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Abstract In this work, we construct stellar models based
on the complexity factor as a supplementary condition which
allows to close the system of differential equations arising
from the Gravitational Decoupling. The assumed complexity
is a generalization of the one obtained from the well known
Tolman IV solution. We use Tolman IV, Wyman IIa, Durga-
pal IV and Heintzmann IIa as seeds solutions. Reported com-
pactness parameters of SMC X-1 and Cen X-3 are used to
study the physical acceptability of the models. Some aspects
related to the density ratio are also discussed.

1 Introduction

For a long time, stellar models were considered to be sup-
ported by Pascalian fluids (equal principal stresses); approx-
imation which resulted to be appropriate to describe a vari-
ety of circumstances. However, now is well-known that for
certain ranges of the density there are some physical phe-
nomena which might take place leading to local anisotropy
in the configuration. (see Refs. [1–16], for discussions on
this point). Among all these possibilities, we could mention:
i) intense magnetic field observed in compact objects such
as white dwarfs, neutron stars, or magnetized strange quark
stars (see, for example, Refs. [17–25]) and ii) viscosity (see
[26–33] and references therein). Besides, it has been recently
proven that the presence of dissipation, energy density inho-
mogeneities and shear yield the isotropic pressure condition
becomes unstable [34]. Based on these points, the renewed
interest in the study of fluids not satisfying the isotropic con-
dition is clear and justifies our present work on the construc-
tion of anisotropic models [35–39].

The strategies to construct anisotropic solutions are many
but recently, the well known gravitational decoupling (GD)
[40] by the minimal geometric deformation approach (MGD)
(for implementation in 3 + 1 and 2 + 1 dimensional space-
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times see [41–79]) has been broadly implemented to extend
isotropic solutions to anisotropic domains. In static and
spherically symmetric spacetimes, the are only three inde-
pendent Einstein field equations but five unknown, namely
two metric functions, the density energy and the radial and
tangential pressures. However, the GD demands the assump-
tion of a seed solution which allows to decrease the number
of degrees of freedom and, as a consequence, only one extra
condition is required to close the system. In this sense, a
key point in the implementation of MGD is to provide such
an auxiliary condition which could be the mimic constraint
for the pressure and the density, regularity condition of the
anisotropy function, barotropic equation of state, among oth-
ers. In this work we use the recently introduced definition of
complexity for self-gravitating fluids [80] and, in particular,
we propose a like-Tolman IV complexity factor.

This work is organized as follows. The next section is
devoted to reviewing the main aspects of GD by MGD. In
Sect. 3 we introduce the concept of complexity and obtain an
expression for the complexity factor in GD. Then, in Sect. 4
we calculate and generalize the complexity factor from the
Tolman IV solution and implement this result with the aim to
construct extension of Tolman IV, Wyman IIa, Durgapal IV
and Heintzmann IIa. Section 5 is devoted to interpreting and
discussing our results and some comments and final remarks
are given in the last section.

2 Gravitational decoupling

In this section we introduce the GD by MGD (for more
details, see [40]). Let us start with the Einstein field equations
(EFE)

Gμν = Rμν − 1

2
gμνR = 8π T̃μν, (1)

with

T̃μν = T (s)
μν + αθμν , (2)
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where T (s)
μν represents the matter content of a known solu-

tion,1 namely the seed sector, and θμν describes an extra
source coupled through the parameter α. Note that, since
the Einstein tensor fulfills the Bianchi identities, the total
energy–momentum tensor satisfies

∇μT̃
μν = 0. (3)

It is important to point out that, whenever ∇μTμν(s) = 0, the
condition

∇μθμν = 0, (4)

is automatic and as a consequence, there is no exchange of
energy-momentum between the seed solution and the extra
source θμν so that the interaction is entirely gravitational.

