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Abstract In this paper we show that wormholes in (2+1)
dimensions (3-D) cannot be sourced solely by both Casimir
energy density and tension, differently from what happens in
a 4-D scenario, in which case it has been shown recently, by
the direct computation of the exact shape and redshift func-
tions of a wormhole solution, that this is possible. We show
that in a 3-D spacetime the same is not true since the arising
of at least an event horizon is inevitable. We do the analy-
sis for massive and massless fermions, as well as for scalar
fields, considering quasi-periodic boundary conditions and
find that a possibility to circumvent such a restriction is to
introduce, besides the 3-D Casimir energy density and ten-
sion, a cosmological constant, embedding the surface in a 4-D
manifold and applying a perpendicular weak magnetic field.
This causes an additional tension on it, which contributes
to the formation of the wormhole. Finally, we discuss the
possibility of producing the condensed matter analogous of
this wormhole in a graphene sheet and analyze the electronic
transport through it.

1 Introduction

Wormholes originally are solutions to the field equations
of General Relativity that show unexpected connections
between two quite separated regions of the spacetime [1–4],
occurring even in D-dimensional spacetimes and with several
topologies ([5], and references therein). They do not satisfy
the energy conditions of the General Relativity, being neces-
sary some type of exotic matter as source, with some excep-
tions [6–11]. Thus, the Casimir effect, that generally involves
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negative energies of free quantum fields subject to certain
boundary conditions, has been increasingly examined in the
context of wormholes [12]. Moreover, the study of the rela-
tionship between the Casimir effect and traversable worm-
holes can lead to the arising of novel insights with respect
to the issue if gravity in fact influences the vacuum energy
(and, vice-versa, if this latter gravitates), at least in a weak
field regime. This topic is actually object of discussion [13–
15] as well as of projects for observational investigations, as
in the Archimedes experiment [16].

Recent works considering the Casimir effect in space-
times around of wormholes have been published [17–20],
as well as others which analyze how traversable wormholes
can be produced and sustained by means of both the Casimir
energy and tension, in the context of General Relativity and
extended theories of gravitation, in semiclassical approaches
[6,21,22]. In these works it has been demonstrated that in a 4-
D spacetime such quantities are feasible sources to a Morris–
Thorne wormhole from the direct calculation of the redshift
and shape functions associated to this object. In the present
paper, we will investigate 3-D traversable wormholes and
show that this construction is not possible, since at least an
event horizon appears when one considers only the Casimir
quantities as gravity source.

We will do this analysis by considering massive and mass-
less fermions, as well as scalar fields, adopting quasi-periodic
boundary conditions. We will overcome the aforementioned
restriction concerning 3-D Casimir wormholes by introduc-
ing a cosmological constant (which corresponds to a preex-
isting tension on the surface under investigation), embedding
the 3-D surface in a 4-D manifold and applying a weak uni-
form magnetic field perpendicularly to the surface. We then
will apply the model for a graphene sheet, since a fermion
on it exhibits a simulacrum of relativistic behavior [23],
obtaining thus an asymptotically conical wormhole by tak-
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ing into account anti-periodic boundary conditions for the
fermion coupled to the external magnetic field. Furthermore,
we will study the conditions for the electronic transport to
occur throughout the wormhole, comparing with the carriers
motion through a flat sheet. In this sense, our propose differs
from the ones discussed in [24,25], which did not analyze the
role played by the Casimir energy and tension in the graphene
wormhole, since it seems to exist a relation of dependence
between this latter and those quantities, as already discussed.

The manuscript is organized as follows. In Sect. 2 we show
that the usual Casimir energy of a massless fields, solely, can
not be a source of a wormhole. We add a cosmological con-
stant and other general sources as a solution. In Sect. 3 we
study if the addition of mass or quasi-periodic boundary con-
ditions to the Casimir energy can generate the source pointed
out in Sect. 2. In Sect. 4 we consider a graphene sheet and
show that a perpendicular magnetic field can solve the prob-
lem. We also discuss some phenomenological consequences.
In Sect. 3, we consider a graphene sheet and show that a per-
pendicular magnetic field can solve the problem. We also
discuss some phenomenological consequences. Finally, in
Sect. 4 we present our concluding remarks.

