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Abstract We study the homogenous quenching processes
in a holographic s + p model with reentrant phase transi-
tions. We first realize the reentrant phase transition in the
holographic model in probe limit and draw the phase dia-
gram. Next, we compare the time evolution of the two con-
densates in two groups of numerical quenching experiments
across the reentrant region, with different quenching speed as
well as different width of the reentrant region, respectively.
We also study the dynamical competition between the two
orders in quenching processes from the normal phase to the
superconductor phase.

1 Introduction

The AdS/CFT correspondence [1–4] is a strong-weak duality
between a quantum filed system without gravity and a clas-
sical gravity system with one more dimension. It is a precise
equivalence between the two systems, thus can be applied to
study not only static solutions, but also non-equilibrium pro-
cesses. Varies non-equilibrium progress including dynamical
phase transitions [5,6] and quantum turbulence [7–11] are
realized in the holographic superfluid model [12,13], which
shed light on the related study in strongly coupled condensed
matters.

It is necessary to include multiple order parameters to
describe the competition and coexistence in systems with
complicated phase structure. These systems could also be
modeled in holography with more than one charged fields.
In Ref. [14] a holographic model with two s-wave orders is
studied in the probe limit and an s + s coexisting phase was
discovered. This model was further explored in Ref. [15] with
considering the full back-reaction on metric. Competition
and coexistence between two different types of orders are
also studied in holographic models, such as the s + p model

a e-mail: niezy@kust.edu.cn (corresponding author)

[16–19] and the s + d model [20,21]. See Ref. [22] for a very
nice review.

The non-equilibrium process in such a holographic system
will also evolve with multiple orders, and show the dynam-
ical competition between different orders, which can not be
revealed from only static solutions. On the other hand, to
explore laws in the non equilibrium processes, it is helpful to
consider some special phase transitions, which can be easily
realized in holographic model with multiple orders in probe
limit. Therefore, we can avoid the complicated numerical rel-
ativity problems in study of dynamical processes. Recently,
a dynamical process of phase separation is realized a holo-
graphic model with two s-wave orders in Ref. [23]. Later,
the domain wall physics and bubble dynamics are studied
in a holographic model with a first order phase transition
between two s-wave phases [24]. These studies are all based
on holographic models with multiple orders in probe limit.

In holographic models with multiple orders, interesting
phenomenon such as reentrance can be realized [17,25].
In such a system, one of the order parameter show non-
monotonic behavior and only be non-zero in a middle region.
Therefore, it would be interesting to study a non-equilibrium
quenching process starting from one side of the reentrant
region and end at the other side. Since the width of the reen-
trant region can be tuned, different dynamical processes with
the same initial and final states can be compared in this setup,
which show special effects of the middle region in dynamical
processes.

However, the reentrant phase transition in Ref. [17] is real-
ized with considering back reaction on the metric, which
is complicated to study dynamical processes. While in
Ref. [25], the reentrant phase transition is realized in a region
with the value of Gauss-Bonnet parameter beyond the causal-
ity constraint. To study the dynamical processes of the reen-
trant phase transition in a more convenient setup, in this
paper, we first realize the reentrant phase transition in the
s + p model in probe limit. Then we design quenching pro-
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cesses across the reentrant region to study the influence of
the reentrant order on the non-equilibrium process with the
same initial and final states.

The rest of this paper is organized as follows. In Sect. 2, we
give the setup of the s + p model and study the static solutions.
We draw a phase diagram involving reentrant phase transi-
tions which will be studied in quenching processes. In Sect. 3,
we give necessary details for studying the time dependent
processes in this holographic model and show time depen-
dent value of s-wave and p-wave condensates in dynamical
quenching processes. Finally, We give discussions and con-
clusions in Sect. 4.

2 Holographic s + p model in probe limit and the static
solutions

2.1 The setup of the holographic model

We consider a holographic model with a complex scalar and
a complex vector charged under the same U(1) gauge field in
the gravity side, the duel field theory therefore contains one
scalar order and one vector order. The full action is

S = SG + SM , (1)

SG = 1

2k2
g

∫
d4x

√−g(R − 2Λ), (2)

SM = 1

e2
s

∫
d4x

√−g

(
−1

4
FμνF

μν − DμΨ ∗DμΨ

−m2
sΨ

∗Ψ − 1

2
ρ†

μνρ
μν − m2

pρ
†
μρμ

)
, (3)

where Fμν is the strength of the U (1) gauge field Aμ. Ψ is
complex scalar field and ρμ is complex vector field. {qs,ms}
and {qp,mp} are the charges and masses of Ψ and ρμ, respec-
tively. Both Ψ and ρμ are charged under the U(1) gauge field
with