In a static and spherically symmetric spacetime sourced
by

Tμ(s)
ν = diag(ρ(s),−p(s)

r ,−p(s)
t ,−p(s)

t ) (5)

θμ
ν = diag(θ0

0 , θ1
1 , θ2

2 , θ2
2 ), (6)

and a metric given by

ds2 = eνdt2 − eλdr2 − r2(θ2 + sin2 θdφ2), (7)

Equations (1) and (2) lead to

ρ̃ = 1

8π

[
1

r2 + e−λ

(
λ′

r
− 1

r2

)]
, (8)

P̃r = 1

8π

[
− 1

r2 + e−λ

(
ν′

r
+ 1

r2

)]
, (9)

P̃t = 1

32π
e−λ

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
, (10)

where we have defined2

ρ̃ = ρ(s) + αθ0
0 , (11)

P̃r = p(s)
r − αθ1

1 , (12)

P̃t = p(s)
t − αθ2

2 . (13)

Is clear that given the non-linearity of Einstein’s equations,
the decomposition (2) does not lead to two set of decoupled
equations; one for each source involved. Nevertheless, con-
trary to the broadly belief, such a decoupling is possible, to
some extent, in the context of MGD as we shall demonstrate
in what follows.

Let us introduce a geometric deformation in the metric
functions given by

ν −→ ξ + αg, (14)

e−λ −→ e−μ + α f , (15)

1 In this work we shall use c = G = 1.
2 Note that the matter sector has dimensions of a length squared in the
units we are using.

where { f, g} are the so-called decoupling functions and α is
the same free parameter that “controls” the influence of θμν

on T (s)
μν in Eq. (2). In this work we shall concentrate in the

particular case g = 0 and f �= 0. Now, replacing (14) and
(15) in the system (8–10), we are able to split the complete
set of differential equations into two subsets: one describing
a seed sector sourced by the conserved energy-momentum
tensor, T (s)

μν

ρ(s) = 1

8π

[
1

r2 + e−μ

(
μ′

r
− 1

r2

)]
, (16)

p(s)
r = 1

8π

[
− 1

r2 + e−μ

(
ν′

r
+ 1

r2

)]
, (17)

p(s)
t = 1

32π
e−μ

(
2ν′′ + ν′2 − μ′ν′ + 2

ν′ − μ′

r

)
, (18)

and the other set corresponding to quasi-Einstein field equa-
tions sourced by θμν

θ0
0 = 1

8π

[
− f

r2 − f ′

r

]
, (19)

θ1
1 = 1

8π

[
− f

(
ν′

r
+ 1

r2

)]
, (20)

θ2
2 = 1

8π

[
− f

4

(
2ν′′ + ν′2 + 2

ν′

r

)
− f ′

4

(
ν′ + 2

r

)]
.

(21)

As we have seen, the components of θμν satisfy the conser-
vation equation ∇μθ

μ
ν = 0, namely

θ ′1
1 − ν′

2
(θ0

0 − θ1
1 ) − 2

r
(θ2

2 − θ1
1 ) = 0. (22)

In this work, we consider that the interior configuration
is surrounded by the Schwarzschild vacuum so that, on the
boundary surface Σ , we require

eν
∣∣∣
Σ− =

(
1 − 2M

r

) ∣∣∣∣
Σ+

, (23)

eλ
∣∣∣
Σ− =

(
1 − 2M

r

) ∣∣∣
Σ− , (24)

P̃r (r)
∣∣∣
Σ− = P̃r (r)

∣∣∣
Σ+ = 0, (25)

which corresponds to the continuity of the first and second
fundamental form across that surface of the star.

To conclude this section, we emphasize the importance
of GD as a useful tool to find solutions of EFE. As it is
well known, in static and spherically symmetric spacetimes
sourced by anisotropic fluids, EFE reduce to three equa-
tions given by (8), (9) and (10) and five unknowns, namely
{ν, λ, ρ̃, P̃r , P̃t }. In this regard, two auxiliary conditions must
be specified, namely metric conditions, equations of state,
etc. Nevertheless, as in the context of GD a seed solution must
be given, the number of degrees of freedom reduces from
five to four and, as a consequence, only one extra condition
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is required. In general, this condition have been implemented
in the decoupling sector given by Eqs. (19), (20) and (21) as
some equation of state which leads to a differential equation
for the decoupling function f . In this work, we take an alter-
native route to obtain the decoupling function; namely, the
complexity factor that we shall introduce in the next section
as a supplementary condition of the total solution.

