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Abstract We develop a method for computing the Bogoli-
ubov transformation experienced by a confined quantum
scalar field in a globally hyperbolic spacetime, due to the
changes in the geometry and/or the confining boundaries.
The method constructs a basis of solutions to the Klein–
Gordon equation associated to each compact Cauchy hyper-
surface of constant time. It then provides a differential equa-
tion for the linear transformation between bases at different
times. The transformation can be interpreted physically as
a Bogoliubov transformation when it connects two regions
in which a time symmetry allows for a Fock quantisation.
This second article on the method is dedicated to spacetimes
with timelike boundaries that do not remain static in any syn-
chronous gauge. The method proves especially useful in the
regime of small perturbations, where it allows one to easily
make quantitative predictions on the amplitude of the reso-
nances of the field. Therefore, it provides a crucial tool in the
growing research area of confined quantum fields in table-top
experiments. We prove this utility by addressing two prob-
lems in the perturbative regime: Dynamical Casimir Effect
and gravitational wave resonance. We reproduce many pre-
vious results on these phenomena and find novel results in an
unified way. Possible extensions of the method are indicated.
We expect that our method will become standard in quantum
field theory for confined fields.

a e-mail: luis.cortes.barbado@univie.ac.at (corresponding author)
b e-mail: lucia.baez@univie.ac.at
c e-mail: I.Fuentes-Guridi@soton.ac.uk

1 Introduction

Quantum field theory in curved spacetime studies the evolu-
tion of quantum fields which propagate in a classical general
relativistic background geometry. Beyond its core mathemat-
ical construction (see e.g. [1–4]), the theory has been suc-
cessful in approaching different concrete problems, such as
Hawking and Unruh radiations [5,6] or cosmological particle
creation [4,7,8]. This has required the development of differ-
ent mathematical techniques and simplifications adapted to
each specific problem, which allow for quantitative theoreti-
cal predictions. A family of problems of especial interest are
quantum fields confined in cavities and under the effect of
small changes in the background geometry or the non-inertial
motion of the cavity boundaries. The theoretical predictions
on these problems may be tested experimentally in the near
future [9–12], thanks to the great improvement of the pre-
cision of quantum measurements in table-top experiments.
Consequently, new mathematical techniques are necessary
to address these problems and make quantitative predictions,
which can then be contrasted with the experimental results.

In the preceding article [13], which we shall call “Part I”,
we constructed a method for computing the evolution of a
confined quantum scalar field in a globally hyperbolic space-
time, by means of a time-dependent Bogoliubov transforma-
tion. The method proved especially useful for addressing the
kind of problems just mentioned, related to confined quan-
tum fields undergoing small perturbations, although it is of
general applicability (under some minor assumptions). How-
ever, the mathematical construction of Part I only allowed
to approach spacetimes without boundaries or with static
boundaries in some synchronous gauge.

In this second article we extend the method to spacetimes
with timelike boundaries which do not remain static in any
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synchronous gauge. The essence of the procedure remains
the same, but we require a more involved mathematical con-
struction than the one undertaken in Part I. In particular, we
need a specific treatment for each different boundary condi-
tion that we may impose to the field. The method is based on
the foliation of the spacetime in compact spacelike Cauchy
hypersurfaces using a time coordinate. The core idea is to
construct a basis of modes naturally associated to each hyper-
surface, and then provide a differential equation in time for
the linear transformation between the modes associated to
two hypersurfaces at different times. This way, the evolution
of the field in time is not obtained by solving the Klein–
Gordon equation, but rather by solving a differential equa-
tion for a time-dependent linear transformation between the
bases. Such linear transformation can be interpreted physi-
cally as a Bogoliubov transformation when it relates regions
in which the time symmetry allows for a Fock quantisation
in terms of particles associated to the corresponding bases of
modes.

The conception of transferring the time evolution from the
mode functions to the Bogoliubov transformation appears for
the first time in the pioneer work by Parker [8]. This idea of
a time-dependent Bogoliubov transformation has since then
been developed specifically for other concrete problems (see
e.g. [14–19]). Our work is therefore a generalisation (for con-
fined fields) of the previous specific results. Operationally, it
is mostly inspired by the construction in [20] for periodically
accelerated cavities.

As in Part I, the method is of general applicability (with
minor assumptions), but proves especially useful in the
regime of small perturbations, since it provides very sim-
ple recipes for computing the resonance spectrum and sensi-
bility of the field to a given perturbation of the background
metric or the boundary conditions. We show with concrete
examples that, in the small perturbations regime, with this
unique method it is possible to easily solve different prob-
lems, each of which has so far required its own specific (and
way more involved) treatment. Moreover, we easily handle
a so far unsolved problem, namely that of a quantum field
inside a three-dimensional rigid cavity and perturbed by a
gravitational wave. We manage to explain it physically as a
combination of the direct effect of the gravitational wave on
the field plus a Dynamical Casimir Effect.

The contribution of the method to the understanding of
quantum fields in curved spacetime is threefold. First, as we
just mentioned, its direct application to concrete problems
within its range allows to easily solve many important prob-
lems of physical interest. Second, the general structure of
the method is very likely to be extensible (with the neces-
sary adaptations) to other scenarios, such as other quantum
fields, boundary conditions or metric gauges [21–26]. And
third, the mathematical time-dependent linear transforma-
tion obtained may be given a physical interpretation beyond

the one in terms of particle quantisation considered here;
for example, in relation to adiabatic expansions [2,27,28] or
to approaches to quantum field theory in curved spacetime
based on field-related quantities [1,3,29].

The article is organised as follows. In Sect. 2 we state
the general physical problem for which we construct the
method, introducing the background metric, the field the-
ory and the different assumptions that we consider; and also
define three important mathematical objects that we use. The
nuclear part of the article is Sect. 3. In this section we con-
struct the basis of modes associated to each hypersurface
of the foliation of the spacetime, and formally compute the
time-dependent linear transformation between the modes of
two different hypersurfaces. We give a differential equation
and a formal solution for it, which constitute one of the two
main results of the work. We also discuss the physical mean-
ing of both the modes and the transformation. In Sect. 4 we
consider the particularly important case of small perturba-
tions and resonances, obtaining especially simple recipes for
its solution, which constitute the other main result of the
work. We apply the recipes to the Dynamical Casimir Effect
and the gravitational wave perturbation problems. Finally, in
Sect. 5 we present the summary and conclusions. In addition,
in “Appendix A” we explain why a different treatment as that
of Part I is needed in the case of “moving” boundaries. In
“Appendix B” we prove that the properties we assign to the
sets of modes that we build are fulfilled. In “Appendix C” we
provide the detailed computation of the differential equation
provided in Sect. 3. In “Appendix D” we derive the expres-
sions given in Sect. 4. In “Appendices E and F” we provide
the derivation of auxiliary expressions used in “Appendix D”.
“Appendix G” is dedicated to the case of Dirichlet vanishing
boundary conditions. In “Appendix H” we prove a necessary
proposition about certain sets of eigenvalues. In “Appendix
I” we provide for convenience a summary of the useful for-
mulae for the application of the method.1

2 Preliminaries

2.1 Statement of the problem

We consider a globally hyperbolic spacetime (M, g) of
dimension N + 1 with timelike boundary ∂M [30]. In this
geometry we introduce a scalar field Φ satisfying the Klein–
Gordon equation

1 As mentioned, this article introduces a more involved mathematical
construction, as compared to Part I. Therefore, although the article is
self-contained, it is mostly devoted to the development of such construc-
tion. The underlying ideas and the physical picture behind the method,
which are analogous in both parts, are thus explained in more detail in
Part I.
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gμν∇μ∇νΦ − m2Φ − ξ RΦ = 0; (1)

wherem ≥ 0 is the rest mass of the field, gμν is the spacetime
metric, R its scalar curvature and ξ ∈ R is a coupling constant
(we use natural units h̄ = c = 1).

We impose one of the following two boundary conditions
to the field:

(a) Dirichlet vanishing boundary conditions

Φ(t, x) = 0, (t, x) ∈ ∂M. (2)

(b) Neumann vanishing boundary conditions

nμ∇μΦ(t, x) = 0, (t, x) ∈ ∂M; (3)

where nμ(t, x) is the normal vector to ∂M .

We treat explicitly Dirichlet and Neumann vanishing bound-
ary conditions since they are arguably the most common ones
in physical problems. However, we do not discard that a spe-
cific treatment for other boundary conditions is also possible.
The treatment of Dirichlet boundary conditions (2) requires a
subtle reformulation of the boundary conditions themselves,
which nonetheless does not modify the physical problem
being addressed. Due to the need of a specific discussion,
we leave Dirichlet boundary conditions for “Appendix G”.
Therefore, from here on we consider only Neumann bound-
ary conditions (3) (except for “Appendix G” or unless other-
wise stated).

Thanks to the global hyperbolicity, it is always possible to
construct a Cauchy temporal function t in the full spacetime
[30]. This provides a foliation in Cauchy hypersurfaces �t of
constant time. We introduce the Klein-Gordon inner product
between two solutions of (1), given by

〈Φ ′, Φ〉 := −i
∫

�t̃

dVt̃
[
Φ ′(t̃) ∂tΦ(t)∗

∣∣
t=t̃

−Φ(t̃)∗ ∂tΦ
′(t)

∣∣
t=t̃

] ; (4)

which, for convenience, we already evaluated at a given
Cauchy hypersurface �t̃ , with dVt̃ being its volume element.
Under the boundary conditions (2) or (3) this inner product
is independent of �t̃ .

Finally, we introduce the three conditions on the Cauchy
hypersurfaces and the temporal function that we need to
ensure the applicability of the method. These conditions are:

(A) The Cauchy hypersurfaces �t must be compact.
(B) For any Cauchy hypersurface �t , the Cauchy problem

for the Klein–Gordon equation (1) must be well-posed;
that is, given as initial conditions the value of the field

and of its first derivative with respect to t at �t (com-
patible with the boundary conditions at the intersec-
tion ∂�t = �t ∩ ∂M), there exists an unique solution
to the Klein–Gordon equation in the whole spacetime
satisfying these conditions.

(C) Using the temporal function as a coordinate, the metric
should be written as

ds2 = −dt2 + hi j (t, x)dxidx j , (5)

where hi j (t) is a regular Riemannian metric.2 This is
called a synchronous gauge.

The necessity of each condition will become clear when
constructing the method. A detailed discussion on their phys-
ical meaning and the limitations they introduce can be found
in “Appendix A” of Part I. In this second article, we consider
the cases in which at least some parts of the boundary ∂M
have non-zero velocity in the coordinates chosen. We shall
mention that, if the boundaries are not static, an alternative
solution could be to change to a new coordinate system in
which the boundaries remain static, and then use the method
as exposed in Part I. However, in general, in this new coor-
dinate system the metric may not look like (5) and (since
Condition C is also a requirement in Part I) the integration
method will not apply.

2.2 Space of initial conditions at �t , inner product and
self-adjoint operator

Let us introduce three mathematical objects that are pivotal
for the method. First, we define Γt as a subspace of the
space of pairs of square integrable smooth functions over
a Cauchy hypersurface, representing possible initial condi-
tions (Φ, ∂tΦ)|�t . That is, Γt ⊂ [C∞(�t ) ∩ L2(�t )]⊕2.
Specifically, Γt is the restriction of the full space of pairs of
functions to initial conditions (Φ, ∂tΦ)|�t satisfying Neu-
mann vanishing boundary conditions (3) at ∂�t . This can be
rewritten in terms of the initial conditions as{
n · ∇h(t)Φ(t, x) = −vB(t, x)∂tΦ(t, x),
and n · ∇h(t)∂tΦ(t, x) = 0 if vB(t, x) = 0; (6)

where x ∈ ∂�t ; n(t, x) is the normal vector to ∂�t and
pointing outwards from �t ; vB(t, x):=(n · vB)(t, x), where
vB(t, x) is the velocity vector of the boundary, and there-
fore vB(t, x) is its normal component; and ∇h(t) is the covari-
ant derivative corresponding to the spatial metric hi j (t). The

2 From here on we omit the explicit dependence of hi j (t) and other
quantities on the spatial coordinates. Also, in (5) for simplicity we
are assuming that for each hypersurface �t there is one coordinate
chart (x1, . . . , xN ) that completely covers it. This might not be the case,
but considering several coordinate charts would be straightforward and
would not affect the construction of the method.

123



953 Page 4 of 23 Eur. Phys. J. C (2021) 81 :953

first line of (6) is just the reformulation of (3) separating the
spatial and temporal partial derivatives. The second line cor-
responds to the total time derivative of (3) along the boundary
when vB = 0. Clearly, that time derivative must also van-
ish, and this shall be taken into account when considering
the compatibility of the initial conditions with the boundary
conditions. However, in the regions where the boundary is
moving in the chosen coordinates (vB 
= 0), the total time
derivative of (3) along the boundary involves second order
partial time derivatives of the field. In such case, the fulfil-
ment of the first time derivative of the boundary conditions
at ∂�t already depends on the dynamical evolution given
by the Klein–Gordon equation (1), and not just on the ini-
tial conditions at �t . Therefore, its fulfilment is guaranteed
by Condition B. On the other hand, in the regions where
the boundary remains parallel to ∂t (vB = 0), the first time
derivative of the boundary condition reads as in the second
line of (6), involving only up to the first partial time derivative
of the field, and thus depending only on the initial conditions
at �t . Therefore, in such regions it imposes the correspond-
ing constraint on these initial conditions.