DμΨ = ∂μΨ − iqs AμΨ, (4)

D̄μρν = ∂μρν − iqp Aμρν. (5)

ρμν is the field strength of ρμ and is given by

ρμν = D̄μρν − D̄νρμ. (6)

This is a simple setup for a holographic system with both
s-wave and p-wave orders charged under the same U (1)

gauge field. The phase structure of this system with m2
p = 0

and qs = qp = 1 can be found in Ref. [17]. The reen-
trant phase transition has been realized there with appropriate
value of the back reaction strength. However, investigating
the dynamical processes in the system with considering back-
reaction on metric is quite complicated. Therefore, we try to
realize a reentrant phase transition in probe limit in this work.

In the rest of this section, we firstly show details of calcula-
tions for static solutions. After that, we introduce how to get
a reentrant phase transition by tuning different parameters,
and give the qp −ρ phase diagram which is helpful to under-
stand the different numerical quenching experiments in the
next section.

2.2 Static solutions

Because we want to study the dynamical quenching processes
without doing any numerical relativity, we take the probe
limit in this paper. The background geometry can be taken
as a 3 + 1 dimensional AdS black brane with

ds2 = L2

z2

(
− f (z)dt2 + 1

f (z)
dz2 + dx2 + dy2

)
, (7)

f (z) = 1 − (z/zh)
3. (8)

This metric is convenient for solving static solutions, and can
be easily transformed to the Eddington coordinates which is
the better choice for the dynamical processes. In this metric,
z is the radial coordinate of the bulk, with z = 0 the location
of the AdS boundary and z = zh the horizon. L is the AdS
radius. The temperature of the black brane is related to zh as

T = − f ′(z)
4π

∣∣∣
z=zh

= 3

4π zh
, (9)

which is also the temperature of dual field theory.
We set the following ansatz for the matter fields

Ψ = Ψs(z) ∗ z/L , At = φ(z), ρx = Ψp(z), (10)

with all other field components being turned off. The scalar
field is dual to an s-wave order in the boundary field theory
and the vector field is dual to a p-wave one, therefore we mark
the related functions with subscriptions s and p respectively.
With this ansatz, the equations of motion for matter fields in
the AdS black brane background read

q2
s φ

2Ψs/ f + DsΨs = 0, (11)

q2
pφ

2Ψp/ f + DpΨp = 0, (12)

(q2
s Ψ

2
s + q2

pΨ
2
p )φ/ f − ∂2

z φ/2 = 0. (13)

in which

Ds = (z f ′ − 2 f − m2
s L

2)/z2 + f ′∂z + f ∂2
z , (14)

Dp = −m2
pL

2/z2 + f ′∂z + f ∂2
z . (15)

There are three sets of scaling symmetries in Eqs. (11)–(13):

L → λ−1L , ms → λms, mp → λmp; (16)

z → λ−1z, zh → λ−1zh, φ → λφ,

Ψs → λΨs, Ψp → λΨp; (17)

qs → λ−1qs, qp → λ−1qp, φ → λφ, φ,

Ψs → λΨs, Ψp → λΨp. (18)
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The first and second scaling symmetries can be used to set
L = 1 and zh = 1 respectively. One can recover the two
parameters to any other values with these two symmetries
after we get the numerical solutions. The last scaling sym-
metry implies that the value of charge coupling parameter
will not influence the qualitative behavior of phase transi-
tions in the models with single order. However, in a system
with two charged orders, the ratioqp/qs does have non-trivial
influence on the phase transitions. We work in the probe limit
and do not change the background metric in the dynamical
processes, therefore we set L = zh = qs = 1 in the rest of
this paper.

To solve these coupled equations, we also need to specify
the boundary conditions. The expansions near the horizon
z = zh are

φ(z) = φ1(z − zh) + O((z − zh)
2),

Ψs(z) = Ψs0 + O(z − zh),

Ψp(z) = Ψp0 + O(z − zh), (19)

while the expansions near the boundary are

φ(z)|z=0 = μ − ρz, (20)

Ψs(z)|z=0 = (Ψs−z�s− + Ψs+z�s+)/z, (21)

Ψp(z)|z=0 = Ψp−z�p− + Ψp+z�p+ . (22)

�s± and �p± can be calculated with the mass parameters as

�s± = 3 ± √
9 + 4m2

s

2
, (23)

�p± =
1 ±

√
1 + 4m2

p

2
. (24)

In this paper, we take the standard quantization, in which
Ψs− and Ψp− are regarded as the source terms of the bound-
ary operators while Ψs+ and Ψp+ are regarded as the vac-
uum expectation values, with conformal dimensions �s+ and
�p+ respectively. We set the conditions Ψs− = Ψp− = 0 to
obtain the solutions of spontaneous U(1) symmetry breaking.
μ is the chemical potential and ρ is the charge density of the
boundary field theory.