3 Complexity of compact sources

Recently, a new definition of complexity for self-gravitating
fluid distributions has been introduced in Ref. [80] which is
based on the idea that the least complex gravitational system
is the one supported by a homogeneous energy density dis-
tribution and isotropic pressure. In this direction, there is a
scalar associated with the orthogonal splitting of the Riemann
tensor [81] in static and spherically symmetric space-times
which encodes the intuitive idea of complexity, namely

YT F = 8πΠ − 4π

r3

∫ r

0
r̃3ρ′dr̃ , (26)

with Π ≡ Pr − Pt . Also, it can be demonstrated that in terms
of Eq. (26) the Tolman mass reads

mT = (mT )Σ

(
r

rΣ

)3

+ r3
∫ rΣ

r

e(ν+λ)/2

r̃
YT Fdr̃ , (27)

so that YT F enclose the modifications on the active gravita-
tional mass produced by the energy density inhomogeneity
and the anisotropy of the pressure.

It is worth noticing that the vanishing complexity condi-
tion (YT F = 0) can be satisfied not only in the simplest case
of isotropic and homogeneous system but in all the cases
where

Π = 1

2r3

r∫
0

r̃3ρ′dr̃ , (28)

which provides a non-local equation of state that can be used
as a complementary condition to close the system of EFE
(for a recent implementation, see [60], for example). How-
ever, given that this condition could fail in some cases in the
construction of specific stellar models, non-vanishing values
of YT F must be supplied. An example of how this can be
achieved can be found in [60].

In this work we shall use the complexity factor as a sup-
plementary condition for the total sector so we replace (14),
(15) in (26) and use (8), (9) and (10) to obtain

αξ ′

4
f ′ +α

2

(
ξ ′′ − ξ ′

r
+ ξ ′2

2

)
f

+e−μ

2

(
ξ ′′ − ξ ′

r
+ ξ ′2

2
− μ′ξ ′

2

)
+ YT F = 0. (29)

Note that as far as the pair {ξ, μ} is specified (the seed solu-
tion), Eq. (29) becomes a differential equation for the decou-
pling function f when a value of YT F is specified.

4 Stellar models with like Tolman IV complexity

In this work, we construct interior solutions based on Tolman
IV, Wyman IIa, Durgapal IV and Heintzmann IIa as isotropic
seeds in the framework of GD by using the complexity fac-
tor as supplementary condition. At first sight, the vanishing
complexity seems to be straightforward but it can be demon-
strated that such a condition fails for the seeds under con-
sideration in this work. As an alternative, we generalize the
complexity factor of the well-known Tolman IV solution.

As it is well-known, Tolman IV reads [82]

eν = B2
0

(
1 + r2

A2
0

)
(30)

e−λ = (C2
0 − r2)(A2

0 + r2)

C2
0 (A2

0 + 2r2)
(31)

ρ = 3A4
0 + A2

0(3C
2
0 + 7r2) + 2r2(C2

0 + 3r2)

8πC2
0 (A2

0 + 2r2)2
(32)

p = C2
0 − A2

0 − 3r2

8πC2
0 (A2

0 + 2r2)
, (33)

where A0 and C0 are constants with dimension of a length
and B0 is a dimensionless constant. Now, replacing (30), (31),
(32) and (33) in (26) we arrive at

YT F = r2(A2
0 + 2C2

0 )

C2
0 (A2

0 + 2r2)2
, (34)

which has dimensions of the inverse of a length squared. Note
that Eq. (34) can be easily generalized to

YT F = a1r2

(a2 + a3r2)2 (35)

where a1 and a3 are arbitrary dimensionless constants and
a2 must be a constant with dimension of a length squared.
It should be emphasized that reason for introducing the set
{a1, a2, a3} is nothing but to generalize the complexity factor
(34). In what follows we shall consider Eq. (35) as the con-
dition to close the system and generate anisotropic models
from isotropic seeds.

