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Abstract The approach to incorporate quantum effects in
gravity by replacing free particle geodesics with Bohmian
non-geodesic trajectories has an equivalent description in
terms of a conformally related geometry, where the motion is
force free, with the quantum effects inside the conformal fac-
tor, i.e., in the geometry itself. For more general disformal
transformations relating gravitational and physical geome-
tries, we show how to establish this equivalence by taking
the quantum effects inside the disformal degrees of freedom.
We also show how one can solve the usual problems associ-
ated with the conformal version, namely the wrong continu-
ity equation, indefiniteness of the quantum mass, and wrong
description of massless particles in the singularity resolution
argument, by using appropriate disformal transformations.

1 Introduction

More than 25 years ago, Bekenstein [1] showed that in the-
ories of gravity where two distinct geometries are present,
they are, in general, related by a disformal transformation,
which is a generalization of the conformal transformation. In
such situations, the gravitational dynamics is controlled by
the metric and is called gravitational geometry, whereas mat-
ter dynamics takes place on a geometry that is disformally
related to the metric, and called physical geometry. This is
a notable departure from general relativity (GR), where the
dynamics of both gravity and matter are determined by the
metric, but is common in scalar-tensor theories of gravity,
such as Brans–Dicke theory, in which the two geometries
are related by a conformal transformation. The purpose of
this paper is to establish the nature of disformal transforma-
tions in the context of Bohmian mechanics in gravitational
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backgrounds, and to show that it solves a few important prob-
lems that arise in an usual treatment popular in the literature,
that uses conformal transformations instead.

Bohmian mechanics [2–4] is an important tool in a semi-
classical understanding of the full theory of quantum gravity
[5]. Formulating such a quantum theory of gravity is of course
a formidable challenge, with the metric playing the role of a
quantum operator, and with quantization conditions on space
and time. The somewhat simpler semi-classical approach, in
which the metric is classical, has been popular over decades.
In Bohmian mechanics, the particle trajectories are deter-
mined by suitable wavefunctions, and the statistical distri-
bution of particle positions is given by the modulus squared
of this wavefunction. In this first quantized approach, one
replaces the geodesic motion of freely falling particles in a
curved space-time by corresponding Bohmian trajectories.
In such situations, geodesic equations are typically modified
by an additional force term coming from a quantum potential
[6–9]. This kind of reasoning has been used to deal with the
usual singularity problem of classical general relativity [6].

Importantly, it is known that there is a close relationship
between conformal transformations and the motion of a par-
ticle in Bohmian quantum mechanics. Namely, if we consider
the quantum motion of a particle in a flat background, then
this is equivalent to classical motion (one where the effect of
quantum potential is absent) on a curved background which
is related to the previous one by a conformal transformation.
The conformal factor is a function of the modulus of the
wavefunction, and is hence related to the quantum potential
(see for e.g. [9–11,13] and references therein).

To understand this equivalence beyond the existing litera-
ture, in the first part of this work, we consider a Klein–Gordon
type field, which is governed by Bohmian mechanics, and is
non-minimally coupled to gravity. After deriving the Ray-
chaudhuri equation, we discuss how we can transform to a
conformally related frame (with the conformal factor being
a variable particle mass) where the motion of the particle
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is force free, but the corresponding field equations have the
information of the quantum nature of the particle. We argue
how to deal with the singularity problem in this frame where
the quantum force is absent by working out a particular exam-
ple of such transformation with a suitable choice of the wave
function, in a Schwarzschild background.

In this context, an important question to ask is the follow-
ing. If the physical geometry on which the particle moves is
different from the gravitational geometry, can we perform an
analysis similar to the one described above, where the parti-
cle, moving in the physical geometry, is a quantum mechan-
ical particle obeying Bohmian mechanics ? Is it possible to
incorporate quantum effects in the disformal factor as in the
conformal case? We show it is possible, by deriving the rela-
tion between the acceleration equations and then relating the
factors of the transformation with quantum potential.

Next, in a minimally coupled scenario, we show that by
using the equivalent description in the disformal frame, we
can solve some well known problems that are present in the
conformal version of theory described before. For example,
in presence of the quantum potential, the mass of a particle
is modified to a variable one (known as the quantum mass of
the particle), and this is not always positive definite, so that
the theory may have tachyonic modes [3]. If we transform to
a conformal frame where the quantum potential is absent, the
particle mass becomes constant, but the transformation itself
is not definite for such imaginary quantum mass. Furthermore
the continuity equation in the transformed frame does not
have the desired form to define a suitable probability density
[14,15]. One of the main contributions of this paper is to
show that instead of transforming to a conformal frame, if
we use a disformal transformation, all of the above mention
problems can be solved. The modified geodesic equation and
the continuity equation fix the transformation factors such
that have positive definite values even for a particle with
negative quantum mass.

In the last part this work we address a related question. If
the force on the particle due to it’s quantum nature is absent
in the conformal frame, what happens for a massless particle
moving in null trajectory in that frame. It is known that, by
the nature of construction of conformal transformation the
null geodesics remains invariant, they do not feel any force
in any of the two conformally related frames. In particular
what happens to the argument used to avoid the singularity
problem. Namely, how can null trajectories not cross if they
do not feel any quantum force? We shall show how to answer
this question by using the fact that under a general disformal
transformation, a null trajectory of one frame is not null in
another frame [1,16]. By doing a disformal transformation in
a direction different from the wave vector of the photon, we
show that photon does not moves in a null trajectory in the
gravitational geometry, and hence can avoid the singularity.

This paper is organized as follows. In Sect. 2, we briefly
review the non-geodesic motion of the Bohmian particle
in curved spacetime. Then we elaborate how the relation
between the motion of this particle on a fixed background
geometry can be equivalently described by a force free
motion in a conformal frame, where the quantum effects are
hidden in the energy momentum tensor. In Sect. 3, by assum-
ing a minimal coupling between wavefunction and back-
ground geometry we describe how the previous set up may
be generalized to disformally related spacetimes. Finally, in
Sect. 4, we demonstrate how one can solve the usual prob-
lems that appear in a conformally transformed frame by using
disformal transformations. The paper ends with conclusions
in Sect. 5. Throughout this paper, we work in natural units
and set G = c = h̄ = 1.

2 Bohmian motion on a classical background

2.1 The action and the Klein–Gordon equation

We consider a spinless quantum particle of massm moving on
a timelike path in a fixed classical background. The normal-
ized wave function of such a particle �(xμ) can be written in
terms of two single valued real functions R(xμ) and S(xμ),
which are the modulus and the phase function respectively,
as �(xμ) = R(xμ)eiS(xμ) [3,4]. Substituting this form of
wave function in the Schrodinger equation, and separating
the real and imaginary parts, one can show that, with the
four-momentum associated with a particle of mass m guided
by this wave function given by pμ = ∂μS(xμ), these two
equations can be interpreted as a quantum Hamilton–Jacobi
equation, and a continuity equation with probability density
ρ = R2 [2,3], respectively. But the Schrodinger equation is
not a manifestly covariant equation. Thus to write down the
relativistic version of the quantum Hamilton–Jacobi equa-
tion and the continuity equation, a popular approach in the
literature has been to instead consider a Klein–Gordon type
equation of a particle (whose dynamics is governed by the
Bohmian mechanics) described by the wavefunction �(xμ)

which is assumed to be moving on a fixed classical curved
background (gμν). Such models are considered previously
in the literature in the context of Bohmian mechanics in [5–
9,13], also see the books [11,12] for reviews of previous
works on the usage of the Klein–Gordon equation in gravity.
Indeed, as we have mentioned before, in relativistic quan-
tum mechanics, different conceptual problems arise in the
Bohmian interpretation of a single particle Klein–Gordon
equation, e.g., indefiniteness of the quantum mass and the
wrong continuity equation. Here we will show that such prob-
lems can be avoided by transforming to a disformally related
frame.
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We will start with the following action, with a non-
minimal coupling term between the particle wavefunction
� and the Ricci scalar R whose variation will give us the
desired Klein–Gordon type equation :

Sgr + S� + Sm =
∫

d4x
√−gF(|�|)R

+
∫

d4x
√−g

[
− 1

2
gμν(∇μ�∗)(∇ν�)

− 1

2
m2|�|2

]
+

∫
d4x

√−gLm(gμν, λi ).