We can see that Ψs and Ψp do not directly coupled with
each other in the equations of motion. Therefore we can turn
off one of the two functions and get the single condensate
solutions consistently. Besides the s-wave and p-wave single
condensate solutions, we need to also find solutions with
both two condensates non-zero, which are denominated as
the coexisting s + p solutions in this paper.

We plan to quench the charge density ρ of the holographic
system. Therefore in this section, we report the condensate
behavior of typical reentrant phase transition as well as the
phase diagram with the horizontal axis ρ, which means we
work in canonical ensemble. In order to compare the stabil-
ity of different solutions, we calculate the Gibbs free energy

holographically from the Euclidean on-shell action. In the
probe limit, the background geometry is the same for differ-
ent solutions, thus we only calculate the contribution of Gibbs
free energy from the matter action (3) to compare the stabil-
ity. Substituting the equations of motion into the Euclidean
on-shell action, we can get the expression of the matter con-
tribution of Gibbs free energy

Gm = V2L2

T

(
μρ

2
+

∫ zh

0

(
q2
s φ

2Ψ 2
s

f
+ q2

pφ
2Ψ 2

p

f

)
dz

)
.

(25)

2.3 Tuning towards a reentrant phase transition and the
phase diagram

With the equations of motion and the corresponding bound-
ary conditions, the Newtonian iterative algorithm is used to
solve the boundary value problem and get the different solu-
tions. Since we have set L = zh = qs = 1, there are still three
parameters {m2

s ,m
2
p, qp} left, which can be used to tune the

phase structure. In this subsection, we further explain how to
tuning the phase transition to be a reentrant one and show the
resulting phase diagram. We also give the condensate behav-
ior as well as the relative value of Gibbs free energy for a
typical reentrant phase transition.

According to experiences in the holographic study with
multiple orders, the coexisting solution exist when the free
energy of the two single order solutions are very close to each
other [17], which can be explained in the landscape picture
[24]. In order to have a reentrant behavior for the coexisting
phase, we need to get a special relation for the free energy
curves for the two single condensate solutions: one of the
single condensate solution should be more stable both at the
left and right region, while the other single condensate solu-
tion should be more stable in the middle region. Therefore,
we tune the three parameters {m2

s ,m
2
p, qp} to make the free

energy curves for the two single condensate solutions tangent
to each other or have two intersection points in the middle.

In order to tuning the two free energy curves to be the
above configuration, we need to understand the influence of
the different parameters on the free energy curves. As shown
in Ref. [25], when we tune one of two parameters m2

s and
qs with other one fixed, the free energy curve of the single
condensate s-wave solution will be changed “parallel”. The
similar law holds for the p-wave solution when we tuning the
parameter m2

p or qp.
Our strategy of searching for the reentrant phase transi-

tion is similar to that in Ref. [25]. At first, the parameter qp is
always set to the value that the p-wave and s-wave solutions
have the same critical value ρc. Then we can tuning the two
parameters m2

s and m2
p to get the second intersection point

(besides the critical point) of the two free energy curves for
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Fig. 1 The qp − ρ phase diagram with m2
s = 0 and m2

p = 3/4. The
horizontal axis is the charge density ρ while the vertical axis is qp .
The white region is dominated by the normal phase, the cyan region is
dominated by the s-wave phase, the magenta region is dominated by
the p-wave phase and the blue region is dominated by the s + p phase.
The symbol ∗ marked the quadruple point, while the symbols o and +
marked the two minimal points of two curves for the critical points of
the s + p phase. The values of qp for the three points are q∗

p = 0.720234,
qop = 0.718949, q+

p = 0.718415

the s-wave and p-wave solutions. Based on the above result,
we further tuning the value of qp to get the appropriate reen-
trant phase transition. It should be noticed that with only the
mass parameters and charge coupling parameters, it is not
likely to get the reentrant phase transition with two s-wave
orders. This is the reason of that we choose one s-wave order
and one p-wave order to build the model.

