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Abstract We analyse the Higgs sector of an S3 model with
three Higgs doublets and no CP violation. After electroweak
breaking there are nine physical Higgs bosons, one of which
corresponds to the Standard Model one. We study the scalar
and gauge sectors of this model, taking into account the con-
ditions set by the minimisation and stability of the poten-
tial. We calculate the masses, trilinear and quartic Higgs-
Higgs, and Higgs-gauge couplings. We consider two possi-
ble alignment scenarios, where only one of the three neutral
scalars has couplings to the gauge bosons and corresponds
to the SM Higgs, and whose trilinear and quartic couplings
reduce exactly to the SM ones. We also obtain numerically
the allowed parameter space for the scalar masses in each
of the alignment scenarios. We use the calculated trilinear
and quartic couplings to find the analytical structure of the
one-loop neutral scalar mass matrix, without fermionic con-
tributions. We show that it is possible to have a compact
mass spectrum where the contribution to the oblique param-
eters might be small. We explore some scenarios for the loop
contributions to the neutral scalar masses.

1 Introduction

The discovery the Higgs boson with a mass of 125 GeV [1,2],
and the experimental study of its properties, will be relevant
to gain a deeper understanding of the flavour problem and of
ways to address it.

The organization of the fermions into generations or fami-
lies may signal a possible underlying structure in elementary
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particles, although its origin or nature is not yet understood.
On the other hand, the Standard Model (SM) Higgs mecha-
nism [3,4], which is indispensable to understand the origin
of the masses of gauge bosons and fermions, sheds no light
on the flavor structure or the difference in the masses of the
fundamental fermions.

The flavour structure of fermions has been the subject of
a great amount of research throughout the years. In view of
the fact that the only difference between generations in the
fermionic sector are the masses of the particles, the most
direct or even natural way to propose a flavour structure is
through the mass generation mechanism, the Higgs sector.

One possibility to understand the flavour nature behind the
SM is to construct an extended scalar sector with a flavour
symmetry, where the SM is embedded. Multi-Higgs exten-
sions of the SM, with and without extra symmetries, have
been extensively studied, some diverse examples are given
in [5–15] (for reviews on two Higgs Doublet Models (2HDM)
and multi-Higgs models see [16,17]). Discrete symmetries
have been extensively studied in this context, both at low and
at high energies (for reviews of models with discrete symme-
tries see [18–21]). Since these models in general require the
addition of more Higgs fields, the phenomenological con-
sequences in all sectors, like allowed extra processes and
couplings, have to be analysed, some examples can be found
in [22–24]. Restrictions are placed on the models by con-
fronting their phenomenology with the experimental results,
in this case the ones of ATLAS [25] and CMS [26]. The Higgs
sector is thus crucial to determine the viability and prospects
of each model. Prime examples of this procedure are the Min-
imal Supersymmetric Standard Model (MSSM) and 2HDM
(see for instance, [27–29] and [16,30,31], respectively).

The permutation group of three objects S3, with three
Higgs doublets, has been proposed already a long time ago
[32–36] as a natural extension of the SM, even before all the
quarks were discovered or the mass of the neutrinos estab-
lished. Since then, the S3 symmetry has been extensively
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studied in different contexts, both in the quark [37–46] and
lepton sectors [47–64], due to its simplicity and predictivity,
as well as in the scalar sector [65–72] where more predic-
tions arise. More recently, there have been also studies of dark
matter candidates in models with S3 symmetry [73–78].

In particular, the 3 Higgs doublet model with S3 symmetry
(which we will refer here as S3-3H) [48], has led to very
interesting results in the fermionic sector. In the quark sector,
it was shown that it is possible to obtain the Fritzsch and the
nearest neighbour interaction (NNI) textures [42], thus fitting
the CKM matrix. In the leptonic sector it was found that
the S3-3H model can also reproduce the VPMNS matrix and
predicts a non-vanishing θ13 reactor mixing angle, and some
flavour changing neutral currents and contributions to g − 2
were calculated [41,52,53,57]. In [75], a version of the S3-
3H with an extra inert Higgs doublet was analysed (S3-4H),
with the interesting result that it is possible to have a good
dark matter (DM) candidate, coming from the inert sector
and satisfying also the Higgs bounds. The indirect prospects
of detection of this DM candidate have been studied in [77].
Although there has been extensive work in models with S3

symmetry and three Higgs doublets in different contexts, the
phenomenological implications in the Higgs sector have not
been fully explored. Our motivation to analyse more closely
the scalar sector of the S3-3H model concerns the fact that it
is in this sector where novel experimental signatures can be
found; also the results in the scalar sector will have an impact
and allow for a deeper analysis of the fermionic sector.

The conditions for stability and symmetry breaking in the
general three Higgs doublet model (3HDM) have been stud-
ied in [79]. Assuming an extra discrete symmetry reduces
greatly the number of free parameters, in particular the case
of the S3-3H potential was already analysed in [65], although
requiring a soft breaking of the discrete symmetry. The vac-
uum stability of the S3-3H scalar potential, without soft
breaking of S3, was studied in [80,81], and the mass struc-
ture of the scalar bosons was analysed in [66,67]. In [66] it
was found that there is a residual Z2 symmetry after the elec-
troweak symmetry breaking (EWSB) in the Higgs potential,
and the corresponding charges for the scalars under this sym-
metry were given. The conditions for having spontaneous CP
violation in this potential were presented in [70].

In here, we keep the model as simple as possible, by not
assuming an explicit breaking of the flavour symmetry or
adding extra flavons. We calculate the scalar masses, and the
trilinear and quartic Higgs self-couplings and Higgs-gauge
boson couplings. We consider two possible alignment sce-
narios for the SM-like Higgs boson, where only one of the
three neutral scalars has couplings to the vector bosons (one
is always decoupled due to the Z2 symmetry). We use a
geometrical parameterization in spherical coordinates, which
allows us to express the mixing of the vacuum expectation
values (vevs) of the Higgs fields in the S3 singlet and dou-

blet irreducible representations, in terms of one angle (θ ) in
our expressions. We scan the parameter space, taking into
account the unitarity and stability conditions, and the SM
Higgs boson mass constraints, in each of the two alignment
scenarios.

Some of the trilinear scalar couplings have been obtained
in [67], nevertheless we found differences with their results.
Mainly in [67], theZ2 symmetry is not exhibited, whereas we
find it explicitly in our calculations, consistent with the Z2

residual symmetry reported in [66]. As an additional result,
we find that in each of the alignment limits, where only the
SM-like Higgs couples to the vector bosons, the trilinear and
quartic couplings reduce exactly to the SM ones.

We find the expression for the neutral scalar mass matrix
at one-loop, where all the scalar and gauge contributions
derived from the calculated trilinear and quartic couplings
are taken into account. Although it reduces to a structure
similar to the 2HDM mass matrix, due to the residual Z2

symmetry, the presence of an extra neutral scalar in our case,
h0, allows to distinguish between the models. It is possi-
ble to find values for the parameter θ and the scalar masses
where the off-diagonal term of the one-loop neutral scalar
mass matrix vanishes, thus minimising the radiative correc-
tions. We give two examples of such spectra, one with light
and another one with heavier masses. The latter one fulfils
the conditions that can make the contributions to the oblique
parameters to be small or even vanish [82,83].

The paper is organized as follows: in the next section we
describe the model, and how the S3 symmetry acts on the
Higgs electroweak doublets, giving the structure and charac-
teristics of the Higgs potential in the S3-3H model. In Sect. 3,
we parameterize the vacua and rotate to the Higgs basis, to
express our results in terms of physical parameters. We then
calculate the tree level masses and explore numerically the
two different alignment scenarios. Then, in Sect. 4, we calcu-
late the Higgs-Higgs couplings and the Higgs-gauge bosons
couplings; we present the ones involving neutral scalars in
this section, and we complete with the pseudoscalars and
charged scalar couplings in the Appendix. We also anal-
yse the structure of the one-loop neutral scalar mass matrix.
Finally, we present a summary and the conclusions of our
work.

2 The S3-3H model scalar sector

We will discuss briefly here how the S3 symmetry is imple-
mented in the scalar sector of the model. The S3 group is the
smallest non-Abelian discrete group, it corresponds to the
rotations and reflections that leave invariant an equilateral
triangle, or equivalently, to the permutations of three objects.
It has three irreducible representations (irreps): a symmetric
singlet 1S , an anti-symmetric singlet 1A, and a doublet 2 [18].
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The multiplication rules among the irreducible represen-
tations are as follows

1S ⊗ 1S = 1S, 1S ⊗ 1A = 1A,

1A ⊗ 1S = 1A, 1A ⊗ 1A = 1S,

1S ⊗ 2 = 2, 1A ⊗ 2 = 2,

2 ⊗ 1S = 2, 2 ⊗ 1A = 2;(
a1

a2

)
2
⊗
(
b1

b2

)
2

= (a1b1 + a2b2)1S

⊕ (a1b2 − a2b1)1A ⊕
(
a1b2 + a2b1

a1b1 − a2b2

)
2
.

(1)

S3 has 6 subgroups: the trivial group, the whole group, three
Z2 subgroups (which correspond to the reflections over the
axes of symmetry of the triangle), and a Z3 subgroup.

We will consider here three SU (2) electroweak (EW)
Higgs doublets, i.e. two more than in the Standard Model.
We will assign here two of the Higgs EW doublets to the 2
irrep of S3 and the third one to the symmetric singlet 1S , but
in this work we will concentrate only on the scalar sector, so
our results are general for any scalar potential of this type,
irrespective of the assignment for the fermionic sector. In
Ref. [48] an extension of the SM was considered, with three
SU (2) Higgs doublets plus three right-handed neutrinos, we
refer to this model as S3-3H. In the fermionic sector of the
S3-3H model, prior to EWSB, the first two generations of
quarks and leptons, as well as two of the Higgs doublets,
were assigned to the S3 doublet irrep, and the third genera-
tion of fermions and one Higgs electroweak doublet, to the
symmetric singlet irrep. After EWSB all the fields are mixed,
giving rise to a specific texture for the mass matrices of quarks
and leptons.

2.1 The S3-3H model scalar potential

The terms in the potential are the ones that preserve the dis-
crete S3 permutational symmetry, as reported in [35,65]. The
most general Higgs potential invariant under the SU (3)c ×
SU (2)L×U (1)Y ×S3 in the symmetry adapted basis, accord-
ing to the multiplication rules (1), is given as,

V = μ2
1

(
H†

1 H1 + H†
2 H2

)
+ μ2

0

(
H†
s Hs

)
+ a

2

(
H†
s Hs

)2

+b
(
H†
s Hs

) (
H†

1 H1 + H†
2 H2

)

+ c

2

(
H†

1 H1 + H†
2 H2

)2 + d

2

(
H†

1 H2 − H†
2 H1

)2

+e fi jk
((

H†
s Hi

) (
H†

j Hk

)
+ h.c.

)

+ f
{(

H†
s H1

) (
H†

1 Hs

)
+
(
H†
s H2

) (
H†

2 Hs

)}

+g

2

{(
H†

1 H1 − H†
2 H2

)2 +
(
H†

1 H2 + H†
2 H1

)2
}

+h

2

{(
H†
s H1

) (
H†
s H1

)
+
(
H†
s H2

) (
H†
s H2

)

+
(
H†

1 Hs

) (
H†

1 Hs

)
+
(
H†

2 Hs

) (
H†

2 Hs

)}
; (2)

where f112 = f121 = f211 = − f222 = 1. This same poten-
tial has also been analysed in Refs. [66,69,80,81] without
CP violation, and in Ref. [70] with spontaneous CP violation.
We will only consider here the case without CP violation, i.e.
solutions with real vevs.

As already mentioned, we will assign two of the Higgs
doublets, H1 and H2 to the doublet irrep of S3 2, and the
third one, HS , to the symmetric singlet irrep 1S .