(1)

This action is commonly used popular alternatives to GR,
called the scalar-tensor theories (the literature on the subject
is vast, see, e.g., [17,18]). There, � is more appropriately a
scalar field. Here on the other hand, �(xμ) (a scalar func-
tion) is the first quantized wavefunction of the particle. In
this paper no second quantization is imposed upon �(xμ).
In Eq. (1), F(|�|) is a function of the norm of the particle
wavefunction and from now on we shall concentrate on a
particular choice of F(�), namely F(�) = − 1

2ε|�|2. The
subscripts in the terms on the left hand side denote the actions
of the gravitational part, that due to the particle wavefunction
and the matter fields (collectively denoted as λi ) respectively.
The coupling between the Ricci scalar R, and the wavefunc-
tion � is assumed to be independent of whether it is in the
quantum regime or can be approximately taken to be classi-
cal, i.e., independent of the energy scale of the system.

As before we can decompose the wavefunction in the polar
form � = R(xμ)eiS(xμ) with R(xμ) and S(xμ) being two
single valued real function of spacetime coordinates. Now
substituting this in the total action, with the above choice of
the coupling function, we have

Sgr + S� + Sm

= 1

2

∫
d4x

√−g
[

− εRR2 − gμν

(
(∇μR)(∇νR)

+R2(∇μS)(∇νS)
)

− m2|R|2
]

+ Sm . (2)

This from of the action manifestly provides the coupling
between the particle wavefunction and the geometry. As can
be directly seen, only the magnitude of the wavefunction cou-
ples with the Ricci scalar and also contributes to the potential.
From Eq. (1), we see that gravitational dynamics is governed
by the field equations [17,19]

Gμν = − 1

ε|�|2
(
Tm

μν + T�
μν

)

+ 1

|�|2
(
∇μ∇ν |�|2 − gμν�|�|2

)

with T i
μν = − 2√−g

δSi
δgμν

, (3)

where i = m,�. Here,Gμν is the Einstein tensor constructed
from the metric gμν , and Tm

μν and T�
μν are the energy momen-

tum tensors associated with matter fields and � respectively
(we do not write down the explicit expressions for these quan-
tities, which are standard and can be found in the references
cited above). On the other hand the particle wave function
satisfy the following Klein–Gordon like equation

[
� − m2 − εR

]
� = 0. (4)

In four spacetime dimensions, this equation is conformally
invariant only when the mass term is set to zero and ε = 1

6
[20]. It is also important to notice that in [6], it was assumed
that the background metric is non-dynamical in nature as a
first approximation, i.e., backreaction was neglected. But in
the general case with a non zero coupling between curvature
and �, this is not possible, unless of course we choose �

to be not dynamical (this fact should be clear from the field
Eq. (3) above).

Substituting the polar form of the wavefunction � =
R(xμ)eiS(xμ) in the Klein–Gordon equation, and separat-
ing real and imaginary parts, or, alternatively directly using
the second from of the action in Eq. (2) we get the following
equations

(∇μS
)(∇μS) = −m2 − εR + �R

R and

∇μJ μ = 0 with Jμ = R2(∇μS
)
. (5)

The last term in the right hand side of the first relation above
is known as the the quantum potential, which we shall denote

as f (R) i.e. with h̄2 momentarily restored: f (R) = h̄2�R
R .

After one defines the appropriate curved space generaliza-
tion of the four-momentum of the particle i.e., pμ = ∇μS,
this equation gives the constraint on the magnitude of four-
momentum

pμ p
μ = −m2 − εR + �R

R . (6)

On the other hand the second relation above represent a con-
servation equation for the current J μ.

From the above Eq. (6), we glean that the norm of the four-
momentum is not constant, and given this magnitude of the
four-momentum it will be important how one defines a four-
velocity vector from it. We do this by defining the normalized
four-velocity for a timelike trajectory as uμuμ = −1, so that
[5]

pμ = M(x)uμ, M(x) =
√(

m2 − f (R) + εR
)
. (7)

With this definition, the four-velocity remains the same as
in the classical trajectory but the particle’s mass becomes a
variable depending on the quantum amplitude R, and this is
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known as the quantum mass of the particle. It is known that
under an appropriate conformal transformation the action of
a particle of variable mass becomes the action of a particle of
constant mass (and vice versa). Using this fact in the next sec-
tion we shall work in a conformally related frame, with con-
formal factor being appropriate function of quantum poten-
tial such that the dispersion relation of Eq. (6) transforms to
the dispersion relation of a particle of constant mass.

On the other hand the second equation of Eq. (5) implies,
with this interpretation of variable quantum mass, the con-
servation equation of the 4-current to be ∇μ

(R2Muμ
) = 0.

Unfortunately however, now it is not possible to interpret
this equation (as is done in the corresponding non-relativistic
Bohmian treatment of Schrodinger equation) as a continu-
ity equation with the probability density defined as ρ =
R2. Because the corresponding equation should look like
∇μ

(
ρuμ

) = 0 [15]. As mentioned above, one of the motiva-
tion to transform to conformal frame is to make the particle
mass constant and hence the equation of motion a geodesics,
but it is not possible (as we shall explain in Sect. 2.5 below),
with the same transformation to make the conservation equa-
tion a continuity equation for probability density. Recently
in [14] the authors have suggested a solution of this prob-
lem. In this work we shall propose an alternative one - use a
disformal transformation rather than the conformal one.

As is clear from Eq. (6), due to presence of the quan-
tum potential (the f (R) term), the equation of motion of the
particle is not a geodesic. Rather it contains an extra term
coming form the force generated by the quantum potential.
The straightforward way to find this force term in the accel-
eration equation is to take the directional derivative of the
constraint relation of Eq. (6) by introducing a parameter (say
τ ) along the particle trajectory (see [9] for a derivation along
these lines). For later purposes however, we shall use a vari-
ational principle and write down the action along the particle
trajectory between two points (say 1 and 2) as

S[xμ(τ), η(τ )] =
∫ 2

1
dτL,

L = 1

2

[
η−1gμνu

μuν − η
(
m2 − f (R) + εR

)]
, (8)

where η is a Lagrange multiplier, and uμ is the four-velocity
of the particle, normalized as uμuμ = −1.1 Variation of the
action with respect to xμ gives the usual Euler–Lagrange
equations, and a variation with respect to the Lagrange mul-

tiplier gives η2 = − uμuμ

M2 , with M being the quantum mass
defined above. Now substituting this into the Lagrangian of
Eq. (8), we have

L = η−1[uμuμ

] = −M
√−gμνuμuν, (9)

1 This four-velocity normalization is different from [6] but same as [9].

so that the corresponding four-momentum pμ = ∂L
∂ ẋμ =

M√−uμuμ
uμ satisfies the required constraint relation pμ pμ =

−M2 (irrespective of the normalization of the 4-velocity).
The acceleration equation corresponding to this Lagrangian
is obtained by using the Euler–Lagrange equations, and is
given by

uμ∇μu
ν

= −1

2

(
gμν + uμuν

)∇μ ln(M2)

= −1

2

(
gμν + uμuν

)∇μ ln
[
1 −

(
f (R) − εR

)
/m2

]
.

(10)

As anticipated, the right hand side of Eq. (10) is non zero,
and this indicates that the motion of a particle which is freely
falling in the classical description is no longer force free
for motion along a Bohmian trajectory. This term comes
from the quantum potential. So unless R = constant , or
it satisfies the equation �R = 0, this term is non-zero.
This matches with the acceleration equation derived in [9]
from the momentum constrain relation (6), but it is differ-
ent from the equation written in [6]. This is due to the dif-
ferent parameterization employed, namely, the term propor-
tional to uμuν can be absorbed by changing the parameter,
although the first term can never be removed by any such
redefinition of the parameter. Also note that the force term
(from Eq. (10)) is perpendicular to the velocity vector, i.e.,
uνuμ∇μuν = uμhμν = 0, where we have defined the trans-
verse metric hμν = gμν + uμuν .