In order to simplify the numerical work in quenching pro-
cesses, we prefer the value 	+−	− for the scalar and vector
orders to be integers. Therefore we only consider several dis-
crete values for m2

s and m2
p. Finally, we find a nice choice

of the two parameters m2
s = 0 and m2

p = 3/4 and get the
reentrant phase transitions. We fix m2

s = 0 and m2
p = 3/4 in

the rest of this paper and show the qp − ρ phase diagram in
Fig. 1.

We can see from Fig. 1 that there are four regions dom-
inated by the normal phase, the s-wave phase, the p-wave
phase and the s + p phase respectively. The lines separating
different phases are all second order critical points. Because
we only tune the parameter qp, the critical value ρc for
the s-wave phase transition is not changed, as a result the
line between the white and cyan region is vertical. The line
between the white and magenta region is not vertical and
show the dependence of ρc for the p-wave phase transition
on qp.

We can separate the phase diagram to four part by the
three typical values of qp. When qp < q+

p , the s-wave phase
always dominate in the large ρ region. When q+

p < qp < qop,

the system undergoes a reentrant phase transition with non-
monotonic p-wave condensate. This is the case we search for,
and doing quench with in the next section. When qop < qp <

q∗
p, the system contains two sections of s + p phases. This

can be also understood as reentrance for the non-monotonic
behavior of p-wave condensate. When qp > q∗

p, the sys-
tem contains a typical s + p phase of the ‘x-type’. For large
enough value of qp, the system is also possible to be always
dominated by the p-wave phase in the large ρ region, which
is not shown in this phase diagram.

In the rest of this section, we set qp = 7189/10,000
to obtain a typical reentrance phase transition in the region
q+
p < qp < qop. We show the condensate values as well as

the relative values of Gibbs free energy with respect to ρ,
which give a concrete example for the static properties of
reentrant phase transitions.

The condensate values of the two orders for the differ-
ent solutions are given in Fig. 2. We can see from this figure
that, when we increase the value of ρ from a small value very
slowly, the s-wave order condensed firstly. If there is only p-
wave order, the p-wave condensate will form at a slightly
larger value of ρ. In another word, the critical value ρc−s for
the s-wave solution is slightly smaller than the critical value
ρc−p for the p-wave solution. In the s + p model where both
the s-wave and p-wave orders are turned on, the s-wave con-
densate prevent the formation of p-wave condensate until the
left critical point for the s + p solution ρc−sp−L . However,
the formation of the p-wave condensate is not monotonic
with the increasing of ρ. The value of the p-wave conden-
sate increase to a maximum value, then decrease and finally
vanish at the right critical point ρc−sp−R , which is a typical
curve of the order parameter in a reentrant phase transition.
Because the curve of the p-wave condensate from a shape of
letter ‘n’, we call this kind of phase transition as ‘n-type’.

We also draw a figure for relative values of Gibbs free
energy for the three different condensed solutions in Fig. 3.
Because we work in probe limit, only the contribution from
the matter action (3) differs for the different solutions. The
absolute values of this matter contribution for different solu-
tions are very close to each other, therefore we draw the
relative values G − Gs , where Gs is the Gibbs free energy
for the s-wave solution. As a result, the line for the s-wave
solution in Fig. 3 is horizontal.

We can see from Fig. 3 that, the Gibbs free energy of the s-
wave solution is lower in both the left(small ρ) and right(large
ρ) region, while the Gibbs free energy for the p-wave solution
is lower than that of the s-wave solution in the middle region.
The free energy for the s + p solution is the lowest in the region
where it exist and the curve is tangent to the curve for the
s-wave solution at the two critical points. This is a typical
free energy relation for the reentrant phase transitions with
q+
p < qp < qop, and explains the non-monotonic behavior of

the condensate values in Fig. 2.
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Fig. 2 The condensate values versus the charge density ρ with qp =
7189/10,000. The solid lines represents the condensate values for the
most stable solution with both the s-wave and p-wave orders turned on.
The dashed lines represents the condensate values for the solutions with
only single condensate. The lines colored cyan is for the s-wave order,
and lines colored magenta is for the p-wave order
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Fig. 3 The relative value of Gibbs free energy G −Gs with respective
to ρ. Gs is the Gibbs free energy of the s-wave solution, therefore the
cyan line for the s-wave solution coincide with the horizontal axis. The
magenta line denotes for the p-wave solution, and the blue line denotes
for the coexisting s + p solution

If we change the value of qp, the Gibbs free energy curve
for the s-wave solution will not be affected, while the curve
for the p-wave solution will be ‘parallel’ moved upwards or
downwards. As a result, the width of the s + p phase will
decrease or increase, as shown in Fig. 1. Therefore it is con-
venient to compare the influence of the width of the reentrant
region on the quench process with the same starting and end
points.