The second mathematical object that we introduce is the
following inner product in the Hilbert space of pairs of func-
tions L2(�t ) ⊕ L2(�t ) ⊃ Γt :〈(

Φ ′
∂tΦ

′
)

,

(
Φ

∂tΦ

)〉
�t

:=
∫

�t

dVt [ξ Rh(t) + m2 + F(t)]Φ ′Φ∗

+
∫

�t

dVt ∂tΦ
′∂tΦ∗ +

∫
�t

dVt (∇h(t)Φ
′) · (∇h(t)Φ

∗);
(7)

where Rh(t) is the scalar curvature corresponding to the
spatial metric hi j (t) and F(t) ≥ 0 a time-dependent non-
negative quantity given by

F(t) :=
{

0 if ξ Rh(t, x) + m2 > 0 a.e. in�t ,

−ess inf{ξ Rh(t, x) + m2, x ∈ �t } + ε i.o.c.;
(8)

where “a.e.” stands for almost everywhere, “ess inf” stands
for essential infimum, “i.o.c.” stands for in other case and ε >

0 is an arbitrarily small positive quantity. The quantity F(t)
ensures that the inner product is positive-definite.3

Finally, we introduce the following operator in Γt :

M̂ (t) :=
(

0 1
Ô(t) 0

)
; (9)

3 The quantity F(t) plays here an analogous role to that of the function
with the same name introduced in Part I, which meaning is discussed
in “Appendix B” there. In many problems of interest, such as a massive
field with minimal coupling (ξ = 0), the quantity F(t) vanishes and
can be ignored.

with

Ô(t):= − ∇2
h(t) + ξ Rh(t) + m2 + F(t), (10)

where ∇2
h(t) is the Laplace–Beltrami differential operator

and F(t) has been defined in (8). With the inner product
in (7), the boundary condition (6), and using Green’s first
identity, one can easily check that the operator M̂ (t) is self-
adjoint.4

Before finishing this section, let us mention that using
the operator Ô(t) and Condition C we shall simplify the
Klein–Gordon equation (1) taking into account the form of
the metric in (5), obtaining

∂2
t Φ = −Ô(t)Φ − q(t)∂tΦ − ξ R̄(t)Φ + F(t)Φ; (11)

where

q(t):=∂t log
√
h(t) (12)

is a factor which depends on the change of the metric of the
spacelike hypersurfaces with time, with h(t) the determinant
of the spatial metric hi j (t), and R̄(t):=R(t) − Rh(t) is the
part of the full scalar curvature of gμν which depends on time
derivatives, given by

R̄(t) = 2∂t q(t) + q(t)2 − 1

4
[∂t hi j (t)][∂t hi j (t)]. (13)

The key role of Condition C has been to yield Eq. (11),
in which all the spatial derivatives present are those in the
Laplace–Beltrami operator contained in Ô(t).

3 Construction of the method

3.1 Construction of the bases of modes

For each spacelike hypersurface �t̃ we construct a set of

modes {±Φ
[t̃]
n (t)} fulfilling the following two Properties:

(I) They form a complete basis of the space of solutions to
the Klein–Gordon equation (1). We stress that each mode
of the basis is defined in the whole spacetime, the label [t̃]
meaning only that we associate it to the corresponding
hypersurface. Specifically, it is in this hypersurface that
we set its initial conditions.

4 Assertions about the self-adjoint nature of the operator should strictly
be done over the extension of the operator defined on Γt to the full
Hilbert space L2(�t )⊕ L2(�t ) (of which Γt is a dense subspace). This
is a well-known mathematical procedure in the analysis of partial differ-
ential equations with elliptic operators and boundary value problems.
Since this is the context in which we make use of the operator, we shall
not get into the details of it. See for example [31].
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Fig. 1 Association of bases of modes {±Φ
[t̃]
n (t)} to Cauchy hypersur-

faces �t̃

(II) If there exists a region S of the spacetime around �t̃
where

– ∂t behaves like a Killing field [hi j (t) is constant],
– the boundaries remain parallel to ∂t (“static”),
– and the function F(t) in (8) vanishes;

the modes form an orthonormal basis with respect to the
Klein-Gordon inner product (4) of positive frequency

modes (modes +Φ
[t̃]
n ) and negative frequency modes

(modes −Φ
[t̃]
n ) with respect to t .5 The region S needs

to fully embrace the spatial hypersurfaces �t along an
interval of time t around t = t̃ which is long enough
so as to explore the minimum frequency in the spectrum
given by the modes.

In Fig. 1 we provide a graphical depiction of this associa-
tion of bases of modes to Cauchy hypersurfaces, which shall
be helpful when following the construction of the method. In

order to construct the bases {±Φ
[t̃]
n }, we first construct aux-

iliary bases of modes {Ψ [t̃]
n }, also associated to each hyper-

surface �t̃ , and then introduce a linear transformation to the

bases {±Φ
[t̃]
n }. Since the modes Ψ

[t̃]
n (t) are also solutions to

the Klein–Gordon equation, because of Condition B the only
quantities left to fully determine them are the initial condi-
tions, which we are going to fix at �t̃ . That is, we need to fix

the pair (Ψ
[t̃]
n (t̃), ∂tΨ

[t̃]
n (t)|t=t̃ ) ∈ Γt̃ for each mode. These

pairs are going to be given by the eigenvectors of the opera-
tor M̂ (t̃) in (9):

M̂ (t̃)

(
Ψ

[t̃]
n (t̃)

∂tΨ
[t̃]
n (t)|t=t̃

)
= ω[t̃]

n

(
Ψ

[t̃]
n (t̃)

∂tΨ
[t̃]
n (t)|t=t̃

)
. (14)

Notice that t̃ in (14) is just a parameter.6 Since M̂ (t̃) is
self-adjoint with respect to the inner product (7), the eigen-

5 Regions in which F(t) does not vanish, but takes an arbitrarily small
value ε, may also be considered. We refer to “Appendix B” of Part I for
further details on this condition.
6 As we commented previously for the operator M̂ (t̃), this equation
should also be posed in the full Hilbert space L2(�t ) ⊕ L2(�t ). It is

values ω
[t̃]
n are real. Therefore, we can also impose that the

pairs of functions are of real functions and that they satisfy
the following orthogonality and normalisation condition:〈(

Ψ
[t̃]
n (t̃)

∂tΨ
[t̃]
n (t)|t=t̃

)
,

(
Ψ

[t̃]
m (t̃)

∂tΨ
[t̃]
m (t)|t=t̃

)〉

�t̃

= |ω[t̃]
n |δnm . (15)

In “Appendix H” we prove that there are no zero eigenval-

ues ω
[t̃]
n , so the normalisation criterion is valid. Finally, notice

that thanks to Condition A we can be sure that the spectrum
is discrete, as we had implicitly assumed with the notation.

In order to operationally find the quantities Ψ
[t̃]
n (t̃), we

summarise (6) and (14) in the two equations

Ô(t̃)Ψ [t̃]
n (t̃) = (ω[t̃]

n )2Ψ [t̃]
n (t̃), (16)

n · ∇h(t̃)Ψ
[t̃]
n (t̃, x) = −ω[t̃]

n vB(t̃, x)Ψ [t̃]
n (t̃, x), x ∈ ∂�t̃ ;

(17)

and the equation for the partial time derivative

∂tΨ
[t̃]
n (t)|t=t̃ = ω[t̃]

n Ψ [t̃]
n (t̃). (18)

This last equation plays a role in the construction of the
method, but in order to apply the method to a concrete prob-
lem only the first two are necessary. Because of this last
equation, when vB(t̃, x) = 0 Eq. (17) is also imposing the
second condition in (6). Notice that Eq. (16) cannot be taken

as an eigenvalue problem posed directly for Ψ
[t̃]
n (t̃), since

the boundary conditions (17) of such problem would not be
fixed (they would depend on the eigenvalue).

By Condition B, for each pair (Ψ [t̃]
n (t̃), ∂tΨ

[t̃]
n (t)|t=t̃ ) ∈ Γt̃

that is solution to (14) we have an unique mode Ψ
[t̃]
n (t). Let us

now relabel the modes in the (infinite countable) set {Ψ [t̃]
n }

and group them into two (also infinite countable) subsets,

{+Ψ
[t̃]
n } and {−Ψ

[t̃]
n }, with their respective sets of eigenval-

ues {+ω
[t̃]
n } and {−ω

[t̃]
n }. In “Appendix B” we prove that, at

least for the problems in which we can give a physical inter-
pretation to the results of the method, there is an infinite

number of both positive and negative eigenvalues ω
[t̃]
n . We

organise the solutions as follows:

· · · ≤ −ω
[t̃]
2 ≤ −ω

[t̃]
1 < 0 < +ω

[t̃]
1 ≤ +ω

[t̃]
2 ≤ · · · . (19)

We notice that, in general, the solutions ±Ψ
[t̃]
n and eigenval-

ues ±ω
[t̃]
n in each subset are independent.

Because of Condition B and the linearity of the Klein–
Gordon equation, we can trivially consider the inner prod-
uct (7), defined for initial conditions at each hypersurface
�t̃ , as an inner product in the space of solutions: For any two
solutions, their inner product is that of their corresponding

known, however, that the functions representing the eigenvectors can
be taken to belong to the dense subspace Γt̃ [31].
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initial conditions at the given hypersurface. Using this defini-
tion of inner product in the space of solutions, and carefully

taking into account the relabelling Ψ
[t̃]
n → ±Ψ

[t̃]
n , we can

write the orthonormalisation condition (15) in an equivalent

way, but directly for the modes ±Ψ
[t̃]
n , as7

〈±Ψ [t̃]
n , ±̂Ψ [t̃]

m 〉�t̃
= |±ω[t̃]

n |δnmδ±±̂, (20)

where the quantity δ±±̂ equals 1 if the signs coincide and 0
otherwise. We also stress that this orthonormalisation is only
correct in the inner product of the hypersurface �t̃ to which
the modes are associated.

Finally, we build the set of modes {±Φ
[t̃]
n } by taking a

linear transformation from the set of modes {±Ψ
[t̃]
n }. This

linear transformation reads
⎛
⎜⎜⎜⎝

+Φ
[t̃]
1

. . .

−Φ
[t̃]
1

. . .

⎞
⎟⎟⎟⎠ = M

⎛
⎜⎜⎜⎝

+Ψ
[t̃]
1

. . .

−Ψ
[t̃]
1

. . .

⎞
⎟⎟⎟⎠ , (21)

where, in obvious block notation,

M :=1

2

(
(1 − i)I (1 + i)I
(1 + i)I (1 − i)I

)
. (22)

The set of modes {±Φ
[t̃]
n }, constructed this way for each t̃ ,

is a basis of modes satisfying Properties I and II. We prove this
in “Appendix B”. In particular, in the regions S described in
Property II, where it is possible to construct modes with well-

defined frequency with respect to t , we have that −Ψ
[t̃]
n (t̃) =

+Ψ
[t̃]
n (t̃) and −ω

[t̃]
n = −(+ω

[t̃]
n ), and the modes in the basis

are

±Φ[t̃]
n (t) = +Ψ [t̃]

n (t̃)e∓i(+ω
[t̃]
n )(t−t̃); (23)

that is, +Φ
[t̃]
n (t) are the modes with positive frequencies

+ω
[t̃]
n > 0, and −Φ

[t̃]
n (t) = +Φ

[t̃]
n (t)∗ the corresponding

negative frequency modes.
The construction of the bases of modes done here has

been significantly different to that in Part I. We discuss
in “Appendix A” why the construction done in Part I does
not work here.

3.2 Time-dependent linear transformation

Let us write down formally the linear transformationU (t̃, t̃0)
between any two bases of modes, associated to the hypersur-
faces �t̃0 and �t̃ :

7 Any time that two ‘±’ signs are involved in an equation, we use a hat
‘±̂’ to distinguish one of them.

⎛
⎜⎜⎜⎝

+Φ
[t̃]
1

. . .

−Φ
[t̃]
1

. . .

⎞
⎟⎟⎟⎠ = U (t̃, t̃0)

⎛
⎜⎜⎜⎝

+Φ
[t̃0]
1

. . .

−Φ
[t̃0]
1

. . .