2 Traversable Casimir wormholes in (2+ 1) dimensions

In this section we analyze if it is possible, as in the 4-D case,
to sustain a traversable wormhole in a 3-D spacetime from
the Casimir quantities, namely, energy density and tension.
Initially, we take the general metric of a traversable circularly
symmetric 3-D wormhole, according to [26]

ds2 = −e2�(r)c2dt2 + dr2

1 − b(r)/r
+ r2dφ2, (1)

where �(r) and b(r) are the redshift and shape functions,
respectively. Einstein’s equations in an orthonormal basis are,
therefore

Gtt = b′r − b

2r3 = κρ(r),

Grr = −r − b

r2 �′ = κτ(r)

Gφφ = (r − b)

r

[
�′′ − (b′r − b)�′

2r(r − b)
+ (�′)2

]
= κp(r),

(2)

where (’) means the derivative with respect to r ; ρ(r) is
the surface energy density, τ(r) and p(r) the radial and
transverse tensions, respectively. The Einstein constant is
κ = 8πGc−4, where G is the gravitational constant and
c is the light velocity. The first thing we should point about
the above equations is that they are quite different from the
4-D case.

According to the first of Eq. (2), the flare out condition
valid for the wormhole, b′r −b < 0, just is obeyed if ρ(r) <

0. The Casimir apparatus is a typical example of a system with
negative energy, and we will use this fact in order to build our
wormhole, by following Ref. [6]. The Casimir energy density
of a massless field in a 3-D spacetime is usually given by the
expression

ρC (r) = − λ

r3 , (3)

where λ will depend on the specific case considered. A first
result here is that the Casimir energy density obtained from
λ > 0, which is positive, does not generate wormholes, since
the flare out condition is not satisfied.

The Casimir radial tension is given by

τC (r) = −2
λ

r3 , (4)

so that the Equation of State (EoS) is τC = 2ρC . This non-
zero quantity indicates that the redshift function cannot be a
constant (as � = 0, which would give a zero tidal wormhole),
according to Eq. (2). Now we will substitute Eq. (21) into the
first of the Eq. (2) in order to determine b(r). Thus, we find
that

b = r0 − 2κλ

r0
r + 2κλ.

The constant of integration was fixed such that b(r0) = r0,
where r0 is the throat of the wormhole. Now by using this
and Eq. (22) into the second of Eq. (2), we determine �(r),
which is be given by

� = �0(r0) + ln(r − r0) − ln(r).

Choosing the constant �0 equal to zero, we get the simple
solution

� = ln
(

1 − r0

r

)
.

Finally, by using the above results we arrive at the metric

ds2 = −
(

1 − r0

r

)2
c2dt2 + r0

2κλ(1 − r0
r )

dr2 + r2dφ2,

(5)

Unfortunately, this solution does not represent in fact a worm-
hole, since there exists a horizon at r = r0. This is very dif-
ferent from the 4-D case, where the introduction of the tidal
effect was enough to provide a consistent Casimir wormhole
[6]. Thus, at least with the usual 3-D Casimir energy and
tension, it is not possible to generate a wormhole in such a
spacetime. In what follows we will analyze some possibilities
to solve this.

In order to circumvent the pointed problem, we add modi-
fications to both the Casimir energy and radial tension, given
by
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ρC (r) = λ0 + λ1

r
+ λ2

r2 − λ

r3 , τC (r) = −λ0 − 2
λ

r3 . (6)

The origin of λ0, λ1, λ1, will be analyzed latter. We should
point out that the above quantities do not satisfy τC (r) =
2ρC (r) anymore. We will also introduce a cosmological con-
stant 	, which can be seen as a tension on the surface. Now,
we seek for a metric in the form [28]

ds2 = −e2�dt2 + dr2

	r2 − M(r)
+ r2dφ2, (7)

with

Gtt − 	gtt

= M ′

2r
= κρC (r) (8)

Grr − 	grr

=
[
	 − �′

r
(	r2 − M)

]
= κτC (r) (9)

