1

2
[φ′

1
2

+(1 + cosh 4φ3)φ
′
2

2 + 2φ′
3

2]
−1

2
[φ′

4
2 + (1 + cosh 4φ6)φ

′
5

2 + 2φ′
6

2]. (218)

The tensor Ai j
1 is proportional to the identity matrix of which

the four-fold degenerate eigenvalue gives the superpotential
only for χ = 0. Since the complete expressions are much
more complicated and will not play any important role in sub-
sequent analysis, we will only give the potential and super-
potential for the case of χ = 0. These are given respectively
by

V = 1

8

[
g2

1 cosh2 φ2[cosh 2(φ1 − φ2) + cosh 2(φ1

+φ2) − 2 cosh 2φ1 − 4]
× cosh2 φ2(cosh φ − sin φ)

+g2
2 cosh2 φ5(cosh φ + sinh φ)

×[cosh 2(φ4 − φ5) + cosh 2(φ4

+φ5) − 2 cosh 2φ4 − 4]
+g̃2

1[cosh 2(φ1 − φ2) + cosh 2(φ1

+φ2) + 2 cosh 2φ1 − 4]
×(cosh φ − sinh φ) sinh2 φ2

+16g2 g̃1 cosh φ4 cosh2 φ5 sinh φ1

× sinh2 φ2 − 2g1g̃1(cosh φ

− sinh φ) sinh 2φ1 sinh2 φ2

+g̃2
2[cosh 2(φ4 − φ5) + cosh 2(φ4

+φ5) + 2 cosh 2φ4 − 4] sinh2 φ5

×(cosh φ + sinh φ)

+16g1g̃2 cosh φ1 cosh2 φ2 sinh φ4 sinh2 φ5

−16g1g2 cosh φ1 cosh2 φ2 cosh φ4 cosh2 φ5

+16g̃1g̃2 sinh φ1 sinh2 φ2 sinh φ4 sinh2 φ5

−2g2g̃2e
φ sinh 2φ4 sinh2 2φ5

]
(219)
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(a) (b)

(c) (d)

Fig. 3 Supersymmetric AdS4 black holes with AdS2 × H2 horizon for g2 = g1 = 1, p3 = 1
4 , κ = −1 and p12 = 1 (red), 2 (green), 3 (blue)

and

W = 1

4
e− φ

2 [g1 cosh φ1(1 + cosh 2φ2 cosh 2φ3)

+g̃1 sinh φ1(1 − cosh 2φ2 cosh 2φ3)

×g2e
φ cosh φ4(1 + cosh 2φ5 cosh 2φ6)

+g̃2e
φ sinh φ4(1 − cosh 2φ5 cosh 2φ6)

]
. (220)

It is straightforward to verify that the superpotential admits
the following four supersymmetric AdS4 vacua

I: φα = 0, α = 1, 2, . . . , 6, φ = ln

[
g1

g2

]
,

V0 = −3g1g2, (221)

II: φα = 0, α = 1, 2, 3, 6,

φ4 = ±φ5 = 1

2
ln

[
g̃2 + g2

g̃2 − g2

]
,

φ = 1

2
ln

[
g2

1(g̃2
2 − g2

2)

g2
2 g̃

2
2

]
,

V0 = − 3g1g2g̃2√
g̃2

2 − g2
2

, (222)

III: φα = 0, α = 3, 4, 5, 6,

φ1 = ±φ2 = 1

2
ln

[
g̃1 + g1

g̃1 − g1

]
,

φ = −1

2
ln

[
g2

2(g̃2
1 − g2

1)

g2
1 g̃

2
1

]
,

V0 = − 3g1g2g̃1√
g̃2

1 − g1
2

, (223)

IV: φ3 = φ6 = 0, φ1 = ±φ2 = 1

2
ln

[
g̃1 + g1

g̃1 − g1

]
,

φ4 = ±φ5 = 1

2
ln

[
g̃2 + g2

g̃2 − g2

]
,

φ = ln

[
g1g̃1

g2g̃2

√
g̃2

2 − g2
2

g̃2
1 − g2

1

]
,

V0 = − 3g1g2g̃1g̃2√
(g̃2

2 − g2
2)(g̃2

1 − g2
1)