4.1 Model 1: like-Tolman IV solution

Replacing (30) and (31) in (29) and using (35) we arrive at

f =
(
A2

0 + r2
) [

c1 + 1

α

(
a1

a3ζ(r)
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− A2
0 + 2C2

0

2C2
0 (A2

0 + 2r2)

)]
, (36)

where c1 is an integration constant with dimensions of the
inverse of a length squared and ζ(r) is an auxiliary function
with dimensions of a length squared (see Appendix, Sect. 7).

It can be shown that to ensure regularity in the matter
sector the constant c1 must satisfy

c1 = −2a1A2
0C

2
0 + a2a3A2

0 + 2a2a3C2
0

2αa2a3A2
0C

2
0

. (37)

Replacing (36) in (15) and using (37) we find

e−λ =
(
A2

0 + r2
) (

2a1C2
0 + a3ζ(r)

(
2αc1C2

0 − 1
))

2a3C2
0ζ(r)

. (38)

Now, from (8), (9), (10) we arrive at

ρ̃ = 1

8πa2A2
0ζ(r)2

[
a1A

4
0

(
3a2 + a3r

2
)

+a1A
2
0r

2
(

5a2 + 3a3r
2
)

− 3a2ζ(r)2
]

(39)

P̃r = 3a2ζ(r) − a1A2
0(A

2
0 + 3r2)

8πa2A2
0ζ(r)

(40)

P̃t = 3a2ζ(r)2 − a1a2A4
0 − a1A2

0r
2
(
5a2 + 3a3r2

)
8πa2A2

0ζ(r)2
. (41)

Finally, the continuity of the first and the second funda-
mental form leads to

a1 = 3a2ζ(R)

A2
0(A

2
0 + 3R2)

. (42)

A2
0

R2 = R − 3M

M
(43)

B2
0 = 1 − 3M

R
. (44)

Note that the free parameters are {R, M, a2, a3} (see
Appendix 7 where a3 appears explicitly). It is worth men-
tioning that from (43) and (44) is clear that compactness
satisfies M/R < 1/3, which corresponds to a more strin-
gent condition when compared to the the Buchdahl’s limit
(M/R < 4/9) for isotropic solutions. More precisely, the
solutions allowed with this model should be less compact
given that the interval 1/3 ≤ M/R < 4/9 is forbidden.

As we shall see later, the strategy to explore the feasibility
of our solution will be to specify the compactness parameter
associated with SMC X-1 and Cen X-3 in order to set suitable
values for a2 and a3 (see Sect. 5 for details)

4.2 Model 2: like-Wyman IIa solution

In this case we consider the Wyman IIa metric [87,88] with
n = 2 as a seed solution which reads

eξ(r) = (A − Br2)2 (45)

e−μ(r) = 1 + Cr2(A − 3Br2)−2/3, (46)

where A is a dimensionless constant and B and C are con-
stants with dimensions of the inverse of a length squared. It
is worth mentioning that all the results below will be written
in terms of auxiliary functions {ζ, χ, �1,P1,P2} which are
defined in Appendix, Sect. 7.

Following the same procedure that in the previous section
we obtain

f = r2

2αa3

[
a1(a3A + a2B)

a2Bζ(r)
− 2a3C

(A − 3Br2)2/3

]
− a1

2αa2
3

χ(r),

(47)

from where

e−λ = 1

2a2
3

[
a3r2

(
a1a3A + a2B

(
a1 + 2a2

3

))
a2Bζ(r)

+2a2a2
3

ζ(r)
− a1χ(r)

]
. (48)

From 8, 9 and 10 the matter sector reads

ρ̃ = a1

16πa2
3

[
χ(r)

r2 − a3�1(r)

a2Bζ(r)2

]
(49)