In terms of complex fields we express them as

H1 = 1√
2

(
φ1 + iφ4

φ7 + iφ10

)
, H2 = 1√

2

(
φ2 + iφ5

φ8 + iφ11

)
,

Hs = 1√
2

(
φ3 + iφ6

φ9 + iφ12

)
. (3)

In order to simplify the calculations, we introduce the fol-
lowing variables as was done in [80,81]

x1 = H†
1 H1, x4 = Re(H†

1 H2), x7 = Im(H†
1 H2),

x2 = H†
2 H2, x5 = Re(H†

1 Hs), x8 = Im(H†
1 Hs),

x3 = H†
s Hs, x6 = Re(H†

2 Hs), x9 = Im(H†
2 Hs).

(4)

As an example, we show here explicitly some of the real
terms of the scalar fields in the potential, with the appropriate
normalization factors

x1 = H†
1 H1 = 1

2
(φ2

1 + φ2
4 + φ2

7 + φ2
10),

x4 = Re(H†
1 H2) = 1

2
(φ1φ2 + φ4φ5 + φ7φ8 + φ10φ11),

x7 = Im(H†
1 H2) = 1

2
(φ1φ5 − φ4φ2 + φ7φ11 − φ10φ8).

(5)

Hence, using (4) into (2), the Higgs potential is expressed as:

V = μ2
1(x1 + x2) + μ2

0x3 + a

2
x2

3 + b(x1 + x2)x3 + c

2
(x1 + x2)

2

−2dx2
7 + 2e [(x1 − x2)x6 + 2x4x5] + f (x2

5 + x2
6 + x2

8 + x2
9 )

+ g

2

[
(x1 − x2)

2 + 4x2
4

]
+ h(x2

5 + x2
6 − x2

8 − x2
9 ). (6)

From this general potential we have ten free parameters,
before EWSB.

2.2 The normal minimum

In order to have a consistent Higgs potential, it is necessary
to check that it is stable, i.e. bounded from below, and that
it respects perturbative unitarity. These requirements impose
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constraints on the potential’s parameters. This analysis has
already been done in [66], and we use their expressions for
the unitarity and stability bounds in here.

A study of the stability of the different minima for a gen-
eral Higgs potential of this kind can be found in [80], they
point out the existence of three types of minima or stationary
points. In here, we will consider the EWSB using the natural
choices of conservation of electric and CP charges, implying
that only the real part of the neutral fields will acquire vevs,
we will refer to this as the normal minimum. Thus, only the
real parts of each one of the doublets will acquire non-zero
vacuum expectation values. Expressed in terms of the field
components of H1, H2, Hs , Eq. (3) we have

〈φ7〉 = v1, 〈φ8〉 = v2, 〈φ9〉 = v3, 〈φi 〉 = 0, i �= 7, 8, 9, (7)

this adds two more free parameters to the model, as they
should satisfy the condition
√

v2
1 + v2

2 + v2
3 = v = 246 GeV. (8)

The extreme point conditions for the potential are given
by

∂V

∂vi
= 0 ←→ ∂V

∂x j

∂x j
∂vi

= 0, (9)

with i = 1, 2, 3; j = 1, 2, . . . , 9. These conditions express
the tree level tadpole equations as

0 = [2μ2
1 + (b + f + h)v2

3 + (c + g)(v2
1 + v2

2)]v1

+6ev1v2v3, (10)

0 = [2μ2
1 + (b + f + h)v2

3 + (c + g)(v2
1 + v2

2)]v2

+3e(v2
1 − v2

2)v3, (11)

0 = [2μ2
0 + (b + f + h)(v2

1 + v2
2) + av2

3]v3

+e(3v2
1 − v2

2)v2. (12)

These equations reduce further the original twelve free
parameters relating two of them as

v2
1 = 3v2

2 . (13)

Another possible solution that satisfies these equations would
be e = 0 [48,81], which implies the presence of a Goldstone
boson due to a residual SO(2) symmetry, but this scenario
will not be considered for the present work. The general min-
ima of this potential, both real and complex, have been stud-
ied in [70], with emphasis on the complex vacua. In here, we
will consider only in detail the case (13), with v1 = +√

3v2,
where after EWSB there is a residual Z2 symmetry. This
residual symmetry corresponds to one of the Z2 subgroups
of S3, namely, a reflection over one of the symmetry axes of
the triangle. In a similar fashion, the solution v1 = −√

3v2

has also a residual Z2 symmetry, which is another one of the
subgroups of S3. In this latter case the invariance is under

the reflection over the opposite axis of symmetry as the posi-
tive solution. This negative solution leads exactly to the same
results for the masses and couplings as the positive solution.

3 Tree level Higgs masses and physical basis

In order to get the tree level masses of the Higgs bosons, it is
necessary to diagonalize the 12 × 12 matrix resulting from
taking the second derivatives of the potential

(M2
H )i j = ∂2V

∂φi∂φ j

∣∣∣∣〈φi 〉 , (14)

with i, j = 1, . . . , 12. Due to the symmetry of the model,
the mass matrix consists of four diagonal blocks, each one
a 3 × 3 Hermitian and symmetric matrix. The Higgs mass
matrices of the S3-3H model have been reported previously
in [66,67], nevertheless our results differ from [67] by a factor
of two in the Higgs couplings, because we have included the
normalization factors 1/

√
2 in the Higgs doublets. In this

work, we will study the general case with e �= 0, with a new
parameterization which allows us to compare directly with
the SM when we include the complete scalar couplings and
scalar-gauge couplings.

Since we assume no CP violation, we obtain three 3 × 3
Hermitian matrices, one for the charged scalars M2

C , one for
the neutral scalars M2

S , and one for the pseudoscalar bosons
masses M2

A.
The matrix elements of the charged Higgs masses in terms

of the potential parameters are given as

M2
C =

⎛
⎝c11 c12 c13

c21 c22 c23

c31 c32 c33

⎞
⎠ , (15)

with the elements of the symmetric mass matrix given as

c11 = −v3[2ev2 + v3

2
( f + h)] − gv2

2,

c12 = √
3v2(ev3 + gv2),

c13 = √
3v2[ev2 + v3

2
( f + h)],

c22 = −v3[4ev2 + v3

2
( f + h)] − 3gv2

2,

c23 = v2[ev2 + v3

2
( f + h)],

c33 = −2v2
2[2ev2 + v3( f + h)]

v3
. (16)

The mass matrix for neutral scalars is given by

M2
S =

⎛
⎝s11 s12 s13

s21 s22 s23

s31 s32 s33

⎞
⎠ , (17)
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where, the elements of the scalar symmetric mass matrix are

s11 = 3v2
2(c + g), s12 = √

3v2[v2(c + g) + 3ev3],
s13 = √

3v2[v3(b + f + h) + 3ev2],
s22 = v2[v2(c + g) − 6ev3],
s23 = v2[3ev2 + (b + f + h)v3],
s33 =

(
av3

3 − 4ev3
2

)
v3

. (18)

For the pseudoscalar mass matrix we find

M2
A =

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ , (19)

where each of the elements of the symmetric matrix are given
as

a11 = −
(
v2

2(d + g) + 2ev2v3 + hv2
3

)
,

a12 = √
3v2(v2(d + g) + ev3),

a13 = √
3v2(ev2 + hv3),

a22 = −3v2
2(d + g) − 4ev2v3 − hv2

3,

a23 = v2(ev2 + hv3), a33 = −4v2
2(ev2 + hv3)

v3
. (20)

3.1 Geometrical parameterization of the vacua and the
Higgs masses

We will rewrite the vevs in spherical coordinates, as it was
done in [75,84]

v1 = v cos ϕ sin θ, v2 = v sin ϕ sin θ,

v3 = v cos θ. (21)

The use of this spherical parameterization is helpful to
visualize the relation among the vevs. The angle θ gives the
amount of mixing between the vev of the singlet (v3) and the
vevs of the doublet (v1, v2). We express the relations between
v1 , v2, and v3 in terms of two angles as:

tan ϕ = v2

v1
, tan θ = v2

v3 sin ϕ
. (22)

Moreover, the minimization condition of the potential
(13), provides an extra constraint for the relation between v1

and v2 i.e. it fixes also the value of ϕ. We assume all the vevs
to be real and positive (otherwise we should consider a phase
between two vevs) implying ϕ = π/6, then tan ϕ = 1√

3
, thus

we get

tan ϕ = 1/
√

3 ⇒ sin ϕ = 1

2
, cos ϕ =

√
3

2
, (23)

tan θ = 2v2

v3
⇒ sin θ = 2v2

v
, cos θ = v3

v
. (24)

The usual form for the rotation matrix Ri , to obtain the
mass matrix and physical states is given as:

[M2
diag]I = RT

I M
2
I RI , I = S, A,C. (25)

For the Higgs bosons we take the sub-indices I = S, A,C to
refer to the neutral, pseudoscalar and charged Higgs bosons
respectively. The rotation matrix is the product of two rota-
tions, i.e., RI = A BI , where

A =
⎛
⎝cos δ − sin δ 0

sin δ cos δ 0
0 0 1

⎞
⎠ , BI =

⎛
⎝ cos γI 0 sin γI

0 1 0
− sin γI 0 cos γI

⎞
⎠ ,

(26)

then

RI =
⎛
⎝cos γI cos δ − sin δ sin γI cos δ

cos γI sin δ cos δ sin γI sin δ

− sin γI 0 cos γI

⎞
⎠ . (27)

The rotation matrix RA,C , which diagonalizes M2
A and

M2
C , will transform the fields leading to the Goldstone states.

They are given as follows:

RA,C =
⎛
⎝cos γA,C cos δ − sin δ sin γA,C cos δ

cos γA,C sin δ cos δ sin γA,C sin δ

− sin γA,C 0 cos γA,C

⎞
⎠

=
⎛
⎜⎝

√
3v2
v

− 1
2 −

√
3v3
2v

v2
v

√
3

2 − v3
2v

v3
v

0 2v2
v

⎞
⎟⎠ . (28)

Therefore, we can see that cos γA,C = 2v2
v

, sin γA,C = − v3
v

,

sin δ = 1
2 , and cos δ =

√
3

2 . If we compare with (23) and
(24) we can see that δ = ϕ and γA,C = 3π

2 + θ . We will
reparameterize the matrices in terms of the angles θ and ϕ,
so that the matrices take the following form

RA,C =
⎛
⎝sin θ cos ϕ − sin ϕ − cos θ cos ϕ

sin θ sin ϕ cos ϕ − cos θ sin ϕ

cos θ 0 sin θ

⎞
⎠

=
⎛
⎜⎝

√
3v2
v

− 1
2 −

√
3v3
2v

v2
v

√
3

2 − v3
2v

v3
v

0 2v2
v

⎞
⎟⎠ . (29)

Thus, we obtain the respective masses at tree level for the
pseudoscalar and charged Higgs bosons as

m2
A1

= −v2
[
(d + g) sin2 θ + 5

4
e sin 2θ + h cos2 θ

]
, (30)

m2
A2

= −v2(
e

2
tan θ + h), (31)

m2
H±

1
= −v2

4

[
5e sin 2θ + 2( f + h) cos2 θ + 4g sin2 θ

]
,

(32)
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m2
H±

2
= −v2

2
[e tan θ + ( f + h)] . (33)

From these expressions it can be seen that all masses are
proportional tov, with their values determined by an interplay
of the self-couplings and θ .