. (224)

All of these vacua have already been found in [42], but we
repeat them here for later convenience. We also note the
unbroken gauge symmetries for these solutions which are
given respectively by SO(4) × SO(4), SO(4) × SO(3),
SO(3) × SO(4) and SO(3) × SO(3).
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(a) (b)

(c) (d)

Fig. 4 Supersymmetric AdS4 black holes with AdS2 × S2 horizon for g2 = g1 = 1, p3 = 2, κ = 1 and p12 = 3 (red), 6 (green), 9 (blue)

To find supersymmetric AdS4 black hole solutions, we
now turn to the analysis of Yang–Mills equations. To imple-
ment the SO(2)diag × SO(2)diag symmetry, we impose the
following conditions on the gauge fields

g1A
3+ = −g̃1A

9+ and g2A
6− = −g̃2A

12− (225)

which lead to the same composite connection given in (154).
Therefore, the twist conditions and relevant projectors are
the same.

Unlike the SO(2) × SO(2) × SO(2) × SO(2) case, the
YM currents are non-vanishing in this case. From equation
(124), we find

DH3− = 1

2
g1(cosh 2φ2 sinh 4φ3φ

′
2 − 2 sinh 2φ2φ

′
3) ∗ dr,

(226)

DH9− = 1

2
g̃1(cosh 2φ2 sinh 4φ3φ

′
2 − 2 sinh 2φ2φ

′
3) ∗ dr

(227)

which, from the ansatz of the gauge fields, imply that b3 and
b9 are constant and

φ2 = 0 or φ3 = 0. (228)

Similarly, Eq. (125) gives

DH6+ = −1

2
g2(cosh 2φ5 sinh 4φ6φ′

5 − 2 sinh 2φ5φ′
6) ∗ dr,

(229)

DH12+ = −1

2
g̃2(cosh 2φ5 sinh 4φ6φ′

5 − 2 sinh 2φ5φ′
6) ∗ dr

(230)

which lead to constant b6 and b12 together with

φ5 = 0 or φ6 = 0. (231)

We also note that the radial component of the composite
connection is given by

Qri
j = − cosh φ3 sinh φ3φ

′
2(iσ2 ⊗ σ1)i

j

− cosh φ6 sinh φ6φ
′
5(σ1 ⊗ iσ2)i

j (232)

which identically vanishes whenever φ2 = 0 or φ3 = 0 and
φ5 = 0 or φ6 = 0. In order to find solutions interpolating
between supersymmetric AdS4 vacua identified above, we
will choose a definite choice

φ3 = φ6 = 0. (233)
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We then consider Eq. (126). Equations for H3− and H9−
give

Ã3′
t = κp3

g̃1
eφ+ f −2h(g1 sinh 2φ1 − g̃1 cosh 2φ1), (234)

Ã9′
t = κp3

g̃1
eφ+ f −2h(g̃1 sinh 2φ1 − g1 cosh 2φ1) (235)

together with

A3′
t = − g̃1

g1
A9′
t = g1e f −φ−2h(κe3 − g1b3)

g̃1 cosh 2φ1 − g1 sinh 2φ1

= g̃1e f −φ−2h(κe9 − g2b9)

g1 cosh 2φ1 − g̃1 sinh 2φ1
. (236)

For g̃1 �= g1 which is needed for the existence of non-trivial
AdS4 vacua, the last equation implies

e3 = e9 = b3 = b9 = 0 (237)

which in turn gives

A3′
t = A9′

t = 0. (238)

Similarly, equations for H6− and H12− give

p12 = p6 = b6 = b12 = 0 and Ã6′
t = Ã12′

t = 0 (239)

together with

A6′
t = κe6

g̃2
e f−2h−φ(g̃2 cosh 2φ4 − g2 sinh 2φ4), (240)

A12′
t = κe6

g̃2
e f−2h−φ(g2 cosh 2φ4 − g̃2 sinh 2φ4). (241)

With χ = φ3 = φ6 = 0, we find that both W and Z are
real and given by

W = 1

2
e− φ

2 (g1 cosh φ1 cosh2 φ2 − g̃1 sinh φ1 sinh2 φ2)

+1

2
e

φ
2 (g2 cosh φ4 cosh2 φ5 − g̃2 sinh φ4 sinh2 φ5),

(242)

Z = − κ

2g̃1g̃2
e−2h− φ

2
[
eφ p3g̃2(g̃1 cosh φ1 − g1 sinh φ1)

+e6g̃1(g2 sinh φ4 − g̃2 cosh φ4)
]
. (243)

It can be readily verified that critical points I, II, III, and
IV are critical points of W as expected for supersymmetric
vacua.