⎞
⎟⎟⎟⎠ . (24)

In “Appendix C” we prove that this time-dependent linear
transformation between bases satisfies the differential equa-
tion

d

dt̃
U (t̃, t̃0) = MV̂ (t̃)M∗U (t̃, t̃0); (25)

where

V̂ (t̃) =
(
V̂++ V̂+−
V̂−+ V̂−−

)
, (26)

with

V̂±±̂
nm = −(±̂ω[t̃]

m )δnmδ±±̂
±̂

{[
(±ω[t̃]

n ) + (±̂ω[t̃]
m )

]

×
∫

�t̃

dVt̃

[
d

dt̃
±Ψ [t̃]

n (t̃)

]
±̂Ψ [t̃]

m (t̃)

+
[

2(±ω[t̃]
n )2 + d±ω

[t̃]
n

dt̃
− F(t̃)

]

×
∫

�t̃

dVt̃
±Ψ [t̃]

n (t̃)±̂Ψ [t̃]
m (t̃)

+
∫

�t̃

dVt̃
±Ψ [t̃]

n (t̃)
[±ω[t̃]

n q(t̃) + ξ R̄(t̃)
] ±̂Ψ [t̃]

m (t̃)

−
∫

∂�t̃

dSt̃ vB(t̃)

[
d

dt̃
±Ψ [t̃]

n (t̃)

]
±̂Ψ [t̃]

m (t̃)

}
, (27)

where dSt̃ is the surface element of ∂�t̃ . With the initial
condition U (t̃0, t̃0) = I , Eq. (25) has the formal solution

U (t̃f , t̃0) = T exp

[∫ t̃f

t̃0
dt̃ MV̂ (t̃)M∗

]
, (28)

where T denotes time ordering.
Equations (25–28) are one of the two main results of this

work: They switch from the time evolution of the modes
to the time evolution of the transformation between bases.
The time-dependent linear transformation obtained relates

the bases {±Φ
[t̃]
n }, which are those satisfying Properties I

and II. However, one of the strengths of the method is that all
the quantities appearing in (27), which are the coefficients of
our differential equation, are known just by computing the

initial conditions of the auxiliary bases {±Ψ
[t̃]
n }, which are

the solutions to the Eqs. (16) and (17), for which the time t̃
is just a parameter.
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3.3 Physical interpretation

The time-dependent linear transformation obtained contains
all the information necessary to compute the evolution of the
field in time. However, as we advanced in the Introduction,
we do not pretend to give a quantisation for each and every
basis of modes that we have constructed at each time. It is only
in those regions S described within Property II of Sect. 3.1,
where we can proceed to the usual Fock quantisation of the
field. That is, defining the corresponding Fock space with its
vacuum state and creation and annihilation operators (ones
the adjoints of the others in the case of a real field) associ-
ated to the mode decomposition given by the method. This
is the case because, in such regions, the decomposition is
done in modes with well-defined frequency with respect to
a timelike Killing field [see Eq. (23)]. We rely on the fact
that, in such situation, Fock representation gives the correct
physical description of a field in terms of particles associated
to those modes.8 When connecting two regions where this
Fock quantisation procedure can be done, the time-dependent
linear transformation that we constructed in the previous sec-
tion really becomes a Bogoliubov transformation, taking the
well-known form

U (t̃, t̃0) =
(

α(t̃, t̃0) β(t̃, t̃0)
β(t̃, t̃0)∗ α(t̃, t̃0)∗

)
. (29)

These Bogoliubov coefficients also relate in the usual way
the annihilation and creation operators of the mode decom-
positions associated to the different regions.

We refer to Sect. 3.3 of Part I for additional discussions
on different aspects of the physical interpretation, which also
apply here.

4 Small perturbations and resonances

Let us consider the case in which the spatial metric hi j (t)
only changes in time by a small perturbation around some
constant metric h0

i j ; that is,

hi j (t) = h0
i j + εΔhi j (t), (30)

where ε � 1. Also, the boundaries may experience small
displacements of order ε, meaning that we allow the hyper-
surfaces �t to slightly change around some fixed hypersur-
face �0. We call εΔx(t, x) the proper distance between the
boundary ∂�t and the fixed boundary ∂�0 at the point (t, x)
along the direction normal and outwards to ∂�0. Therefore,
we have that

vB(t, x) ≈ ε
d

dt
Δx(t, x). (31)

8 For brevity, we do not expose the details of the quantisation procedure
explicitly, see e.g. [2].

Finally, we require that F(t) remains O(ε), so that the solu-
tions to the problem for ε = 0 are modes with well-defined
frequency. In “Appendix D” we prove that such value of F(t)
actually does not contribute at all to the physically rele-
vant result of resonances. Therefore, once we have required
that F(t) remains O(ε), without loss of generality we con-
sider that F(t) = 0.

We write down the quantities in (10) and (13) to first order
in ε:

Ô(t̃) ≈ Ô0 + εΔÔ(t̃),

R̄(t̃) ≈ εΔR̄(t̃); (32)

where R̄(t̃) vanishes when there is no perturbation because
it only depends on time derivatives. The perturbation of the
quantity q(t̃) in (12) does not directly appear in the pertur-
bative regime, but rather its primitive with respect to t̃ , given
by

Δr(t̃):=1

2

∂

∂ε
log h(t̃)

∣∣∣∣
ε=0

. (33)

As we prove in “Appendix D”, we manage to write down
the Bogoliubov coefficients without explicitly computing the

solutions ±Ψ
[t̃]
n (t̃) and ±ω

[t̃]
n to first order in ε, by using the

perturbation of the operator ΔÔ(t̃) in (32). Thus, we only
need the solutions to (16) and (17) for the static problem (for

ε = 0). We denote them as Ψ 0
n and ω0

n > 0 for the +Ψ
[t̃]
n

modes. Therefore, those corresponding to the −Ψ
[t̃]
n modes

are Ψ 0
n and −ω0

n (see “Appendix B”). These solutions satisfy

Ô0Ψ 0
n = (ω0

n)
2Ψ 0

n , (34)

n · ∇h0Ψ 0
n (x) = 0, x ∈ ∂�0. (35)

Being solutions to a static problem, they must also fulfil the
orthonormalisation condition given in (B.7), namely,

∫
�0

dV 0 Ψ 0
n Ψ 0

m = δnm

2ω0
n
, (36)

where dV 0 is the volume element of �0.
We want to solve the differential equation (25) in the

perturbative regime. Let us first compute the coefficient
MV̂ (t̃)M∗ explicitly to zeroth order in ε. Using the solu-
tions to zeroth order and (36) in (27) it is easy to check that

V̂±±̂
nm = ±̂ω0

nδnmδ∓±̂ + O(ε). (37)

Using now (22) and (26), we can write

MV̂ (t̃)M∗ ≈ iΩ0 + εΔK (t̃); (38)
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with

Ω0 := diag(ω0
1, ω

0
2, . . . ,−ω0

1,−ω0
2, . . .),

ΔK (t̃) :=
(

Δα̂(t̃) Δβ̂(t̃)
Δβ̂(t̃)∗ Δα̂(t̃)∗

)
, (39)

where the entries of ΔK (t̃) are the contributions to first
order in ε, that depend on the perturbation and which
explicit expressions we provide later on. If we introduce the
result (38) in the differential equation (25), we clearly see
that for ε = 0 the modes evolve just with a trivial phase with
constant frequency ±ω0

n , as one should expect for a static
metric.

In order to properly compute the evolution to first order
in ε, we shall first absorb any phase evolution, given by the
diagonal terms. This is done by writing the evolution in terms
of a new linear transformation Q(t̃, t̃0) defined by

Q(t̃, t̃0):=Θ(t̃)∗U (t̃, t̃0); (40)

where

Θ(t̃):= exp

{∫ t̃

dt̃ ′[iΩ0 + εΔA(t̃ ′)]
}

,

ΔA(t̃):=diag(Δα̂11,Δα̂22, . . . ,−Δα̂11,−Δα̂22, . . .). (41)

Replacing (40) in (25), we get the differential equation

d

dt̃
Q(t̃, t̃0) = εΘ0(t̃)∗ΔK̄ (t̃)Θ0(t̃)Q(t̃, t̃0),

ΔK̄ (t̃):= ΔK (t̃) − ΔA(t̃),

Θ0(t̃):= eiΩ0 t̃ ; (42)

where we dropped the terms to first order in ε from Θ(t̃)
because of the overall factor ε appearing on the r.h.s. With
the initial condition Q(t̃0, t̃0) = I , to first order in ε the
transformation reads

Q(t̃f , t̃0) ≈ I + ε

∫ t̃f

t̃0
dt̃ Θ0(t̃)∗ΔK̄ (t̃)Θ0(t̃). (43)

We can show the resonance behaviour of the field in a clear
way if we write explicitly the expressions for the Bogoliubov
coefficients:

αnn(t̃f , t̃0) ≈ 1;

αnm(t̃f , t̃0) ≈ ε

∫ t̃f

t̃0
dt̃ e−i(ω0

n−ω0
m )t̃Δα̂nm(t̃), (44)

n 
= m;

βnm(t̃f , t̃0) ≈ ε

∫ t̃f

t̃0
dt̃ e−i(ω0

n+ω0
m )t̃Δβ̂nm(t̃). (45)

In general, the Bogoliubov transformation differs from
the identity just by terms of first order in ε, except for the
cases where there are resonances. That is, if the perturba-
tion considered contains some characteristic frequency ωp,
then the same frequency is usually also present in the quan-
tities Δα̂nm(t̃) and Δβ̂nm(t̃). If such frequency coincides
with some difference between the frequencies of two modes,
ωp = ω0

n − ω0
m (it is in resonance), then the correspond-

ing coefficient αnm(t̃f , t̃0) grows linearly with the time dif-
ference t̃f − t̃0, and after enough time it will overcome
the O(ε). Respectively, if the characteristic frequency coin-
cides with some sum between the frequencies of two modes,
ωp = ω0

n+ω0
m , then the corresponding coefficient βnm(t̃f , t̃0)

grows linearly in time and eventually overcomes the O(ε).9

If the Fourier transform F of Δα̂nm(t̃) [respectively
Δβ̂nm(t̃)] exists as a well-defined function, which necessar-
ily implies that the perturbation vanishes fast enough in the
asymptotic past and future, then another way to consider the
resonances is by taking the limits t̃0 → −∞ and t̃f → ∞
in (44) and (45) and writing

αnn(−∞,∞) ≈ 1;
αnm(−∞,∞) ≈ ε

√
2π F [Δα̂nm](ω0

n − ω0
m), (46)

n 
= m;
βnm(−∞,∞) ≈ ε

√
2π F [Δβ̂nm](ω0

n + ω0
m). (47)

That is, the Bogoliubov coefficients between the asymp-
totic past and future are proportional to the Fourier trans-
forms evaluated at the corresponding substraction (respec-
tively addition) of frequencies. Evidently, resonances occur
if the frequency spectrum is peaked around one or more of
these values.

Let us remark that, in the presence of resonances, the phys-
ically meaningful modes for which the effects take place can
be taken as the stationary modes given by {Ψ 0

n exp(∓iω0
nt)}.

This is because the exact modes {±Φ
[t̃]
n (t)} differ from them

just to order ε (see “Appendix B”), which is the degree of
indefiniteness of the well-defined frequency modes due to
the perturbation. Only when the neat effect overcomes this
order (and thus the degree of indefiniteness), the effect can be
interpreted physically. We shall also mention that the reso-
nance can be consistently described in the regime of duration
of the perturbation Δt̃ such that 1 � ωpΔt̃ � 1/ε. The rea-
son is that one needs the period of time to be reasonably larger
than the inverse of the frequency being described, but on the
other hand, one should keep the second order term in ε that
we dropped in (43) significantly smaller than the first order
term that we kept. We refer to Sect. 4 and “Appendix E.2”

9 In “Appendix E.1” of Part I we show that these resonances remain
stable under small deviations of the frequency of the perturbation from
the exact resonant frequency.
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in Part I for additional discussion on the interpretation of
the modes and on the regime of validity of the perturbative
computation.

Finally, we provide the explicit expressions for the entries
of ΔK (t̃). They are computed in detail in “Appendix D”. In
order to find resonances, the following expressions can be
used

Δα̂nm(t̃) ≡ i
∫

�0
dV 0 [−mΔ̂(t̃)Ψ 0

n ]Ψ 0
m

+ i
∫

∂�0
dS0 Δx(t̃)

[
(∇h0Ψ 0

n ) · (∇h0Ψ 0
m)

+ (ξ Rh0 + m2 − ω0
nω

0
m)Ψ 0

n Ψ 0
m

]
, (48)

Δβ̂nm(t̃) ≡ − i
∫

�0
dV 0 [+mΔ̂(t̃)Ψ 0

n ]Ψ 0
m

− i
∫

∂�0
dS0 Δx(t̃)

[
(∇h0Ψ 0

n ) · (∇h0Ψ 0
m)

+ (ξ Rh0 + m2 + ω0
nω

0
m)Ψ 0

n Ψ 0
m

]
; (49)

where dS0 is the surface element of ∂�0, ∇h0 is the connec-

tion associated to the static metric h0
i j , R

h0
its scalar curva-

ture, and ±
mΔ̂(t̃) are linear operators defined by their action

on the basis {Ψ 0
n } as

±
mΔ̂(t̃)Ψ 0

n

:= [
ΔÔ(t̃) + ω0

n(ω
0
n ± ω0

m)Δr(t̃) + ξΔR̄(t̃)
]
Ψ 0
n .