For the diagonalization of the mass matrix of the neu-
tral scalar bosons M2

S , we will have the following rotation
matrix:

RS =
⎛
⎝cos γS cos δ − sin δ sin γS cos δ

cos γS sin δ cos δ sin γS sin δ

− sin γS 0 cos γS

⎞
⎠ . (34)

In terms of the parameters of the potential, considering also
the spherical parameterization, we have

M2
a =

[
(c + g)v2 sin2 θ + 3

4
ev2 sin 2θ

]
,

M2
b =

[
3ev2 sin2 θ + (b + f + h)v2 sin 2θ

]
,

M2
c = av2 cos2 θ − 1

2
ev2 tan θ sin2 θ, (35)

where the mixing angle α is

tan 2α = − M2
b

M2
a − M2

c
. (36)

The rotation to obtain the mass matrix directly from the inter-
action basis is given as

RS =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
3
(
M2

a−M2
c +ZM

)
2
√

(M2
b )2+(M2

a−M2
c +ZM)

2
− 1

2 −
√

3M2
b

2
√

(M2
b )2+(M2

a−M2
c +ZM)

2

M2
a−M2

c +ZM

2
√

(M2
b )2+(M2

a−M2
c +ZM)

2

√
3

2 − M2
b

2
√

(M2
b )2+(M2

a−M2
c +ZM)

2

M2
b√

(M2
b )2+(M2

a−M2
c +ZM)

2
0 M2

a−M2
c +ZM√

(M2
b )2+(M2

a−M2
c +ZM)

2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(37)

where

ZM =
√

(M2
b )2 + (M2

a − M2
c )2 .

Using again Eqs. (23) and (36) we get

tan γS = − M2
b(

M2
a − M2

c + ZM
) , γS = 3π

2
+ α,

sin δ = 1

2
and cos δ =

√
3

2
. (38)

We will work with the angles α and ϕ, for that reason we
express the rotation matrix in the following form

RS =
⎛
⎝sin α cos ϕ − sin ϕ − cos α cos ϕ

sin α sin ϕ cos ϕ − cos α sin ϕ

cos α 0 sin α

⎞
⎠ . (39)

Then, we may write the scalar Higgs bosons masses as
follows:

m2
h0

= −9

4
ev2 sin 2θ, (40)

m2
H1,H2

= 1

2

[
(M2

a + M2
c ) ±

√
(M2

a − M2
c )2 + (M2

b )2

]
,

(41)

we notice that e < 0. We see here that the structure of the
masses is consistent with the one found in Refs. [66,81].
The expressions for mH1,2 can be written in terms of the
parameters of the model as

m2
H1

= v2

2

[
2ac2

θc
2
α + 2(c + g)s2

αs
2
θ + 4(b + f + h)sαsθcαcθ

+etθ (6sαcαsθcθ + 3c2
θ s

2
α − s2

θ c
2
α)
]
,

= v2

4

{
a(cα−θ + cα+θ )

2 + (c + g)(cα−θ − cα+θ )
2

+(b + f + h)(c2(α−θ) − c2(α+θ))

+e tθ
[
c2(α−θ) − c2(α+θ) + 4sα+θ sα−θ + 2s2

α+θ )
]}

, (42)

m2
H2

= v2

2

(
2ac2

θ s
2
α + 2(c + g)c2

αs
2
θ − 4(b + f + h)sαsθcαcθ

+etθ (−6sαcαsθcθ + 3c2
θc

2
α − s2

θ s
2
α)
)
,

= v2

4

{
a(sα−θ + sα+θ )

2 + (c + g)(sα+θ − sα−θ )
2

−(b + f + h)(c2(α−θ) − c2(α+θ))

+e tθ
[
c2(α+θ) − c2(α−θ) + 4cα+θcα−θ + 2c2

α+θ

]}
, (43)

here we use the reduced notation for the trigonometric func-
tions: sx ≡ sin x , cx ≡ cos x and tx ≡ tan x .

The SM Higgs boson has already been measured [25,26],
and one of the neutral CP-even Higgs of the model should
correspond to it. Thus, it is important to explore the structure
of these tree level masses in terms of the self-couplings of
the Higgs potential in the interaction basis, Eq. (6), and also
in terms of the mixing angles relating the vevs, Eq. (22).
The possibility of a neutral Goldstone, a massless degree of
freedom has been reported previously in [48,81] when e = 0
is considered, and leads to v1 = v2.

From Eqs. (35), (40) and (41), we can reduce the expres-
sions of the masses for specific cases of the parameter θ

which, as we said before, gives the amount of mixing between
the vev of the singlet and the vevs of the doublets. We explore
a particular case, for instance θ = π/4, where we obtain the
neutral CP-even Higgs masses as

m2
h0

= −9

4
ev2, (44)

m2
H1,2

= v2

4

[
a + c + e + g

±
√

(−a + c + 2e + g)2 + (3e + 2(b + f + h))2

]
,

(45)
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where the three masses are proportional to the vev, v = 246
GeV, and combinations of the self-couplings.

Setting the vevs of the doublet or singlet to zero has to be
considered from the beginning, to arrive at the appropriate
tadpole equations. The case where v1 = v2 = 0 corresponds
to one of the minima found in [70,78], which leaves μ1 unde-
termined. In their solution, the three neutral scalar masses are
in principle different from zero, with two of them degenerate
and depending on μ1. In our case, when we take the limit
sin θ → 0, which leads to v1, v2 → 0, we get two almost
massless scalars. This can be seen from Fig. 1, as tan θ → 0,
also mh0 ,mH2 → 0. It can also be verified from the struc-
ture of the mass matrices Eqs. (42, 43), or by noticing that in
this limit also α → 0 (Eq. (36)) and substituting in Eqs. (42,
43). The particular choice of 2μ1 = −(h + b + f )v2

3 in
the solution of refs. [70,78] implies that the two degener-
ate masses become zero, and the third one coincides with
our mH1 = av2. But it is not possible to arrive to the lat-
ter condition for μ1 from our tadpole equations, since we
initially have considered v1, v2 �= 0. Similarly, it is not pos-
sible to have exactly cos θ = 0, or equivalently v3 = 0 in our
case, since Eqs. (10–12) are arrived at dividing by v3. If one
assumes v3 = 0 from the beginning, the tadpole equations
are different, and they lead to the relationship v2

2 = 3v2
1 [70],

which is the inverse of the ratio we find between v1 and v2 .
For our particular solution, we will assume none of the

vevs are zero, and thus there must be an admixture of the
doublet and the singlet Higgs fields, which might be relevant
when considering the fermionic sector.

In the following section, we will analyse the masses for the
general cases of non-zero parameter values. Specifically, for
the numerical analysis, we explore the tree level masses for
different values of the θ parameter, in the range 0 < θ < π/2,
to keep the vevs positive.

3.2 The Higgs basis

From the perspective of both EWSB and flavor physics, there
is a basis that is particularly useful to compare with the SM
or with other of its extensions, the so-called Higgs basis. It is
defined as the basis in which one Higgs field carries the full
vev, φvev , and the other Higgs fields ψ1, ψ2 are perpendicular
to it [13,17,85–88]. In order to get the Goldstone bosons,
which are needed for the generation of masses of the gauge
bosons, we do the usual rotation.

For multi-Higgs models, the Goldstone bosons are obtained
with the same rotation angle for both the pseudoscalars and
charged Higgs bosons, and as we found in the previous sec-
tion γA = γC = 3π

2 + θ . The fields in the Higgs basis are
then given by the transformation:

⎛
⎝φvev

ψ1

ψ2

⎞
⎠ = RT

A

⎛
⎝H1

H2

Hs

⎞
⎠

=
⎛
⎝ sin θ cos ϕ sin θ sin ϕ cos θ

− sin ϕ cos ϕ 0
− cos θ cos ϕ − cos θ sin ϕ sin θ

⎞
⎠
⎛
⎝H1

H2

Hs

⎞
⎠ .

(46)

In our case, the rotation matrix takes the following form

⎛
⎝φvev

ψ1

ψ2

⎞
⎠ =

⎛
⎜⎝

√
3v2
v

v2
v

v3
v

− 1
2

√
3

2 0

−
√

3v3
2v

− v3
2v

2v2
v

⎞
⎟⎠
⎛
⎝H1

H2

Hs

⎞
⎠ . (47)

Then, the electroweak (EW) Higgs doublets in this basis
are explicitly given as

φvev =
(

G±
1√
2
(v + H̃ + iG0)

)
, ψ1 =

(
H±

1
1√
2
(H̃a + i A1)

)
,

ψ2 =
(

H±
2

1√
2
(H̃b + i A2)

)
. (48)

The rotation matrix above, (47), corresponds to the matrix
built for the charged and pseudoscalars Higgs bosons mass
eigenstates, denoted by H±

1 , H±
2 ,G±,G0, A1 and A2.

Whereas the neutral part of the Higgs doublets, denoted by
H̃ , H̃a and H̃b do not correspond to their mass eigenstates,
but they are in the Higgs basis. Now, in order to diagonalize
the neutral sector we rotate through the angle α, obtaining
the relationship between the intermediate-basis states in the
Higgs basis and the physical states (mass eigenstates) for the
neutral scalars as
⎛
⎝ H̃
H̃a

H̃b

⎞
⎠ =

⎛
⎝ cos(α − θ) 0 sin(α − θ)

0 1 0
− sin(α − θ) 0 cos(α − θ)

⎞
⎠
⎛
⎝H1

h0

H2

⎞
⎠ . (49)

We can get the neutral physical states from either the direct
rotation Eq. (37), which transforms the interaction basis to the
physical basis (mass basis), or through a two step rotation,
from the interaction basis to the Higgs basis Eq. (47), and
then to the physical basis Eq. (49). Either way we obtain
the scalar Higgs masses given in Eqs. (40) and (41). We can
see from expression (49), that there will be two alignment
scenarios: (A) When H̃ = H2 corresponds to the SM-like
Higgs boson; (B) when we set H̃ = H1 corresponding to the
SM-like Higgs boson. H̃a already corresponds to the physical
state h0.

TheZ2 parity assignments for the physical and intermediate-
basis states are given in Table 1. Notice that in the align-
ment limits the intermediate-basis states become the physical
states.
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Table 1 Z2 parity assignment for the physical states h0, A1,2 and H±
1,2,

and the intermediate-basis states H̃ , and H̃b. In the alignment limit the
last two will correspond also to the physical states

Neutral scalars Pseudoscalars Charged scalars

h0 Odd A1 Odd H±
1 Odd

H̃ Even A2 Even H±
2 Even

H̃b Even

3.2.1 Gauge-Higgs sector

In here we examine the scalar kinetic structure of the
Lagrangian through the covariant derivative of the scalar
fields. It is important to analyse the covariant derivative for
scalar doublets in order to verify not only the electroweak
symmetry breaking mechanism (EWSB), i.e. the contribu-
tions of the vevs to the gauge boson masses, but also to find
the possible couplings among the Higgs and gauge bosons.
The kinetic terms are taken as usual

Lkin = (DμH1)
†(DμH1) + (DμH2)

†(DμH2)

+(DμHs)
†(DμHs). (50)

Using the Higgs basis and Eq. (49) in order to get the phys-
ical states, we obtain the electroweak gauge bosons masses,
W± and Z0, as well as their couplings with the Higgs bosons,
including the ones with Aμ, after performing the canonical
rotation with the weak angle. Using the covariant derivative
for the kinetic term, Eq. (50), in the Higgs basis and expand-
ing the Higgs field about the vacuum, we get the Lagrangian
in the physical basis. We show here some of the terms for
illustration, the complete set of explicit couplings are given
in next section and in Appendix A,

Lkin ≈ g2v2

4
W+

μ W−μ + g2v sin(α − θ)

2
H2W

+
μ W−μ

+g2

4
H2H2W

+
μ W−μ

+g2v cos(α − θ)

2
H1W

+
μ W−μ + g2

4
H1H1W

+
μ W−μ

+g2

4
h0h0W

+
μ W−μ + · · · +

+ (g2 + g
′2)v2

8
ZμZ

μ

+ (g2 + g
′2)v sin(α − θ)

4
H2ZμZ

μ

+ (g2 + g
′2)

8
H2H2ZμZ

μ

+ (g2 + g
′2)v cos(α − θ)

4
H1ZμZ

μ

+ (g2 + g
′2)

8
H1H1ZμZ

μ

+ (g2 + g
′2)

8
h0h0ZμZ

μ + · · ·
(51)

where H1, H2 and h0 are the physical states. Then, the
masses for the EW gauge bosons W± and Z0 are obtained
in the usual form

m2
W± = g2v2

4
, m2

Z = v2

4 (g2 + g′2) . (52)

Furthermore, as the model has two different charged
Higgs bosons H±

1 , H±
2 , we explicitly verified that mixed

charged Higgs and gauge bosons couplings do not appear
(e.g. H+

1 H−
2 γ ) as it should be in order to preserve the Z2

symmetry. We show it by calculating explicitly the part of
the Lagrangian for the photon (this is exhibited implicitly in
[66] as they calculate HSM → γ γ through a loop of charged
Higgs bosons)

LH+H−γ = igg′√
g2 + g′2

(
H+

1 ∂μH
−
1 − H−

1 ∂μH
+
1

+H+
2 ∂μH

−
2 − H−

2 ∂μH
+
2

)
Aμ. (53)

This is the usual expression that appears in other multi-Higgs
models with a specific symmetry [89]; it coincides exactly
with the one for some two Higgs doublet models [27], where
a Z2 was assumed. In our case, the Z2 is a subgroup of the
original S3, a residual symmetry left over after EWSB, and
not imposed separately.