As in the previous case, there are two possible topological
twists, N = 4 and N = 2 twists. The N = 4 twists do not
give rise to any AdS2 ×�2 fixed points, so we will only give
the results on N = 2 twists. Since both W and Z are real, we
find the phase ei� = ±1, and the BPS equations are given by

f ′ = |W − Z|
= 1

2
e− φ

2

[
g1 cosh φ1 cosh2 φ2 − g̃1 sinh φ1 sinh2 φ2

+g2e
φ cosh φ4 cosh2 φ5 − g̃2e

φ sinh φ4 sinh2 φ5

]

−κ
e− φ

2 −2h

g̃1g̃2

[
e6g̃1(g̃2 cosh φ4 − g2 sinh φ4)

− eφ g̃2 p3(g̃1 cosh φ1 − g1 sinh φ1)
]
, (244)

h′ = |W + Z|
= 1

2
e− φ

2

[
g1 cosh φ1 cosh2 φ2 − g̃1 sinh φ1 sinh2 φ2

+g2e
φ cosh φ4 cosh2 φ5 − g̃2e

φ sinh φ4 sinh2 φ5

]

+κ
e− φ

2 −2h

g̃1g̃2

[
e6g̃1(g̃2 cosh φ4 − g2 sinh φ4)

−eφ g̃2 p3(g̃1 cosh φ1 − g1 sinh φ1)
]
, (245)

φ′ = −4
∂|W + Z|

∂φ

= e− φ
2

[
g1 cosh φ1 cosh2 φ2 − g̃1 sinh φ1 sinh2 φ2

+eφ(g̃2 sinh φ4 sinh2 φ5 − g2 cosh φ4 cosh2 φ5)
]

+ κ

g̃1g̃2
e−2h− φ

2
[
eφ g̃2 p3(g̃1 cosh φ1 − g1 sinh φ1)

+e6g̃1(g̃2 cosh φ4 − g2 sinh φ4)
]
, (246)

φ′
1 = −2

∂|W + Z|
∂φ1

= e− φ
2 (g̃1 cosh φ1 sinh2 φ2 − g1 cosh2 φ2 sinh φ1)

+κp3

g̃1
e−2h+ φ

2 (g̃1 sinh φ1 − g1 cosh φ1), (247)

φ′
2 = −∂|W + Z|

∂φ2

= e− φ
2 cosh φ2 sinh φ2(g̃1 sinh φ1 − g1 cosh φ1), (248)

φ′
4 = −2

∂|W + Z|
∂φ4

= e
φ
2 (g̃2 cosh φ4 sinh2 φ5 − g2 cosh2 φ5 sinh φ4)

−κe6

g̃2
e−2h− φ

2 (g̃2 sinh φ4 − g2 cosh φ4), (249)

φ′
5 = −∂|W + Z|

∂φ5

= e
φ
2 cosh φ5 sinh φ5(g̃2 sinh φ4 − g2 cosh φ4). (250)

From φ′
2 and φ′

5 equations, we immediately see that there are
four possibilities for AdS2 × �2 fixed points to exist:

i : φ2 = φ5 = 0,

ii : φ2 = 0 and φ4 = 1

2
ln

[
g̃2 + g2

g̃2 − g2

]
,

iii : φ5 = 0 and φ1 = 1

2
ln

[
g̃1 + g1

g̃1 − g1

]
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iv : φ1 = 1

2
ln

[
g̃1 + g1

g̃1 − g1

]
and φ4 = 1

2
ln

[
g̃2 + g2

g̃2 − g2

]
.