Now consider a congruence of timelike particle trajecto-
ries with uμ being the tangent to the trajectories. In a stan-
dard fashion [24], we consider Bμν = ∇νuμ and calculate
it’s change along the particle trajectories as

uμ∇μBαβ = ∇β(uμ∇μuα) − BαμB
μ
β − Rαμβνu

μuν . (11)

Taking the trace of this equation, and using the acceleration
equation derived above, we arrive at the modified Raychaud-
huri equation given by

dθ

dτ
= hμν

(
∇μ∇νL + ∇μL∇νL

)
+ θ

dL

dτ
− 1

3
θ2 − σαβσαβ

+ωαβωαβ − Rαβu
αuβ, (12)

where aα = uμ∇μuα is the acceleration vector, θ = Bμ
μ =

∇μuμ is the expansion scalar, σμν = B(μν) − 1
3θhμν is the

shear tensor and ωμν = B[μν] is the rotation tensor, and we
have defined the function

L = −1

2
ln

[
1 −

(
f (R) − εR

)
/m2

]
. (13)

The terms involving L in the quantum Raychaudhuri equa-
tion are the contributions of the quantum effects, and the rela-
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tive contribution of these terms with respect to other classical
terms determine whether the trajectory will reach a conjugate
point or not [6]. Note that this form of Raychaudhuri equation
is different from one given in [6], due to the different param-
eterization of the trajectory. It is also different from the one
derived in [9], because those authors took ∇αhμν = 0. We
also record the expression of the deviation equation for the
vector field ξμ between two non-geodesic curves as

d2ξμ

dτ 2 = ξα
(
uμuν∇α∇νL+u(μ∇|α|uν)∇νL

)
+Rμ

αρνξ
αuρuν .

(14)

2.2 Bohmian trajectories in a conformally related frame

The purpose of this subsection is to discuss the transforma-
tion of the acceleration equation derived above, under a con-
formal transformation. If two metrics are related by a con-
formal transformation of the form g̃μν = �2(x)gμν , then
it is well known that the relation between the acceleration
equations in two frames are given by (see [19])

ũμ∇̃μũ
ν = uμ∇μu

ν + hμν∇μ(ln �). (15)

From this relation, we see that if a particle moves along the
geodesic of the transformed frame, then the motion in the
frame gμν is non geodesic.

In our case, we choose to work in a frame that is related
to the original metric by a conformal factor, such that the
relation between the two metrics are2

g̃μν = (M2/m2)gμν. (16)

We can conventionally express the above relations in terms
of the action of a particle corresponding to the Lagrangian
of Eq. (9), along the path γ given by xμ = xμ(τ),

Sm
[
gμν, γ, M

] = −
∫

γ

m

√
1 − f (R) − εR

m2

√−gμνuμuνdτ,

uμ = dxμ

dτ
. (17)

In the conformally transformed frame the corresponding
action for a path xμ = xμ(τ̃ ) is transformed into

Sm
[
g̃μν, γ

] = −
∫

γ

√
−g̃μν ũμũνd τ̃ , uμ = dxμ

d τ̃
. (18)

As can be readily seen by comparing them, the first form rep-
resents a particle having a variable mass M defined in Eq. (7),
and the second one is the action for a unit mass particle. If we

2 The conformal factor �2 is a dimensionless quantity. But in the fol-
lowing we shall often ignore the constant m2 factor for clarity.

write down the acceleration equations corresponding to these
actions, they turn out just to be same equations derived before
i.e., uμ∇μuν +hμν∇μ(ln �) and ũμ∇̃μũν = 0, and thus sat-
isfy Eq. (15). The implication of this relation is straightfor-
ward. Namely, the motion in the conformal frame is free from
the force of the quantum potential. If we denote the momen-
tum corresponding to the conformal frame as p̃μ, then this
can be shown to satisfy p̃μ p̃μ = −1.

If the motion in the conformal frame is force free, then
where are the effects of the quantum potential in such a
frame? The answer is simply that it is hidden inside the met-
ric g̃μν via the conformal factor. In other words the quantum
effects are in the field equations, so that the metric and also
the energy momentum tensors are different. Indeed, start-
ing from the action of Eq. (1) with ε = 1/6, making the
transformation of Eq. (16), we obtain, after some algebra the
following simplified action

S = 1

2

∫
d4x

√−g̃

[
− 1

6
R̃|�̃|2 − ∇̃μ�̃∗∇̃μ�̃ − M−2|�̃|2

]

+
∫

d4x
√−g̃L̃m(M−2 g̃μν, λ(i)), (19)

where we have redefined �̃ = (
M/m

)−1
�. Since the con-

formal factor M2 is a real (or purely imaginary) number, �̃

and � have different norms (R), but they correspond to the
same four-momentum pμ = ∇μS.

The standard variation of this action with respect to the
modified metric g̃μν and the modified wavefunction �̃ gives
the conformal version of Einstein equations and the equation
of motion for the modified wavefunction (which are standard,
see, e.g., [17] and [20]). The energy momentum tensors in
the two frames are related by T̃ m

μν = M−2Tm
μν and hence

transformed frame the EM tensor is no longer conserved,
unless the trace of the EM tensor T̃m in the conformal frame
vanishes, i.e., ∇̃ν T̃

μν
m = −T̃m(∇μ ln M).

2.3 Conserved quantities

If one wants to study the observational aspect of the problem
of a particle moving along a quantum trajectory (Eq. (10)),
in presence of a massive gravitational object (say a black
hole), it is important to find out the conserved quantities.
Because the motion is not that of a freely falling particle,
it is not obvious if usual conserved quantities for stationary
spacetime, namely energy and angular momentum are also
conserved along Bohmian trajectories.

When a classical particle of mass m moves in a geodesic
satisfying pμ∇μ pν = 0 (here pμ = muμ), the quantity
Kν pν is conserved along the motion of the particle, i.e.,
pμ∇μ(Kν pν) = 0, where Kμ is a Killing vector which
satisfies the Killing equation ∇(μKν) = 0. To find out
how this equation is modified when the motion is along
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a quantum Bohmian trajectory, we take directional deriva-
tive of the constraint relation pμ pμ = −M2 to obtain
pμ∇μ pν = −M∇νM(x). Now along quantum trajectory,
we find

pμ∇μ(Kν p
ν) = pμKν∇μ(pν) + pμ pν∇μKν

= −K ν
[
M∇νM(x)

] + pμ pν∇(μKν). (20)

We see that the Killing equation no longer implies that Kν pν

is a conserved quantity. However, it can be checked that
pμKμ is a conserved quantity, if Kμ is a conformal Killing
vector associated with the metric g̃μν , i.e., it satisfies the
equation ∇(μKν) = −gμνK λ(∇λ ln �) (here � = M).

The above conclusion is true for any general spacetime.
For the special case of stationary spacetimes however, we can
have an interesting situation, namely that, even for an ordi-
nary Killing vector of gμν , we can find a conserved quantity.
To see this clearly, we start from Eq. (20) and after a bit of
algebra we arrive at

pμ∇μ(Kν p
ν) = KνMuμuν∇μM − KνM

2hμν∇μ ln M

+M2uμuν∇μKν . (21)

Now suppose that in the particle’s wave function, R(xμ) is
independent of time so that the quantum potential term and
hence M are also time independent. In this case the vectors
∇μM and ∇μ log M have vanishing components along the dt
direction. If the background spacetime is stationary, and the
velocity is timelike, i.e., uμ = (1, 0, 0, 0), then for a vector
field of the form Kμ = (1, 0, 0, 0), the first two terms of
Eq. (21) are identically zero (note that hμν is spacelike in
this case). This means that for a stationary spacetime and
time independent R, once again Kμ pμ is conserved along
the trajectory when the Killing equation is satisfied. This fact
can be used to generate a quantum corrected version of any
stationary spacetime (In [8] such correction to Schwarzschild
solution was obtained by using the quantum Raychaudhuri
equation).

As an immediate application of this, we can use the con-
formal transformation above find out a quantum corrected
version of the Schwarzschild metric. Let us assume a sim-
ple stationary state wave function so that that its modulus is

given byR(r) = Nr exp
(
− r2

2

)
, where N is a normalization

constant. Then we calculate the quantum potential associated
with the wave function on Schwarzschild background

f (R(r)) = �R
R = 1

r3

[
r
(
r4 −5r2 +2

)
−2M

(
r4 −4r2 +1

)]
,

(22)

M being the Schwarzschild mass. The conformal version of
Schwarzschild solution is given by the metric

ds̃2 =
(
m2 + 1

r3

[
2M(

r4 − 4r2 + 1
) − r

(
r4 − 5r2 + 2

)])

×
{

−
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1
dr2 + r2d�2

}
.

(23)

This is the solution of the transformed field equation with
T̃ m

μν = 0. A particle will follow the geodesics of this metric.

The matter part of EM tensor is zero due to the relation T̃ m
μν =

M−2Tm
μν discussed above.

2.4 Absence of singularities in the conformal frame

It was argued in [6] since the Bohmian trajectories cannot
intersect each other, they do not form conjugate points and
hence can avoid the usual singularities of GR. In this con-
text, we ask the following question. In the conformally trans-
formed frame there is no quantum force on the particle tra-
jectory, then what happen to the conjugate points? Does the
trajectory reach the singularities of the conformal frame g̃μν?