In Sect. 4.1 we give the explicit form of the gauge-scalar
couplings of the H1 and H2 neutral Higgs bosons of the
model, in order to compare with SM couplings scenarios.
The rest of the couplings, for the extended scalar sector, are
given in Appendix 5.3, where we can see the manifestation
of the Z2 symmetry as it allows only certain couplings.

3.3 Higgs masses and scenarios

The neutral Higgs boson h0 is decoupled from the other two,
due to the residual symmetry Z2, as was reported already in
[66] (see Table 1). In the next section, we explicitly calculate
all possible tree level couplings among the scalars and also,
between the scalars and the gauge bosons. We show that,
as expected, due to the Z2 symmetry, h0 couples only in
even numbers to the gauge bosons Eq. (51). Also, its trilinear
scalar coupling is absent, as we will see in Sect. 4.2, Eqs.
(56) and (71), so it is immediately excluded as the SM-like
Higgs boson. Nevertheless, this neutral Higgs boson could
be interesting as a possible dark matter candidate, provided
it is the lightest particle in the Z2 odd sector, and has no
couplings to the SM fermions.

The above discussion leaves us with two possible scenar-
ios for which, either H1 or H2 is aligned to have the mass and
couplings of the SM Higgs boson, and the other one would be
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practically decoupled from the gauge bosons. We consider
both scenarios for the numerical analysis.

Scenario A is defined by setting H2, which has the lower
mass among H1 and H2, as the SM-like Higgs boson. We
further restrict the tree level value of its mass to be in the
range 120–130 GeV, taking into account that it will receive
radiative corrections. On the other hand, in scenario B the
heavier Higgs boson H1 is taken as the SM-like one, with its
mass restricted to the interval 120–130 GeV, as in the previ-
ous scenario. For these two scenarios, the alignment means
that the SM-like Higgs boson is maximally coupled to the
gauge bosons, while the other one is practically decoupled.
The alignment of the neutral scalar bosons in models with
extended scalar sectors, in what would be the equivalent to
our scenario A, is discussed in [90], as can be derived from
Eq. (49).

A third, less natural case, would be a non-alignment sce-
nario, where both Higgs bosons would couple equally or
similarly to the gauge bosons. This analysis would be more
complex, and a way to establish the non-observation of the
second neutral Higgs would be needed, we will not consider
that possibility here.

3.3.1 Higgs masses: scenario A

As already mentioned, in scenario A, from Eq. (49) we get
H̃ = H2, and we set H2 to be the SM-like Higgs boson with
mass ∼ 125 GeV. The alignment limit, given in Ref. [90], can
be seen explicitly in our case from Eq. (49) and corresponds
to

sin(α − θ) = 1 and cos(α − θ) = 0. (54)

In this scenario, H2 couples maximally to the gauge bosons,
and H1 is decoupled from the gauge bosons. The third neu-
tral scalar, h0, is always decoupled from the gauge bosons
due to the Z2 symmetry. A study of the masses in this sce-
nario has been performed in [66], but with slightly different
considerations as the ones taken here, as we explain below.

3.3.2 Higgs boson: scenario B

In scenario B, we take H1 as the SM-like Higgs boson, cou-
pled maximally to the gauge bosons (here from Eq. (49)
we have H̃ = H1). The alignment limit in this scenario is
expressed as

sin(α − θ) = 0 and cos(α − θ) = 1. (55)

Although H2 is always lighter than H1, as can be seen from
the expressions for the masses Eqs. (42) and (43), it does not
couple to the gauge sector in this scenario, thus it could escape
experimental detection. This scenario has not been analysed
in the S3-3H model before. This could be interesting in the
context of a possible Higgs decay of an exotic scalar with

mass m� = 96 GeV, as reported by CMS [91] and discussed
later.

Applying these alignment limits to the Higgs neutral
masses H1 and H2, Eqs. (42) and (43), the reduced expres-
sions in each scenario can be obtained.

3.4 Numerical analysis and results

From the tree level Higgs mass expressions Eqs. (30–33),
(42), and (43), we can calculate the masses in terms of
the Higgs self-couplings (a, . . . , h) and θ , where tan θ =
2v2/v3. We perform a scan on the eight self-couplings and
tan θ (see Eqs. (2) and (24)). We produce O(1011) points
with a pseudo-random generator, on these we first apply the
stability and unitarity constrains as given in Ref. [66], to cal-
culate the masses, and then we take out all points where the
charged Higgs scalar masses are below 80 GeV [92,93]. On
the surviving points, we apply the alignment constraints in
both A and B scenarios. Finally, we impose a restriction on
the mass of the respective SM-like Higgs boson. This gives
us the mass range at tree level for the scalars in this model,
with the above restrictions.

A similar analysis on scenario A has been performed in
ZDas:2014fea, but in their analysis they restricted the mass
of h0 to be always heavier than mH2 (the SM-like Higgs).
Another difference is that we have applied the alignment
limit within an approximation, to allow for the possibility
of a minimal coupling to the non-SM Higgs, and we also
allowed for a range of masses for the SM-like Higgs boson.
On the other hand, scenario B has not been analysed before.

In Fig. 1 we show the dependence of the three neutral
scalars masses mh0 ,mH1 , and mH2 on tan θ , for both sce-
narios, A in the left panel and B in the right one. The upper
two graphs correspond to the mass of h0, the two graphs in
the middle correspond to the mass of H1 and the two bottom
graphs correspond to the mass of the H2. The magenta points
correspond to the unitarity and stability constraints only (also
excluding charged Higgs boson masses below 80 GeV), the
maroon points, are a subset of the magenta ones, which also
satisfy the respective alignment limit in each scenario, with
a 10% uncertainty on the (α − θ ) values, i.e., ±0.1. Finally,
the green points are a subset of the maroon ones, in which the
SM-like Higgs boson mass has been restricted to the 120–130
GeV range.

As can be seen from the green points in Fig. 1, the restric-
tion of the H1 mass to the 120–130 GeV range constrains the
allowed values for h0 in scenario B, much more strongly than
the equivalent restriction in scenario A. In the case of h0 the
allowed upper bound for mh0 ∼ 600 GeV in scenario B, is
lower than in scenario A, where mh0 � 900 GeV. It can also
be seen from Fig. 1, that the Higgs neutral bosons could be
degenerate in mass, nevertheless once we restrict to the SM
value for one of them, this possibility gets drastically reduced
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Fig. 1 Dependence of the neutral scalar masses, mh0 and mH1,2 , on
tan θ for scenario A (left) and B (right). The magenta points comply
with the unitarity and stability conditions, the maroon points comply

further with the alignment conditions in each scenario. Finally, the green
ones have the SM-like mass restricted to mH2,1 = 125±5 GeV, respec-
tively

123



Eur. Phys. J. C (2021) 81 :942 Page 11 of 25 942

Fig. 2 Dependence of the masses mH1 , mH±
2

, and mA2 on tan θ for scenario A, applied with a 10% uncertainty (black points) and 1% uncertainty
(yellow points) on (α − θ). The points shown comply with the unitarity and stability conditions, and the restriction of mH2 = 125 ± 5 GeV

among H1 and H2, although h0 could be still degenerate in
mass with the other two (at tree level).

Notice that in both scenarios there exists the prospect of a
lighter neutral Higgs boson to explain the possible decay of
a scalar with mφ ∼ 96 GeV reported by CMS [91,94]. This
was reported as a γ γ excess signal that could be due to a
lighter neutral Higgs boson decay via a fermionic loop. This
exotic Higgs boson role could be played by the lighter H2 in
scenario B, since it is always lighter than the SM Higgs, or by
h0 in both scenarios if it has couplings to fermions. This pos-
sibility, of a second lighter Higgs scalar consistent with this
signal, has been explored in SUSY models in [95]. There are
also recent analyses along these lines in 2HDM and N2HDM
[96–98]. Experimental bounds on possible decays of this type
of Higgs bosons will constrain further the parameter space.

In Fig. 2 we present the masses of H1, H±
2 and A2 in sce-

nario A which satisfy the alignment limit, Eq. (54), applied

with a 10% and 1% uncertainty on the (α − θ) values. In
the graphs we show only the masses which are affected by
the precision of the values in (α − θ). The black points are
within 10% of the alignment limit and the yellow ones within
1%. The restriction to an alignment limit with 1% preci-
sion only appears as a noticeable difference for values of
log(tan θ) > 1, where the values of the masses are con-
strained to be below ∼ 1 TeV. The rest of the masses in sce-
nario A and the masses in scenario B are affected only very
slightly by changing the precision in the alignment limit.

Finally in Fig. 3, we show the pseudoscalar masses mA1,2 ,
and charged Higgs masses mH±

1,2
dependence on tan θ , after

all constraints have been applied, including when one of the
neutral scalars is restricted to be the SM-like Higgs boson.
As already mentioned, points where mH±

1,2
< 80 GeV have

already been excluded in every figure. The figures are shown
with a precision of 10% in the alignment limits. The first
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Fig. 3 Dependence of the two pseudoscalar massesmA1,2 (upper panel) and charged scalarsmH±
1,2

(lower panel) on tan θ . The points shown comply

with the constraints of previous figures plus the bounds on the SM-like Higgs boson mass for each scenario

two graphs correspond to the masses of the pseudoscalars in
each scenario (A in the left, B in the right), the orange points
represent the mass of A2 and the purple ones represent the
mass of A1. The last two graphs correspond to the masses of
the charged scalars in each scenario, the cyan points represent
the mass of H±

2 and the pink ones represent the mass of H±
1 .

From this figure we can see what are the upper bounds for
these masses, and that for small values of tan θ they will be
constrained to be below ∼ 1 TeV. It can also be seen that
there are regions in parameter space where the masses can
be very close in value. This is relevant when calculating the
values of the trilinear and quartic couplings, as well as the
possible contributions to the oblique parameters, as will be
discussed in next section.

We want to highlight here that these are tree level masses,
radiative corrections will change their actual theoretical
value, which in the case of the one identified as the SM Higgs,

we have taken into account with a conservative uncertainty
of ±5 GeV. A next-to-leading order (NLO) calculation of the
masses should be done in order to give more accurate theo-
retical predictions, that could be tested at the LHC or future
colliders. Work in this direction is proposed in [99]. NLO
analytical expressions for the scalar contributions are given
in 4.4. In order to perform a numerical calculation for these
loop corrections, we need to establish the parameter depen-
dence for the trilinear and quartic Higgs couplings, which we
have calculated and whose expressions are given in Sect. 4.2
and in Appendix A.