(251)

These coincide with the values of scalars at supersymmetric
AdS4 vacua I, II, III and IV. However, the last possibility does
not lead to any AdS2 × �2 fixed points. We then consider
only the remaining three cases:

• i: In this case, we set φ2 = φ5 = 0 and find an AdS2×�2

fixed point given by

h = 1

2
φ + 1

2
ln

[
κp3(g̃1 − g1 coth φ1)

g1 g̃1

]
, φ = 1

2
ln

[
e6g1 g̃1(g2 coth φ4 − g̃2)

p3g2 g̃2(g̃1 − g1 coth φ1)

]
,

φ1 = 1

2
ln

⎡
⎣ g1(g2 cosh 2φ4 − g̃2 sinh 2φ4)

g2(g̃1 − g1)
+

√
g2

2(g̃2
1 − g2

1) + g2
1(g2 cosh 2φ4 − g̃2 sinh 2φ4)2

g2(g̃1 − g1)

⎤
⎦ ,

φ4 = 1

2
ln

[
e2

6g
4
2 g̃

2
1 g̃2 + 2e6g1g3

2 g̃
2
1 g̃2 p3 + g4

1 g̃
3
2 p

2
3 + g2

√
X

(g̃2 − g2)(g4
1 g̃

2
2 p

2
3 − e2

6g
4
2 g̃

2
1)

]
(252)

for

X = e4
6g

8
2 g̃

4
1 + 4e3

6g1g
5
2 g̃

4
1 g̃

2
2 p3

+2e2
6g

2
1g

2
2 g̃

2
1 g̃

2
2[2g2

2 g̃
2
1 − g2

1(g2
2 − 2g̃2

2)]p2
3

+4e6g
5
1g2g̃

2
1 g̃

4
2 p

3
3 + g8

1 g̃
4
2 p

4
3. (253)

• ii: In this case, we have φ2 = 0 and

φ4 = φ5 = 1

2
ln

[
g̃2 + g2

g̃2 − g2

]
, h = 1

2
ln

[
κp3eφ(g̃1 − g1 coth φ1)

g1g̃1

]
,

φ = ln

⎡
⎣

√
g̃2

2 − g2
2

[
2g1 p3(g1 cosh 2φ1 − g̃1 sinh 2φ1) + √

2g1 p3Y
]

4g2 g̃2 p3(g1 cosh φ1 − g̃1 sinh φ1)

⎤
⎦ ,

φ1 = 1

2
ln

⎡
⎣2e6g2g̃1 + g1g̃1 p3 +

√
4e2

6g
2
2 g̃

2
1 + 4e6g1g2g̃2

1 p3 + g4
1 p

2
3

g1 p3(g1 − g̃1)

⎤
⎦ (254)

with

Y = g1 p3(g̃
2
1 + g2

1) cosh 4φ1 − 4g1g̃1 sinh 2φ1

(e6g2 + g1 p3 cosh 2φ1)

+g3
1 p3 − g̃2

1(4e6g2 + g1 p3) + 4e6g2g̃
2
1 cosh 2φ1.

(255)

• iii: For this final possibility, we have φ5 = 0 and

φ1 = φ2 = 1

2
ln

[
g̃1 + g1

g̃1 − g1

]
, h = 1

2
ln

[
κe6e−φ[g2(1 + e2φ4) + g̃2(1 − e2φ4)]

g2g̃2(e2φ4 − 1)

]
,

φ = ln

[√
e6g2(e6g3

2 + 2g1g̃2
2 p3 − 2g1g̃2

2 p3 cosh 2φ4 + 2g1g2g̃2 p3 sinh 2φ4) + e6g
2
2

]
+ ln

⎡
⎣ g̃1eφ4(coth φ4 − 1)

2g2g̃2 p3

√
g̃2

1 − g2
1

⎤
⎦ ,

φ4 = 1

2
ln

⎡
⎣ g̃2(e6g2 + 2g1 p3) +

√
e2

6g
4
2 + 4e6g1g2g̃2

2 p3 + 4g2
1 g̃

2
2 p

2
3

e6g2(g2 − g̃2)

⎤
⎦ . (256)