Gφφ − 	gφφ

= (	r2 − M)

[
�′′ + (2	r − M ′)�′

2(	r2 − M)
+ (�′)2

]
− 	

= κpC (r). (10)

After substituting the new Casimir energy density, Eq. (6),
into Eq. (8) we find

M(r) = M0 + κλ0r
2 + 2κλ1r + 2κλ2 ln r + 2κ

λ

r
. (11)

Considering that the space must be asymptotically flat when
r → ∞, then we will impose

	 = κλ0. (12)

Hence, we get

g−1
rr = −2κλ1(r − r0) − 2κλ2 ln

r

r0
− 2κλ(

1

r
− 1

r0
), (13)

which is equals to the one found in Eq. (5) whenλ1 = 0 = λ2.
In what follows, we will determine the redshift function,

�(r), by solving Eq. (8) with the tension corrected and the
fixed value for 	. In order to find analytical solutions we
consider the simplified case λ2 = 0. With this we find two
simple solution, namely,

�1 = 	r2
0

κλ
r + 	r0

2κλ
r2 +

(
	r3

0

κλ
+ 1

)
ln(r − r0) − ln

r

r0
,

(14)

for λ1 = 0 and

�2 = − 	

κλ1
r − λ

(λ1r2
0 − λ)

(
r3

0	

κλ
+ 1

)
ln(r − r0)

−c1 ln(r − λ

r0λ1
) − ln

r

r0
, (15)

for λ1 �= 0, where

c1 = λ2	 + κλ3
1r

3
0

r0λ
2
1κ(λ − λ1r2

0 )
.

The integration constants are fixed in order to leave the log-
arithm argument without dimension. Now we analyze the
conditions to avoid an event horizon. For both solutions we
see that we must impose

	

κλ
= − 1

r3
0

. (16)

For �2 we must impose two further conditions

λ

λ1
< 0,

	

λ1
> 0. (17)

The first is in order to avoid the event horizon, and the second
that the metric does not diverge at infinity. We finally get the
final wormhole metrics

ds2
1 = − exp

[
−2r

r0
− r2

r2
0

] (r0

r

)2
dt2 + r0

2κλ(1 − r0
r )

dr2

+r2dφ2 (18)

and

ds2
2 = −e

− 2	
κλ1

r 1

(r − λ
r0λ1

)2c1
(
r0

r
)2dt2

− r

2κλ1

1

(r − r0)(r − λ
r0λ1

)
dr2 + r2dφ2 (19)

As a final conclusion we note that Eq. (16), together with
Eq. (12), give us the relation

λ0 = − λ

r3
0

. (20)

Since r0 > 0, we conclude that λ0 > 0. Beyond this, with
(17) we also find that λ1 < 0. Therefore, the signal of addi-
tional sources are completely fixed in order to get a wormhole
solution. In the next sections we will consider the possible
sources for λ0, λ1.

3 Casimir wormhole in a graphene sheet under a
uniform magnetic field

In this section we consider the application of the previously
discussed features concerning 3-D Casimir wormholes to a
graphene sheet. In the appendix we show that to include mass
or quasi-periodic boundary conditions are not enough to get
the extra terms in the energy density. Here we will see that
a solution is to add an uniform magnetic field. According to
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Fig. 1 3-D plot of a Casimir
wormhole on a graphene sheet.
Distances given in nm, with
r0 = 1 nm and 
 = 0.246 nm

Fig. 2 Difference between the
route times of the charge carrier
by equivalent distances, in
picoseconds, on a graphene
sheet. The first time interval
corresponds to a route traveled
on a usual flat sheet and the
second one to the radial path run
through a Casimir wormhole
that joins two of its regions, as a
function of q, in meters, for the
throat radii indicated in the
legend and 
 = 2.46 Å

[27], the Casimir energy density of a massless fermionic field
on the graphene at zero temperature is given by

ρC (r) = −3ζ(3)h̄vF

16πr3 , (21)

considering anti-periodic boundary conditions for the field.
Otherwise, the Casimir energy density obtained from peri-
odic boundary conditions, which is positive, does not gener-
ate wormholes, since the flare out condition is not satisfied.
Here we make c → vF , which is the Fermi velocity, associ-
ated to the carriers in graphene (vF ≈ 103 km/s) at 0 K.