An analysis of the scalar sector of a similar model with
4 Higgs doublets (S3-4H) [75], where the fourth doublet is
inert and with some considerations in the Yukawa sector,
shows that the region that satisfies the bounds on extra scalar
searches [100], prefers values of tan θ � 5. As we will see
in next section, this might also apply here.
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4 Higgs couplings

In this section we calculate the trilinear and quartic cou-
plings among the Higgs bosons, as well as with the gauge
bosons, and give the analytical expressions in terms of the
physical parameters. We analyse the contributions of these
couplings to the neutral one-loop scalar mass matrix. We give
the explicit expressions for scenario A.

4.1 Gauge-Higgs couplings

We expand the scalar kinetic Lagrangian term, Eq. (51), to
calculate the couplings to the EW gauge bosons, performing
the usual EW rotation on the gauge fields W 3

μ and Bμ.
The residual Z2 symmetry manifests itself also in the

gauge-Higgs couplings. We show here the couplings of gauge
bosons with the three neutral scalars, the rest of the couplings
are given in Appendix A, in this expression we have not taken
into account the combinatorial factor from two identical par-
ticles in the Lagrangian term. Notice that h0 does not couple
in a single scalar coupling with the gauge bosons but it does
in pairs with gauge bosons:

gh0W±W∓ = 0, gh0Z Z = 0; (56)

gH1W±W∓ = 2M2
W cos(α − θ)gμν

v
,

gH2W±W∓ = 2M2
W sin(α − θ)gμν

v
; (57)

gH1Z Z = M2
Z cos(α − θ)gμν

v
,

gH2Z Z = M2
Z sin(α − θ)gμν

v
; (58)

gh0h0W±W∓ = M2
Wgμν

v2 , gh0h0Z Z = M2
Z g

μν

2v2 ; (59)

gH1H1W±W∓ = M2
Wgμν

v2 , gH2H2W±W∓ = M2
Wgμν

v2 ; (60)

gH1H1Z Z = M2
Z g

μν

2v2 , gH2H2Z Z = M2
Z g

μν

2v2 . (61)

The form of the cubic couplings reflects the residual Z2

symmetry. The couplings of the gauge bosons with h0 vanish,
as expected. The expressions for the gauge couplings to the
other two neutral scalars H1,2 are similar to the ones in the
2HDM [30], reflecting the fact that these two scalars decouple
from h0 due to the Z2 symmetry.

For the trilinear couplings, in the exact alignment limit,
only the ones corresponding to the SM-like Higgs boson in
each scenario will be different from zero.

4.2 Higgs-Higgs couplings

The trilinear and quartic Higgs couplings will be important to
estimate radiative corrections, in particular for the SM Higgs,
as well as possible loop contributions to physical processes.
Previously, the trilinear couplings for the neutral scalars in
the 3HDM with S3 symmetry were reported in [67], never-
theless our results differ from the ones calculated there. On
the other hand, our expressions for the trilinear couplings do
coincide with the presence of a residual Z2, as reported in
[66]. Besides the confirmation of this residual symmetry, we
additionally show that the couplings reduce to the SM ones
for the particular alignment limits.

The self-couplings given in the Higgs potential, Eq. (2)
can be obtained in terms of physical parameters using the
rotation matrices. The angle α given in Eq. (36) can be re-
written using the relations we obtained in Eq. (41). Thus,
we can write Eq. (35) in terms of the physical Higgs masses
and rotation angle α. Moreover, also using Eqs. (30)–(33)
and Eqs. (40)–(41), we obtain expressions for the self-
couplings in the scalar potential, Eq. (2), given in terms of
the physical parameters i.e. masses, vevs, and rotation angles
(v,m2

h0
,m2

H1
,m2

H2
,m2

A1
,m2

A2
,m2

H±
1

,m2
H±

2
, tan α, tan θ ), as

a = 1

v2 cos2 θ

[
m2

H1
cos2 α + m2

H2
sin2 α − 1

9
m2

h0
tan2 θ

]
,

(62)

b = 1

v2

[
sin 2α

sin 2θ
(m2

H1
− m2

H2
) + m2

h0

9 cos2 θ
+ 2m2

H±
2

]
, (63)

c = 1

v2 sin2 θ

[
m2

H1
sin2 α + m2

H2
cos2 α

−1

9
m2

h0
− m2

H±
2

cos2 θ + m2
H±

1

]
, (64)

d = 1

v2 sin2 θ

[
(m2

H±
1

− m2
A1

) − (m2
H±

2
− m2

A2
) cos2 θ

]
,

(65)

e = − 4m2
h0

9v2 sin 2θ
, (66)

f = 1

v2

[
m2

h0

9 cos2 θ
+ m2

A2
− 2m2

H±
2

]
, (67)

g = 1

v2 sin2 θ

[
4

9
m2

h0
+ m2

H±
2

cos2 θ − m2
H±

1

]
, (68)

h = 1

v2

[
m2

h0

9 cos2 θ
− m2

A2

]
. (69)

This parameterization of the scalar potential self-couplings
differs slightly from the ones presented in other works, as
in [66,67], due to our normalization of the couplings in the
scalar potential.
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From the scalar potential we can get the trilinear scalar
couplings as usual, where all possible combinations are given
from the terms considered in the potential.

− iλi jk = −i∂3V

∂Hi∂Hj∂Hk
. (70)

As we already mentioned, the Z2 residual symmetry
present will imply a vanishing trilinear h0h0h0 due to its
odd charge under Z2, we explicitly confirmed this and also
obtain the other trilinear and quartic scalar couplings. These
couplings are essential in order to determine experimentally
the shape of the actual Higgs potential. To this end, a one-loop
calculation of the self-energy corrections and vertices should
be performed. Moreover, it is possible to restrict parameters
from the SM Higgs boson mass corrections, as we are going
to consider in next section.

The following analytical expressions are the scalar-scalar
couplings written in the physical basis and in terms of the
physical parameters:1

gh0h0h0 = 0, (71)

gH2H2H2 = − 1

v s2θ

[
m2

h0

c3
α−θ

9c2
θ

+ m2
H2

(
c2
αcα−θ − sαsθ

)]
,

(72)

gH1H1H1 = 1

v s2θ

[
m2

h0

s3
α−θ

9c2
θ

− m2
H1

(
c2
αsα−θ − sαcθ

)]
,

(73)

gh0h0H1 = 1

v s2θ

(m2
h0
sα+θ + m2

H1
sαcθ ), (74)

gh0h0H2 = − 1

v s2θ

(m2
h0
cα+θ + m2

H2
cαcθ ), (75)

gH1H1H2 = − sα−θ

vs2θ

(
m2

h0

(
s2(α−θ)

6c2
θ

)

+m2
H1
s2α + m2

H2
s2α

2

)
, (76)

gH1H2H2 = cα−θ

vs2θ

(
m2

h0

(
s2(α−θ)

6c2
θ

)

+m2
H1
s2α

2
+ m2

H2
s2α

)
, (77)

here we use the reduced notation sx ≡ sin x , cx ≡ cos x and
tx ≡ tan x .

In the following we show the analytical expressions for the
trilinear couplings between scalars and pseudoscalars, as well
as with the Goldstone boson. The residual Z2 symmetry is
also evident in the allowed couplings with the pseudoscalars

1 As we mentioned in the previous section the symmetry factor n! has to
be added in front of the couplings for n identical particles in the vertex.

(the forbidden ones are not present), which are given as:2

gA1A1H1 = 1

vsθ

(
−m2

h0

sα−θ

6cθ

+ 1

2
m2

H1
sα

+m2
A1
sα − m2

A2
cθ sα−θ

)
, (78)

gA1A1H2 = 1

vsθ

(
m2

h0
cα−θ

6cθ

− m2
H2
cα

2

−m2
A1
cα + m2

A2
cθcα−θ

)
, (79)

gA2A2H1 = 1

vs2θ

(
m2

h0
sα−θ

9c2
θ

+ m2
H1

(
sαc

3
θ − cαs

3
θ

)

+m2
A2
s2θcα−θ

)
, (80)

gA2A2H2 = 1

vs2θ

(
−m2

h0
cα−θ

9c2
θ

+ m2
H2

(
sαs

3
θ − cαc

3
θ

)

+m2
A2
s2θ sα−θ

)
, (81)

gA1A2h0 = 2

3vs2θ

(
−m2

h0
(c2θ + c2

θ )

+3m2
A1
c2
θ − 3m2

A2
c2
θ

)
, (82)

gH2G0G0 = m2
H2
sα−θ

2v
,

gH1G0G0 = m2
H1
cα−θ

2v
, (83)

gH2G0A2 = cα−θ

v
(m2

H2
− m2

A2
),

gH1G0A2 = sα−θ

v
(−m2

H1
+ m2

A2
), (84)

gh0G0A1 = 1

v
(m2

h0
− m2

A1
). (85)

The couplings involving charged Higgses can be found
in the Appendix. The diagonalization of the mass matrices
leaves a structure which is similar to a 2HDM in the 2 × 2
block, which is Z2 even (H2, H1, H

±
2 , A2), plus decoupled

particles which are Z2 odd (H±
1 , A1, h0). Notice though,

that the allowed parameter spaces of both models might
be different due to the extra Z2 odd scalar particles and
their associated couplings in our model as compared to the
2HDM. For instance, we have possible extra channels for
SM Higgs boson production and di-Higgs production, which
in the LHC could be pp → Hqq and pp → HH →
bb̄γ γ, bb̄bb̄, bb̄τ+τ− respectively, which will happen via
the exchange of oddZ2 scalars, and will depend on the scalar
trilinear couplings and on the Yukawa couplings of the model.
There will also be loop corrections to the SM Higgs mass
due to the Z2 odd particles, which are absent in the 2HDM.
These processes may provide a possible way to differentiate

2 The couplings with the Goldstone boson may be important depending
on the renormalization procedure used.
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this model from the 2HDM in the alignment limit [30]. These
type of analyses should be performed in order to have more
precise predictions and bounds on the parameter space of the
model.

From expressions (82, 104) it can be seen that the tri-
linear couplings among h0 and the other Z2 odd particles
are allowed. As already mentioned, h0 may be a dark mat-
ter candidate, provided it has no couplings to SM fermions
and it is the lightest particle in the Z2 odd sector, thus
mH±

1
,mA1 > mh0 .

The quartic scalar couplings written in the physical basis
and in terms of the physical parameters are calculated from

− iλi jkl = −i∂4V

∂Hi∂Hj∂Hk∂Hl
. (86)

We also give the analytical expressions for the quartic self-
scalar couplings written in the physical basis and in terms
of the physical parameters. We are interested in particular
in the couplings with H1,2, in order to compare with the
SM ones in the alignment limits. The quartic couplings also
necessary to calculate the one-loop corrections to the Higgs
bosons masses. We give here some explicit four scalar cou-
plings examples, the rest of the couplings can be found at the
Appendix A.2:

gh0h0h0h0 = 1

24v2s2
θ

(
m2

h0
+ 3m2

H1
s2
α + 3m2

H2
c2
α

)
, (87)

gH1H1H1H1 = 1

2v2s2
2θ

(
m2

h0
s3
α−θ

(sα−θ + 2sα+θ )

9c2
θ

+m2
H1

(s2
αsα−θ + cαsθ )

2 + m2
H2

s2
2αs

2
α−θ

4

)
,

(88)

gH2H2H2H2 = 1

2v2s2
2θ

(
m2

h0
c3
α−θ

(cα−θ + 2cα+θ )

9c2
θ

+m2
H1

s2
2αc

2
α−θ

4
+ m2

H2
(c2

αcα−θ − sαsθ )
2
)

.