In each case, we have not explicitly given the expressions for
L AdS2 due to their complexity. These can be obtained from
f ′ equation by using the values of the other fields at the fixed
points. We have verified that all the above three cases indeed
lead to valid AdS2 × �2 fixed points in each case. This will
also be clearly seen later in numerical analyses.
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(a) (b)

(c) (d)

(e)

Fig. 5 Supersymmetric AdS4 black holes with AdS2 × H2 horizon (i) for g2 = g1 = 1, g̃1 = 2g1, g̃2 = 3g2 and p3 =
−3 (red),−3.00000025 (blue),−3.005 (green)

For critical point i, we obtain only AdS2 × H2 solutions
with κ = −1. Examples of solutions interpolating between
the supersymmetric AdS4 critical point I and these AdS2 ×
H2 geometries are shown in Fig. 5 for g2 = g1 = 1, g̃1 =
2g1, g̃2 = 3g2 and p3 = −3,−3.00000025,−3.005. The
reason for choosing values of p3 very close to each other is
for the convenience in the presentation. The numerical plots
for solutions in which the values of p3 are widely separated
are very far from each other.

For critical point ii, we have found only AdS2 × H2 solu-
tions as in critical point i . An example of the solutions inter-
polating between supersymmetric AdS4 critical points I and
II and an AdS2 ×H2 geometry with g2 = g1 = 1, g̃1 = 2g1,
g̃2 = 3g2 and p3 = −3 is shown in Fig. 6. We have set
φ2 = 0 along the entire solution. We also note that the solu-
tion indeed exhibits an intermediate AdS4 critical point II
with the value φ = −0.05889 given by the chosen values of
various parameters in this solution.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 A supersymmetric AdS4 black hole with AdS2 × H2 horizon (ii) for g2 = g1 = 1, g̃1 = 2g1, g̃2 = 3g2 and p3 = −3

Unlike the previous two cases, in critical point iii, we
only find AdS2 × S2 solutions. An example of flow solu-
tions is shown in Fig. 7 with g2 = g1 = 1, g̃1 = 2g1,
g̃2 = 3g2 and p3 = 3. Along the entire flow, we have set
φ5 = 0. As in the flow solution to AdS2 × H2 critical point
ii, the solution exhibits an intermediate AdS4 critical point
III with φ = 0.143841, so the solution interpolates between
AdS4 critical points I and II and AdS2 × S2 geometry in
the IR. The solutions in this case and the flow to critical
point i i are similar to solutions describing RG flows across
dimensions in half-maximal gauged supergravities in five,

six and seven dimensions [39,43–45]. Moreover, there also
exist solutions that flow directly from AdS4 critical point I
to these AdS2 × S2 and AdS2 × H2 fixed points. We will
not give these solutions here since they are similar to the
solutions in SO(2)× SO(2)× SO(2)× SO(2) case without
non-trivial AdS4 vacua.

We end this section by noting that there do not exist any
AdS2 × �2 fixed points for case iv discussed above. There-
fore, there are no flow solutions from the supersymmetric
AdS4 vacuum IV to AdS2 × �2 geometries in the IR. This
is in line with the N = 3 gauged supergravity studied in the
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 A supersymmetric AdS4 black hole with AdS2 × S2 horizon (iii) for g2 = g1 = 1, g̃1 = 2g1, g̃2 = 3g2 and p3 = 3

previous section in which no AdS2 × �2 fixed points exist
for RG flows involving the non-trivial N = 3 AdS4 critical
point with SO(3) symmetry. On the other hand, as we have
seen above, AdS2 × �2 critical points ii and iii do exist and
are connected to non-trivial AdS4 critical points II and III.
However, the latter do not have an analogue in the case of
N = 3 gauged supergravity.

4 Conclusions and discussions

We have studied a number of supersymmetric black hole
solutions in asymptotically AdS4 space from matter-coupled
N = 3 and N = 4 gauged supergravities. In N = 3 theory,
we have found an AdS2 × H2 solution with SO(2)× SO(2)

symmetry. We have also given a complete solution interpolat-
ing between SO(3) × SO(3) symmetric AdS4 vacuum and
this AdS2 × H2 geometry with a non-vanishing scalar. The
resulting solution has a very similar structure to those given
in N = 5, 6 gauged supergravities. The solution with vanish-
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ing scalars is a solution of pure N = 3 gauged supergravity
and can be embedded in massive type IIA theory using the
result of [31]. We have also shown that there are no AdS4

black hole solutions with SO(2)diag symmetry. Therefore, in
N = 3 gauged supergravity under consideration here, it is
clear that there are no other solutions.

