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Abstract We consider the fidelity of the vector meson dom-
inance (VMD) assumption as an instrument for relating the
electromagnetic vector-meson production reaction e+ p →
e′ + V + p to the purely hadronic process V + p → V + p.
Analyses of the photon vacuum polarisation and the photon-
quark vertex reveal that such a VMD Ansatz might be rea-
sonable for light vector-mesons. However, when the vector-
mesons are described by momentum-dependent bound-state
amplitudes, VMD fails for heavy vector-mesons: it cannot
be used reliably to estimate either a photon-to-vector-meson
transition strength or the momentum dependence of those
integrands that would arise in calculations of the different
reaction amplitudes. Consequently, for processes involving
heavy mesons, the veracity of both cross-section estimates
and conclusions based on the VMD assumption should be
reviewed, e.g., those relating to hidden-charm pentaquark
production and the origin of the proton mass.

1 Introduction

The interaction of a heavy vector-meson, J/ψ or ϒ , with a
proton target offers prospects for access to a QCD van der
Waals interaction, generated by multiple gluon exchange [1,
2], and the QCD trace anomaly [3,4]. The former is of interest
because it may relate to, inter alia, the observation of hidden-
charm pentaquark states [5]; whereas the latter has received
attention owing to its connection with emergent hadron mass
(EHM), the phenomenon that is seemingly responsible for
roughly 99% of the visible mass in the Universe [6–12].

a e-mail: xuyz@smail.nju.edu.cn
b e-mail: siyangchen@smail.nju.edu.cn
c e-mail: zqyao@smail.nju.edu.cn
d e-mail: binosi@ectstar.eu
e e-mail: phycui@nju.edu.cn
f e-mail: cdroberts@nju.edu.cn (corresponding author)

In the absence of vector-meson beams, experiments at
modern electron (e) accelerators attempt to access such inter-
actions via electromagnetic production of vector-mesons (V )
from the proton (p), in reactions like e+ p → e′+V+ p [13];
and the same method is proposed for use at planned higher-
energy facilities [14,15]. In this connection, it is typically
assumed that single-pole vector meson dominance (VMD)
[16–18] may reliably be used to draw a direct link between
the electromagnetic production process and the V p → V p
cross-section. Namely, as illustrated in Fig. 1, the interaction
is supposed to take place in a sequence of steps: (a) e →
e′ + γ (∗)(Q); (b) γ (∗)(Q) → V ; and (c) V + p → V + p.
Step (b) expresses the VMD hypothesis. As commonly used,
it assumes: (i) that a photon, which is, at best, real, but is gen-
erally spacelike, so that Q2 ≥ 0, transmutes into an on-shell
vector-meson, with timelike momentum Q2 = −m2

V ; and
(ii) that the Q2 ≥ 0 strength and character of the transition
in (b) is unchanged from that measured in the real process of
vector-meson decay,V → γ ∗(Q2 = −m2

V ) → e++e−, i.e.,
γγ V is supposed to remain fixed at its meson on-shell value
and acquire no momentum dependence. (Throughout, we
use the Euclidean metric conventions specified in Ref. [19,
Sec. 2.1].)

The VMD Ansatz was introduced before the development
of quantum chromodynamics (QCD) for use in analysing
energetic electromagnetic interactions of light hadrons, viz.
states with masses not much different from that of the pro-
ton [16–18]. It is still used today and for a much wider
range of systems [20–22] because the alternative is to
develop a sophisticated, nonperturbative reaction theory that
can explain quark+antiquark scattering from hadron targets
into vector-meson final-states. That nettle has not yet been
grasped. Notwithstanding this, the lack of an alternative does
not validate the VMD expedient; and, as also recognised else-
where [23,24], its fidelity should be reconsidered with QCD
constraints in mind.
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Fig. 1 Electromagnetic production of a vector-meson from the proton:
e + p → e′ + V + p, interpreted as providing access to V + p →
V + p using a vector meson dominance model. The VMD transi-
tion γ (∗)(Q) → V is indicated by the crossed-circle and is typically
assumed to occur with a momentum-independent strength γγ V [16–18]