(89)

4.3 Couplings in scenario A

We show here how the scalar couplings are reduced in the
alignment limit of scenario A. Recalling that the alignment
limit is given as, sin(α − θ) = 1, cos(α − θ) = 0, the
trigonometric functions for α and θ satisfy the following
relations

sin α = cos θ; cos α = − sin θ; sin 2(α − θ) = 0;
cos(3α − θ) = sin 2θ; sin(α + θ) = cos 2θ;

cos(α + θ) = − sin 2θ. (90)

In scenario A in the alignment limit, the Higgs boson H2

trilinear coupling coincides exactly with the trilinear cou-

pling of the SM Higgs boson λSM ,

gH2H2H2 = 1

v s2θ

[
m2

H2
sαsθ

]

= 1

2v

sα
cθ

m2
H2

= m2
H2

2v
≡ λSM . (91)

And the H1 trilineal couplings reduces to

gH1H1H1 = 1

v s2θ

[
1

9c2
θ

m2
h0

− s2
θm

2
H1

]

= 1

v s2θc2
θ

[
1

9
m2

h0
− 1

2
s2θm

2
H1

]
. (92)

The H2 quartic coupling (88) also reduces exactly to the SM
one in the alignment limit,

gH2H2H2H2 = 1

2v2s2
2θ

m2
H2

(−s3
θ cθ − c3

θ sθ )
2

= m2
H2

8v2 . (93)

The H2 − h0 quartic coupling reduces in this limit to

gH2H2h0h0 = 1

v2s2θ

(
1

6
m2

h0
3s2θ + 1

4
m2

H2
s2θ

)

= 1

4v2 (2m2
h0

+ m2
H2

) . (94)

Some of the reduced scalar couplings for scenario A
depend only on the masses involved, and are given as

gH2h0h0 = 1

2v
(m2

H2
+ 2m2

h0
),

gH2A1A1 = 1

2v
(m2

H2
+ 2m2

A1
),

gH2A2A2 = 1

2v
(m2

H2
+ 2m2

A2
),

gH2H
±
1 H∓

1
= 1

v
(m2

H2
+ 2m2

H±
1

),

gH2H
±
2 H∓

2
= 1

v
(m2

H2
+ 2m2

H±
2

),

gH2H2H2H1 = gH1H1H1H2 = 0. (95)

From these expressions, a lower bound for all the scalar
masses (other than H1, which is always heavier than H2 in
this scenario), can be set at � 63 GeV, since there is no
experimental observation of decays of the SM-Higgs boson
to other scalars. This is in natural agreement with the current
bounds for charged scalars, which set their masses above
∼ 80 GeV [92,93]. The recent signal for the rare three-body
decay of the SM Higgs boson to photon and dileptons [101],
will put extra constraints in the values of the allowed trilinear
couplings.

The couplings of the gauge bosons to the SM Higgs have
been determined with a ∼ 5% precision [25,26,102]. From
our tree level expressions for the gauge-Higgs couplings,
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Eqs. (57, 58) we can parameterize a deviation of the SM
value by

cos(α − θ) = cos(
π

2
− ε) = sin ε ≡ δ, (96)

where in the exact alignment limit δ = 0 = ε. A value of
δ � 0.1 is compatible with the current experimental mea-
surements and is consistent with our assumption of a 10%
deviation of the alignment limit in (α − θ) in Fig. 1.

On the other hand, a deviation in the SM trilinear self-
coupling λSM will have an impact in di-Higgs production
at tree-level [103,104], single Higgs boson production and
decays at one-loop level [105], as well as in electroweak
precision observables at two-loop level [106]. In our case,
we can describe a small deviation of the alignment limit at
tree level in terms of δ, θ and mh0 as

gH2H2H2 ≡ λSMκλ = m2
H2

2v

[
(1 + 2δ2)

√
1 − δ2

+δ3(tan θ − cot θ) − m2
h0

m2
H2

δ3

9sθc3
θ

]
, (97)

where the term in square brackets κλ, is the scaling factor that
parameterizes the deviation of the SM Higgs trilinear self-
coupling, in this case at tree level. The value of the trilinear
self coupling has already been constrained experimentally
[102,107]. In here, we will make use of the modifier or κ

framework [108] and the results in [109], where they set
limits to κλ, assuming the rest of the SM Higgs couplings
to fermions and gauge bosons are the same or very close to
the SM. In our case, the value of κλ will depend on δ, mh0

and θ . From Fig. 1 we can see the dependence on mh0 on
tan θ , which for a given δ allows us to determine the value
of κλ. As an example we take δ ∼ 0.1 and we fix mh0 to
its possible maximum value for a given tan θ . In order to
satisfy the bounds −1.8 < κλ < 9.2, as determined in [109],
tan θ � 15. For smaller values of δ larger values of tan θ are
allowed.

In case the alignment limit is exact, λSM will still get cor-
rections, but at loop level. In that case the factor κλ will have
a different expression, and depending on how complicated it
is and what other restrictions are taken into account it might
be possible to restrict the parameter space through it.

Analogous expressions for the couplings can be found for
scenario B. In this case, the SM-like Higgs boson would be
H1 and the other neutral Higgs, H2, would be lighter than the
SM-like, at tree level. As we already discussed, we cannot
fully discard this possibility since in this alignment scenario,
H2 would not have couplings to the gauge bosons, and it
could escape experimental detection.

We do not consider the most general case, without any
alignment, since it implies that both neutral Higgs bosons
couple to the gauge bosons, which is highly restricted from
the experimental data.

4.4 Higgs one-loop self energy

As we said before, the importance of having explicitly the
Higgs couplings is relevant to calculate the radiative correc-
tions or the possible loop contributions to different processes
where the Higgs bosons are involved, including the radiative
corrections to the SM Higgs mass and its renormalization
[110]. For any BSM model the extra contributions to the
oblique parameters [111], should fit the experimental data.
There is work done in this direction for multi-Higgs models in
[82,83], where they explore the parameter space for N-Higgs
doublet models. Their results imply that the Higgs masses
should be almost degenerate, in a compact scalar spectrum.
In their work, the assumption is that the new Higgs bosons
mass scale should be above the EWSB scale, and that all
scalars couple to the gauge bosons. In our case, from the
explicit form of the couplings, as e.g. in Eq. (56), it can be
seen that some Higgs loop contributions will not be present,
so the relevant loop contribution calculated in [83] will not
appear for h0, meaning that the restriction of mh0 > mV

(with V = W, Z ) considered there is not required in our
case. The same applies for the other Higgs bosons, (not the
SM-like) considered in the two alignment scenarios that we
explore in this work, where some of the couplings to gauge
bosons are null.

Considering CP-invariance, the renormalized neutral Higgs
masses would be written as two diagonal 3 × 3 block matri-
ces, one for the CP-even neutral states of the Higgs doublets
(h0, H1, H2), and the second for the CP-odd Higgs states
(A1, A2,G0)

M2
φ0(s) = M(0)2

H +
(

�̂S(s) 0
0 �̂P (s)

)
, (98)

where M(0)2
H is the Higgs mass matrix at tree level given in

Sect. 3, the neutral part of expression (25), with explicit tree-
level neutral masses given in (40), (41), (30) and (31). The
complete renormalized neutral Higgs self-energies at one-
loop level, �̂S(s) should be taken with the usual prescription,
given for example in [112], adapting it to the S3-3H model.

In our model, the one-loop contributions to the unrenor-
malized mass corrections �S,(q̃)(s), that come only from the
scalar sector self-energy, denoted as �φ , would indicate cor-
rections due to scalar bosons on the loop. In general we would
have corrections to the Higgs masses considering scalar and
gauge bosons, as well as fermions; in particular to the neutral
scalar mass matrix we will have:

�S,(q̃)(s) = �φ(s) + �V (s) + � f (s). (99)

Due to the Z2 residual symmetry, the only trilinear cou-
pling that involves a single h0, which would give rise to a one-
loop mass correction, is the one with two different charged
scalars h0H

±
1 H∓

2 (Eq. (104) in the Appendix). This mixed
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charged Higgs coupling is not present for the other two neu-
tral Higgs bosons, avoiding the mixing of h0 with the other
neutral scalars at one-loop level, in this case via charged
Higgs loops.

For the quartic couplings, there is no coupling that involves
a single h0 with a pair of identical Higgs bosons (including
with three identical ones), see Appendix A.2. This implies
that there are no possible mass one-loop corrections that
could mix h0 with the other neutral scalars, H1 and H2. More-
over, we can see from the gauge couplings with h0 given in
Sect. 4.1, that there are only corrections to the h0 mass but
no mixing with other neutral Higgs bosons. Thus, the decou-
pling is kept at one-loop level, as expected, with the con-
sequence that the one-loop neutral scalar mass matrix will
attain a block diagonal form

�φ(s) + �V (s) =
⎛
⎜⎝

�
φ,V
h0

(s) 0 0

0 �
φ,V
H1

(s) �
φ,V
H1H2

(s)

0 �
φ,V
H2H1

(s) �
φ,V
H2

(s)

⎞
⎟⎠ .

(100)

We see from the above expression, that even at one-loop
the h0 scalar is decoupled from the other two, so the mass
matrix structure of the other two neutral scalars is similar to
the 2HDM. Nevertheless, there will be loop corrections to the
H1,2 masses due to h0, as can be seen from the couplings (74)
and (75). On the other hand, h0 will also receive corrections
to its mass via the gauge boson loop, due to the allowed
couplings (59).

The general scalar and gauge bosons contributions to the
square mass terms for H2 and H1 are given as:

�
φ,V
Hn

=
∑
i

gHnHnφ
0
i φ0

i

16π2 A0(m2
φ0
i
)

+
∑
i, j

g2
Hnφ

0
i φ0

j

8π2 B0(p2,m2
φ0
i
,m2

φ0
j
)

+
∑
k

g2
Hnφ

±
k φ∓

k

8π2 B0(p2,m2
φ±
k
,m2

φ±
k
)

+
∑
i

gHnHnVi Vi

16π2 A0(m2
Vi )

+
∑
i

g2
HnVi Vi

8π2 B0(p2,m2
Vi ,m

2
Vi ), (101)

with n = 1, 2.3 For the mixing term H12 we get

�
φ,V
H1H2

=
∑
i

gH1H2φ
0
i φ0

i

16π2 A0(m2
φ0
i
)

3 The terms where gauge bosons are involved show only the coupling
contributions, the actual calculation will have to involve the gauge fix-
ing.

+
∑
i, j

gH1φ
0
i φ0

j
gH2φ

0
i φ0

j

8π2 B0(p2,m2
φ0
i
,m2

φ0
j
)

+
∑
k

gH1φ
±
k φ∓

k
gH2φ

±
k φ∓

k

8π2 B0(p2,m2
φ±
k
,m2

φ±
k
)

+
∑
i

gH1Vi Vi gH2Vi Vi

8π2 B0(p2,m2
Vi ,m

2
Vi )

+
∑
k

gH1φ
±
k W∓gH2φ

±
l W∓

8π2 B0(p2,m2
φ±
l
,m2

W ),

(102)

where φ0
i( j) = h0, H1, H2, A1, A2,G0, φ±

k = H±
1,2,G

±

and Vi = W±, Z0. In these expressions, A0 and B0 are the
Passarino-Veltman functions of the masses involved [113].
The radiative contributions to the mixing of �

φ,V
H1H2

(s) reduce
when we apply the alignment limit. For scenario A, the cou-
plings reduce such that the one-loop corrections to the mixing
term are given as follows

�
φ
H1H2

=
∑
i

gH1H2φ
0
i φ0

i

16π2 A0(m2
φ0
i
)

+
∑
i

gH1φ
0
i φ0

i
gH2φ

0
i φ0

i

8π2 B0(p2,m2
φ0
i
,m2

φ0
j
)

+
∑
k

gH1φ
±
k φ∓

k
gH2φ

±
k φ∓

k

8π2 B0(p2,m2
φ±
k
,m2

φ±
k
),

(103)

in this case we will only have φ0
i = h0, A1, A2, φ±

k = H±
1,2,

since all the terms involving gauge and Goldstone bosons
vanish, so we simplify the notation to �

φ
H1H2

. This is taking
into account only the scalar and gauge contributions to the
one-loop corrections. An equivalent expression can be found
for scenario B.