Although we have considered only a particular case of
three vector multiplets, it has been shown in [46] that the
SO(3)R ⊂ SU (3)R symmetry must be gauged in order
for the gaugings to admit a supersymmetric AdS4 vacuum.
This is also an essential part in performing topological twists
since the gravitini and Killing spinors are charged exclu-
sively under this symmetry or a diagonal subgroup with parts
of the symmetry of vector multiplets. Therefore, even with
extra vector multiplets and possibly larger gauge groups, the
structure of the topological twists should be the same and
eventually leads to a similar conclusion.

In pure N = 4 gauged supergravity, we have recovered
an AdS2 × H2 solution studied in [41]. However, we have
included a non-vanishing axion and given the interpolat-
ing solutions between this geometry and the supersymmetric
AdS4 vacuum. For matter-coupled N = 4 gauged supergrav-
ity, we have found a number of AdS2 × S2 and AdS2 × H2

solutions with SO(2)×SO(2)×SO(3)×SO(2) symmetry.
We have also given various examples of numerical solutions
interpolating between these geometries and the AdS4 vac-
uum with SO(4) × SO(4) symmetry. The BPS equations
are very complicated, and we are not able to completely
carry out the analysis. However, we have given a number of
possible AdS4 black hole solutions with both spherical and
hyperbolic horizons. We note that unlike N = 5 and N = 6
gauged supergravities, there exist matter multiplets in N = 4
theory, and the two SO(2) factors involving in the twists are
not necessarily equal though related, see the twist condition
in (160). This gives a weaker constraint on the charges and
leaves more freedom to find AdS2×�2 solutions. This is also
supported by the fact that, when restricted to the case of pure
N = 4 gauged supergravity, the charges of A3+ and A6−
must be equal, and only one AdS2 × H2 solution which is
an analogue of similar solutions in N = 5, 6 theories exists.

We have also found AdS2 × S2 and AdS2 × H2 solu-
tions with SO(2)diag × SO(2)diag symmetry. Similar to
the N = 3 theory, in this case, we have performed a
complete analysis and classified all possible supersymmet-
ric AdS2 × �2 solutions with the aforementioned residual
symmetry at least for the case of six vector multiplets. In
this case, apart from the trivial AdS4 critical point with
the full SO(4) × SO(4) symmetry, there exist additional
three supersymmetric AdS4 vacua with SO(4) × SO(3),
SO(3) × SO(4) and SO(3) × SO(3) symmetries. Except
for the last critical point, we have found black hole solu-
tions interpolating between these vacua and AdS2 × S2 and
AdS2 × H2 geometries. We hope all these solutions could

be useful in black hole physics and holographic studies of
twisted compactifications of N = 3 and N = 4 SCFTs in
three dimensions on a Riemann surface.

It is interesting to look for more general solutions in the
SO(2) × SO(2) × SO(2) × SO(2) case in particular solu-
tions carrying both electric and magnetic charges of the same
gauge fields. In this paper, we have given only some represen-
tative examples of the possible solutions which carry either
electric or magnetic charges of a given gauge field. Another
direction is to find an embedding of the solutions given here
in string/M-theory. Solutions in pure N = 3 and N = 4
gauged supergravities can be embedded in ten and eleven
dimensions using consistent truncations given respectively
in [31,32,47]. It would be useful to find similar embedding
for the solutions in matter-coupled gauged supergravities. It
could also be of particular interest to study the dual three-
dimensional N = 3, 4 SCFTs with topological twists and
compute microscopic entropy of the black holes. Finally,
it would be interesting to study similar solutions in other
gauged supergravities such as ω-deformed N = 8 gauged
supergravity and N = 4 truncation of massive type IIA on
S6 given in [48,49], respectively.
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