In Sect. 2, we review connections between the dilepton
decay of vector mesons and the quark contribution to the
photon vacuum polarisation, arriving via this route at a result
first highlighted in Ref. [25]. Namely, straightforward imple-
mentation of any photon–vector-meson current-field identity
[16,17] must necessarily generate a tachyonic photon; hence,
cannot alone be used to develop or support a VMD phe-
nomenology. With that route to VMD closed, Sect. 3 turns
to a discussion of the photon-quark vertex, Γ

γ
ν (k; Q), high-

lighting that all vector-mesons appear as a pole in this vertex
at a timelike value of the total momentum: Q2 = −m2

V ,
where mV is the meson mass. Then the persistence of this
link between the photon and vector-meson to Q2 = 0, away
from the meson mass-shell, is explored using two Ansätze
for the quark+antiquark scattering matrix. Section 4 presents
a summary and perspective.

2 Photon vacuum polarisation

The physical process V → e+e− is described by a leptonic
decay constant, fV , which can be expressed as follows [26,
27]:

fV mV ελ
μ(Q) = trCDZ2

∫ 	

dk
γμχλ

V (k, Q), (1)

where the trace is over colour and spinor indices; ελ
μ(Q) is

the vector-meson polarisation vector,

∑
λ=−1,0,1

ελ
μ(Q)ελ

ν (Q) = δμν − QμQν/Q
2 =: Tμν(Q), (2)

with Q2 = −m2
V for the on-shell meson;

∫ 	

dk repre-
sents a translationally-invariant regularisation of the four-
dimensional integral, with	 the regularisation scale; Z2(ζ,	)

is the quark wave function renormalisation constant, with ζ

the renormalisation scale for all QCD quantities considered
herein; and the meson’s Poincaré-covariant Bethe–Salpeter
wave function is

χλ
V (k, Q) = S(k+)Γ λ

V (k; Q)S(k−), (3)

where S(k) is the dressed-propagator for the valence-quark/-
antiquark from which V is constituted, k+ = k + ηQ, k− =
k−(1−η)Q, 0 ≤ η ≤ 1, and Γ λ

V (k; Q) is the vector-meson’s
canonically-normalised Bethe–Salpeter amplitude [28,29].
(In our normalisation, the pion’s leptonic decay constant is
fπ ≈ 0.092 GeV; and we renormalise at ζ = 19 GeV, using
a scheme that is independent of current-quark mass [30].)

In terms of its decay constant, a vector-meson’s e+e−
decay width is

ΓV→e+e− = 8πα2
em

3

f 2
V

mV
ē2
V , (4)

where αem = e2/(4π) is the fine structure constant of quan-
tum electrodynamics (QED) and ē2

V is a squared sum of quark
charges weighted by the meson’s flavour wave function, as
referred to the positron charge:

2(ē2
ρ0 , ē

2
ω, ē2

φ, ē2
J/ψ , ē2

ϒ) = (1, 1
9 , 2

9 , 8
9 , 2

9 ). (5)

These values assume isospin symmetry and ideal mixing for
vector-mesons, e.g., the φ-meson is a ss̄ system.

A dimensionless coupling for vector-mesons is also com-
monly used:

gV = mV

fV
. (6)

The
√

2ēV factor is sometimes absorbed into 1/gV ; and the
current-field identity that is definitive of VMD is expressed
via

γγ V = e
m2

V

gV
. (7)

The decay constants, fV , control the strength of any
photon–vector-meson mixing. This can be seen by consid-
ering the associated quark-loop contribution to the photon
vacuum polarisation tensor, the regularised expression for
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which is

Π ′
μν(Q) = ē2

V trCDZ2

∫ 	

dk
γμS(k+)Γ γ

ν (k, Q)S(k−), (8)

where the photon-quark vertex satisfies the following Ward–
Green–Takahashi identities:

iΓ γ
ν (k, Q = 0) = ∂νS

−1(k), (9a)

Qν iΓ
γ
ν (k, Q) = S−1(k+) − S−1(k−). (9b)

Given the general form of the quark propagator,

S(k) = 1

iγ · k A(k2) + B(k2)
≡ Z(k2)

iγ · k + M(k2)
, (10)

where M(k2) is renormalisation point invariant, Eq. (9a)
entails that the Q2 
 0 photon-quark vertex is completely
described by three or less tensor structures and associated
scalar functions, all of which are fully determined by those
appearing in the quark propagator [31,32]. This hints that
any overlap between the Q2 = 0 quark-photon vertex and
the vector-meson bound-state is both indirect and modest at
best [19,33].