We explore the structure of the loop contributions to the
h0, H1 and H2 masses coming from the gauge bosons and
all scalars (neutral scalars and pseudoscalars, and charged
scalars) by fixing the tree level masses and varying the θ

parameter.
A mixing term for H1 and H2 in the mass matrix, Eq. (100),

would imply that they are not the true eigenstates. At one-loop
level, we would expect this mixing parameter to be small, as
the tree level should be the dominant order. Formally, we
should take the poles of the propagator of the mass matrix at
the order we are calculating to obtain the masses of the par-
ticles, in order to define two different states the mass matrix
should be diagonalized at n-loop order [110]. Keeping this
corrections small, is another condition we could consider to
constrain the free parameters of the model. Although com-
plete NLO corrections should be taken into account (includ-
ing fermions), our goal here is to show the importance of
having the explicit form of the cubic and quartic couplings
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in order to be able to calculate loop corrections, which are
functions of the model’s parameters.

In Table 2 we present two example sets of parameters
for these corrections under scenario A. The choice of the
benchmark points where these mixing parameters vanish, is
meant to exemplify that there are regions of parameter space
where indeed these one-loop corrections may be small. These
examples correspond to points in parameter space where the
mixing term in the mass matrix Eq. (100) vanishes.

For the light scalar spectrum we achieve �
φ
H1H2

(s) = 0
with tan θ = 1, but the scalar masses are different, so the
condition to keep the contributions to the oblique parameters
S, T , small might not be met. On the other hand, we find a
spectrum with heavier scalar masses, where �

φ
H1,2

(s) = 0
and tan θ ∼ 2. A complete numerical exploration of these
corrections could restrict more the parameter space, as they
should be kept small. Our goal here is only to show the pos-
sible loop corrections that will be present in their general
form. The small value of tan θ found in these two exam-
ples indicates a maximal mixing between the S3 singlet and
doublet (see Eqs. (44, 45)). It is also consistent with a numer-
ical study of the S3-4H model (basically the S3-3H with one
extra inert Higgs doublet), where compliance with the exper-
imental Higgs bounds was found for small values of tan θ ,
assuming certain conditions on the Yukawa couplings [75].

Results in Table 2 are not conclusive, since we should take
into account the fermionic contributions to have a more accu-
rate estimation of the radiative corrections to scalar masses.
In particular, the top quark contribution is expected to be
sizeable, due to its large Yukawa coupling. Work along these
lines is in progress.

5 Summary and conclusions

The S3-3H model is an interesting and promising extension
of the SM, that can accommodate well the masses and mix-
ing of the quarks, leading to the NNI matrices [42], as well
as leptons, where it naturally gives a non-zero reactor mixing
angle [52,57]. In this paper we studied the gauge and scalar
sectors of this model. We chose a geometrical parameteri-
zation in spherical coordinates, which allowed us to express
our results and analytical expressions in terms of the mix-
ing angle, tan θ , between fields in the doublet and the singlet
irreps. From here it became clear that, in order to have real-
istic physical scenarios, without massless scalars, this mix-
ing must be always different from zero. As previously found
[66], there is a residual Z2 symmetry, which decouples one
of the neutral scalars h0 from the gauge bosons. This raises
the interesting possibility of treating this decoupled scalar as
a dark matter candidate, although we still have to probe its
fermionic couplings. This possibility will be explored in a
forthcoming publication.

We performed a numerical analysis on the parameter
space, taking into account unitarity and stability bounds,
as well as the current experimental bounds on the charged
masses. We studied two possible alignment scenarios, A and
B, in which one of the two Z2 even neutral scalars H1,2, is
maximally coupled to the gauge bosons, and is thus taken
to be as the SM Higgs. In scenario A, the lighter of the two
neutral scalars, H2, is the SM-like Higgs boson. The other
possibility, scenario B, where the heavier H1 is the SM-like
Higgs boson, cannot be a priori excluded, since H2 could
have escaped detection due to the absence of couplings to
the vector bosons.

We found the allowed ranges for the scalar masses, in
terms of tan θ in each alignment scenario, with a 10% and
1% precision on the (α − θ) values. Our results show a clear
restriction for all the scalar masses, which are mostly below
TeV. This corroborates similar analysis in this direction for
scenario A, given in [66] (although we allowed for a small
deviation of the alignment limit, and for some uncertainty in
the SM Higgs mass). Scenario B in this model has not been
analysed before. The light H2 scalar in this scenario opens
the possibility that it might be regarded as the 96 GeV scalar,
which was suggested as a diphoton signal reported by CMS
[91], and discussed in the literature in the context of SUSY
and 2HDM models [95,96,98]. The same is possible for h0

in both alignment limits.
We calculated all trilinear and quartic couplings between

the Higgs bosons, and also among the Higgs and gauge
bosons, giving analytical expressions in terms of the phys-
ical parameters of the model. We found discrepancies with
previously reported trilinear scalar couplings in this model
given in [67], where the Z2 symmetry is not reported nor
explicitly present. On the contrary, our expressions do con-
firm the existence of the residual Z2 symmetry, as only Z2

preserving couplings are present, consistent with the model
structure reported in [66], although they do not give the cou-
plings explicitly. In our expressions, both the trilinear and
quartic couplings for the SM-like Higgs boson reduce to the
SM ones in the exact alignment limits.

From our numerical analysis we found that the scalar
masses could be very close or even degenerate, but since
we performed a random scan of the Higgs self-couplings,
the allowed masses shown do not imply they are necessar-
ily degenerate for the same set of parameters, although we
do find specific examples where this is the case. One such
example is the heavy spectrum of Table 2, where all the scalar
masses are degenerate, as is required to keep the contribu-
tions to the oblique parameters small.

The small deviation δ we considered of the alignment limit
at tree level, is compatible with the latest experimental results
on Higgs-gauge boson couplings. This deviation can also be
used to parameterize the contribution of the extra scalars of
our model to the SM trilinear coupling λSM . The current
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Table 2 Parameter values in
scenario A that make the
one-loop mixing parameter
vanish, �

φ
H1H2

= 0, taking into
account only the scalar and
gauge contributions

Scalar benchmarks Masses (GeV) tan θ

light spectrum mh0 = 80, mH1 = 200, mA1,2 = 80, mH±
1,2

= 100 1

heavy spectrum mh0 = 800, mH1 = 800, mA1,2 = 800, mH±
1,2

= 800 2.1

fits on the λSM value, and our assumption of a deviation
of the alignment limit of δ ∼ 0.1, sets an upper bound on
tan θ � 15.

In the exact alignment limit, some of the trilinear cou-
plings depend only on the scalar masses, which sets a natural
lower bound for all masses (other than H1,2) to � 63 GeV,
since no SM Higgs decay into two lighter scalars has been
observed experimentally. The inclusion of radiative correc-
tions might change these bounds.

We obtained the analytical expressions for the one-loop
corrections to the SM-like Higgs, due to scalar and gauge
bosons in the loop, and found that the decoupling of h0

remains at one-loop level, as expected from a symmetry of the
Lagrangian. From the reduced expressions for the couplings
in scenario A, we calculated the value of tan θ for which the
one-loop mixing of H1 and H2 vanishes, �

φ
H1H2

= 0, for
two benchmark mass values. These results point to a value
of tan θ ≈ O(1), indicating a large mixing between the S3

doublet and the singlet, consistent with what was reported in
[75].

The model has different one-loop couplings to the Higgs
bosons through the extra Z2 odd particles (A1, H

±
1 , h0), as

compared to the 2HDM. Thus, although it reduces to a form
similar to the 2HDM due to the presence of the residual Z2

symmetry, the extraZ2 odd particles will change the possible
channels for decay and production of particles, and also the
structure of radiative corrections. In particular they will have
an impact on SM Higgs production, di-Higgs production, and
loop corrections to the SM Higgs boson mass.
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Appendix A: Higgs couplings

5.1 A.1 Scalar trilinear couplings

Here we explicitly write down the trilinear couplings of neu-
tral with charged Higgs bosons and the rest of allowed quartic
couplings of Higgs bosons. Here we are able to see the resid-
ual Z2 symmetry, the rest of the couplings are absent, as can
be found from the direct calculation given in (70) and (86)

gh0H
±
1 H±

2
= 1

3vsθ

(
−m2

h0

c2θ + c2
θ

cθ

+3m2
H±

1
cθ − 3m2

H±
2
cθ

)
, (104)

gH1H
±
1 H±

1
= 2

vs2θ

(
−m2

h0

3
sα−θ + m2

H1
cθ sα

+2m2
H±

1
cθ sα − 2m2

H±
2
c2
θ sα−θ

)
, (105)

gH2H
±
1 H±

1
= 2

vs2θ

(
m2

h0

3
cα−θ − m2

H2
cθcα

−2m2
H±

1
cθcα + 2m2

H±
2
c2
θcα−θ

)
, (106)

gH1H
±
2 H±

2
= 2

vs2θc2
θ

(
m2

h0

9
sα−θ + m2

H1
c2
θ

(
sαc

3
θ + cαs

3
θ

)

+m2
H±

2
s2θc

2
θcα−θ

)
, (107)

gH2H
±
2 H±

2
= 2

vs2θ

(
−m2

h0

cα−θ

9c2
θ

− m2
H2

(cαc
3
θ − sαs

3
θ )

+m2
H±

2
sα−θ s2θ

)
, (108)

gH2G±G± = m2
H2
sα−θ

v
, (109)

gH1G±G± = m2
H1
cα−θ

v
, (110)

gh0H
±
1 G± = 1

v
(m2

h0
− m2

H±
1
), (111)
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gH2H
±
2 G± = cα−θ

v
(m2

H2
− m2

H±
2
), (112)

gH1H
±
2 G± = sα−θ

v
(−m2

H1
+ m2

H±
2
), (113)

gA1H
±
1 G∓ = ∓1

v
(m2

H±
1

− m2
A1

+ 2c2
θ (m

2
A2

− m2
H±

2
)), (114)

gA2H
±
2 G∓ = ±1

v
(m2

H±
2

− m2
A2

), (115)

gA1H
±
1 H∓

2
= ± 1

vtθ
(m2

H±
1

− m2
A1

+ c2θ (m
2
A2

− m2
H±

2
)).