The Casimir radial tension is given by

τC (r) = −3ζ(3)h̄vF

8πr3 , (22)

so that the EoS is τC = 2ρC . As the graphene sheet is
immersed in a (3+1) dimensional space, we get the interest-
ing possibility of applying a magnetic field perpendicular to
it. According to [31], this adds the term −(+)eBm∗v2

F/2π h̄
to ρC (τC ) in Eqs. (21) and (22), with e being the electron

charge and m∗ its effective mass. Therefore, the first order
corrections to the Casimir energy density (radial tension) in
presence of a uniform perpendicular magnetic field, is given
by

λ0 = −eBm∗v2
F/2π h̄

This is exactly our solution with λ1 = 0. In what follows,
we will determine both the shape and redshift functions con-
cerning the graphene wormhole, from the corrected energy
density and tension. We find, therefore

M(r) = 2	r2
0 − 2

	r3
0

r
+ 	r2,

2�(r) = − r

b0
− r2

b2
0

+ log

(
b0

r

)2

. (23)

where the integration constant was fixed in order to leave
the logarithm argument without dimension. We also must
impose the condition (refconstraint) in order that our worm-
hole solution to be consistent. With this we get that we must
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adjust the applied magnetic field exactly to

B = 3ζ(3)h̄2

2evFm∗b3
0

. (24)

With all this, the metric of the Casimir wormhole in the
graphene sheet is finally given by

ds2 = − exp

[
− r

b0
− r2

b2
0

] (
b0

r

)2

dt2 − dr2

	r2
0 (1 − b0

r )

+r2dφ2. (25)

We depict in Fig. 1 the graphene Casimir wormhole,
revealing the conical shape in the asymptotic limit.

Another important information about our graphene sheet
is the lateral pressure. For this we replace our solution above
in Eq. (10) to get

pC = −2
λ

r3
0

[
5

4
− 3

2

r0

r
− 1

2

r2
0

r2 + 5r3
0

2r3 − r2

r2
0

]
.

Therefore, a lateral pressure is necessary do keep our
graphene wormhole open.

Now let is examine the transport of the carriers through
the wormhole, calculating the effective crossing time to go
from a region at r = −q to another at r = q (q ≥ b0), given
by the expression

�τ =
∫ q

−q

√
gtt (r)

dt

dr
dr, (26)

with gtt (r) given in Eq. (25). Here, dt/dr = (vF )−1, and as
this integral cannot be analytically solved, we depict in Fig. 2
the difference between the times, in picoseconds, which the
carrier spends to run a distance 2q, �t (without the worm-
hole, therefore) and the one that it spends to travel the equiv-
alent distance through the Casimir wormhole, �τ , both with
the Fermi velocity. The parameter 
 = 2.46 Å is the lattice
constant of the graphene. The graph suggests that the pres-
ence of the wormhole in the sheet represents a vantage with
respect to the efficiency of the electronic transport throughout
the material, better the smaller the size of the throat.

4 Conclusion

In this paper we have studied 3-D traversable wormholes
and explicitly shown that they cannot be sourced by only the
Casimir energy density, radial and lateral tensions. Recently,
it has been demonstrated [6] that in 4-D case this is possible
by the direct computation of the redshift and shape func-
tions based on a Morris–Thorne wormhole solution, also in
extended theories of gravitation [21,22]. However, we have
presented arguments showing that in 3-D the same is not true
since the arising of an event horizon is inevitable. The gen-
eral analysis was made for massive and massless fermions, as

well as for scalar fields, with quasi-periodic boundary condi-
tions. We found that a possibility to circumvent the pointed
out trouble is to introduce a cosmological constant, which
works as an intrinsic tension on the surface, then immersing
it in a 4-D (flat) manifold and applying an external tension
on the surface.