Using Eq. (9b) and capitalising on the properties of
∫ 	

dk ,
one may readily establish Ward–Green–Takahashi identities
for the photon vacuum polarisation:

QμΠ ′
μν(Q) = 0 = Π ′

μν(Q)Qν, (11)

which entail

Π ′
μν(Q) = Tμν(Q) Q2 Π ′(Q2). (12)

Following convention, the renormalised photon vacuum
polarisation tensor is

Πμν(Q) = Tμν(Q) Q2 Π(Q2), (13a)

Π(Q2) = Π ′(Q2) − Π ′(Q2 = 0) (13b)

so that Π(Q2) = 0 and the photon remains massless in the
renormalised theory. The absence of an infrared mass-scale
in the photon polarisation tensor is an empirical fact.

The photon vacuum polarisation is connected to vector-
mesons through the dressed photon-quark vertex. In the
neighbourhood of a vector-meson pole, ignoring any hadronic
width:

1

Z2
[Γ γ

ν (k, Q)]tu Q2+m2
V 
0= regular terms

+
∫ 	

dl
2
[Γ λ

V (k; Q)]ut [Γ λ
V (l; Q)]rs

Q2 + m2
V

[S(l−)γνS(l+)]sr ,
(14)

where we have exploited properties of the appearing objects
under charge conjugation. (See, e.g., Ref. [34, Appendix A].)
Inserting this result into Eq. (8) and recognising that the regu-
larising term receives no bound-state contribution, one finds

Πμν(Q)
Q2+m2

V 
0= ē2
V trCDZ2

∫ 	

dk
γμS(k+)Γ λ

V (k; Q)S(k−)

× 2

Q2 + m2
V

trCDZ2

∫ 	

dl
γνS(l+)Γ λ

V (k; Q)S(l−)

(15a)

= ē2
V

2 f 2
Vm

2
V

Q2 + m2
V

Tμν(Q), (15b)

where Eq. (2) has been used. Consequently,

Q2 Π(Q2)
Q2+m2

V 
0= ē2
V

2 f 2
Vm

2
V

Q2 + m2
V

; (16)

and, therefore, on Q2 + m2
V 
 0, the timelike photon is

indistinguishable from the vector-meson. This is merely the
statement that e+e− collisions with a tuned centre-of-mass
energy can be used to produce vector-mesons.

However, the VMD assumption asserts that the photon is
also indistinguishable from the vector-meson on Q2 
 0.
This is the content of Eq. (7) and it is plainly false because
Q2Π(Q2)

∣∣
Q2
0 ≡ 0 as a consequence of photon massless-

ness: a massive composite vector-meson cannot be confused
(mix) with an on-shell massless photon. With this contradic-
tion, we recover the objection to Eq. (7) that was first raised in
Ref. [25]. A remedy for this flaw was proposed in Ref. [35]. It
consists in constructing a local Lagrangian for pointlike pho-
tons, vector-mesons, and nucleons, with couplings tuned to
ensure cancellation of the photon mass term that is generated
by the interaction in Eq. (7). In the context of QCD, whose
interactions do not generate pointlike hadrons, this solution
is untenable. We therefore ask: is there a QCD alternative?

3 Photon+quark vertex

Another place to look for justification of the VMD assump-
tion is suggested by Eq. (14). The dressed photon-quark
vertex describes precisely how a photon (timelike, real, or
spacelike) couples to a quark+antiquark pair; and this is
the general character of the interaction expressed in Fig. 1:
(a′) e → e′ + γ ∗(Q); (b′) γ ∗(Q) → q + q̄; and (c′)
q+ q̄+ p → V + p. Plainly, Γ γ

ν (k; Q) is momentum depen-
dent. So, the question to be addressed is: are there any condi-
tions under which Γ

γ
ν (k; Q)