To answer this question, we consider the following conjec-
ture proposed long back in [22]. If a metric gμν is singular, we
can always transform to the conformal frame g̃μν = �2gμν

which is non-singular and the singularities of the original
metric show up as zeros of the conformal factor (as usual,
the zeros of the conformal factor represent the boundaries of
the spacetime). Keeping this conjecture in mind, the answer
to the above question reduces to finding whether the confor-
mal transformation of Eq. (16) is the required one to ensure
the nonsingular nature of g̃μν . If we consider a particle of
mass m moving on a geodesics of the metric g̃μν , then in the
frame gμν the particle’s mass is time and position dependent
(the modified mass in general depends on the nature of the
conformal factor �) and it moves on a nongeodesic. In [22],
the author had shown by working out several examples, this
variable particle mass of the transformed frame gμν should
be the conformal factor to ensure the nonsingular nature of
the metric g̃μν . From Eq. (16) we see this is exactly the case
when the particle moves in the quantum corrected spacetime
g̃μν .

This should be clear from the example we have worked
out above. The original Schwarzschild metric is singular at
r → 0. But the Ricci curvature scalar R̃ of the metric g̃μν

is non-singular in this limit, as can be checked explicitly,
i.e., R̃r→0 = constant . Also the conformal factor in the
transformation equation in Eq. (23) is undefined in this limit.
Thus if we start from the nonsingular frame g̃μν and work in a
conformally related frame gμν , the conformal factor vanishes
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precisely at r = 0 making the transformation invalid at the
singularity r = 0.

Thus we conclude that the singularity is avoided by the
particle trajectory in both frames related by a conformal
transformation. However the mechanisms behind the avoid-
ance are very different in the two frames. In the original clas-
sical background spacetime which contain genuine curvature
singularities, a quantum particle trajectory never reaches the-
ses singularities due to the force originating from the quan-
tum potential [6]. On the other hand, the conformally related
(and hence the quantum corrected) frame, where the particle
motion is entirely classical, is free from the curvature singu-
larities by construction, according to the conjecture proposed
long back in [22]. Note also that the quantum potential and
hence the conformal factor depends on the wave function,
and thus it is not guaranteed that the transformed metric is
generically singularity free. This general case will be inves-
tigated elsewhere.

2.5 Problems with a conformally related frame

So far we have shown by the transformation of Eq. (16), that it
is possible to make the magnitude of p̃μ a constant. By using
the same transformation, can we write the continuity equation
(second equation in Eq. (5)) in the desired form ∇̃μ

(
ρũμ

) =
0? The answer is no. To explain this, we shall first derive
an important relation between the expansion scalars (θ and
θ̃ ) of two frames and the probability density ρ (see Eq. (27)
below).

A conformal transformation is equivalent to a correspond-
ing change in the proper time dτ → d τ̃ = �dτ . In GR,
under such conformal transformations, the change in the
Christoffel symbols are given by [17,21]

δ�σ
μν = 2δσ

(μ∂ν) ln � − gμν∂
σ ln �. (24)

Using this, one can check that the covariant derivative of the
four velocity in the transformed frame is

∇̃μũν = �
(
∇μuν + gμνu

α∇α ln � − uμ∇ν ln �
)
. (25)

Taking the trace of this equation, we see that the expansion
scalar θ of a geodesic congruence transforms under a con-
formal transformation as

θ̃ = �−1
(
θ + 3uα∇α ln �

)
. (26)

Using this relation we derive the following relation involving
the probability density ρ,

∇̃μ

(
ρũμ

) = ρθ̃ + ũμ∇̃μρ

= ρ�−1
(
θ + 3uα∇α ln �

)
+ �−1uμ∇μρ. (27)

The criterion that in the transformed frame, the particle
motion is a geodesic has already fixed the conformal factor
� equal to M up to a multiplicative constant. Now expanding
the original conservation equation ∇μ

(
ρMuμ

) = 0 we have
the relation

ρθ = −ρuα∇α ln M − uα∇αρ. (28)

Eliminating θ between Eqs. (27) and (28), we see that
∇̃μ

(
ρũμ

) �= 0. Thus transformation to a conformal frame
gives rise to a wrong continuity equation. The reason for this
is of course the fact that the momentum constrain relation has
already fixed the conformal factor equal to M . As we shall
show in sequel, for disformally related metrics, there is still
enough freedom to fix both the problems.

A somewhat subtle point here is worth mentioning.
Remember that we redefined the wavefunction as � = M�̃,
so that the resulting action in Eq. (19) is more convenient to
work with. As we have mentioned, in this redefinition, the
norm of the wave function changes to R̃ = M−1R, and hence
if one defines a transformed probability density ρ̃ = R̃2 and
demands that ∇̃μ

(
ρ̃ũμ

)
is the quantity one should be looking

for, we can see, by an analogous procedure as above that this
quantity is indeed conserved, i.e., ∇̃μ

(
ρ̃ũμ

) = 0. But let us
stress that this is not the continuity equation we are after, sim-
ply because the field redefinition (Weyl scaling) has nothing
to do with the original conformal transformation gμν → g̃μν ,
which is an actual change of the geometry itself, and not a
change of coordinates or fields living in the spacetime [21].
The only purpose it serves (in this context) is to rewrite the
action in a convenient form. Notice also that when M2 < 0
the transformed density (ρ̃) is not even well defined in the
transformed frame.

Apart from the wrong continuity equation, there is a fur-
ther issue that is problematic in a conformally related frame.
So far in our discussion of non geodesic motion, we have
always consider a timelike trajectory for which uμuμ = −1,
but we can generalize the result for spacelike and null tra-
jectories also. For the general case the Eq. (10) is given by

uμ∇μu
ν = 1

2

(
αgμν − uμuν

)∇μ ln
(
m2 − f (R)

)
, (29)

where α = −1,+1, 0, for time-like, space-like and null
geodesics, respectively. Now for a massless particle, we put
m = 0, and since the term proportional to uμuν can be
absorbed in a re-parameterization of proper time, the only
remaining term is proportional to α, and hence the accelera-
tion is zero for massless particle in both frames. So a natu-
ral question is, if null trajectories always move in geodesics,
what happens to the singularity resolution argument for mass-
less particles ? That is, if the force due to the quantum poten-
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tial does not affect null trajectories, we ask why they do not
form a caustic as in GR, and hence fall into a singularity?

We will next show that all the problems mentioned above
are resolved by using disformal transformations instead.
However before going into this, we will make an important
simplification by assuming minimal coupling.

2.6 Description in a minimally coupled background

In analysing the motion of a quantum particle on a curved
background so far we have worked by assuming that there
exists a non-minimal coupling between the curvature scalar R
and the wavefunction describing the particle. Though some-
times presence of this term helps to make the analysis in the
conformal frame simpler, it makes a nontrivial contribution
to the Einstein equation, such that the metric in general will
not be non-dynamical - as can be seen from Eq. (3). Usually
this contribution is neglected (as was done in [6]) and � is
assumed to be defined on a non-dynamical static background.

From now on we will instead start working in a frame
where � is minimally coupled to the background [5]. Then
the total action is similar to the one in Eq. (1) with F(�) = 1,
and � satisfies the Klein–Gordon equation (�−m2)� = 0.
The dispersion relation now changes to

pμ p
μ = −m2 + �R

R = M2uμu
μ, (30)

which indicates that a quantum particle will follow a non
geodesics motion in this frame as given in Eq. (10), with
ε = 0. We can always transform to a conformal frame, where
the motion of the particle will be on a geodesic and quan-
tum effects are included in the energy momentum tensor, but
in that frame there is a non-minimal coupling between the
curvature scalar and the redefined wavefunction.3

The advantage of this approach compared to the previous
one is that, this picture is more in line with the scalar tensor
theories of gravity [17,18]. There, in the Jordan frame, a test
particle follows the geodesic equation. On the other hand,
in the conformally related Einstein frame, the scalar field
couples to matter, and the test particle follows non-geodesic
motion, as the interaction between the scalar field and matter
causes the particle to feel an additional force [18]. Also in
this approach, since in the original frame, the quantum mass
given by M = √

m2 − f (R) is independent of the coupling
constant ε, its nature is unambiguous, i.e., if f (R) > m2,
then the quantum mass is imaginary, otherwise it is real. If
we had started with a nonminimal coupling, this depends
on the constant ε as in the previous sections. As we will

3 For a massless particle one can make the action and hence the Klein–
Gordon equation conformally invariant by choosing ε = 1/6 in 4 space-
time dimensions. But for massive particles, with which we shall mostly
work with, this invariance is lost.

momentarily see, this property helps to solve the problem of
indefiniteness of quantum mass uniquely in this frame, using
a disformal transformation.