(50)

The expressions in (44–50) are the second main result of
this work. As we will show with concrete examples, they
provide a very simple recipe for computing the resonance
frequencies and amplitudes of a trapped quantum field in
the perturbative regime. We highlight again that they do not
even require the computation of the modes to first order in
the perturbations, but only the solutions of the static problem
in (34–36).

The symbol ‘≡’ in (48) and (49) denotes the equivalence
relation “gives the same resonances as”. This means that the
expressions in (48) and (49) have been simplified by dropping
terms that are non-zero, but that nonetheless never contribute
to the resonances when replaced in (44) and (45) [or in (46)
and (47)]. Since resonances are the only physically mean-
ingful result to be obtained from this computation, one can
always use these expressions to compute the sensibility of
the field to each resonance. We refer to “Appendix D”, and
again to Sect. 4 and “Appendix E.2” in Part I, for more details
on the interpretation of the resonances and on the meaning
of the “equivalence for resonances” relation given by ‘≡’.10

10 This equivalence relation, which concrete expressions are given in
“Appendix D” [Eqs. (D.27) and (D.42)], can also be used to further

In the expressions (48) and (49) we can see a clear sep-
aration between the contributions due to the change of the
metric (the volume integrals) and due to the motion of the
boundaries (the surface integrals). As it must be the case,
the first contributions are equivalent to those found in Part I
[Eqs. (44) and (45)].

4.1 Example: dynamical Casimir effect

In order to provide an illustrative example, let us apply
the method to arguably the simplest problem with moving
boundary conditions, which is the Dynamical Casimir Effect
for a minimally coupled (ξ = 0) massive scalar field in 1+1-
dimensional Minkowski spacetime. The spacetime metric is
simply

ds2 = −dt2 + dx2. (51)

The field is trapped inside a cavity of average proper
length L , with the boundaries placed at x− (left) and x+
(right). The boundaries oscillate with frequency Ω and
amplitude εL/2 � L . We consider three different config-
urations for such oscillations:

x− = −L/2, x+ = L[1 + ε sin(Ωt)]/2 (i);
x± = ±L[1 + ε sin(Ωt)]/2 (ii);
x± = ±L[1 ± ε sin(Ωt)]/2 (iii). (52)

In (i) only the right boundary oscillates, in (ii) the bound-
aries oscillate in opposite directions (the cavity expands and
contracts) and in (iii) the boundaries oscillate in the same
direction (the cavity shakes).

For the problem under consideration, it is straightforward
to obtain the quantities needed to compute (48) and (49). In
particular, we have that

ΔÔ = Δr = ΔR̄ = ±
mΔ̂ = 0;

Δx(−L/2) = 0, Δx(L/2) = L sin(Ωt)/2 (i);
Δx(±L/2) = L sin(Ωt)/2 (ii);
Δx(±L/2) = ±L sin(Ωt)/2 (iii). (53)

We solve the problem both for Neumann and Dirichlet
boundary conditions (see “Appendix G” for the expressions
in this latter case). The eigenvalue Eq. (34) and the boundary
conditions (35) [respectively (G.57)] read

( − ∂2
x + m2)Ψ 0

n = (ω0
n)

2Ψ 0
n ;

±∂xΨ
0
n |x=±L/2 = 0 (Neumann),

Ψ 0
n (±L/2) = 0 (Dirichlet); (54)

simplify concrete expressions for the coefficients found in a specific
problem.
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and the solutions to these problems are

Ψ 0
n = 1√

Lω0
n

cos

[
kn

(
x + L

2

)]
(Neumann),

Ψ 0
n = 1√

Lω0
n

sin

[
kn

(
x + L

2

)]
(Dirichlet);

ω0
n =

√
k2
n + m2; n ∈ N(∗); (55)

where kn :=πn/L and the mode with n = 0 is excluded for
Dirichlet boundary conditions.

From (53) it is immediate that the first integral of the quan-
tities (48) and (49) [respectively of (G.58) and (G.59)] van-
ishes. Since we are considering one spatial dimension, the
“surface integral” is simply the evaluation of the integrand
at the two boundaries. Plugging the corresponding quantities
into (48) and (49), we easily obtain the solutions for Neu-
mann boundary conditions:11

Δα̂nm(t) ≡ −Δβ̂nm(t) ≡ iCnm(Ω2 − k2
n − k2

m)

4
√

ω0
nω

0
m

sin(Ωt).

(56)

The factor Cnm depends on the oscillation configuration, and
is given by

Cnm = (−1)n+m (i),

Cnm = (−1)n+m + 1 (ii),

Cnm = (−1)n+m − 1 (iii). (57)

In order to obtain the expression in (56) we replaced |ω0
n −

ω0
m | → Ω in the computation of Δα̂nm(t) and ω0

n+ω0
m → Ω

in the computation of Δβ̂nm(t). This is legitimate within the
equivalence relation with respect to resonances, since the
only (positive) frequency present in the perturbation is Ω .
Respectively, the solutions for Dirichlet boundary condi-
tions are obtained by plugging the corresponding quantities
into (G.58) and (G.59):

Δα̂nm(t) ≡ −Δβ̂nm(t) ≡ − iCnmknkm

2
√

ω0
nω

0
m

sin(Ωt). (58)

In general, we find mode mixing and/or particle pro-
duction due to the moving boundaries, which reproduces
the Dynamical Casimir Effect. For example, if the fre-
quency Ω coincides with the difference between the frequen-
cies |ω0

n − ω0
m |, plugging (56) into (44) we find that

αnm(tf , t0) ≈ ±ε
Cnm(Ω2 − k2

n − k2
m)

8
√

ω0
nω

0
m

(tf − t0). (59)

11 Since we do not need to explicitly consider the evolution in time t of
a basis of modes anymore, we can relax the notation and replace t̃ → t .

For long enough times, this quantity can overcome the order ε

and become significant to zeroth order; that is, to the resonant
modes of the cavity, and therefore significant mode mixing
takes place between the corresponding modes. Analogous
arguments apply for the β-coefficients and the corresponding
particle creation, for any boundary conditions and configu-
ration.

We notice that, out of the final results, we can take the
limit of a massless field in a straightforward well-defined
way.12 The results with Dirichlet boundary conditions for
configuration (i) in the massless case exactly reproduce the
results obtained in [32] and independently in [33], while for
configuration (iii) they reproduce the results obtained in [20]
both for the massive and the massless case.

4.2 Example: gravitational wave resonance

Confined quantum fields undergo Bogoliubov transforma-
tions when perturbed by gravitational waves. This was shown
in [33] considering a scalar field in a one-dimensional rigid
trap. The authors proposed to exploit this effect in order to
detect gravitational waves using phonons in a Bose-Einstein
condensate. In Part I, we extended this work by computing the
field transformations in the three-dimensional case consid-
ering free-falling boundary conditions (and thus static in the
synchronous gauge). Free-falling boundary conditions were
also studied in [34] using a different technique. Considering
free-falling boundary conditions is interesting from a mathe-
matical point of view. However, in practice, phononic gravi-
tational wave detectors require inter-atomic interactions and
thus, rigid or semi-rigid boundary conditions. The method
introduced in this article enables the study of the phonon
field transformations in a three-dimensional rigid or semi-
rigid cavity. Therefore, the method will be useful in extend-
ing [33] to improve the detection of gravitational waves by
using three-dimensional trapped Bose-Einstein condensates.

In particular, in this section we explicitly compute the
Bogoliubov transformations for the phonon field when
trapped in a fully rigid three-dimensional cavity. The phonon
field can be described by a real scalar massless quantum
field. In the case that the condensate remains stationary, the
quantum field obeys a Klein–Gordon equation in an effec-
tive metric (with minimal coupling) which corresponds to the
gravitational wave metric with the speed of sound in the con-
densate cs replacing the speed of light in the g00 component
[35–38]. We work in the TT-gauge and normalise the speed
of sound cs = 1. We consider a wave with amplitude ε and

12 The existing “zero-frequency mode” in the massless limit (in the
case of Neumann boundary conditions) would not be normalisable, but
the perturbation does not introduce any effect for it (all the coefficients
would vanish for n = 0 or m = 0). Thus such mode can simply be
ignored.
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frequency Ω propagating in the z-direction and with polar-
isation in the xy-directions. Therefore, the metric is given
by

ds2 = −dt2 + [1 + ε sin(Ωt)]dx2

+[1 − ε sin(Ωt)]dy2 + dz2, (60)

where we have simplified sin[Ω(t−z/c)] → sin(Ωt), as we
have that c � ΩLz (being Lz the size of the condensate in
the z-direction), because of the orders of magnitude between
the speed of light and the speed of sound.

For simplicity, we consider that the field is trapped in a
rectangular prism of proper lengths Lx , Ly and Lz aligned
with the directions of propagation and polarisation of the
wave. Since the cavity is rigid, these proper lengths must stay
constant at all times. We consider that the centre of mass of
the cavity (which by symmetry coincides with its geomet-
rical centre) is in free-fall, and we fix it at the origin of the
coordinate system. Therefore, the boundaries of the prism
are placed at (in obvious notation):

x± = ± Lx

2
√

1 + ε sin(Ωt)
,

y± = ± Ly

2
√

1 − ε sin(Ωt)
,

z± = ± Lz

2
. (61)

Although we are considering the physical problem of a
massless field, we can take advantage of the versatility of our
method and address the more general mathematical problem
of a massive field with equal ease. The physical problem
is then recovered by taking the massless limit. Therefore,
from here on we consider m ≥ 0. Thus, the eigenvalue equa-
tion (34) reads(

−∂2
x − ∂2

y − ∂2
z + m2

)
Ψ 0
nm� = (ω0

nm�)
2Ψ 0

nm�; (62)

where n, m and � are quantum numbers. We first con-
sider Dirichlet boundary conditions. The boundary condi-
tions imposed to the static modes (G.57) are Ψ 0

nm� = 0 at
the boundaries given in (61) for ε = 0. The solutions to this
problem with the orthonormalisation in (36) are

Ψ 0
nm� = 2√

Lx L yLzω
0
nm�

sin

[
kxn

(
x + Lx

2

)]

× sin

[
kyn

(
y + Ly

2

)]
sin

[
kzn

(
z + Lz

2

)]
,

ω0
nm� =

√
(kxn )2 + (kym)2 + (kz�)

2 + m2, n,m, � ∈ N∗;
(63)

where kxn :=πn/Lx , and equivalently for the other dimen-
sions. The remaining quantities needed to compute (G.58)

and (G.59) are

Δr = ΔR̄ = 0,

±
mΔ̂ = ΔÔ = sin(Ωt)(∂2

x − ∂2
y );

Δx(x = ±Lx/2) = −Lx sin(Ωt)/4,

Δx(y = ±Ly/2) = Ly sin(Ωt)/4,

Δx(z = ±Lz/2) = 0. (64)

Plugging all the quantities into (G.58) and (G.59), we
obtain

Δα̂n′m′�′
nm� (t) ≡ i sin(Ωt)

4
√

ω0
nm�ω

0
n′m′�′

δ�′
�

×
{
[(−1)n+n′ + 1]kxn kxn′δm

′
m

−[(−1)m+m′ + 1]kymkym′δn
′

n

}
, (65)

Δβ̂n′m′�′
nm� (t) ≡ i sin(Ωt)

2ω0
nm�

[
(kxn )2 − (kym)2

]
δn

′m′�′
nm�

− Δα̂n′m′�′
nm� (t). (66)

An equivalent procedure for Neumann boundary condi-
tions yields the following results:

Δα̂n′m′�′
nm� (t) ≡ i sin(Ωt)

8
√

ω0
nm�ω

0
n′m′�′

δ�′
�

×
{
[(−1)m+m′ + 1][Ω2 − (kym)2 − (kym′)2]δn′

n

−[(−1)n+n′ + 1][Ω2 − (kxn )2 − (kxn′)2]δm′
m

}
,

(67)

Δβ̂n′m′�′
nm� (t) ≡ i sin(Ωt)

2ω0
nm�

[
(kxn )2 − (kym)2

]
δn

′m′�′
nm�

− Δα̂n′m′�′
nm� (t); (68)

where in this case the quantum numbers can take zero val-
ues.13 Just as we did in the previous example in Sect. 4.1, we
can use (44) and (45) to compute the linear growing in time
of the Bogoliubov coefficients when resonances are present.

Let us give some physical interpretation to the results. The
first term in (66) and (68) corresponds to the contribution of
the perturbation of the metric, and coincides with the result
in Sect. 4.1 of Part I for free-falling boundaries. The remain-
ing contributions are due to the rigidity of the cavity, and
therefore the motion of its boundaries in the TT-gauge. A
direct comparison with the results in Sect. 4.1 clearly shows
that these contributions correspond to a superposition of two

13 As for the previous example, we have replaced t̃ → t in the notation,
and |ω0

n ±ω0
m | → Ω according to the equivalence relation with respect

to resonances.
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“anti-synchronised” Dynamical Casimir Effects in the two
transversal directions, with configuration (ii) in the notation
of Sect. 4.1 (with the cavity expanding and contracting). This
is exactly the effect that one would expect from a gravitational
wave on a rigid cavity, considering the concrete shape of the
cavity and its interaction with the wave.