We then have extended the model for a graphene sheet,
and obtained an asymptotically conical wormhole by con-
sidering specifically anti-periodic boundary conditions for
the fermion coupled to the external magnetic field, which is
source of the mentioned tension. Thus, the flare out con-
ditions are satisfied, and by adjusting the parameters we
avoided the formation of an event horizon, characterizing
thus a legitim wormhole solution. In addition, we have inves-
tigated the electronic transport through the Casimir worm-
hole in the graphene sheet and shown that it is faster as smaller
is the wormhole throat in comparison with what happens on
a flat sheet (without the wormhole), at least for a range of val-
ues of the effective distance travelled by the carriers. Though
the difference be of only tenths of a picosecond, a charge
that oscillates much times throughout the wormhole could
have its comparative frequency sensibly augmented, which
obviously represents a technologically attractive feature.
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Appendix: Casimir energy with quasi-periodic boundary
conditions

In this section we look for some possibilities in order to get
the extra terms in the energy density. We will consider scalar
and fermion fields in (d + 1) spacetime dimensions. The
standard procedure to obtain the Casimir energy is to consider
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periodic or anti-periodic boundary conditions, given by

φ(t, 	x + 	L) = ±φ(t, 	x). (27)

However, in order to consider more general materials, metals
or semimetals, for example, the authors of Ref. [29] consid-
ered the general case

φ(t, 	x + 	L) = ei2πθφ(t, 	x), (28)

where 0 ≤ θ ≤ 1. In this way it is possible to consider,
metallic (θ = 0) or semimetallic (θ = ±2π/3) nanotubes.
However the fermionic case considered in Ref. [27] has
not taken into account quasi-periodic conditions. Following
Refs. [27,29], we will obtain the Casimir energy for fermions
and bosons with quasi-periodic boundary conditions.

A. The massless case

We first consider the massless case. The general boundary
condition is given by

ψ(t, 	x + 	L) = ei2πθψ(t, 	x),
where ψ is a general wave function. With the above condi-
tion, the spectrum is given by

ω2
n = k2

T +
[

2π(n + θ)

a

]2

,

and thus we can determine the density of energy, using the
following relation

ρ = p
(−1)q

2a

∫ ∞

−∞
dd−1k

(2π)d−1

∞∑
−∞

ωn

where p accounts for the number of degrees of freedom of
the field and q = 0, 1 for bosons and fermions respectively.
Now, by using the result

∫
ddk

(2π)d
(k2 + �)−l = 1

(4π)d/2

�(l − d
2 )

�(l)
�

d
2 −l .

we get that, by taking l = s/2

ρ = p(−1)q
π

d+1
2

ad+1

�( s+1−d
2 )

�( s2 )

∞∑
−∞

(n + θ)d−1−s .

Here we will follow a path more direct than that used in ref.
[29]. In order to regularize the above expression we must
note that the Epstein zeta function is given by

E(A, c, q, l) =
∑
n

[
A

2
(n + c)2 + q

]−l

, (29)

and our expression becomes

ρ = p(−1)q
π

d+1
2

ad+1

�( s+1−d
2 )

�( s2 )
E

(
A = 2, c, q = 0, l

= s + 1 − d

2

)
.

However, Eq. (29) is valid only for l > 1/2. In our case we
need that l = (s + 1 − d)/2 < 1/2 and one could say that
the above expression is useless for us. It is a known fact that
Eq. (29) can be analytically continued into a meromorphic
function in the whole complex plane [30]. Therefore, after
performing a Poisson resumation, we find

E(2, c, q, l) = √
πq

1
2 −l �(l − 1

2 )

�(l)

+22π lq− l
2 + 1

4

�(l)

∞∑
n=1

cos(2πnc)n(l− 1
2 )K 1

2 −l

(
2πn

√
q
)
.