All the calculations in the rest of the paper are performed
assuming a minimal coupling. When there is non-minimal
coupling between gravitational and particle degrees of free-
dom, our calculations can be generalized with some minor
modifications, but in the transformed frame it is rather dif-
ficult to see the quantum effects in the metric through cal-
culating the EM tensor, because there will be terms coming
from the non-minimal coupling also (with minimal coupling,
the last two terms in the right hand side of Eq. (3) are zero).
In short, when there is already a coupling between classical
background and the quantum particle, the process of incorpo-
rating quantum effects in background geometry loses some
of its meaning because from the start the classical aspects
of the spacetime and the quantum aspects of the particle are
related. For the non-minimal case they separate to begin with.

3 Bohmian trajectory on a physical geometry

So far we have assumed a description of gravity where grav-
itational and particle dynamics take place in conformally
related global Riemannian spacetimes, called gravitational
and physical geometries respectively. But as we have pointed
out in the introduction, the relation between these two geome-
tries can be more general than the conformal transforma-
tion. It was shown in [1], by assuming the physical geometry
(on which the matter dynamics takes place) to be Finslerian
(instead of Riemannian), and using arguments based on the
weak equivalence principle and causality, that in the most
general case, both the gravitational and the physical geome-
tries have to be Riemannian and that in general such geome-
tries are related to each other by a disformal transformation.
It is thus natural to ask what are the consequences of quantum
motion in terms of Bohmian mechanics in this more general
case. This is the topic we discuss in this section.

3.1 Disformal transformations

Two metrics g∗ and g (and their inverses) are said to be related
to each other by the a disformal transformation, if the relation
between them is given by [1,16]

g∗
μν = �2(φ, X)gμν − αB(φ, X)φμφν,

g∗μν = �−2
[
gμν + α

B
�2 − 2XBφμφν

]
,

X = −1

2
gμνφμφν, (31)

where α = 0,±1, both � andB are arbitrary real functions of
a scalar field φ, and we have used the notation φμ = ∇μφ to

123



Eur. Phys. J. C (2021) 81 :946 Page 9 of 15 946

denote the normal vector to a φ = const hypersurface. Note
that all indices of φμ are raised and lowered by the metric
gμν . We will denote all the tensor quantities with respect to
g∗
μν with a superscript “∗”.

If we consider the motion of a particle moving on a time-
like trajectory we can choose the normal vectors φμ to be
hypersurface orthogonal velocity vector vμ of the trajecto-
ries, and in this case α = −1 (though in the calculations
below we will keep α to generalize the results to a spacelike
trajectories also). The identification of φμ with velocity is a
choice, and as long as we are considering the motion along
timelike (or spacelike) trajectory this is a good choice, but for
null trajectories we will make a different choice because in
general via a disformal transformation, unlike a conformal
one, a null geodesic can map to a non-geodesic trajectory
(this will be crucial in our arguments in Sect. 4.2). Thus the
form of the disformal transformation and its inverse that we
will consider for now are the following [25]

g∗
μν = �2(x)gμν − αB(x)vμvν,

g∗μν = �−2
[
gμν + α

( B
�2 − B

)
vμvν

]
. (32)

This transformation is equivalent to a transformation of the
proper time [16]

dτ ∗2 = −g∗
μνdx

μdxν = −
[
�2gμν − αBvμvν

]
dxμdxν

=
[
�2 + αB

]
dτ 2. (33)

Now, the tangent vector to a particle trajectory is vμ =
dxμ/dτ . With respect to g∗

μν , this vector is defined as
v∗μ = dxμ/dτ ∗. From the above relations we can find out
the followings

v∗
μ = √

Fvμ, v∗μ = g∗μνv∗
ν = F−1/2vμ,

F = �2 + αB, g∗
μνv

∗μv∗ν = α. (34)

As can be seen, the vector v∗μ is normalized with respect to
the transformed metric g∗μν .

3.2 Relation between acceleration vectors and particle
motion

Using the formulas given above, we can now establish the
required relation between acceleration vectors aν = vμ∇μvν

and a∗ν = v∗μ∇∗
μv∗ν of two metrics, where ∇∗

μ is the covari-
ant derivative with respect to g∗

μν . First, we write down the
known relation between the quantities �∗λ

μνv
∗
λ and �λ

μνvλ (see
[25] for details)

�∗λ
μνv

∗
λ = √

F�λ
μνvλ + 1

2
√F

[
αvμvνv

α∇αF − hμνv
α∇α�2

−2BKμν + 2v(μh
α
ν)∇αF

]
, (35)

where �λ
μν are the connection coefficients, and we have

defined the extrinsic curvature in standard fashion, as

Kμν = hα
μ∇αuν = ∇μvν − αaνvμ. (36)

Substituting Eq. (35) in the formula ∇∗
μv∗

ν = ∂μv∗
ν − �∗λ

μνv
∗
λ,

after a few steps of straightforward algebra, we get the fol-
lowing relation between covariant derivative of a vector with
respect to both metrics

∇∗
μv∗

ν = √
F

(
∇μvν + vα∇α�2

2F hμν + B
F K(μν) + vν∇μF

2F
−αvμvνv

α∇αF
2F − 1

F v(μh
α
ν)∇αF

)
. (37)

Note that the last three terms in Eq. (37) are missing in [25].
But these terms are essential to establish a relation between
the acceleration vectors, in which case both the second and
third terms vanish. Multiplying both sides of Eq. (37) by v∗μ,
and after a bit of manipulation we get the following simpli-
fied version of the desired relation between the acceleration
vectors

a∗
μ = aμ − 1

2F αhν
μ∇νF = aμ − 1

2
αhν

μ∇ν lnF . (38)

It is worth remarking that due to absence of the terms in
Eq. (37) mentioned above in the corresponding formula in
[25], the author has concluded that the accelerations are
equal. But accelerations of conformally (and also disfor-
mally) related frames are not equal, at least in GR. This is
the root of the problem that one faces when constructing
conformally invariant observables in gravity theories with
symmetric connection (see the discussion is Sect. 5 below).

Note also that we shall recover all the results of previous
sections on the conformal transformation by puttingB = 0 in
the above expressions. As is evident from this equation, two
vectors a∗

μ and aμ cannot be equal to each other unless the
difference of � and B is a constant. This in turn means that
two velocity vectors vμ and v∗

μ cannot represent geodesics
simultaneously. Indeed from Eq. (38), we glean that

a∗
μ = v∗ν∇∗

ν v∗
μ = 0 �⇒ aμ = vν∇νvμ = αhν

μ∇ν ln
√
F .

(39)

Thus in the physical geometry, if we consider the geodesic
motion of a particle of massm, then in the disformally related
gravitational geometry, this represents an accelerated motion
with the force being perpendicular to the four-velocity.

Now if we consider a quantum particle of mass m > 0
in the gravitational geometry moving along a Bohmian tra-
jectory so that it is acted upon by force originated due to
the quantum potential then the norm of it’s 4-momentum
satisfy relation Eq. (30). If we represent it’s acceleration by
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the 2nd equation of Eq. (39) with α = −1, in disformally
related geometry this corresponds to a force free motion with
the quantum effects taken in the modified metric g∗

μν of the
physical geometry. We can easily determine the desired rela-
tion between the transformation factors � and B in terms of
the modulus of the wave function R, by comparing Eqs. (39)
and (10) to be4,

F = �2 − B = (
1 − f (R)/m2). (40)

We have put ε = 0 because we have assumed no coupling
between the curvature and the wavefunction �. Note that
the constraint relation of Eq. (30) is not enough to uniquely
determine the both the transformation factors in Eq. (40),
and below we will see that a second relation between the
transformation factors arise through the continuity equation.