(116)

5.2 A.2 Quartic scalar couplings

gH2H2H1H1 = 1

16v2s2
2θ

(4m2
h0
s2(α−θ)

3c2
θ

(
2s2α + s2(α−θ)

)

−2m2
H1
s2α(3c2αs2(α−θ)

−3s2α + s2θ ) + 2m2
H2
s2α(3c2αs2(α−θ)

+3s2α + s2θ )

)
, (117)

gH2H2h0h0 = 1

2v2s2
2θ

(
m2

h0

(
c2
α+θ − 1

3
c2
α−θ

)
+ m2

H1
cθ sαs2αcα−θ

+m2
H2
cθcα (cα+θ + c2αcα−θ )

)
, (118)

gH1H1h0h0 = 1

2v2s2
2θ

(
m2

h0

(
s2
α+θ − 1

3
s2
α−θ

)

+m2
H1
cθ sα (sα+θ − c2αsα−θ ) + m2

H2
cθcαs2αsα−θ

)
,

(119)

gH1H2H2H2 = − 1

v2s2
2θ

(
2m2

h0
cαc2

α−θ (sα + 2cθ sα−θ )

9c2
θ

+m2
H1
s2

2αs2(α−θ)

4

−m2
H2
s2αcα−θ (cα−θc2α + cα+θ )

2

)
, (120)

gH1H1H1H2 = − 1

v2s2
2θ

(
2m2

h0
sαs2

α−θ (cα + 2cθcα−θ )

9c2
θ

+m2
H2
s2

2αs2(α−θ)

4

+m2
H1
s2αsα−θ (sα−θc2α − sα+θ )

2

)
, (121)

gH1H2h0h0 = − 1

v2s2
2θ

(
m2

h0

3
(2c2αs2θ + s2αc2θ )

+m2
H1
s2αsαcθ sα−θ + m2

H2
s2αcαcθcα−θ

)
, (122)

gH2H2 A1A1 = 1

2v2s2
θ

(
− m2

h0

36c2
θ

(3c2α + 3c2θ + 4c2
α−θ )

+m2
H1
s2
αcαcα−θ

2cθ

+m2
H2
cα

2cθ

(
c2
αcα−θ − sαsθ

)

+m2
A1
c2
α − m2

A2
(c2

α − s2
θ )

)
, (123)

gH1H1A1A1 = 1

2v2s2
θ

( m2
h0

36c2
θ

(3c2α − 3c2θ − 4s2
α−θ )

+m2
H2
c2
αsαsα−θ

2cθ

+m2
H1
sα

2cθ

(s2
αsα−θ + cαsθ )

+m2
A1
s2
α + m2

A2
(s2

θ − s2
α)
)
, (124)

gH2H2A2A2 = 1

2v2s2
2θ

(
m2

h0

9c2
θ

(2c2α + s2θ s2(α−θ)

+2c2
(α−θ) + 2c2θ )

+m2
H1
s2α

4

(
s2α + s2θ + c2θ s2(α−θ)

)
+m2

A2
s2
α−θ s

2
2θ

+m2
H2

8
(3c2

2α + 3c2
2θ + 4c4

(α−θ)

+c2(α−θ) + 5c2(α+θ))

)
, (125)

gH1H1A2A2 = 1

2v2s2
2θ

(
− m2

h0

9c2
θ

(2c2α + s2θ s2(α−θ)

−2s2
α−θ − 2c2θ )

+m2
H2
s2α

4
(s2α − s2θ + c2θ s2(α−θ))

+m2
A2
c2
α−θ s

2
2θ

+m2
H1

8
(3c2

2α + 3c2
2θ − 4s4

α−θ

−c2(α−θ) − 5c2(α+θ)

)
, (126)

gh0h0A1A1 = m2
h0

+ 3m2
H1
s2
α + 3m2

H2
c2
α

12v2s2
θ

, (127)

gh0h0A2A2 = 1

v2s2
2θ

(
− m2

h0

9
(4c2

θ + c2θ )

+m2
H1
cθ sα(sα+θ − sθcθcα−θ )

+m2
H2
cθcα(cα+θ + sθcθ sα−θ ) + 2m2

A1
c4
θ

+2m2
A2
c2
θc2θ

)
, (128)

gH1H2A1A1 = 1

v2s2
2θ

(
m2

h0

9
(3s2α + 2s2(α−θ))

−m2
H1
s2αsαcθ sα−θ − m2

H2
s2αcαcθcα−θ

+2(m2
A2

− m2
A1

)s2αc
2
θ

)
, (129)
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gH1H2A2A2 = 1

2v2s2
2θ

(
− 2m2

h0

9c2
θ

(s2α + 2c2
θ s2(α−θ))

+m2
H1

2
s2α(2c2α + s2θ s2(α−θ) − 2c2θ )

−m2
H2

2
s2α(2c2α + s2θ s2(α−θ) + 2c2θ )

+m2
A2
s2(α−θ)s

2
2θ

)
, (130)

gH1h0A1A2 = 1

v2s2
θ

(
−m2

h0

9c2
θ

(sα+θ + cθ sα)(c2θ + c2
θ )

+m2
H1
sαcθ − m2

H2
(cαsθ + c2

θ sα−θ )
)

, (131)

gH2h0A1A2 = 1

v2s2
θ

(
m2

h0

9c2
θ

(cα+θ + cθcα)(c2θ + c2
θ )

−m2
H1
cαcθ − m2

H2
(sθ sα − c2

θcα−θ )
)

, (132)

gA1A1A1A1 = m2
h0

+ 3m2
H1
s2
α + 3m2

H2
c2
α

24v2s2
θ

, (133)

gA2A2A2A2 = 1

2v2s2
2θ

(
m2

h0

9c2
θ

(2c2
θ + c2θ )

+m2
H1

(sαcθ − s2
θ sα−θ )

2

+m2
H2

(c2
αcα−θ − sαsθ )

2
)

, (134)

gA1A1A2A2 = 1

v2s2
2θ

(
m2

h0

3
(c2

2θ − 2c2
θ s

2
θ )

+m2
H1
cθ sα(sα+θ − sθcθcα−θ )

+m2
H2
cθcα(cα+θ + sθcθ sα−θ )

)
, (135)

gH1H1G0G0 = 1

2v2

(
m2

H1

4s2θ

(s2θ + s2α − c2αs2(α−θ))

−m2
H2
s2αs2

α−θ

2s2θ

+ m2
A2
s2
α−θ

)
, (136)

gH2H2G0G0 = 1

2v2

(
m2

H1
s2αc2

α−θ

2s2θ

+ m2
H2

4s2θ

(s2θ − s2α − c2αs2(α−θ)) + m2
A2
c2
α−θ

)
,

(137)

gH1H2G0G0 = − s2(α−θ)

4v2s2θ

(
(m2

H1
− m2

H2
)s2α + 2m2

A2
s2θ

)
,

(138)

gG0G0A2A2 = 1

8v2s2θ

(
m2

H1
(3c2θ s2(α−θ) − s2α + 3s2θ )

−m2
H2

(3c2θ s2(α−θ) − s2α − 3s2θ )
)
, (139)

gG0G0A1A1 = 1

2v2

(
m2

h0
+ m2

H1

2sθ
sαcα−θ − m2

H2

2sθ
cαsα−θ

)
,

(140)

gH1H1A2G0 = − 1

2v2s2θ

(
2m2

h0
s2
α−θ

9c2
θ

+ m2
H1

2
(2c2θ

−s2αs2(α−θ) − 2c2α)

+m2
H2

2
s2αs2(α−θ) − m2

A2
s2θ s2(α−θ)

)
, (141)

gH2H2A2G0 = − 1

2v2s2θ

(
2m2

h0
c2
α−θ

9c2
θ

+ m2
H1

2
s2(α−θ)

+m2
H2

2
(2c2θ − s2αs2(α−θ) + 2c2α)

+m2
A2
s2θ s2(α−θ)

)
, (142)

gH1H2A2G0 = 1

v2s2θ

(
m2
h0
s2(α−θ)

9c2
θ

+ m2
H1

s2αs
2
α−θ

+m2
H2

s2αc
2
α−θ − m2

A2
c2(α−θ)s2θ

)
, (143)

gH1h0A1G0 = 1

v2sθ

(
m2
h0

3

(
sα+θ

cθ
+ sα

)

−m2
A1
sα + m2

A2
sα−θ cθ

)
, (144)

gH2h0A1G0 = 1

v2sθ

(
−m2

h0

3

(
cα+θ

cθ
+ cα

)

+m2
A1
cα − m2

A2
cα−θ cθ

)
, (145)

gG0A2A2A2 = 1

v2s2θ

(
−m2

h0

9c2
θ

+m2
H1

4
(2c2α + s2θ s2(α−θ) − 2c2θ )

−m2
H2

4
(2c2α + s2θ s2(α−θ) + 2c2θ )

)
, (146)

gG0G0G0G0 = m2
H1

c2
α−θ + m2

H2
s2
α−θ

8v2 , (147)

gH1G0H±
2 G∓ = ± 1

v2 sα−θ (m2
H±

2
− m2

A2
), (148)

gH2G0H±
2 G∓ = ∓ 1

v2 cα−θ (m2
H±

2
− m2

A2
), (149)

gH1A2H
±
2 G∓ = ± 1

v2 cα−θ (m2
H±

2
− m2

A2
), (150)

gH2A2H
±
2 G∓ = ± 1

v2 sα−θ (m2
H±

2
− m2

A2
), (151)

gh0G0H±
1 G∓ = ∓ 1

v2 (m2
H±

1
− m2

A1
+ 2c2

θ (m2
A2

− m2
H±

2
)),

(152)

gh0A2H
±
1 G∓ = ∓ 1

v2tθ
(m2

H±
1

− m2
A1

+ c2θ (m2
A2

− m2
H±

2
)).

(153)
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5.3 A.3 Charged scalar-vector bosons couplings

For the couplings with charged Higgs bosons we have

gH±
1 H±

1 W±W∓ = 2M2
Wgμν

v2 , (154)

gH±
2 H±

2 W±W∓ = 2M2
Wgμν

v2 , (155)

gH±
1 H±

1 Z Z = g2 cos2 2θWgμν

4 cos2 θW
, (156)

gH±
2 H±

2 Z Z = g2 cos2 2θWgμν

4 cos2 θW
, (157)

gH±
1 H∓

1 γ γ = e2gμν, (158)

gH±
2 H∓

2 γ γ = e2gμν, (159)

gH±
1 H∓

1 γ Z = eg cos 2θWgμν

cos θW
, (160)

gH±
2 H∓

2 γ Z = eg cos 2θWgμν

cos θW
. (161)

And the couplings for mixed charged and neutral Higgs
bosons with gauge bosons, are given as

gH∓
2 H1ZW± = g

′2 cos θW sin(α − θ)gμν

2
, (162)

gH∓
2 H2ZW± = −g

′2 cos θW cos(α − θ)gμν

2
, (163)

gH∓
2 γ H1W± = −eg sin(α − θ)gμν

2
, (164)

gH∓
2 γ H2W± = eg cos(α − θ)gμν

2
, (165)

gγG0W±G∓ = ±ge

2
gμν, (166)

gZG0W±G∓ = ∓g2s2
θW

2cθW

gμν, (167)

gγ A1W±H∓
1

= ±ge

2
gμν, (168)

gγ A2W±H∓
2

= ±ge

2
gμν, (169)

gZ A1W±H∓
1

= ∓g2s2
θW

2cθW

gμν, (170)

gZ A2W±H∓
2

= ∓g2s2
θW

2cθW

gμν. (171)

The mixed charged Higgs boson and h0 couplings with
two gauge bosons are absent.

gγ H+
1 H+

1
= e(p + p′)μ, (172)

gγ H+
2 H+

2
= e(p + p′)μ, (173)

gH1W±H∓
2

= ± ig

2
s(α−θ)(p + p′)μ, (174)

gH2W±H∓
2

= ∓ ig

2
c(α−θ)(p + p′)μ, (175)

gh0W±H∓
1

= ∓ ig

2
(p + p′)μ, (176)

gW±H±
2 A2

= g

2
(p + p′)μ, (177)

gW±H±
1 A1

= g

2
(p + p′)μ, (178)

gZH2A2 = g

2 cos θW
cos(α − θ)(p + p′)μ, (179)

gZH1A2 = − g

2 cos θW
sin(α − θ)(p + p′)μ, (180)

gH1W±G∓ = ∓ ig

2
c(α−θ)(p + p′)μ, (181)

gH2W±G∓ = ∓ ig

2
s(α−θ)(p + p′)μ, (182)

gW±G±G0 = g

2
(p + p′)μ, (183)

gγG+G+ = e(p + p′)μ. (184)
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