3 Dynamical processes

In this section, we study quenching processes in this holo-
graphic s + p model with m2

s = 0 and m2
p = 3/4. For sim-

plicity, we only consider homogeneous quenching processes
with linearly increasing charge density ρ(t) = ρ0+vt , where
t is the time coordinate, ρ0 is the initial value of charge den-
sity and v is the quench rate.

We first study quenching processes across the reentrant
region with q+

p < qp < qop, starting from the left side of
the reentrant region and ending at the right side. The value
of qp controls the width of the reentrant region, while the
quench rate v controls the speed of quenching processes. We
compare the effects of the two parameters in two groups of
numerical experiments, respectively.

At the end of this section, we also quench the holographic
system from the normal phase to compare the evolution of
the two orders in this s + p model and that in model with
single condensate.

3.1 Dynamical equations in Eddington coordinates

In order to quench the holographic system, it’s more conve-
nient to transform to the ingoing Eddington coordinates

ds2 = L2

z2 (− f (z)dt2 − 2dtdz + dx2 + dy2)). (26)

If we transform the static solution in the previous coordinates
with metric (7) into the one in Eddington coordinates, the
component Az of the U(1) gauge field will become nonzero.
However, we can use the gauge symmetry to set again Az =
0, at the cost of a complex valued scalar field Ψ . Therefore
we rewrite the ansatz as

Ψ = Ψs(z, t) ∗ z/L , At = φ(z, t), ρx = Ψp(z, t), (27)

where both Ψs(z, t) and Ψp(z, t) are complex valued. The
resulting time dependent equations of motion are

iqs(2φ∂z + ∂zφ)Ψs + DsΨs − 2∂t∂zΨs = 0, (28)

iqp(2φ∂z + ∂zφ)Ψp + DpΨp − 2∂t∂zΨp = 0, (29)

iqs( f Ψ
∗
s ∂zΨs − Ψ ∗

s ∂tΨs − c.c.) − 2|qsΨs |2
+p.p. − ∂t∂zφ = 0, (30)

qs(Ψ
∗
s ∂zΨs − c.c.) + p.p. − ∂2

z φ = 0. (31)

For simplicity, when the terms of the s-wave part have been
written out, we use p.p. to express the terms for the p-wave
part, which can be get by simply replacing the index s with
p. Similarly, c.c. represents complex conjugation.

The above four equations form a constraint equation [26]

iqs(Ψ
∗
s Eq.(28) − c.c) + p.p = ∂z Eq.(30) − ∂t Eq.(31),

(32)
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which implies that when s-wave and p-wave orders are all
turned on, the U(1) current is still conserved.

The boundary expansions are almost identical to the static
case, except that all expanding coefficients also depend on
time. The expansions near the horizon are

φ(z, t) = φ1(t) ∗ (z − zh) + O((z − zh)
2),

Ψs(z, t) = Ψs0(t) + O(z − zh),

Ψp(z, t) = Ψp0(t) + O(z − zh), (33)

while the expansions near the boundary are

φ(z, t)|z=0 = μ(t) − ρ(t)z (34)

Ψs(z, t)|z=0 = (Ψs−(t)z�s− + Ψs+(t)z�s+)/z (35)

Ψp(z, t)|z=0 = Ψp−(t)z�p− + Ψp+(t)z�p+ . (36)

In the time dependent case, we still set the source free bound-
ary conditions Ψs− = Ψp− = 0, and quench the value of ρ

by directly set ρ(t) a time dependent function. The expec-
tation value of the s-wave and p-wave order parameters can
still be read from Ψs+(t) and Ψp+(t) respectively.

In addition to the boundary conditions, we also need ini-
tial conditions. Because we quench the system from a static
solution at ρ = ρ0, we set the initial value for the three fields
as

φ(z, t)|t=0 = φ0(z), (37)

Ψs(z, t)|t=0 = ψs0(z), (38)

Ψp(z, t)|t=0 = ψp0(z), (39)

where φ0, ψs0 and ψp0 satisfy the static equations of motion
with ρ = ρ0.

We use the fourth-order Runge–Kutta algorithm to solve
the time dependent equations of motion numerically. We also
add small fluctuations at each step to model thermodynamic
fluctuations.

3.2 Quenching across the reentrant region with different
width

According to the phase diagram in Fig. 1, the value of qp
controls the width for the reentrant region. In order to focus
on the influence of the width of the reentrant region, we fix
the positions (values of ρ) of the starting point and end point
while tuning the value of qp to get different width of the
reentrant region.