It is also convenient to write down the corresponding par-
ticle actions in this case. Given the constraint relation of
Eq. (30), by following the procedure outlined previously, we
can derive the action of a particle moving along the Bohmian
trajectory in the frame gμν . This is just given by Eq. (17)
with ε = 0. Now using the rules of active transformation
i.e., substituting gμν in terms of g∗

μν and v∗μ from Eq. (32)
we see that the action

Sm
[
gμν, γ

] = −
∫

γ

√
m2 − f (R)

√−gμνvμvνdτ (41)

gets transformed to the action of a particle of unit mass

SD
m

[
g∗
μν, γ

] = −
∫

γ

√
−�−2

[
g∗
μν + αB

F v∗
μv∗

ν

]
Fv∗μv∗νdτ ∗

= −
∫

γ

√
−g∗

μνv
∗μv∗νdτ ∗. (42)

Here in the first step, we have used the previous identification
of Eq. (40), and also substituted dτ in terms of dτ ∗, and the
trick in the second step is to write one set of g∗

μνv
∗μv∗ν as α so

that it cancels with the other term. With these particle actions,
it is easy to check that they satisfy the respective equations
in Eq. (39), thus confirming our conclusions. Note that here
(and in the previous section during the discussions on the
conformal version) we have taken an active point of view in
transforming the action, namely we have taken the functional
form of the action same as before (i.e., the action of Eq. (8)
with the Lagrangian in Eq. (9)), and replaced the original
metric by the transformed one. This procedure naturally leads
to a value of the action different from the previous one. On
the other hand, if we want to keep the form of the action
unchanged then the passive transformation should be used.
In this paper we shall always use the active point of view

4 As before we will neglect the unimportant factor of m2 and will take
F = M2 below.

unless otherwise specified (see [20,26] for transformation
with passive point of view).

We can also write down the modified Raychaudhuri equa-
tion and the deviation equation in this case also following the
lines described in Sect. 2.1 for the conformal frame. One can
check these are still given by Eqs. (12) and (14) respectively,
with L = − 1

2 lnF .

4 Advantages of disformal transformations

Now that we have the characterization of a quantum parti-
cle in both the gravitational and the physical geometry, and
have shown that like the conformal transformation, a dis-
formal transformation can be successfully used to incorpo-
rate the quantum effects in the geometry, one can ask where
exactly it differs from the usual picture of conformal trans-
formation and what are the advantages of this identification
over the conformal transformation, if any. In this section we
shall show that a disformal transformation has its advantages,
namely it can solve the problems addressed in Sect. 2.5.

4.1 Continuity equation fixes the disformal transformation
completely

As we discussed in Sect. 2.5, the conformal transformation
with the quantum mass squared as the conformal factor can
not give us the right continuity equation. Here we shall show
by doing a disformal transformation of the form Eq. (32), it
is possible solve this problem thereby completely fixing both
the transformation factors �2 and B.

We start by writing down the disformal version of the
Eq. (26) that relates the expansion scalar in both frames (see
[25] for the derivation)

θ∗ = F−1/2
(
θ + 3vα∇α ln �

)
. (43)

Then, as before, we have the analogue of Eq. (27) given by

∇∗
μ

(
ρv∗μ

) = ρθ∗ + v∗μ∇∗
μρ = ρF−1/2

(
θ + 3vα∇α ln �

)

+F−1/2vμ∇μρ. (44)

Now using Eq. (28) to eliminate θ from this equation we get

∇∗
μ

(
ρv∗μ

) = ρF−1/2
(

− vα∇α ln M + vα∇α ln �3
)
. (45)

The requirement that in the disformally transformed frame
∇∗

μ

(
ρv∗μ

) = 0 is the correct continuity equation indicates
the left hand side to be zero and thus fixes the conformal
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factor5 to be �3 = M . This, together with the requirement
of Eq. (40) also fixes the disformal factor B = M2/3 − M2.

4.2 Motion of a photon along physical null trajectory

As was pointed out towards the end of Sect. 2.5, massless
particles6 cause a problem in the singularity resolution argu-
ment because they do not experience any force in frames
related by conformal transformations. For the case of frames
related by disformal transformations (Eq. (32) considered in
the previous section), the same problem arises because we
see from the corresponding relation Eq. (39), the same con-
clusion remains valid, i.e., the extra force term is zero for
null trajectories.

We shall argue below that we can cure this problem in the
context of disformal transformation, by remembering that,
one can make a disformal transformation more general than
the one written in Eq. (32), where the extra piece need not
be necessarily pointing along the direction of the tangent of
a particle trajectory. This transformation precisely is what
given in Eq. (31), where the non conformal piece is along
a direction specified by the φ = const hypersurface, which
we can choose to be different from the four velocity. This is
the advantage of disformal transformations over conformal
transformations, namely that one can make a massless parti-
cle move on a non geodesic motion by going to a frame where
square of its four momentum is non zero. Below we shall con-
sider a simple form of Maxwell’s equation to show clearly
how this can be done (see [16] where the transformation of
the Maxwell equations under a disformal transformation are
considered by assuming the geometrical optics approxima-
tion. However we do not make any such approximation).

Let us consider the motion of a photon in the gravitational
geometry (represented by a vector field Aμ) described by the
following Maxwell equations

∇μ∇μAν − ∇μ∇ν Aμ = 0, (46)

where we have put all the source terms to zero. Now, using the
Ricci identity which relates the commutator of the covariant
derivative of a vector field to the Riemann tensor,

∇μ∇ν A
α − ∇ν∇μA

α = Rα
βμν A

β, (47)

in the contracted form, and imposing the Lorentz gauge con-
dition ∇μAμ = 0, we write the above equation as

∇μ∇μAν − Rμ
ν Aμ = 0. (48)

5 � is fixed up to an additive constant which we have taken to be zero
6 Note that by a massless particle, we mean a particle with zero classical
mass (m), not zero quantum mass (M). More precisely what we mean by
massless particle here are the particles which moves along the trajectory
uμuμ = 0 and hence pμ pμ = 0.

As before we write Aμ in the polar form

Aμ = Cμ(x)eiS(x), (49)

and substitute in the Maxwell’s equation. After separating
the real and imaginary parts, and identifying Kμ = ∇μS as
the wave vector of the photon, we get the following equations

gμνKμKν = Cν

C2 ∇μ∇μCν − Rμ
ν CμCν ≡ H(C),

∇μ

(C2∇μS) = 0, (50)

where C2 = gμνCμCν denotes the magnitude of the vector
Cμ. The first relation gives the magnitude of the wave vec-
tor, with H(C) denoting the quality analogous to quantum
potential in this case, and the second one is essentially the
conservation equation. As can be anticipated from Eq. (50),
since in this frame, motion of the photon is represented by
the non null vector Kμ, the motion of photon is along a non
geodesic trajectory.

Let us now apply the disformal transformation (Eq. (31)
with α = −1) and see if we can make the photon motion
a geodesic in the transformed frame. In doing so, the first
thing to notice is that, since the transformation functions in
Eq. (31) are real, the phase factor S and hence the wave
vector Kμ = ∇μS is equal in both the frames. Then, using
the inverse relation of Eq. (31), the left hand side of first
equation of Eq. (50) reduces to

gμνKμKν → �2g∗μνKμKν + B
�2 − 2XB

(
φμKμ

)2
. (51)

Now it is easy to see by comparing Eqs. (50) and (51), that if
we want to make Kν null in the transformed frame, then we
have to choose the transformation functions such that

B
�2 − 2XB

(
φμKμ

)2 = Cν

C2 ∇μ∇μCν − Rμ
ν CμCν = H(C).

(52)

Of course, this single equation does not completely deter-
mine the disformal transformation specified by �,B, φμ. We
can have another relation from the continuity equation. How-
ever unlike the previous case for massive particles, these two
equations (Eq. (52) and the one obtained from the continuity
equation) are not enough for fixing both the transformation
factors � and B and the direction of the disformal vector
specified by components of φμ uniquely. We also have to
make some choice of the factor � (such as pure the disfor-
mal transformation with � = constant) and/or of the disfor-
mal vector (such as timelike (φμφμ = −1) or null disformal
transformation (φμφμ = 0)). The description of the photon’s
motion with such explicit choices are left for a future work.
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The equation of motion derived from Eq. (50) by taking
covariant derivative of both side is the non geodesic equation

Kμ∇μKν = 1

2
∇ν

[ B
�2 − 2XB

(
φμKμ

)2
]

= 1

2
∇νH(C),

(53)

which, as can be checked, under a disformal transformation
satisfying Eq. (52) transforms to the geodesic equation

K∗μ∇∗
μK∗

ν = 0. (54)

Thus the motion of a photon in a gravitational geometry
follows a non null trajectory (the null trajectories ds2 =
gμνdxμdxν = 0 in the gravitational geometry are followed
by the gravitons [1]) and hence its motion is nongeodesic,
acted upon by the force resembling that of due to the quan-
tum potential (see Eqs. (50) and (53) respectively). But this
motion in a disformally related physical geometry follows
a null trajectory, ds∗2 = g∗

μνdx
μdxν = 0 of that geom-

etry, where H(C) determines the required transformation
factors. As we have shown in Sect. 2.3, pμKμ is a con-
served quantity along the non geodesic motion, provided
that Kμ is a conformal Killing vector i.e., a Killing vec-
tor of a conformally related metric. By using an analogous
procedure, it is easy to see that KμKμ is a conserved quan-
tity along the photon trajectory if it satisfies the equation
∇(μKν) = −2gμνK λ∇λ(lnH(C)), and this quantity should
be used if one wants to study the deflection of light in gravi-
tational field.