Thanks to the contributions due to the rigidity of the cav-
ity, both mode-mixing and particle creation between different
modes are present. We notice that this could not physically
happen in the case of free-falling boundaries. The reason is
that any mode-mixing or particle creation between different
modes (non-diagonal Bogoliubov coefficients) implies local
exchange of momentum with the field (in the basis of station-
ary modes that we are considering). However, a gravitational
wave can provide momentum locally to a free field or to a
free-falling boundary only in the direction of its propagation,
something which in this case is negligible due to the orders
of magnitude between the speed of light and the speed of
sound. Hence, the direct effect due to the perturbation of
the metric is pure cosmological particle creation, which does
not exchange momentum and therefore can only affect the
diagonal coefficients. On the contrary, the forces keeping the
rigidity of the cavity redistribute the momentum so that it is
locally non-zero (the boundaries move), and then transmit
this momentum locally to the field (although of course the
total momentum still vanishes).

Finally, and more interestingly, one can check that for a
rigid cavity it is the diagonal quantities Δβ̂nm�

nm� (t) (the only
non-zero quantities for free-falling boundaries) that vanish,
for both boundary conditions. This means that the contribu-
tion due to the rigidity of the cavity exactly cancels the direct
contribution from the change in the metric: Somehow the
fact that the cavity keeps its own proper lengths shields the
sensibility of the field to any length contractions and expan-
sions from the metric. This is a novel and physically very
plausible result. Nonetheless, we think that it is also a non-
trivial result, which would be worthy exploring beyond the
perturbative regime.

5 Summary and conclusions

In this second article we have extended the method developed
in Part I for computing the evolution of a confined quantum
scalar field in a globally hyperbolic spacetime, to the cases in
which the timelike boundaries of the spacetime do not remain
static in any synchronous gauge. Despite the more sophisti-
cated technical construction required, we have shown that
the core ideas of the method can still be used in such situa-
tion. Namely, we could construct bases of modes associated
to different Cauchy hypersurfaces, a time-dependent linear
transformation between them, and a first-order differential
equation in time for such transformation. In this case, the

coefficients of the transformation depend on the initial con-
ditions of some auxiliary bases, that are solutions to an eigen-
value problem for which the time is just a parameter. If the
time-dependent linear transformation connects two regions
in which (thanks to a time symmetry) a valid Fock quan-
tisation in terms of the bases of modes associated to each
region is possible, then the linear transformation is actually
a Bogoliubov transformation, and can be interpreted physi-
cally as such in terms of mode-mixing and particle creation
between the different modes.

The extension of the method presented here is still of
general applicability (as in Part I), just under some minor
assumptions introduced in Sect. 2.1. However, we shall stress
again that it proves to be especially useful to compute quan-
titative results on resonances in the perturbative regime (of
the metric and the motion of the boundaries). Such usefulness
stands out from the simple and practical expressions obtained
in Sect. 4 (and at the end of “Appendix G”). We have also
illustrated this fact with two examples within the perturbative
regime which we could easily solve, namely the Dynamical
Casimir Effect (where we reproduced and extended known
results) and the perturbation of a field in a rigid cavity by
a gravitational wave (which is a completely novel compu-
tation). We highlight how the simple expressions obtained
[results (56–58) and (65–68), respectively] embrace several
physical configurations in an unified way. The perturbative
method could also prove its utility in other problems which
are now under study, in which quantum systems are perturbed
by small gravitational effects [9,39,40].

The main aim of this work, both of Part I and Part II,
is to provide an useful method to compute the evolution
of confined quantum fields in concrete physical situations.
By applying the method to many different concrete physical
problems, mainly (but not only) in the perturbative regime,
we have provided plenty of evidence that the method is truly
successful in this practical purpose. Specifically, with the
examples provided in Parts I and II we reproduce previous
results in [2,20,32–34,41]. Those results were found using
very different approaches and techniques in each work, which
implied longer and way more involved calculations. The
method presented here manages to reproduce all of the results
in an unified way and with a concise calculation for each
case. Moreover, the method also extends some of those pre-
vious results, easily handling generalisations and variations
of them; in particular, some non-trivial variations such as the
rigid cavity under a gravitational wave perturbation consid-
ered in Sect. 4.2. Finally, the results obtained always had
consistent physical interpretations. The method will surely
prove fruitful in addressing many other relevant problems,
and we expect it to become standard in the toolbox of Quan-
tum Field Theory in Curved Spacetime for confined fields,
especially in the perturbative regime.
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Together with the promising practical applications of the
method, there are also future directions of research on the the-
oretical side. In particular, these include the possible physical
interpretations of the time-dependent linear transformations
obtained, when they cannot be interpreted directly as Bogoli-
ubov transformations between different Fock quantisations;
and their possible connection to field-related (instead of
particle-related) quantities. Further extensions of the method
for different boundary conditions, quantum fields and/or met-
ric gauges may be also approached.
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Appendix A: Why the procedure considered in Part I
does not work here?

In Part I, we constructed the modes Φ
[t̃]
n (t) by imposing the

following initial conditions:

Ô(t̃)Φ[t̃]
n (t̃) = (ω[t̃]

n )2Φ[t̃]
n (t̃), (A.1)

∂tΦ
[t̃]
n (t)

∣∣∣
t=t̃

= −iω[t̃]
n Φ[t̃]

n (t̃). (A.2)

In that case, we could solve the eigenvalue problem (A.1)
because the boundary conditions could be written separately
for the initial condition Φ(t̃) and the partial time deriva-
tive ∂tΦ(t)|t=t̃ . Moreover, these boundary conditions were
homogeneous for both quantities, which allowed us to impose
Eq. (A.2) consistently. On the contrary, in the case where
the boundary conditions are in the form of (6) (evaluated at
t = t̃), they involve in the same equation both the gradient
of Φ(t̃) and the partial time derivative ∂tΦ(t)|t=t̃ (except for
the regions of the boundary which remain static). As a con-
sequence, we cannot pose a valid eigenvalue problem just

for Φ
[t̃]
n (t̃), as we did in Part I. Therefore, we need to con-

struct the basis of modes associated to each hypersurface �t̃
as the solutions to an eigenvalue problem posed directly on
the full space of initial conditions (Φ(t̃), ∂tΦ(t)|t=t̃ ), so that
the boundary conditions for the problem can be properly
imposed.

A way to summarise Eqs. (A.1) and (A.2) as an eigenvalue
problem in the space of initial conditions would be to use the
vector eigenvalue equation

(
0 i

−iÔ(t̃) 0

)(
Φ

[t̃]
n (t̃)

∂tΦ
[t̃]
n (t)|t=t̃

)
= ω[t̃]

n

(
Φ

[t̃]
n (t̃)

∂tΦ
[t̃]
n (t)|t=t̃

)
.

(A.3)

However, for moving boundary conditions in general the
operator in this eigenvalue equation is not self-adjoint. In
fact, it is straightforward to find simple problems with mov-
ing boundary conditions for which (A.3) has no solutions

with real ω
[t̃]
n . In conclusion: In general, modes with “locally

well-defined frequency” with respect to time t [which is how
we may call the modes satisfying (A.2)] cannot be solutions
to the problem because they do not even fulfil the bound-
ary conditions when the boundaries are moving. This is to be
expected, since modes satisfying (A.2) would be “locally sta-
tionary” oscillations in phase with respect to t around t = t̃ ,
and therefore could not readjust to any motion of the bound-
ary to first order in t .

In order to break this impasse we have considered a Wick
rotation in the coordinate time. This rotation has transformed
Eq. (A.3) into the eigenvalue equation (14), which always
provides valid bases of initial conditions, although they do
not correspond to modes with “locally well-defined fre-
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quency”.14 This Wick rotation is then reversed by the linear

transformation (21) from the modes Ψ
[t̃]
n to the modes ±Φ

[t̃]
n .

Neither these modes can be directly interpreted as modes
with “locally well-defined frequency” in general. However,
this is completely irrelevant, since in the regions S described
in Property II they do behave as modes with well-defined fre-
quency; and this is all we really need, since those are the only
regions where the modes can be used for quantisation. Anal-
ogous arguments apply for the case of Dirichlet vanishing
boundary conditions as developed in “Appendix G”.

Finally, let us notice that, since we are working with differ-
ent bases of modes as compared to Part I, the time-dependent
linear transformation (28) does not even formally satisfy
any Bogoliubov identities. This is because, in general, the
bases related are not orthonormal in the Klein-Gordon scalar
product. However, the cases in which the transformation can
be interpreted as a Bogoliubov transformation are those in
which (according to Property II) the bases related are indeed
orthonormal. Therefore, in such cases the coefficients of the
transformation do satisfy the Bogoliubov identities.

Appendix B: Proof of the fulfilment of Properties I
and II

Let us check first Property I, namely that the set {±Φ
[t̃]
n } is

a basis of the space of solutions to the Klein–Gordon equa-
tion. We first realise that it is equivalent to check that the

set {Ψ [t̃]
n } = {±Ψ

[t̃]
n } is also a basis of the space of solu-

tions, since the set {±Φ
[t̃]
n } is obtained by the linear invert-

ible transformation (21) of the elements in {±Ψ
[t̃]
n }. Because

of Condition B and the linearity of the Klein–Gordon equa-
tion, this is the case if and only if the set of initial conditions

{(Ψ [t̃]
n (t̃), ∂tΨ

[t̃]
n (t)|t=t̃ )} is a basis of the space of initial con-

ditions at �t̃ , which is clearly the space L2(�t̃ ) ⊕ L2(�t̃ ).
This is definitely fulfilled, since this set of initial conditions
is constructed with the eigenvectors of the self-adjoint oper-
ator M̂ (t̃), that are solutions to the eigenvalue problem (14).

In order to check Property II, let us consider a space-
time region S in which the conditions listed in Property II

hold. Then, it is easy to check that, for each mode +Ψ
[t̃]
n (t)

with positive eigenvalue +ω
[t̃]
n > 0 there is a corresponding

mode −Ψ
[t̃]
n (t) with negative eigenvalue −ω

[t̃]
n = −(+ω

[t̃]
n ),

and with the same initial condition −Ψ
[t̃]
n (t̃) = +Ψ

[t̃]
n (t̃). If

we put each mode of the pair in one of the subsets {±Ψ
[t̃]
n }

and we use the same index n for them, then the modes ±Φ
[t̃]
n

14 The fact that we are immersed in the Wick rotation while manipulat-

ing the Ψ
[t̃]
n modes, is what forces us to use real eigenvectors for their

initial conditions.

satisfy the following initial conditions in �t̃ :

±Φ[t̃]
n (t̃) = +Ψ [t̃]

n (t̃),

∂t
±Φ[t̃]

n (t)|t=t̃ = ∓i(+ω[t̃]
n )+Ψ [t̃]

n (t̃). (B.4)

Moreover, the eigenvalue problem (14) has the same solu-
tions for all the hypersurfaces �t within S. Taking into
account these facts, and also that we are considering only

real spatial functions ±Ψ
[t̃]
n (t̃), the modes of the form (23)

satisfy both the initial conditions (B.4) in �t̃ and the Klein–
Gordon equation (11) in the whole region S. Therefore, these
modes correspond to the modes that we are actually assign-
ing to the hypersurface �t̃ . Now, if the interval of time that S
embraces is large enough so as to explore the minimum fre-
quency in the spectrum, then we can talk about the modes (23)
as modes with well-defined positive and negative frequency
with respect to t .

In Sect. 3.1 we claimed that, for the problems in which
we can give a physical interpretation to the results (that is,
the problems where Fock quantisation is possible at least in
some regions), there is an infinite number of both positive

and negative eigenvalues ω
[t̃]
n for every t̃ . Now we can justify

this claim. The reason is that, for regular metrics, the eigen-
values obtained at the different hypersurfaces �t̃ should be a
continuous function of t̃ . Since, at least in the regions where
Fock quantisation is possible, these eigenvalues are indeed
divided into infinitely many positive and negative, and since

in no case ω
[t̃]
n = 0 (see “Appendix H”), then they must stay

divided in such way even in the regions where Fock quanti-
sation is not possible.

It remains to be proven that, under the conditions given in

Property II for the region S, the basis {±Φ
[t̃]
n } is orthonormal.

First, let us write down the Klein-Gordon inner product (4)

between the modes ±Ψ
[t̃]
n . Using (18) we get

〈±Ψ [t̃]
n , ±̂Ψ [t̃]

m

〉

= i
[(±ω[t̃]

n

)
−

(±̂ω[t̃]
m

)] ∫
�t̃

dVt̃
±Ψ [t̃]

n (t̃)±̂Ψ [t̃]
m (t̃).

(B.5)

We need to evaluate the integral in (B.5). In order to do
so, we evaluate the inner product (7) between the initial con-
ditions of these two modes and compare this evaluation with
the orthonormalisation condition that we imposed in (20).
Using (14) and Green’s first identity, we obtain

±ω[t̃]
n

[(±ω[t̃]
n

)
+

(±̂ω[t̃]
m

)] ∫
�t̃

dVt̃
±Ψ [t̃]

n (t̃)±̂Ψ [t̃]
m (t̃)

+
∫

∂�t̃

dSt̃
±̂Ψ [t̃]

m (t̃) n · ∇h(t̃)
±Ψ [t̃]

n (t̃) = |±ω[t̃]
n |δnmδ±±̂.