The starting point is set at the static solution at ρ0 = 10,
which is dominated by the s-wave phase, thus the initial value
of the functions are the s-wave solution with Ψp0 = 0. The
quenching process stop at the time when ρ(t) reaches the
final value ρ(t) = ρ f = 25, again in the region dominated
by the s-wave phase in the static phase diagram. After the
end of quenching, the system will go on evolution until it
goes to thermal equilibrium on the s-wave solution. In such
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4

Fig. 4 The values of condensates for s-wave and p-wave orders in
three quenching processes with v = 0.00005 and different values of
qp . The horizontal axis show the linearly time dependent charge density
ρ(t), while the vertical axis show the condensate values 	

√〈O〉. Cyan
curves denote for the s-wave order and magenta curves denote for the p-
wave order. The dotted dashed lines, dashed lines and solid lines denote
the three different processes with qp = 0.7189, 0.7187 and 0.7186
respectively

quenching processes, the detailed evolution depend on qp,
which control the width of the reentrant region, as well as
the quench rate v. We first study the influence of the width
of the reentrant region by fixing v and set qp to different
values, and later show the effect of v by fixing qp and set v

to different values in the next subsection.
We fix the quench rate to v = 0.00005 and show the

time dependent condensate values of the s-wave and p-wave
orders in Fig. 4 for three different quenching processes with
qp = 0.7189, 0.7187 and 0.7186 respectively.

In Fig. 4, we use ρ(t) instead of t as the horizontal axis.
Cyan curves denote for the s-wave order and magenta curves
denote for the p-wave order. The dotted dashed lines, dashed
lines and solid lines denote the three different processes with
qp = 0.7189, 0.7187 and 0.7186 respectively. We can see
that in all the three processes, the condensate value for the p-
wave order increase from zero and decrease after reaching a
maximum value, while the s-wave order is suppressed when
the p-wave order becomes large. In the quenching process
with a larger value of qp, the reentrant order get a larger
condensate value profile. This is in accordance with the fact
that in the static phase diagram the reentrant region is wider
with a larger value of qp.

It is obvious that the quenching process with a larger value
of qp get a larger remaining value of p-wave condensate at the
end of quenching with t = te, therefore it seems more time
should be taken for the system to go to the final equilibrium
state. However, we should notice that although the different
quenching process start from the same initial state and end
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Fig. 5 The τ − qp relation with the final state at ρe = 25

with the same final state in the sense of static solutions, the
different values of qp still make the final states different in
the context of non-equilibrium physics. Especially, the quasi-
normal modes of the p-wave order depend on qp, therefore
the three different quenching processes get different values
of relaxing time τ , which can be defined from

O − O f ∝ exp(−t/τ). (40)

O is the time dependent expectation value and O f is the
expectation value for final equilibrium state. The value of τ

determines the late time relaxing to the final thermal state.
The relation between the quasi-normal modes and the late
time evolution has already been revealed holographically in
the context of dynamical phase transitions in Refs. [5,6]. In
this paper, we numerically fit the late time behavior of the
p-wave condensate to get the values of τ .

We plot the curve of τ − qp relation in Fig. 5. We can see
that τ is a monotonic increasing function on qp. Therefore,
it takes more time for a perturbed state to go back to equilib-
rium at ρ = 25 with a larger value of qp. Together with the
previous result of remaining value of p-wave condensate at
t = te, we can conclude that for the quenching processes in
this subsection, it takes more time to equilibrate with a larger
value of qp.

3.3 Quenching across the reentrant region with different
quench rate

To study the influence of quench rate v on this kind of quench-
ing processes, we fix qp = 0.7189 and plot the time depen-
dent values of the s-wave and p-wave condensates in Fig. 6
for three values of quench rate v. In this case, we still set the
horizontal axis as ρ(t), therefore the different quenching pro-
cesses are clearly presented in one plot, but the related time

10 12.5 15 17.5 20 22.5 25
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 6 The values of condensate for s-wave and p-wave orders in
quenching processes with different quench rate v. The horizontal axis
show both the time coordinate t and the value of ρ(t) = t , while the ver-
tical axis show the condensate values 	

√〈O〉. Cyan represents S-wave
order while magenta represents p-wave order. qp is fixed to 0.7189.
The dotted dashed lines, dashed lines and solid lines correspond to the
processes with quench rates v = 0.00005, 0.0001, 0.00015 and 0.0002,
respectively

scale in this plot is different for the processes with different
quench rate v.