4.3 Problem of definiteness of mass

When one uses the standard Klein–Gordon equation to per-
form a Bohmian treatment, one gets the resulting quantum
Hamilton–Jacobi equation of Eq. (30). The right side of this
equation, interpreted as the mass square (denoted as M2) is
not always positive definite, and hence the theory can have
tachyonic solutions (see for example [3]). As we have men-
tioned before, one motivation for transforming to a conformal
frame to describe the quantum motion of a particle satisfy-
ing the Klein–Gordon equation is to avoid this problem, so
that in the transformed frame the particle has a positive def-
inite mass. But also as pointed out before, this comes with
other problems such as the wrong continuity equation and the
problem with massless particles. Most importantly when the
quantum mass M is imaginary, the conformal factor is itself
negative and hence the transformation is not well defined.

In Sect. 4.1, we have shown that for a massive particle7

by transforming to a disformal frame where two metrics are
related by Eq. (32), with the transformation factors given in
terms of the quantum mass by the relations

�2 = M2/3, B = M2/3 − M2, M(x) =
√(

m2 − f (R)
)
,

(55)

one could achieve a consistent continuity equation for the
motion of the quantum particle. However the same transfor-
mation does not solve the problem of definiteness of mass.
If the quantum mass is imaginary, then the real root of the
conformal factor �2 = M2/3 in Eq. (55) becomes negative,
so that the disformal transformation used earlier becomes
undefined.8

In this subsection, we shall show that a possible way out
of this problem is once again to return to the general form
of the disformal transformation in Eq. (31). However, before
doing that let us try to locate the problem in the previous
setting. When the mass squared is negative, we can express
the quantum mass formally as M = |M |eiπ/2. Now from
the continuity equation in the transformed frame, we see that
the extra phase of π/2 being a constant, does not affect this
equation

∇∗
μ

(
ρv∗μ

) = ρF−1/2
(

−vα∇α ln |M |+vα∇α ln �3
)
. (56)

Thus by taking �2 = |M |2/3, we can still satisfy the
continuity equation in the transformed frame, even when
M is imaginary. Looking at the acceleration in Eq. (10)
(with ε = 0), we could similarly argue that, by choosing√F = √

�2 − B = |M |, this equation can be satisfied as
well, since the constant phase factor again does not contribute
due to the derivative. However such a choice does not sat-
isfy the correct dispersion relation g∗μν p∗

μ p
∗
ν = −1, because

under such a transformation, the required relation

7 For the description of massless particle one has to use a more general
transformation of Eq. (31). In this subsection, we shall concentrate on
the case of massive particles only.
8 In the non-minimally coupled frame, the quantum mass has an extra
factor of εR (see Eq. (7) above). Can this factor make quantum mass in
this frame positive definite? Assuming ε > 0, the answer will depend on
the sign of the Ricci scalar. When R < 0, the εR term can not make the
quantum mass positive definite and for R > 0 this can make M come
out to be positive depending on its relative magnitude with the quantum
potential. As mentioned in Sect. 2.6, this is one of the advantages of
working with minimal coupling - the nature of M does not depends on
the coupling ε.
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gμν pμ pν = |M |2 →
[
�2g∗μν +

( B
�2 − B

)
vμvν

]

pμ pν ≡ −�2 +
(−B|M |2

�2 − B
)

�= |M |2, (57)

is not satisfied when we choose �2 − B = |M |2. This is the
real problem, namely to satisfy the correct dispersion relation
when quantum mass is imaginary. Indeed the Bohmian treat-
ment of Klein–Gordon equation gives the dispersion relation,
and not the acceleration equation (see Eq. (6)). In the process
of taking the covariant derivative, the imaginary factors are
“lost” in both Eq. (56) and the continuity equation, and one
can reach wrong conclusions by considering them. Thus our
primary focus will be on the dispersion relation.

We begin the general case by writing above Eq. (57) for
such a transformation in Eq. (31). The relation we want to
satisfy is the following

gμν pμ pν = |M |2 →
[
�2g∗μν +

( B
�2 − 2BX

)
φμφν

]

pμ pν ≡ −�2 +
(−BD2|M |2

�2 − 2BX

)
= |M |2, (58)

where D = φμvμ denotes the projection of the vector φμ

along the particle 4-velocity.
For our purpose in this subsection, it is sufficient to con-

sider the so called pure disformal transformation, where both
the conformal and disformal factors are set to a constant
(denoted as �2

0 and B0 respectively, with �2
0 > 0). Thus

the transformed metric and it’s inverse are given respectively
by

g�
μν = �2

0gμν + B0φμφν,

g�μν = �−2
0

[
gμν − B0

�2
0 − 2XB0

φμφν

]
,

X = −1

2
gμνφμφν. (59)

All the transformed quantities are denoted by an overhead
star. Here the 4-vector φμ, having components (φ0, φ1,

φ2, φ3), determine the direction of the disformal transforma-
tion and is to be determined form the correct transformation
of the dispersion relation and the continuity equation. The
above transformation corresponds to a change of proper time
dτ �2 = β2dτ 2 with β = (

�2
0 − B0D2

)1/2. Then Eq. (58)
gives the first constraint relation to be

�2
0 +

( B0D2|M |2
�2

0 − 2B0X

)
+ |M |2 = 0, with,

D �= 0 unless |M | = constant. (60)

The continuity equation gives another constraint. To deter-
mine this, we start by writing down the transformation rule of
the covariant derivative. In the most general case, the formula
for the change of the Christoffel symbols are quite compli-
cated (see for example [16,27,28]), but for our case of the
transformation in Eq. (59), the transformation relation of the
covariant derivative of a vector simplifies to the following

∇�
μvν = ∇μvν+Cμ

ναvα where Cμ
να =

( B0

�2
0 − 2XB0

)
φμ∇αφν.

(61)

Writing the left side in terms of transformed velocity v�ν ,
and simplifying, we arrive at

∇�
μv�ν = β−1

(
∇μvν + Cμ

ναvα − vν∇μβ
)
. (62)

This gives the desired relation between the expansion scalars
(compare with Eqs. (26) and (43) which are the analogous
relations for the conformal transformation and disformal
transformation along the velocity vector respectively)

θ� = β−1
(
θ + Cν

ναvα − vν∇νβ
)
. (63)

The continuity equation can now be expanded to give

∇�
μ

(
ρv�μ

) = ρθ� + v�μ∇�
μρ = ρβ−1

(
θ + Cν

ναvα − vν∇νβ
)

+β−1vμ∇μρ. (64)

As before, eliminating θ from this equation and demanding
that continuity equation ∇�

μ

(
ρv�μ

) = 0 is satisfied, we get
the second constraint

Cν
ναvα − vν∇νβ − vα∇α ln |M | = 0. (65)

Once again the pure phase factor does have any effect in the
continuity equation, so that components of φμ are real. If
we choose the vector field φμ such that, given the quantum
mass both the constraint Eqs. (60) and (65) are satisfied, then
in the transformed frame (g�

μν) the particle has unit mass,
thus solving the problem of imaginary quantum mass in the
original frame. Obviously the two constraints of Eqs. (60)
and (65) cannot determine all the four components of φμ,
and we have to make some choices.

Below we shall briefly sketch such a procedure when the
quantum mass of the particle (M) moving in the flat space-
time is imaginary and is a function of the radial coordinate
r only.9 We consider the vector field φμ to be of the form
(1, φ0(r), 0, 0) and the particle 4 velocity is vμ = (1, 0, 0, 0)

9 This mass can corresponds to a stationary state solution of the Klein–
Gordon equation for which the quantum potential is time independent.
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so that D = 1. Then, as can be checked, the continuity equa-
tion is identically satisfied and Eq. (60) gives the form of the
function φ0(r) in terms of the quantum mass as

φ0(r) =
√

�0

B0

√
B0 − �0 − |M(r)|2

�0 + |M(r)|2 . (66)

Given the functional form of |M(r)| one can now easily deter-
mine the function φ0(r).10

We also mention here that there are ways to make the
quantum mass positive definite even in the classical back-
ground. For example, in [29], the authors had shown how to
make M positive definite by using a different interpretation of
Bohmian mechanics and demanding that the mass M should
have the correct non relativistic limit. In this procedure, they
obtained the following formula for the quantum mass (M)
for a particle of classical mass m

M = m exp

[
1

m2

�R
R

]
. (67)

With this mass formula, one can obtain the correct non rel-
ativistic equation of motion of the particle as shown in [29].
The resulting theory has been studied extensively in the con-
text of conformal transformations and curved spacetime (see
[11] for a review).11 In this paper, we have already shown a
way out of this problem by using the disformal transforma-
tion, nevertheless it is useful to make the theory free from
any tachyonic solution from the start. We leave the problem
of incorporating the mass of Eq. (67) in our transformation
formulas of Eq. (55) for a future study.