(B.6)
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Equation (B.6) is general, that is, we have not used yet the spe-
cific conditions holding in region S. Let us now impose those
conditions. In particular, imposing vB(t) = 0 and using (17)
we have that the surface integral vanishes. If we pick now

the ‘++’ sign prescripts, noticing that +ω
[t̃]
n > 0 we obtain

∫
�t̃

dVt̃
+Ψ [t̃]

n (t̃)+Ψ [t̃]
m (t̃) = δnm

2
(

+ω
[t̃]
n

) . (B.7)

Moreover, we also have that +Ψ
[t̃]
n (t̃) = −Ψ

[t̃]
m (t̃), so the

previous equation holds for any sign prescripts of the spatial

functions. Using this fact and −ω
[t̃]
n = −(+ω

[t̃]
n ), we can

finally compute the Klein-Gordon inner product in (B.5),
obtaining

〈±Ψ [t̃]
n , ±̂Ψ [t̃]

m 〉 = ±iδnmδ∓±̂. (B.8)

Finally, using the linear transformation (21), we get
〈±Φ[t̃]

n , ±̂Φ[t̃]
m

〉
= ±δnmδ±±̂, (B.9)

which proves that the basis is orthonormal.

Appendix C: Proof of the differential equation for the
transformation

Let us call V (t̃, t̃0) the linear transformation between the
basis {±Ψ

[t̃0]
n } and the basis {±Ψ

[t̃]
n }. By composition of linear

transformations, it is clear that

V (t̃ + Δt̃, t̃0) = V (t̃ + Δt̃, t̃)V (t̃, t̃0). (C.10)

We can use this relation to obtain the following differential
equation for V (t̃, t̃0):

d

dt̃
V (t̃, t̃0) = d

d(Δt̃)
V (t̃ + Δt̃, t̃0)

∣∣∣∣
Δt̃=0

= d

d(Δt̃)
V (t̃ + Δt̃, t̃)

∣∣∣∣
Δt̃=0

V (t̃, t̃0). (C.11)

Notice now that, because of the relation (21) between bases,
we have that the linear transformation U (t̃, t̃0) is related to
the linear transformation V (t̃, t̃0) by

U (t̃, t̃0) = MV (t̃, t̃0)M
∗, (C.12)

since M−1 = M∗. Then, if we call V̂ (t̃) the first factor on
the r.h.s. of (C.11), replacing (C.12) we get the differential
equation (25). Therefore, what remains to be obtained are
the expressions for V̂ (t̃) given by (26) and (27) out of the
definition

V̂ (t̃) := d

d(Δt̃)
V (t̃ + Δt̃, t̃0)

∣∣∣∣
Δt̃=0

, (C.13)

where V (t̃ +Δt̃, t̃) is so far only implicitly defined by being

the linear transformation between the {±Ψ
[t̃]
n } bases at dif-

ferent times.
Since the basis {±Ψ

[t̃]
n } has the corresponding orthonor-

malisation given by (20), it is clear that we can compute the
elements of V (t̃ + Δt̃, t̃) as

V±±̂
nm (t̃ + Δt̃, t̃) = 1

|±̂ω
[t̃]
m |

〈±Ψ [t̃+Δt̃]
n , ±̂Ψ [t̃]

m

〉
�t̃

. (C.14)

According to the definition of the inner product between
modes associated to the hypersurface �t̃ , which is given by
the inner product in (7) with the values of the corresponding
modes and their first time derivatives at �t̃ as entries, we
have that

V̂±±̂
nm (t̃)

= 1

|±̂ω
[t̃]
m |

d

dΔt̃
V±±̂
nm (t̃ + Δt̃, t̃)

= 1

|±̂ω
[t̃]
m |

d

dΔt̃

{∫
�t̃

dVt̃ ∂t
±Ψ [t̃+Δt̃]

n (t)
∣∣∣
t=t̃

∂t
±̂Ψ [t̃]

m (t)
∣∣∣
t=t̃

+
∫

�t̃

dVt̃
[
ξ Rh(t̃) + m2 + F(t̃)

] ±Ψ [t̃+Δt̃]
n (t̃)±̂Ψ [t̃]

m (t̃)

+
∫

�t̃

dVt̃
[
∇h(t̃)

±Ψ [t̃+Δt̃]
n (t̃)

]
·
[
∇h(t̃)

±̂Ψ [t̃]
m (t̃)

]}
.

(C.15)

We need to compute the derivative with respect to Δt̃ of
the quantities inside the integrals. For that, we use the local
evolution in time around t̃ + Δt̃ (and to first order in Δt̃)
of ±Ψ

[t̃+Δt̃]
n (t), which is given by (18); and of ∂t

±Ψ
[t̃+Δt̃]
n (t),

which we obtain through the Klein–Gordon equation. Notice
that conditions (16) and (18), when replaced in the Klein–
Gordon equation as written in (11) and evaluated at t = t̃ ,
imply that

∂2
t

±Ψ [t̃]
n (t)

∣∣∣
t=t̃

= − (±ω[t̃]
n )

[±ω[t̃]
n + q(t̃)

] ±Ψ [t̃]
n (t̃)

− [
ξ R̄(t̃) − F(t̃)

] ±Ψ [t̃]
n (t̃). (C.16)

That is, out of the initial conditions, the Klein–Gordon
equation provides the value of the second time derivative

of ±Ψ
[t̃]
n (t) at t = t̃ [and only at t = t̃ , Eq. (C.16) is evi-

dently not a differential equation in time].
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Because of relations (18) and (C.16) (replacing t̃ → t̃ +
Δt̃), we have that

±Ψ [t̃+Δt̃]
n (t̃)

= ±Ψ [t̃+Δt̃]
n (t̃ + Δt̃)

[
1 − (±ω[t̃]

n )Δt̃
]

+ O (
Δt̃

)2
,

(C.17)

∂t
±Ψ [t̃+Δt̃]

n (t)
∣∣∣
t=t̃

= ±ω[t̃+Δt̃]
n

±Ψ [t̃+Δt̃]
n (t̃ + Δt̃)

{
1 +

[±ω[t̃]
n + q(t̃)

]
Δt̃

}

+ [
ξ R̄(t̃) − F(t̃)

] ±Ψ [t̃]
n (t̃)Δt̃ + O (

Δt̃
)2

. (C.18)

This is the local evolution of the needed quantities to first
order in Δt̃ , and therefore we are ready to compute the deriva-
tive in (C.15). Plugging (C.17) and (C.18) into (C.15), and
using Green’s first identity, the orthonormalisation condition
in (20) and the boundary condition (17), after a tedious but
straightforward calculation we obtain the expression for the
elements in (27). This completes the proof of equation (25).

Appendix D: Derivation of the expressions in the
perturbative regime

The entries Δα̂nm(t̃) and Δβ̂nm(t̃) in ΔK (t̃) (and their
respective complex conjugates) correspond to the first order
contributions in ε to the factor MV̂ (t̃)M∗ in (25). In order to
compute them, we temporarily introduce the expressions for
the solutions to first order in ε:15

±Ψ [t̃]
n (t̃) ≈ Ψ 0

n + ε±ΔΨn,

±ω[t̃]
n ≈ ±(ω0

n + ε±Δωn). (D.19)

Just as the solutions to the static problem satisfied the zeroth
order in ε of (16) and (17) [given by (34) and (35)], the
perturbations appearing in (D.19) must satisfy the first order
in ε of those equations, which reads

Ô0(±ΔΨn) + ΔÔΨ 0
n = (ω0

n)
2(±ΔΨn) + 2ω0

n(
±Δωn)Ψ

0
n ,

(D.20)

n · ∇h0
±ΔΨn + Δxn · ∇h0

(
n · ∇h0Ψ 0

n

)
= ∓ω0

nΨ
0
n

d

dt̃
Δx;

(D.21)

where all the quantities in the second equation are evaluated
at the boundary ∂�0. The second term of the second equation
takes into account the displacement of the point where the
boundary condition is imposed. We also temporarily intro-
duce the perturbation of F(t̃) to first order in ε (since we

15 From here on, we omit the explicit dependence on t̃ for most of the
quantities.

need to prove here that indeed it does not contribute to the
resonances):

F ≈ εΔF. (D.22)

Let us calculate the first order in ε of the quantity V̂±±̂
nm

in (27), which in terms of the perturbed quantities in (32),
(D.19) and (D.22) reads

∂

∂ε
V̂±±̂
nm

∣∣∣∣
ε=0

= ±̂
{

− (±Δωn)δnmδ±±̂

+(±ω0
n±̂ω0

m)

∫
�0

dV 0
(

d

dt̃
±ΔΨn

)
Ψ 0
m

+2(±Δωn)δnm +
(

±d±Δωn

dt̃
− ΔF

)
δnm

2ω0
n

+2(ω0
n)

2
[∫

�0
dV 0(±ΔΨn)Ψ

0
m + ΔJ ±̂

nm

]

+
∫

�0
dV 0 Ψ 0

n

(
±ω0

nΔq + ξΔR̄
)

Ψ 0
m

}
,

(D.23)

where Δq:=∂εq|ε=0 and ΔJ±
nm is defined as

ΔJ±
nm := ∂

∂ε

∫
�t̃

dVt̃ Ψ 0
n

±Ψ [t̃]
m (t̃)

∣∣∣∣∣
ε=0

. (D.24)

This quantity contains contributions from ±Ψ
[t̃]
m (t̃), but also

from dVt̃ and from the change in the domain �t̃ , since these
two objects depend on ε. In “Appendix E” we prove that this
quantity takes the value

ΔJ±
nm = − 1

2(ω0
n)

2

{
1

2

[
(+Δωn) + (−Δωn)

]
δnm

+ ω0
n(ω

0
n ± ω0

m)

∫
�0

dV 0 +ΔΨnΨ
0
m

+ ω0
n(ω

0
n∓ω0

m)

∫
�0

dV 0 −ΔΨnΨ
0
m

}
. (D.25)

We provide the explicit computation of Δβ̂nm(t̃). The
computations of the other entries in ΔK (t̃) follow an analo-
gous procedure. Using (22) and (26) we have that

Δβ̂nm(t̃) = 1

2

∂

∂ε

[
V̂+−
nm + V̂−+

nm + i(V̂−−
nm − V̂++

nm )
]
ε=0

.

(D.26)

The first part of the computation consists of plugging the
expressions (D.23) and (D.25) into (D.26). We also use at
this point the equivalence relation with respect to resonances
for the terms appearing in Δβ̂nm(t̃), which reads

dX (t̃)

dt̃
≡ i(ω0

n + ω0
m)X (t̃), (D.27)
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where X (t̃) can be any function of t̃ . As we advanced, this
equivalence means that, although the two quantities are not
the same, when X (t̃) contains a term with the correct res-
onant frequency ω0

n + ω0
m , the contribution of this term to

the Bogoliubov coefficient (45) or (47) is the same for the
two quantities in (D.27). We refer to Appendix E.2 in Part I
for a careful mathematical derivation of this equivalence. We
use the equivalence in order to simplify the derivatives with
respect to t̃ appearing in (D.23). After a tedious but mechan-
ical calculation, we obtain

Δβ̂nm(t̃) ≡ −i
[
(ω0

n)
2 − (ω0

m)2
] ∫

�0
dV 0 ΔΨnΨ

0
m

− i
∫

�0
dV 0 Ψ 0

n

[
ω0
n(ω

0
n + ω0

m)Δr + ξΔR̄
]
Ψ 0
m

− i

(
Δωn − ΔF

2ω0
n

)
δnm; (D.28)

where Δr is given by (33), and we have defined the quantities

ΔΨn :=1

2

[
(1 − i)+ΔΨn + (1 + i)−ΔΨn

]
, (D.29)

Δωn :=1

2

[
(1 − i)+Δωn + (1 + i)−Δωn

]
. (D.30)

The second part of the computation consists of a first
attempt for getting rid of the perturbations of the solu-
tions ΔΨn and Δωn (usually harder to compute for a given
problem) by introducing the perturbation of the operator ΔÔ
in (32) (which is in principle trivial to compute). By consid-
ering a linear combination of (D.20) for the positive and neg-
ative prescripts, we can write that equation for the quantities
defined in (D.29) and (D.30):

Ô0ΔΨn + ΔÔΨ 0
n = (ω0

n)
2ΔΨn + 2ω0

nΔωnΨ
0
n . (D.31)

Using (34) and (D.31), Green’s second identity and the
known properties of the solutions to zeroth order, we can
do the following calculation:

(ω0
m)2

∫
�0

dV 0 ΔΨnΨ
0
m =

∫
�0

dV 0 ΔΨn(Ô
0Ψ 0

m)

=
∫

�0
dV 0(Ô0ΔΨn)Ψ

0
m +

∫
∂�0

dS0 Ψ 0
mn · ∇h0ΔΨn

= −
∫

�0
dV 0(ΔÔΨ 0

n )Ψ 0
m + (ω0

n)
2
∫

�0
dV 0 ΔΨnΨ

0
m

+ Δωnδnm +
∫

∂�0
dS0 Ψ 0

mn · ∇h0ΔΨn . (D.32)

Rearranging terms between the first and the last line we can
use this computation to simplify (D.28). In particular, the
direct contribution of ΔF in (D.28) cancels out with its con-
tribution through ΔÔ . Also, after the simplification the only
remaining quantity that could depend on ΔF is n · ∇h0ΔΨn

in the surface integral in (D.32). But from (D.21) and (D.29)
one can see that such quantity evaluated at the surface is fully
determined by other quantities which do not depend on ΔF .
Therefore, we have already proven that ΔF does not con-
tribute to the resonances, and from here on we can consider
again F = 0. Consequently, (D.28) becomes

Δβ̂nm(t̃) ≡ − i
∫

�0
dV 0 (+mΔ̂Ψ 0

n )Ψ 0
m

+ i
∫

∂�0
dS0 Ψ 0

mn · ∇h0ΔΨn, (D.33)

where +
mΔ̂(t̃) has been defined in (50).