∣∣
Q2
0 has a link to an on-shell

vector-meson that may be approximated by Eq. (7) or some-
thing similar? To answer this, one must compute Γ

γ
ν (k; Q).
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The contribution of a given quark flavour to the dressed-
quark photon vertex can be obtained by solving the following
integral equation:

[Γ γ
ν (k; Q)]tu = Z2[γν]tu +

∫ 	

dl
K rs
tu (k, l; P)

× [S(l+)Γ γ
ν (l; Q)S(l−)]sr , (17)

where K (k, l; P) is the quark+antiquark scattering kernel.
After approximately thirty years of study, much has been
learnt about this interaction [36–40]; and we subsequently
discuss solutions of Eq. (17) and the associated, coupled
quark gap equation obtained using two physically motivated
choices.

Our calculations are performed using rainbow-ladder
(RL) truncation [41,42], which is the leading-order in the
most widely used approximation scheme for QCD’s Dyson-
Schwinger equations (DSEs) [43–48]. It is known to deliver
realistic predictions for, inter alia, the properties of ground-
state vector-mesons constituted from degenerate valence
degrees-of-freedom for reasons that are well understood
[40,43,48]. In RL truncation, the quark + antiquark scat-
tering kernel can be written (q = k − l):

K rs
tu (k, l; P) = Gμν(q)[iγμ]ts[iγν]ru, (18a)

Gμν(q) = G̃(q2)Tμν(q). (18b)

The form of G̃(q2) is the key to drawing connections with
QCD and all reasonable Ansätze express features deriving
from its non-Abelian character.

3.1 Contact interaction

Owing to the emergence of a gluon mass-scale in QCD,
enabled by strong non-Abelian gauge-sector dynamics [39,
49–53], G̃ is nonzero and finite at infrared momenta; so, one
may write

G̃(q2)
k2
0= 4παIR

m2
G

. (19)

QCD has [39]: mG ≈ 0.5 GeV, αIR ≈ π .
Translating the model of Ref. [54] into a Schwinger func-

tion framework typical of modern continuum approaches to
QCD, Eqs. (18), (19) have been used as the starting point
for development of a symmetry-preserving formulation of a
vector×vector contact interaction (SCI) [55,56]. This kernel
maintains the character of more realistic treatments of the
continuum bound-state problem whilst, nevertheless, intro-
ducing an algebraic simplicity. The many applications can
be traced from Refs. [57–60].

In this subsection, we exploit the SCI detailed in Ref. [58,
Appendix A]. Namely, the quark+antiquark scattering kernel

is

K rs
tu (k, l; P) = 4παIR

m2
G

[iγμ]ts[iγμ]ru, (20)

with mG = 0.5 GeV and αIR running with current-quark
mass, as listed in Table 1.

Using the SCI, the dressed-quark propagator acquires the
following simple form:

S(k) = 1/[iγ · k + M], (21)

where M is the dressed-quark mass, which is momentum-
independent in this case. This mass is obtained by solving
the SCI gap equation; and the process delivers the values
listed in Table 1 [58].

Similarly, using the SCI, all mesons are described by a
Bethe–Salpeter amplitude that is also independent of relative
momentum; and for vector-mesons, this amplitude has the
form:1

Γ λ
V = γ · ελ(Q) EV , (22)

with EV a constant. In being described by a bound-state
amplitude that is independent of relative momentum, the SCI
meson is pointlike in many respects.

The associated meson mass is obtained by solving the
SCI Bethe–Salpeter equation in the vector channel, which is
simply a one-line algebraic equation [56]:

0 = 1 + KV (Q2), (23)

where

KV (Q2) = − 4αIR

3πm2
G

∫ 1

0
dα α(1 − α)

× Q2 C1(ω(M, α, Q2)), (24)

in which C1(ω) = Γ (0, ωτ 2
ir) − Γ (0, ωτ 2

uv), with Γ (α, y)
being the incomplete gamma-function; ω(M, α, Q2) =
M2 +α(1−α)Q2; and M is the dressed mass of the current-
quark that defines the vector-meson.