P̃r = a3r2P1(r) − a1a2B
(
5Br2 − A

)
ζ(r)χ(r)

16πa2a2
3 Br

2
(
Br2 − A

)
ζ(r)

(50)

P̃t = a3P2(r) − 4a1a2B2ζ(r)2χ(r)

16πa2a2
3 B

(
Br2 − A

)
ζ(r)2

. (51)

Continuity of the first and the second fundamental form
leads to

a1 = 8a2a2
3 B

2R2
(
A − 5BR2

)−1
ζ(R)[

a3R2(a3A + a2B) − a2Bζ(R)χ(R)
] (52)

A2 = B2(5M − 2R)2R4

M2 (53)

B2 = M2

4R5(R − 2M)
. (54)

As in the previous case, the free parameters are {R, M, a2, a3}.
Note that, as {ζ, �1,P2} have dimensions of a length squared
and {χ,P1} are dimensionless (see Appendix 7) , all the
expressions above are dimensionally correct. It is worth
noticing that form (54), R > 2M which is in accordance with
the restriction that any stable configuration should be greater
than its Schwarzschild radius. Furthermore, (53) leads to
M/R �= 2/5 or the metric becomes degenerated, namely
gtt = 0, ∀r .

4.3 Model 3: like-Durgapal IV solution

In this case we consider the Durgapal IV metric [87,89] as a
seed solution, which reads

eξ = A(Cr2 + 1)4 (55)
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e−μ = 7 − 10Cr2 − C2r4

7(Cr2 + 1)2

+ Cr2

(Cr2 + 1)2(1 + 5Cr2)2/5
(56)

where A is a dimensionless constants and C is a con-
stant with dimensions of the inverse of a length squared.
In what follows, we shall use the auxiliary functions
{ζ, η1, β1, β4, β5, β8, β11, �2,P3 ,P4} defined in the
Appendix, Sect. 7.

In this case,

f = r2

56αa3
3Cβ1(r)2

[
7a1

(
− a3C

3r2 + 2(a2C − a3)
3

a2ζ(r)

+2C2(2a2C − 3a3)

)

+8a3
3C

2
(
Cr2 + 10 − 7B(

5Cr2 + 1
)2/5

)]

−3a1(a3 − a2C)2χ(r)

4αa4
3β1(r)2

, (57)

and the radial metric reads

e−λ = a3η1(r) − 6a1a2C(a3 − a2C)2ζ(r)χ(r)

8a2a4
3Cβ1(r)2ζ(r)

. (58)

From (8), (9), (10) we obtain

ρ̃ = 1

64πa2a4
3Cr

2β1(r)3ζ(r)2

[
a3r

2�2(r)

−6a1a2Cβ4(r)(a3 − a2C)2ζ(r)2χ(r)

]
(59)

P̃r = P3(r)

64πa2a4
3Cr

2β1(r)3ζ(r)
(60)

P̃t = P4(r)

32πa2a4
3Cβ1(r)3ζ(r)2

, (61)

and the matching conditions lead to

a1 = 8a2a4
3C

2R2
(
6 − CR2β5(R)

)
ζ(R)β8(R)−1[

a3R2β11(R) + 6a2C(a3 − a2C)2ζ(R)χ(R)
] , (62)

A2 = 1 − 2M
R(

M
4R−9M + 1

)4 (63)

C2 = M

R2(4R − 9M)
. (64)

Note that, as {ζ, η1, �2,P3} have dimensions of a length
squared and {β1, β4, β5, β8, β11} are dimensionless (see
Appendix 7), all the expressions above have the correct
dimensions. In this case, it is clear that from Eqs. (63) and
(64), the solution must satisfy M/R < 4/9, which corre-
sponds to the Buchdahl’s limit for isotropic solutions.