We can see that the perturbation of the modes still appears
in the remaining surface integral. The third and last part of
the computation consists of further manipulating this sur-
face integral in order to fully get rid of the perturbation of
the modes. In this last part of the computation for conve-
nience we consider the notation simplifications h0 → h and
∇h0 → ∇. We notice that the boundary condition (D.21) for
the quantities in (D.29) and (D.30) reads

n · ∇ΔΨn + Δxn · ∇
(
n · ∇Ψ 0

n

)
= iω0

nΨ
0
n

d

dt̃
Δx . (D.34)

We can use this boundary condition and again the equiva-
lence (D.27) to write

n · ∇ΔΨn ≡ −Δx n · ∇
(
n · ∇Ψ 0

n

)

−ω0
n(ω

0
n + ω0

m)Ψ 0
n Δx . (D.35)

We split the first term on the r.h.s. into two terms using index
notation:

n · ∇
(
n · ∇Ψ 0

n

)
= (ni∇i n

j )∇ jΨ
0
n + nin j∇i∇ jΨ

0
n .

(D.36)

In “Appendix F” we prove the following relation [42]:

ni∇i n
j = 1

Δx
(nin j − hi j )∇iΔx . (D.37)

We also notice that

nin j∇i∇ j = (hi j − ∂hi j )∇i∇ j = ∇2 − D2, (D.38)

where ∂hi j is the induced metric on the boundary ∂�0 and D
its associated connection. If we replace the results (D.35–
D.38) in the surface integral in (D.33), we obtain
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∫
∂�0

dS0 Ψ 0
mn · ∇ΔΨn

≡
∫

∂�0
dS0(∇ iΔx)(∇iΨ

0
n )Ψ 0

m

−
∫

∂�0
dS0 Δx(∇2Ψ 0

n )Ψ 0
m

+
∫

∂�0
dS0 Δx(D2Ψ 0

n )Ψ 0
m

−ω0
n(ω

0
n + ω0

m)

∫
∂�0

dS0 Δx Ψ 0
n Ψ 0

m . (D.39)

Let us work out the first integral on the r.h.s. We can use
the boundary condition (35) to exchange the full connec-
tion ∇ and the induced connection D any time the normal
component vanishes. With this in mind, we have:

∫
∂�0

dS0(∇ iΔx)(∇iΨ
0
n )Ψ 0

m

=
∫

∂�0
dS0(DiΔx)(DiΨ

0
n )Ψ 0

m

= −
∫

∂�0
dS0 Δx(D2Ψ 0

n )Ψ 0
m

−
∫

∂�0
dS0Δx(DiΨ

0
n )(DiΨ 0

m)

= −
∫

∂�0
dS0 Δx(D2Ψ 0

n )Ψ 0
m

−
∫

∂�0
dS0Δx(∇iΨ

0
n )(∇ iΨ 0

m), (D.40)

where in the second step we have used the divergence theo-
rem and the fact that ∂�0 has no boundary.

The second integral on the r.h.s. of (D.39) can be simplified
with the definition of the operator Ô0 and Eq. (34), obtaining

−
∫

∂�0
dS0 Δx(∇2Ψ 0

n )Ψ 0
m

=
∫

∂�0
dS0 Δx

[(
ω0
n

)2 − ξ Rh0 − m2
]

Ψ 0
n Ψ 0

m . (D.41)

Replacing (D.39–D.41) in (D.33) we obtain (49), completing
the proof.

The other entries of ΔK (t̃) are computed in a similar way.
The only relevant difference is that for Δα̂nm(t̃) the equiva-
lence relation for resonances reads

dX (t̃)

dt̃
≡ i(ω0

n − ω0
m)X (t̃). (D.42)

Notice in particular that this equivalence relation implies that
any term in Δα̂nn(t̃) is equivalent to zero, and thus that these
diagonal elements [but not the Δβ̂nn(t̃)] are irrelevant.

Appendix E: Derivation of the expression for ΔJ±
nm

We obtain (D.25) indirectly by using the first order in ε of
Eq. (B.6). If we pick the ++ sign prescripts in that equation,
using (35) and (36) the first order in ε reads

ω0
n(ω

0
n + ω0

m)

[
ΔJ+

nm+
∫

�0
dV 0 +ΔΨnΨ

0
m

]
+ (+Δωn)δnm

+
∫

∂�0
dS0 Ψ 0

m

[
Δx n · ∇h0

(
n · ∇h0Ψ 0

n

)

+n · ∇h0
+ΔΨn

] = 0, (E.43)

where the first term of the surface integral comes from the
contribution due to the displacement of the surface ∂�t̃
with ε. We can simplify the integrand of the surface inte-
gral using (D.21). Doing the same procedure with all of the
sign prescripts, we obtain

ω0
n(ω

0
n + ω0

m)

[
ΔJ+

nm +
∫

�0
dV 0 +ΔΨnΨ

0
m

]

+ (+Δωn)δnm − ω0
n

∫
∂�0

dS0
(

d

dt̃
Δx

)
Ψ 0
n Ψ 0

m = 0,

(E.44)

ω0
n(ω

0
n − ω0

m)

[
ΔJ−

nm +
∫

�0
dV 0 +ΔΨnΨ

0
m

]

+ 1

2

[
(+Δωn) − (−Δωn)

]
δnm

− ω0
n

∫
∂�0

dS0
(

d

dt̃
Δx

)
Ψ 0
n Ψ 0

m = 0, (E.45)

ω0
n(ω

0
n − ω0

m)

[
ΔJ+

nm +
∫

�0
dV 0 −ΔΨnΨ

0
m

]

+ 1

2

[
(−Δωn) − (+Δωn)

]
δnm

+ ω0
n

∫
∂�0

dS0
(

d

dt̃
Δx

)
Ψ 0
n Ψ 0

m = 0, (E.46)

ω0
n(ω

0
n + ω0

m)

[
ΔJ−

nm +
∫

�0
dV 0 −ΔΨnΨ

0
m

]

+ (−Δωn)δnm + ω0
n

∫
∂�0

dS0
(

d

dt̃
Δx

)
Ψ 0
n Ψ 0

m = 0.

(E.47)

Adding (E.44) and (E.46) on the one side, and (E.45)
and (E.47) on the other side, and solving for ΔJ±

nm respec-
tively, one obtains (D.25).

Appendix F: Derivation of the differential geometry
relation

In this Appendix we prove the relation (D.37) [42]. Let us
consider the family of surfaces ∂�t̃ (ε) around ∂�0 given
by different values of ε, and ni the vector field normal to
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the family of surfaces. In an arbitrarily close neighbourhood
of ∂�0 we can use the coordinate chart

(x1 = ε, x2, . . . , xN ), (F.48)

where the vector fields ∂i for i > 1 are tangent to the surfaces.
Notice that in this coordinate chart the metric is such that
h1i = 0 for i > 1. By definition, the quantity Δx is the
proper length displacement per unit ε. It is therefore given
by

Δx = ‖ d

dε

⎛
⎜⎜⎝

x1

x2

. . .

xN

⎞
⎟⎟⎠ ‖ = ‖

⎛
⎜⎜⎝

1
0
. . .

0

⎞
⎟⎟⎠ ‖ = √

h11, (F.49)

where ‖ · ‖ is the norm given by the metric. The vector ni

is pointing in the direction ∂1 and has unit norm. Therefore,
ni = δi1/Δx . Using this last expression we can easily com-
pute

ni∇i n
j = 1

Δx
∇1n

j = 1

Δx
(∂1n

j + Γ
j

1i n
i )

= 1

Δx2

(
Γ

j
11 − δ

j
1
∂1Δx

Δx

)
. (F.50)

We have to compute the Christoffel symbols appearing
in (F.50). We do so by using h1i = 0 for i > 1, and h11 =
Δx2 from (F.49), finding

Γ
j

11 = 1

2
hi j (2∂1h1i − ∂i h11)

= 1

2

(
h1 j∂1h11 −

∑
i>1

hi j∂i h11

)

= δ
j
1
∂1Δx

Δx
− Δx

∑
i>1

hi j∂iΔx . (F.51)

By replacing (F.51) in (F.50) we find that

ni∇i n
j = − 1

Δx

∑
i>1

hi j∂iΔx

= 1

Δx
(nin j − hi j )∇iΔx . (F.52)

The last expression can be obtained from the previous one
by checking independently that they coincide both for j = 1
and for j > 1. This expression is manifestly covariant and
therefore valid in any coordinate chart.

Appendix G: Dirichlet vanishing boundary conditions

The construction of the method for Dirichlet vanishing
boundary conditions is analogous to the one done for Neu-

mann vanishing boundary conditions. That is, we also con-
struct bases of modes associated to Cauchy hypersurfaces
satisfying Properties I and II, and then find a differential
equation in time for the linear transformation between these
bases, which can be interpreted as a Bogoliubov transforma-
tion when the conditions given in Property II are met.

However, the imposition of Dirichlet boundary conditions
with moving boundaries in a way that makes them compati-
ble with the application of the method is more intricate than
what it may seem on a first stage. One may think that con-
dition (2) does not relate the field with its time derivative,
as Neumann condition does, and therefore that a construc-
tion like the one done for the Neumann condition in this
second article is not necessary, and one can proceed as in
Part I. However, when (2) is considered as a boundary condi-
tion constraining the possible initial conditions on a Cauchy
hypersurface �t , it should be taken into account also how
the time derivative of this global boundary condition may
constrain the first partial time derivative of a mode at the
boundary of the hypersurface. If one takes the total deriva-
tive with respect to t along the boundary of (2), it is easy to
obtain

∂tΦ(t, x) = −vB(t, x)n · ∇h(t)Φ(t, x); (G.53)

which is an expression identical to the first line of (6), but
replacing vB → 1/vB. It is clear then that we should impose
both (2) and (G.53) to the possible initial conditions. How-
ever, imposing these two boundary conditions raises a techni-

cal difficulty for computing an useful auxiliary basis {Ψ [t̃]
n }

of initial conditions. By useful, we mean that it should be
possible to linearly transform it into a basis of “locally well-
defined frequency” modes (in the regions where those can be
defined), as we did in the case of Neumann boundary condi-
tions with the transformation (21). In order for this transfor-
mation to provide “locally well-defined frequency” modes,
one crucial ingredient is the proportionality relation in (18).
But this proportionality relation, together with conditions (2)

and (G.53), would imply that both Ψ
[t̃]
n (t̃) and n ·∇h(t̃)Ψ

[t̃]
n (t̃)

vanish at the boundary (except when vB = 0). If we wished
now to find the set of initial conditions as solutions to an
eigenvalue problem in �t̃ with an elliptic operator, in gen-
eral we would not find non-zero solutions.

How do we get out of this blind alley? When considering
how the boundary conditions constrain the initial conditions,
we renounce to require (2) and keep only condition (G.53),
except for the regions of the boundary which remain static
(vB = 0), in which case we impose both conditions. This
decision might look not legitimated, since after all we will
construct modes that, in general, do not satisfy Dirichlet van-
ishing boundary conditions. However, a careful discussion
shows that the construction obtained is valid when the method
is used to compute the evolution between regions for which a
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physically valid Fock quantisation can be done, as described
in Sect. 3.3. In particular, notice that in those regions the
boundaries must remain static (although in the time between
the regions they may of course not). Therefore, when con-
structing the initial conditions of the modes associated to
those regions, we do also impose their initial conditions to
vanish at the boundary.

With that in mind, let us justify why we can leave the
condition (2) only for the static regions of the boundary. We
notice that condition (G.53) (which is satisfied by all modes)
was obtained by taking the total time derivative of (2) along
the boundary. Therefore, the fulfilment of this condition guar-
antees that the value at the boundary ispreserved in time. That
is, the bases of solutions that we obtain expand the space of
solutions to the Klein–Gordon equation for which the eval-
uation of the field at the boundary remains constant (along
the direction of the projection of ∂t over the boundary). If
we then use the method to compute the evolution of a mode
which vanishes at the intersection of some Cauchy hypersur-
face with the boundary, we can be sure that this zero value is
preserved along the whole spacetime boundary. This means
that, even if for expanding this mode at a different time we
use a basis of modes which, individually, do not vanish at the
boundary, their linear combination given by the expansion
necessarily vanishes.