(30)

By using the above expression with

c = θ, q = 0, l = (s + 1 − d)/2

and by performing the limit s → −1 we arrive at the general
Casimir energy

ρ = −p(−1)q
1

ad+1

�( d+1
2 )

π
d+1

2

∞∑
n=1

cos(2πnθ)

nd+1 . (31)

Again, for (p, q) = 1, 0, we reobtain the same result found
in Ref. [29] for the scalar field. However now we can consider
other spins and arbitrary boundary conditions. For d = 2 we
get

ρ = −p(−1)q
1

2πa3

∞∑
n=1

cos(2πnθ)

n3 . (32)

For θ = 0, 1 we get

ρ = −p(−1)q
1

2πa3 ζ(3), (33)

which is the Casimir energy with periodic boundary condi-
tion. For a escalar field we get the standard result. For the
fermion field we have (p, q) = (2, 1) and we have that the
energy is positive

ρ = 1

πa3 ζ(3), (34)

which coincides with the result found in Ref. [27]. For anti-
periodic boundary condition θ = 1/2 we again find the
results of Refs. [27,29]. From now on we will consider the
general case (32). We can see from the above result that we
just get the λ term and therefore it is not enough to gener-
ate our transversable wormhole. In the next section we will
consider some possibilities.
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B. Massive fields

In order to get the constant density we first try to introduce
mass to our fields. The only difference with the massless case
is that now we have

ρ = p(−1)q
π

d+1
2

ad+1

�
( s+1−d

2

)
�

( s
2

)
∞∑

−∞

[
(n + θ)2 +

(ma

2π

)2
] d−1−s

2

.

Again, we will follow a different path than that used in Ref.
[27]. If we use the Epstein zeta defined by Eq. (29),we get
that our energy density becomes

ρ = −p(−1)q
π

d
2

ad+1

�
(− d

2

)
2

E

(
c, q =

(ma

2π

)2
,
s + 1 − d

2

)
.

Now, performing the same procedures as before and using

A = 2, l = −d/2, c = θ, q =
(ma

2π

)2
,

we get

ρ = −p(−1)q
�(− d+1

2 )

2d+2π
d+1

2

md+1 − p(−1)q
m

d+1
2

a
d+1

2

1

2
d−3

2 π
d+1

2

×
∑
n �=0

cos(2πnθ)n− d+1
2 K d+1

2
(nma)) .

We should point out that for small arguments we have

K d+1
2

≈ �( d+1
2 )

2

(
2

z

) d+1
2

,

and in this situation, the above expression reduces to our
massless case given by Eq. (31). For d = 2 we get

ρ = −p(−1)q
1

12π
m3 − p(−1)q

m
3
2

a
3
2

√
2

π
3
2

×
∞∑
n=1

cos(2πnθ)n− 3
2 K 3

2
(nma). (35)

At this point we present some comments about the results
expressed above. At first sight we could think that the first
term would provide us with the constant density we need
to the Casimir wormhole. However, the sum depends on the
mass and should be expanded up to orderm3. Note that in the
(3+1) dimensional case, we can expand the Bessel function
up to order m2 and the sum will be convergent. This gives the
usual small mass limit. However, in the (2 + 1) dimensional
case, if we expand the Bessel function, the sum converges
only up tom0. Therefore, in (2+1)− D, the above expression
is not suited to consider mass corrections. In order to get this
we must expand our original expression to get

ρ = p(−1)q
π

d+1
2

ad+1

�( s+1−d
2 )

�( s2 )

∞∑
−∞

[(n + θ)]d−1−s

+p(−1)q
π

d+1
2

ad+1

�( s+1−d
2 )

�( s2 )

(ma

2π

)2 d − 1 − s

2

×
∞∑

−∞

[
(n + θ)2

] d−3−s
2

. (36)

The first term of the previous equation for ρ is the Casimir
energy density for the massless case, as should be expected.
The second term can be expressed using the Epstein function,
which results in the following

ρ = Em=0
cas + p(−1)q

π
d+1

2

ad+1

�( s+1−d
2 )

�( s2 )

(ma

2π

)2

×d − 1 − s

2
E

(
c = θ, q = 0,

s − 3 − d

2

)
.

Performing the same procedure as before we find that the
second term is null. Therefore, our Casimir energy is given
by

ρ = Em=0
cas + O(m4).

We should point that higher order corrections would give us
terms ak with k > 1 and this does not solve our problem.
Therefore, only the addition of mass can not solve our prob-
lem. In the next section we will show that the application
of a perpendicular magnetic field, in a graphene sheet, can
provides the source to solve our problem.
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