4.4 Model 4: like-Heintzmann IIa

In this section we consider the Heintzmann IIa solution [87,
90] which metric components are

eξ = A2(1 + Br2)3 (65)

e−μ = 1 − 3Br2

2

1 + (1 + 4Br2)−1/2

1 + Br2 (66)

where A is a dimensionless constant and B is a con-
stant with dimensions of the inverse of a length squared.
In this section we shall use the list of auxiliary func-
tions {ζ, η2, γ1, γ3, γ6, γ7, γ9, �3,P5 ,P6} defined in the
Appendix, Sect. 7.

In this case we have

f = r2

6αBγ1(r)

[
9B2C√

4Br2 + 1
+ 3B2

−2a1
(
2a2

2 B
2 + a2a3Bγ2(r) + a2

3

)
a2a2

3ζ(r)

]

−2a1(a3 − a2B)χ(r)

3a3
3αγ1(r)

(67)

from where, the radial metric results

e−λ = a3η2(r) + 2a1a2B(a2B − a3)ζ(r)χ(r)

3a2a3
3Bγ1(r)ζ(r)

. (68)

From (8), (9) and (10) we arrive at

ρ̃ = 2a1a2Bγ3(r)(a2B − a3)ζ(r)2χ(r) + a3r2�3(r)

24πa2a3
3Br

2γ1(r)2ζ(r)2

(69)

P̃r = P5(r)

24πa2a3
3Br

2γ1(r)2ζ(r)
(70)

P̃t = P6(r)

24πa2a3
3Bγ1(r)2ζ(r)2

(71)

Finally, matching conditions lead to

a1 = − 3a2a3
3B

2R2γ7(R)ζ(R)γ6(R)−1

a3R2γ9(R) − 2a2B(a2B − a3)ζ(R)χ(R)
(72)

A2 = − (7M − 3R)3

27R(R − 2M)2 (73)

B2 = M2

R4(3R − 7M)2 . (74)

Note that, as in all the previous cases the free parame-
ters are {R, M, a2, a3}. Note that, as {ζ, η2, �3,P5,P6} have
dimensions of a length squared and {γ1, γ3, γ6, γ7, γ9} are
dimensionless (see Appendix 7), all the expressions above
are dimensionally correct. It should be emphasized that,
M/R < 3/7 < 4/9 which corresponds to less compact solu-
tions than the allowed by the Buchdahl’s limit.
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Table 1 Physical parameters for the compact starts SMC X-1 and Cen X-3

Compact start M/M
 R(km) u = M/R ρ(0)/ρ(R) Z(R)

SMC X-1 [83] 1.04 8.301 0.19803 1.4659 [85] 0.286776

Cen X-3 [84] 1.49 10.8 0.2035 1.915 [86] 0.298592

(a) (b)

(c) (d)

Fig. 1 eν for Model 1 (a), Model 2 (b), Model 3 (c) and Model 4 (d)

(a) (b)

(c) (d)

Fig. 2 e−λ for Model 1 (a), Model 2 (b), Model 3 (c) and Model 4 (d)

5 Discussion

In this section we analyze the results obtained previously in
order to verify the physical acceptability of the models [91].
To this end, we shall use the compactness parameters given
in Table 1 and set suitable values of a2 and a3 in order to
discuss to what extend our solutions are suitable to describe
the SMC X-1 and Cen X-3 systems.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 ρ as a function of r for Model 1: (a) u = 0.19803, (b) u = 0.2035,
Model 2: (c) u = 0.19803, (d) u = 0.2035, Model 3: (e) u = 0.19803, (f)
u = 0.2035, Model 4: (g) u = 0.19803, (h) u = 0.2035

5.1 Metrics

In Figs. 1 and 2 we show the metric functions for the com-
pactness parameter indicated in the legend. Note that on
one hand eν is a monotonously increasing function with
eν(0) = constant . On the other hand e−λ is monotonously
decreasing with e−λ(0) = 1, as expected.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4 P̃r (r) as a function of r for Model 1: (a) u = 0.19803, (b) u
= 0.2035, Model 2: (c) u = 0.19803, (d) u = 0.2035, Model 3: (e) u =
0.19803, (f) u = 0.2035, Model 4: (g) u = 0.19803, (h) u = 0.2035

5.2 Matter sector

In Figs. 3, 4 and 5 we show the profile of ρ̃, P̃r and P̃t
as a function of the radial coordinates for the values of the
parameters in the legend.