In Fig. 6, cyan represents for the condensate value of the
s-wave order while magenta represents that for the p-wave
order. The dotted dashed lines, dashed lines, dotted lines and
solid lines correspond to the processes with quench rates v =
0.00005, 0.0001, 0.00015 and 0.0002, respectively. We can
see that in the processes with different quench rate, the time
dependent profiles of p-wave condensate value are different.
In the case with a fast quench rate, the p-wave condensate
can not increase to a large value in time; when the quench
rate is a little slower, the p-wave order have enough time to
grow to a large condensate value, but the decay from a large
value also take more time; when the quench rate is very slow
or even quasi-static, it will be almost along the condensate
profile of static solution. Therefore, the dependence of the
remaining p-wave condensate at the end of the quenching
process on the quench rate v is not monotonic.

We show the dependence of the remaining p-wave con-
densate 	

√〈Opr 〉 at the end of the quenching process t = te
on quench rate v in Fig. 7. We can see that as we expected,
the remaining value of condensate for the p-wave order at the
end of quenching process t = te is non-monotonic and get a
maximal value of 0.8741 at v = vc = 1.18 × 10−4.
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Fig. 7 The remaining p-wave condensate 	
√〈Opr 〉 at the end of the

quenching process at different values of quench rate v in quenching
processes across the reentrant region

3.4 The evolution of competing orders in quenching from
the normal phase

In the previous quenching processes, the system start from
the s-wave phase and the p-wave perturbation do not increase
until the left critical point for the s + p phase. If we start
from the normal state instead, the p-wave perturbation could
increase before ρ reaches the s + p region. In such a pro-
cess, we can study the dynamical competition between the
two different orders, and compare the evolution of the two
condensates to that in the models with single order as well.

We set qp = 0.7189 and quench the system from a nor-
mal solution at ρ0 = 7.58 to a final state with ρ f = 7.65,
which is in the region dominated by the s-wave phase in the
static phase diagram. Because the critical value ρcp for the
single condensate p-wave solution is a little larger but very
close to the critical point ρcs for the single condensate s-
wave phase, the system go through the two critical points
ρcs and ρcp successively, therefore the s-wave and p-wave
condensates increase almost simultaneously. However, the
p-wave condensate will finally decrease as a result of the
final s-wave state. From these quenching processes, we get
non-monotonic behavior of the p-wave condensate and the
dynamical competition between the two orders.

We show the time dependent condensate values in such
quenching processes with two values of quench rate v in
Fig. 8, where cyan represents s-wave condensate and magenta
represents p-wave condensate. The solid lines show the evo-
lution of the two condensate in the s + p model, while dashed
lines show the evolution of the condensates in models with
single order as comparison. The left plot is for v = 0.0002
and the right plot is for v = 0.000002, where the end
time of quenching processes are t f = 0.035 × 104 and

0 0.5 1 1.5 2 2.5 3 3.5 4

t 104
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0.6
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0 0.5 1 1.5 2 2.5 3 3.5 4

t 104

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 8 The condensate values in quenching processes from the normal
phase with qp = 0.7189. The horizontal axis is time coordinate t , while
the vertical axis is the condensate value 	

√〈Opr 〉. Cyan represents s-
wave order and magenta represents p-wave order. The solid lines show
the evolution of the two condensate in the s + p model, while dashed
lines show the evolution of the condensate in models with single order
as comparison. The left plot is for v = 0.0002 and the right plot is
for v = 0.000002. The dotted vertical lines denotes the end time of
quenching t f

t f = 3.5 × 104, respectively. We can see from the two fig-
ures that in both cases, the p-wave condensate show a non-
monotonic profile.

In the left plot in Fig. 8, the quench rate is v = 0.0002,
and the quenching process end in a very shot time t f =
0.035 × 104. In this case the condensate value for the p-
wave order grows even faster than the condensate value of
s-wave order at beginning. Although the condensate values
for the two different orders are different quantities, we can
still claim that the p-wave order increase faster in the sense
that the p-wave condensate get the maximum value earlier.
The maximum value for the two orders are the condensate
value for the single condensate solutions at ρ = ρ f = 7.65.

The evolution of the system can be roughly divided into
three stages. The first stage is before the p-wave order reaches
the maximum, in which the solid and dashed lines almost
coincide. This can be explained by that the two orders do not
coupled to each other directly, therefore before any of the two
orders reaches the condensate value of single order static
solution, the two orders growing as similar as in the cases
with only single order turned on. In the second stage, after
the p-wave order get the maximum condensate and before it
begin to decrease, the s-wave order still increase because at
ρ = ρ f , the single order s-wave solution is the most stable
one, but the increasing rate is slowed down, indicating the
repelling effect between the two orders. In the final stage,
the p-wave condensate is repelled by the increasing s-wave
condensate and decrease from the maximum to zero.