In summary: We are, strictly speaking, not constructing the
method directly for Dirichlet vanishing boundary conditions.
Rather, we are constructing the method for Dirichlet “time-
preserved and vanishing-when-static” boundary conditions.
But, at the same time, we are making sure to use the method
only with bases of modes that vanish at the boundary at some
time, and therefore at every time, thus fulfilling Dirichlet
vanishing boundary conditions, as desired.

Once the discussion above has been done, the remaining
development of the method follows in a completely analo-
gous way to the one done for Neumann boundary conditions.
Therefore, we do not reproduce all the calculations and dis-
cussions in detail. We rather list all the objects and formulas
in the article, excluding the examples and the Appendices,
that change when considering Dirichlet boundary conditions.
Any formula that is not listed below can be used with both
boundary conditions.

In Sect. 2.2 the subspace of initial conditions Γt ⊂
[C∞(�t ) ∩ L2(�t )]⊕2 is the restriction of the full space of
pairs of functions to initial conditions (Φ, ∂tΦ)|�t satisfying

{
∂tΦ(t, x) = −vB(t, x)n · ∇h(t)Φ(t, x),
and Φ(t, x) = 0 if vB(t, x) = 0; (G.54)

where x ∈ ∂�t [instead of (6)]. That is, pairs of initial condi-
tions satisfying (G.53) always and (2) only when the bound-
ary is static, as we advanced.

In Sect. 3.1 Eq. (17) must be replaced by

ω[t̃]
n Ψ [t̃]

n (t̃, x) = −vB(t̃, x)n · ∇h(t̃)Ψ
[t̃]
n (t̃, x), x ∈ ∂�t̃ .

(G.55)

Notice that, since ω
[t̃]
n 
= 0 (see “Appendix H”), when vB = 0

this equation is also imposing the second condition in (G.54).
In Sect. 3.2 the expression for V̂±±̂

nm in (27) is slightly
changed (only the surface integral changes16):

V̂±±̂
nm

= −(±̂ω[t̃]
m )δnmδ±±̂

±̂
{[

(±ω[t̃]
n ) + (±̂ω[t̃]

m )
] ∫

�t̃

dVt̃

[
d

dt̃
±Ψ [t̃]

n (t̃)

]
±̂Ψ [t̃]

m (t̃)

+
[

2(±ω[t̃]
n )2 + d±ω

[t̃]
n

dt̃
− F(t̃)

]∫
�t̃

dVt̃
±Ψ [t̃]

n (t̃)±̂Ψ [t̃]
m (t̃)

+
∫

�t̃

dVt̃
±Ψ [t̃]

n (t̃)
[±ω[t̃]

n q(t̃) + ξ R̄(t̃)
] ±̂Ψ [t̃]

m (t̃)

+ 1

±̂ω
[t̃]
m

∫
∂�t̃

dSt̃

[
d

dt̃
±Ψ [t̃]

n (t̃)

]
n · ∇h(t̃)

±̂Ψ [t̃]
m (t̃)

}
.

(G.56)

Finally, in Sect. 4 Eq. (35) becomes

Ψ 0
n (x) = 0, x ∈ ∂�0; (G.57)

and the entries of the matrix ΔK (t̃) in (39), given by (48)
and (49), must be replaced by

Δα̂nm(t̃) ≡ i
∫

�0
dV 0 [−mΔ̂(t̃)Ψ 0

n ]Ψ 0
m

− i
∫

∂�0

dS0 Δx(t̃)
(
n · ∇h0Ψ 0

n

) (
n · ∇h0Ψ 0

m

)
,

(G.58)

Δβ̂nm(t̃) ≡ −i
∫

�0
dV 0 [+mΔ̂(t̃)Ψ 0

n ]Ψ 0
m

+ i
∫

∂�0

dS0 Δx(t̃)
(
n · ∇h0Ψ 0

n

) (
n · ∇h0Ψ 0

m

)
.

(G.59)

Appendix H: Proof that ω
[ t̃]
n �= 0

Let us consider a solution of (14) for which ω
[t̃]
n = 0.

Then there exists a function Ψ
[t̃]
n (t̃) satisfying (16) and (17)

with ω
[t̃]
n = 0. But (17) with ω

[t̃]
n = 0 are simply Neu-

mann vanishing boundary conditions for the spatial func-

tion Ψ
[t̃]
n (t̃), and the operator Ô(t̃) is clearly positive defi-

16 The surface integral in (27) had been simplified using (17). The
expression given in (G.56) is actually valid for both boundary condi-
tions.
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nite for functions satisfying such boundary conditions. Since,

according to (16), Ψ [t̃]
n (t̃) is an eigenfunction of this operator

with eigenvalue (ω
[t̃]
n )2, we must have (ω

[t̃]
n )2 > 0, which is

a contradiction. Therefore ω
[t̃]
n 
= 0.

In the case of Dirichlet boundary conditions, the proof that

ω
[t̃]
n 
= 0 is slightly more subtle. We also start by considering

a solution of (14) for which ω
[t̃]
n = 0. Then there exists a

function Ψ
[t̃]
n (t̃) satisfying (16) and (G.55) with ω

[t̃]
n = 0.

But (G.55) with ω
[t̃]
n = 0 implies that the spatial func-

tion Ψ
[t̃]
n (t̃) satisfies Neumann vanishing boundary condi-

tions at least in the regions of the boundary where vB 
= 0.
But in the regions of the boundary where vB = 0 we know
that the second line of (G.54) must be imposed, and therefore

the function Ψ
[t̃]
n (t̃) must satisfy Dirichlet vanishing bound-

ary conditions there.17 Therefore, the function Ψ
[t̃]
n (t̃) sat-

isfies mixed vanishing boundary conditions. But the oper-
ator Ô(t̃) is clearly positive definite for functions satisfy-
ing such boundary conditions. Then, again according to (16)

we must have (ω
[t̃]
n )2 > 0, which is a contradiction. There-

fore ω
[t̃]
n 
= 0.

Appendix I: Summary of formulae for the application
of the method

In this Appendix, we provide Tables 1 and 2 with all the
formulae necessary in order to apply the method to a concrete

17 Notice that (G.55) implies the second line of (G.54) only after having

already found that ω
[t̃]
n 
= 0. Since here we are assuming the opposite,

we must impose the second line of (G.54) explicitly.

Table 1 Summary of formulae for the application of the method (part 1)

Computation of the auxiliary modes and eigenvalues

(Pseudo-)eigenvalue equation (16) Ô(t)Ψ [t]
n (t) = (ω[t]

n )2Ψ [t]
n (t), Ψ [t]

n (t) real;

with the operator (10, 8)
Ô(t) = −∇2

h(t) + ξ Rh(t) + m2 + F(t),

F(t) =
{

0 if ξ Rh(t, x) + m2 > 0 a.e. in �t ,

−ess inf{ξ Rh(t, x) + m2, (t, x) ∈ �t } + ε i.o.c.;

boundary conditions (for x ∈ ∂�t ) (17, G.55)
n · ∇h(t)Ψ

[t]
n (t) = −ω[t]

n vB(t)Ψ [t]
n (t) (Neumann),

ω[t]
n Ψ [t]

n (t) = −vB(t)n · ∇h(t)Ψ
[t]
n (t) (Dirichlet);

and orthonormalisation condition (15, 18, 7)

∫
�t

dVt [ξ Rh(t) + m2 + F(t) + ω[t]
n ω[t]

m ]Ψ [t]
n (t)Ψ [t]

m (t)

+
∫

�t

dVt [∇h(t)Ψ
[t]
n (t)] · [∇h(t)Ψ

[t]
m (t)] = |ω[t]

n |δnm .

Time-dependent linear transformation

Differential equation (25)
d

dt
U (t, t0) = MV̂ (t)M∗U (t, t0);

with (22, 26, G.56, 27, 12, 13)

M = 1

2

(
(1 − i)I (1 + i)I
(1 + i)I (1 − i)I

)
, V̂ (t) =

(
V̂++ V̂+−
V̂−+ V̂−−

)
,

V̂±±̂
nm = −(±̂ω[t]

m )δnmδ±±̂

±̂
{[

(±ω[t]
n ) + (±̂ω[t]

m )
] ∫

�t

dVt

[
d

dt
±Ψ [t]

n (t)

]
±̂Ψ [t]

m (t)

+
[

2(±ω[t]
n )2 + d±ω

[t]
n

dt
− F(t)

]∫
�t

dVt
±Ψ [t]

n (t)±̂Ψ [t]
m (t)

+
∫

�t

dVt
±Ψ [t]

n (t)
[±ω[t]

n q(t) + ξ R̄(t)
] ±̂Ψ [t]

m (t) + (SI)

}
;

(SI):=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(±̂ω
[t]
m )−1

∫
∂�t

dSt
[

d
dt

±Ψ
[t]
n (t)

]
n · ∇h(t)

±̂Ψ
[t]
m (t)

(Dirichlet-Neumann),

− ∫
∂�t

dSt vB(t)
[

d
dt

±Ψ
[t]
n (t)

]
±̂Ψ

[t]
m (t)

(Neumann);
q(t) = ∂t log

√
h(t),

R̄(t) = 2∂t q(t) + q(t)2 − [∂t hi j (t)][∂t hi j (t)]/4.

Formal solution (28) U (tf , t0) = T exp

[∫ tf

t0
dt MV̂ (t)M∗

]
.
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Table 2 Summary of formulae for the application of the method (part 2)

Perturbative regime

Quantities Δα̂ and Δβ̂

Neumann boundary conditions (48, 49)

Δα̂nm(t) ≡ i
∫

�0
dV 0 [−mΔ̂(t̃)Ψ 0

n ]Ψ 0
m

+ i
∫

∂�0
dS0 Δx(t)

[
(∇h0 Ψ 0

n ) · (∇h0 Ψ 0
m)

+ (ξ Rh0 + m2 − ω0
nω

0
m)Ψ 0

n Ψ 0
m

]
,

Δβ̂nm(t) ≡ − i
∫

�0
dV 0 [+mΔ̂(t̃)Ψ 0

n ]Ψ 0
m

− i
∫

∂�0
dS0 Δx(t)

[
(∇h0 Ψ 0

n ) · (∇h0 Ψ 0
m)

+ (ξ Rh0 + m2 + ω0
nω

0
m)Ψ 0

n Ψ 0
m

]
;

Dirichlet boundary conditions (G.58, G.59)

Δα̂nm(t) ≡ i
∫

�0
dV 0 [−mΔ̂(t̃)Ψ 0

n ]Ψ 0
m

− i
∫

∂�0

dS0 Δx(t)
(
n · ∇h0 Ψ 0

n

) (
n · ∇h0 Ψ 0

m

)
,

Δβ̂nm(t) ≡ − i
∫

�0
dV 0 [+mΔ̂(t̃)Ψ 0

n ]Ψ 0
m

+ i
∫

∂�0

dS0 Δx(t)
(
n · ∇h0 Ψ 0

n

) (
n · ∇h0 Ψ 0

m

)
;

with the static modes (34) Ô0Ψ 0
n = (ω0

n)
2Ψ 0

n , Ψ 0
n real;

with boundary conditions (for x ∈ ∂�0) (35, G.57)
n · ∇h0 Ψ 0

n (x) = 0 (Neumann),

Ψ 0
n (x) = 0 (Dirichlet);

and orthonormalisation condition (36)

∫
�0

dV 0 Ψ 0
n Ψ 0

m = δnm

2ω0
n
;

and with the operators (50) ±
mΔ̂(t̃)Ψ 0

n = [
ΔÔ(t) + ω0

n(ω
0
n ± ω0

m)Δr(t) + ξΔR̄(t)
]
Ψ 0
n ,

with (33) Δr(t) = ∂ε log h(t)|ε=0/2,

and ΔF(t) = 0.

Bogoliubov coefficients

Explicit time evolution (resonances) (44, 45)

αnn(tf , t0) ≈ 1;
αnm(tf , t0) ≈ ε

∫ tf

t0
dt e−i(ω0

n−ω0
m )tΔα̂nm(t), n 
= m;

βnm(tf , t0) ≈ ε

∫ tf

t0
dt e−i(ω0

n+ω0
m )tΔβ̂nm(t).

Asymptotic values using Fourier transforms (46, 47)

αnn(−∞,∞) ≈ 1;
αnm(−∞,∞) ≈ ε

√
2π F [Δα̂nm ](ω0

n − ω0
m), n 
= m;

βnm(−∞,∞) ≈ ε
√

2π F [Δβ̂nm ](ω0
n + ω0

m).

problem. As we indicated in the examples in Sect. 4.1 and
4.2, once the expressions for the method have been found,
there is no need to consider the explicit evolution in time
of the modes constructed any more. Therefore, the notation
for the “time label” of the different modes can be simplified
replacing t̃ → t . In the Tables we use this simplification.
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