5 Conclusions

In the well known approach of incorporating the quantum
effects in spacetime geometry, conformally related space-
times are used to establish the equivalence between the
Bohmian motion of a particle on a classical background
with force free classical motion on a quantum corrected
background. In terms of this bimetric description of grav-
ity, the Bohmian force can be interpreted as arising due to
the description of the particle in the gravitational geometry
rather than in the physical one, and quantum effects are incor-
porated in the conformal degrees of freedom [13]. This line
of reasoning has been used to argue that the singularity prob-
lem of GR can be avoided in this approach [6]. The first part

10 Of course for some |M(r)| the function φ0(r) determined in Eq. (66)
may not be real every where. In that case one has to take an ansatz for
the vector field different from the one given here.
11 This approach was recently used in [23] to derive a quantum version
of the Friedmann equations.

of this paper is devoted to the discussion of various aspects
of this approach and we have also pointed out some of the
problematic issues of this approach.

In the second part, to overcome these limitations of the
conformal transformation we have considered transforma-
tions of the metric more general than the conformal once,
namely the disformal transformation proposed by Bekenstein
in the context of bi-metric gravity. The conformal transforma-
tion is equivalent to a uniform coordinate dependent scaling
in every spacetime direction. On the other hand, in a dis-
formal transformation of the form given in Eq. (31), we not
only perform a uniform scaling in every direction (confor-
mal part), we also scale a particular direction (chosen by the
normal vector φμ) differently from other directions. This fact
is more transparent from the so called pure disformal trans-
formation, where we only scale the direction chosen by the
velocity vector vμ, and the other directions (perpendicular to
vμ in an orthonormal coordinate frame) do not scale at all
i.e., the conformal factor is just a constant.

We have shown how one can incorporate the quantum
nature of a particle (both massive and massless) in the dis-
formal degrees of freedom of the physical geometry. This
implies that the quantum effects can be viewed as a disfor-
mal transformation between the gravitational and the phys-
ical geometry, i.e., if we consider the motion of quantum
particle in the gravitational geometry, due to the presence of
the quantum potential this is equivalent to the classical free
fall motion in a disformally transformed spacetime where the
transformation is done along the direction chosen by the the
particle 4 velocity. The quantum force can thus thought to be
arisen in the gravitational geometry only because we had cho-
sen the “wrong” frame for the analysis. Had we started from
the disformally related physical geometry itself the quantum
force would have never arise and the motion would have
been classical. Most importantly, by using disformal trans-
formation we have shown here that one can solve the usual
problems in the conformal version, such as wrong continuity
equation and the problem of definiteness of mass.

Before concluding we mention here another future appli-
cation of the formalism constructed here. We notice that the
second factor in the transformation relation of expansion
scalar derived in Eq. (26) indicates that it is not a confor-
mally invariant quantity. Similarly it is easy to show, taking
symmetric and antisymmetric part of Eq. (25) respectively
that, the shear and rotation tensors are also not conformally
invariant. Applying directional derivative to Eq. (26) we see
that Raychaudhuri equation is also not conformally invariant

d θ̃

d τ̃
= �−2

[
dθ

dτ
− �−1

(
θ + 3

d ln �

dτ

)
d�

dτ
+ 3

d2 ln �

dτ 2

]
.

(68)
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In GR, such quantities are problematic because for a parti-
cle trajectory these are the observable quantities and appear
in the Raychudhuri equation in their scalar form, so these
should be conformally invariant. The root of this problem
lies in the transformation relation of Christoffel symbols
Eq. (24) and the fact that in GR Christoffel connections are
symmetric in the lower indices. This makes geodesic equa-
tion to changes differently in conformally related frames.
This problem has recently been addressed in [30], where
the authors have shown how to make the geodesic equation
invariant under a conformal transformation in the framework
of Einstein–Cartan gravity, where the presence of non zero
torsion makes this possible. It will be interesting to see how
such modifications can affect the quantum motion of a par-
ticle in curved spacetime along the lines discussed in this
paper.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This work being
theoretical in nature did not use any data. Hence no data is associated
with this paper.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. J.D. Bekenstein, Phys. Rev. D 48, 3641 (1993)
2. D. Bohm, B.J. Hiley, The Undivided Universe (Routledge, New

York, 1993)

3. P. Holland, TheQuantum Theory ofMotion (Cambridge University
Press, Cambridge, 1993)

4. D. Durr, S. Teufel,BohmianMechanics (Springer, New York, 2009)
5. F. Shojai, M. Golshani, Int. J. Mod. Phys. A 13(4), 677–693 (1998)
6. S. Das, Phys. Rev. D 89, 084068 (2014)
7. A.F. Ali, S. Das, Phys. Lett. B 741, 276–279 (2015)
8. A.F. Ali, M.M. Khalil, Nuc. Phys. B 909, 173 (2016)
9. F. Rahmani, M. Golshani, Int. J. Mod. Phys. A 33(3), 1850027

(2018)
10. B. Koch, arXiv:0810.2786
11. R. Carroll, Fluctuations, Information, Gravity and the Quantum

Potential (Springer, New York, 2006)
12. I. Licata, D. Fiscaletti, Quantum Potential: Physics, Geometry and

Algebra (Springer, New York, 2014)
13. A. Shojai, F. Shojai. arXiv:gr-qc/0404102
14. S. Jalalzadeh, A.J.S. Capistrano, Mod. Phys. Lett. A 34(33),

1950270 (2019)
15. T. Takabayasi, Prog. Theor. Phys. 9, 187 (1953)
16. T. Chiba, F. Chibana, M. Yamaguchi, JCAP 2006, 003 (2020)
17. S. Carroll, Spacetime and Geometry—An Introduction to General

Relativity (Pearson, London, 2003)
18. Y. Fujii, K. Maeda,The Scalar-Tensor Theory ofGravitation (Cam-

bridge, 2003)
19. I. Quiros, Int. J. Mod. Phys. D 28(07), 1930012 (2019)
20. M.P. Dabrowski, J. Garecki, D.B. Blascheke, Ann. Phys. (Berlin)

18(1), 13–32 (2009)
21. R. Wald, General Relativity (Chicago Press, 1984)
22. A.K. Kembhavi., MNRAS 185, 807 (1978)
23. G. Gregori, B. Reville, B. Larder, Astrophys. J. 886, 50 (2019)
24. E. Poisson, A Relativist’s Toolkit (Cambridge University Press,

Cambridge, 2004)
25. D. Kothawala, Gen. Relativ. Gravit. 46, 1836 (2014)
26. G. Domènech, A. Naruko, M. Sasaki, JCAP 1510, 067 (2015)
27. D. Bettoni, S. Liberati, Phys. Rev. D 88, 084020 (2013)
28. M. Zumalacárregui, J. García-Bellido, Phys. Rev. D 89, 064046

(2014)
29. A. Shojai, F. Shojai, Phys. Scr. 64, 413 (2001)
30. S. Lucat, T. Prokopec, Class. Quantum Gravity 33, 245002 (2016)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/0810.2786
http://arxiv.org/abs/gr-qc/0404102

	Disformal transformations and the motion of a particle in semi-classical gravity
	Abstract 
	1 Introduction
	2 Bohmian motion on a classical background
	2.1 The action and the Klein–Gordon equation
	2.2 Bohmian trajectories in a conformally related frame
	2.3 Conserved quantities 
	2.4 Absence of singularities in the conformal frame
	2.5 Problems with a conformally related frame
	2.6 Description in a minimally coupled background

	3 Bohmian trajectory on a physical geometry
	3.1 Disformal transformations
	3.2 Relation between acceleration vectors and particle motion

	4 Advantages of disformal transformations
	4.1 Continuity equation fixes the disformal transformation completely
	4.2 Motion of a photon along physical null trajectory
	4.3 Problem of definiteness of mass

	5 Conclusions
	References