In the right plot in Fig. 8, we show a much slower quench-
ing process with quench rate v = 0.000002, which end at
t = t f = 3.5 × 104. In such a slow quenching process, we
also divide the evolution into three stages. The first stage is
still before the p-wave order reaching the maximum, when
the solid and dashed lines still almost coincide. However, we
should notice that the dashed line for the s-wave condensate
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Fig. 9 The dependence of the remaining p-wave condensate 	
√〈Opr 〉

at the end of the quenching process on the quench rate v in quenching
processes from the normal phase

grows faster instead, therefore the solid lines show that in the
first stage, the s-wave condensate grows faster as well.

Because the quench rate is slow enough, the two dashed
lines reach the condensate value for static solution with
ρ = ρ(t) before the quenching stopped. Therefore the two
dashed lines have two turning points. When the solid cyan
line reaches the first turning point of the dashed cyan line, the
p-wave condensate is suppressed and begin to decrease. This
region with a decreasing p-wave condensate before the end
of quenching t f is the second stage. The third stage is last
section with t > t f , where the system goes into equilibrium.
Again because the quench rate is slow enough, the state at
t = t f is very close to the static solution, and the s-wave
condensate stopped increasing immediately.

We can conclude that: in both the fast and slow quenching
processes from the normal phase, the two condensates grow
freely in an early stage; after one condensate reaches the value
for static solution, the growing of the other one is suppressed;
finally, the p-wave condensate decrease to zero because the
value ρ of the final state is in the region dominated by the
s-wave phase. As a result, the p-wave condensates show non-
monotonic behavior with time again.

We can see that the remaining p-wave condensate at the
end of quenching t = t f in both the fast and slow quenching
processes are very small. It is small in the fast quenching
case because there is not enough time for the condensates
to grow up in the very shot quenching period, while it is
small in the slow case because the p-wave condensate already
decrease to nearly zero in a long time. We again expect non-
monotonic dependence of the remaining p-wave condensate
on the quench rate and we draw this relation in Fig. 9.

In Fig. 9, we can see that the relation is indeed non-
monotonic and the remaining p-wave condensate get a max-
imum value of 0.2781 at v = vc = 3.35 × 10−6.

4 Conclusion and discussion

In this paper, we study the holographic superconductivity
model with an s-wave order and a p-wave order. We real-
ize the reentrant phase transition without back-reaction and
show a qp − ρ phase diagram. Based on these static phase
structure, we take quenching processes to probe the dynam-
ical properties across the reentrant region. We also study the
quenching processes from normal phase to study the dynam-
ical competition between the two orders and compare the
evolution of two condensates to that in the model with single
order.

In quenching processes across the reentrant region, we
fix the initial and final states and quench the system with a
linear time dependent function of charge density. Therefore
these dynamical processes are tuned by the quench rate v

and qp. We first fix the quench rate v and compare quench-
ing processes with different values of qp which controls the
width of the reentrant region. We see that the p-wave con-
densates show non-monotonic evolution, and the remaining
value at the end of the quenching processes is larger with a
larger value of qp. Because the relaxing time near the final
static state is also a increasing function on qp, it takes more
time to equilibrate with a larger value of qp after the end of
quenching.

When qp is fixed and v is varying, the different quenching
processes take different time t f −t0 and the remaining p-wave
condensate at the end of quenching t = t f is not monotonic
on v.

In quenching processes from the normal phase, in an early
stage before either of the two orders reaches the condensate
value of static solution, we find that both the growth of s-
wave and p-wave condensates are almost the same to the
growth of condensates in models with single order. After one
condensate reaches the condensate value of static solution,
the growing of the other condensate is suppressed, indicating
the repelling effect between the two condensates. Finally,
because we stop quenching in the region dominated by the
s-wave phase, the p-wave condensate decrease to zero and
show a non-monotonic behavior with time. We also draw the
dependence of the remaining p-wave condensate at t = t f
on the quench rate v, and show non-monotonic dependence
which is similar to the relation in the quenching processes
across the reentrant region.

The homogenous quenching processes studied in this
paper already show rich phenomenon that need further inves-
tigation, such as the competition between the two conden-
sates in dynamical processes and non-monotonic dependence
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of the remaining p-wave condensate on the quench rate v,
which is discovered in two different sets of quenching pro-
cesses. We are going to further study these phenomenon and
potential critical behaviors in future.
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