Note that all the quantities fulfill the physical requirements
for all the parameters involved, namely ρ̃, P̃r and P̃t are finite
at the center and decrease monotonously toward the surface.
Besides, P̃t (0) = P̃r (0) and P̃t (r) > P̃r (r) for all r > 0 as
expected (see Fig. 6)

5.3 Energy conditions and causality

A suitable stellar model must satisfies the dominant energy
condition (DEC) in order to avoid violation of causality. The
DEC requires

ρ̃ − P̃r ≥ 0 (75)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5 P̃t (r) as a function of r for Model 1: (a) u = 0.19803, (b) u
= 0.2035, Model 2: (c) u = 0.19803, (d) u = 0.2035, Model 3: (e) u =
0.19803, (f) u = 0.2035, Model 4: (g) u = 0.19803, (h) u = 0.2035

ρ̃ − P̃t ≥ 0. (76)

In Figs. 7 and 8 it can be seen that all the solutions satisfy
DEC for all the parameters involved.

In Figs. 9 and 10 we show that the radial and tangen-
tial sound velocities are less than unity, as required (we are
assuming c = 1).

5.4 Redshift and density ratio

In the previous section we have demonstrated that, based on
the compactness parameter of both SMC X-1 and Cen X-3
in Table 1, the four models satisfy the basic physical require-
ments to be considered as suitable interior configurations.
Now, with the aim to to explore which model is more ade-
quate to describe the compact objects under consideration,
in this section we go a step further and study the redshift
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 P̃t (r) − P̃r (r) as a function of r for Model 1: (a) u = 0.19803,
(b) u = 0.2035, Model 2: (c) u = 0.19803, (d) u = 0.2035, Model 3: (e)
u = 0.19803, (f) u = 0.2035, Model 4: (g) u = 0.19803, (h) u = 0.2035

Z = e−ν/2 − 1 and the density ratio ρ̃(0)/ρ̃(R) to each
model and compare our results with the values in Table 1.

In Fig. 11 we show the redshift Z as a function of the
radial coordinate. Note that Z decreases outward and its value
at the surface is less than the universal bound for solutions
satisfying the DEC, namely Zbound = 5.211.

The values of the density ratio for SMC X-1 reported in
[85] is ρ̃(0)/ρ̃(R) ≈ 1.4659. Now, from Table 2, we appreci-
ate that Models 3 and 4 fit accurately to SMC X-1. Similarly,
ρ̃(0)/ρ̃(R) ≈ 1.915 for Cen X-3 as appears in [86] so that
Models 2, 3 and 4 are good candidates to describe this com-
pact objects.

In summary, Models 3 and 4 might be considered as suit-
able solutions describing SMC X-1 while models 2, 3 and 4
are the solutions for Cen X-3 (Table 3).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7 ρ̃(r) − P̃r (r) as a function of r for Model 1: (a) u = 0.19803,
(b) u = 0.2035, Model 2: (c) u = 0.19803, (d) u = 0.2035, Model 3: (e)
u = 0.19803, (f) u = 0.2035, Model 4: (g) u = 0.19803, (h) u = 0.2035

6 Conclusions

In this work, we extended four isotropic models to anisotropic
domains by Gravitational Decoupling. As a supplementary
condition, we used a complexity factor which corresponds to
a generalization of the obtained from the well–known Tol-
man IV solution. We verify the basic physical acceptability
conditions; namely: (i) the metric functions are regular at the
origin. Furthermore gtt (0) = constant and grr (0) = 1, (ii)
both the density energy and pressures are regular at the origin
and decrease monotonously outward, (iii) the solutions sat-
isfy the dominant energy condition. All of these conditions
were tested after imposing the compactness parameters of
both SMC X-1 and Cen X-3 systems. It is worth mentioning
that, although all the solutions are well behaved, only some
of them can be considered as suitable models for the compact
objects under consideration based on the density ratio. More
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8 ρ̃(r) − P̃t (r) as a function of r for Model 1: (a) u = 0.19803,
(b) u = 0.2035, Model 2: (c) u = 0.19803, (d) u = 0.2035, Model 3: (e)
u = 0.19803, (f) u = 0.2035, Model 4: (g) u = 0.19803, (h) u = 0.2035

(a) (b)

Fig. 9 Sound velocities as a function of r for compactness factor u =
0.19803: a radial velocity vr and b tangential velocity vt . Models 1, 2,
3 and 4 are identified with blue, black, red and green line respectively

precisely, Models 3 and 4 are more appropriated to describe
SMC X-1 while Models 2, 3 and 4 can be used for Cen X-3.

It should be interesting to explore the response of the sys-
tem against perturbation. However, this and other points are
under active consideration to future works.

(a) (b)

Fig. 10 Sound velocities as a function of r for compactness factor
u = 0.2035: a radial velocity vr and b tangential vt . Models 1, 2, 3 and
4 are identified with blue, black, red and green line respectively

(a) (b)

(c) (d)

Fig. 11 Z for Model 1 (a), Model 2 (b), Model 3 (c) and Model 4 (d)

Table 2 Estimated values of the density ratio for SMC X-1 (u =
0.19803)

Model ρ(0)/ρ(R)

Model 1 (a2 = 0.53, a3 = 0.57) 2.62443

Model 2 (a2 = 2.7, a3 = 1.6) 1.84825

Model 3 (a2 = 0.8, a3 = 0.2) 1.43124

Model 4 (a2 = 1.1, a3 = 0.39) 1.53133

Table 3 Estimated values of the density ratio for Cen X-3 (u = 0.2035)

Model ρ(0)/ρ(R)

Model 1 (a2 = 0.53, a3 = 0.57) 2.49405

Model 2 (a2 = 0.3, a3 = 0.2) 1.97267

Model 3 (a2 = 0.31, a3 = 0.2) 1.92661

Model 4 (a2 = 0.8, a3 = 0.5) 1.92086
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7 Appendix: Auxiliary functions

ζ = a2 + a3r
2

χ = ln
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2a3C

(
3a1Cr

2β2(r) + 8a2
3

)

+a2a
2
3Cr

2
(

8a2
3 − a1

(
C2r4 + 6β3(r)

))
− 2a1a

3
3r

2

η2 = a2
2 B

(
3a2

3 − 2a1Br
2
)

− a1a
2
3r

2

+a2a3Br
2
(

3a2
3 − a1γ2(r)

)
,

�1 = a3A
(

3a2 + a3r
2
)

+ a2B
(
a2 − a3r

2
)

�2 = 8a2a
3
3C

2
(
Cr2β5(r) + 6

)
ζ(r)2 + a1S1(r)

�3 = 3a2a
2
3 B

2
(
Br2 + 3

)
ζ(r)2 + a1S2(r)

P1 = a2B
2
(

5a1r
2 + 8a3ζ(r)

)

−a1AB
(
a2 − 5a3r

2
)

− a1a3A
2

P2 = 4a1a3ABr
2
(

2a2 + a3r
2
)

+a2B
2
(

4a2r
2
(
a1 + 4a2

3

)
+ a3r

4
(
a1 + 8a2

3

)

+8a2
2a3

)
− a1a2a3A

2.
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β1 = Cr2 + 1β2 = Cr2 − 4β3 = Cr2 − 1

β4 = 3Cr2 − 1β5 = Cr2 + 3β6 = 3Cr2 − 5

β7 = Cr2 − 9β8 = 9Cr2 + 1β9 = Cr2 − 4

β10 = Cr2 + 6

β11 = −6a3
2C

3 − 3a2
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2β9 + 2a3
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2
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