The value of EV , the momentum-independent strength
of the Bethe–Salpeter amplitude in Eq. (22), is fixed by the
canonical normalisation condition [28,29,55,56]:

1

E2
V

= − 9m2
G

4παIR

d

dz
KV (z)|z=−m2

V
. (25)

1 In QCD, the vector-meson Bethe–Salpeter amplitude has eight dis-
tinct tensor structures [28,29], each one multiplied by a different scalar
function of both relative and total momentum.
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Table 1 The SCI is defined by three parameters. The infrared cutoff
(confinement scale) is fixed: 	ir = 0.24 GeV. The ultraviolet cutoff,
	uv, and running coupling, αIR are chosen in tandem so as to ensure
a good description of pseudoscalar meson masses and leptonic decay
constants, with the results listed here. m is the current-mass of the iden-

tified quark and M is the associated dressed-quark mass obtained by
solving the gap equation. Empirically, at a sensible level of precision
[61]: mπ = 0.14, fπ = 0.092; mK = 0.50, fK = 0.11; mηc = 2.98,
fηc = 0.24; mηb = 9.40. (Dimensioned quantities in GeV.)

Quark αIR/π 	uv m M m0− f0−

l = u/d 0.36 0.91 0.007 0.37 0.14 0.10

s 0.36 0.91 0.17 0.53 0.50 0.11

c 0.053 1.89 1.23 1.60 2.98 0.24

b 0.012 3.54 4.66 4.83 9.40 0.41

In terms of the canonically normalised amplitude, using
Eq. (1), one finds:

fV mV = 9m2
G

8παIR
EV . (26)

Using the parameters given in Table 1, the following
results are obtained [58]:

V EV mV /GeV fV /GeV
ρ 1.53 0.93 0.13
φ 1.63 1.03 0.12

J/ψ 1.19 3.19 0.20
ϒ 1.48 9.49 0.38

. (27)

The inhomogeneous Bethe–Salpeter equation for the
dressed photon-quark vertex, Eq. (17), and its solution, also
take simple forms when using the SCI [55,56]:

Γ γ
ν (k; Q) = PT(Q2) Tνσ (Q)γσ + γνγ · Q/Q2, (28a)

PT(Q2) = 1

1 + KV (Q2)
. (28b)

Using Eq. (24), it is clear that PT(Q2 = 0) = 1; conse-
quently, with the aid of Eq. (21), one readily finds that the
Ward–Green–Takahashi identities in Eqs. (9) are also pre-
served; and, similarly, Eqs. (11)–(13), so that the photon
remains massless.

The question of the fidelity of the VMD assumption is
now readily posed and addressed within the SCI framework.
Namely, expressing Eq. (14), it is apparent from the formulae
written above that

ελ · Γ γ (Q)
Q2+m2

V 
0= ελ · γ
2 fV mV EV

Q2 + m2
V

; (29)

to wit, one recovers Eq. (7) on the meson mass shell. (This
identity is readily verified numerically.) Hence, the reliability
of the VMD assumption may be measured by the deviation
of the following ratio from unity:

RV (Q2)

∣∣∣
Q2=0

= 1

PT(Q2)

2 fV mV EV

Q2 + m2
V

∣∣∣∣∣
Q2=0

= 2 fV EV

mV
.

(30)

Using the results in Eq. (27), one finds

V ρ φ J/ψ ϒ

RV (0) 0.42 0.37 0.15 0.12
. (31)

Evidently, for vector-mesons composed of the lighter quarks,
use of the VMD assumption leads one to overestimate the
connection in cross-sections between e + p → e′ + V + p
and V + p → V + p by a factor of six and this overesti-
mate exceeds a factor of fifty for vector-mesons composed of
heavy quarks. (Recall that a cross-section is obtained from
the amplitude-squared.) Since the SCI produces photons and
vector-mesons that both possess a pointlike character, these
poor outcomes are likely the best achievable, so far as the
fidelity of the VMD assumption is concerned in connection
with vector-meson photoproduction. Naturally, the results
are worse for electroproduction (Q2 > 0).

Notwithstanding these things, the pointlike features of SCI
bound-states ensure that the mismatch between e + p →
e′ + V + p and V + p → V + p is merely an overall
Q2-dependent multiplicative term whose impacts may be
removed by including an off-shell form factor [20,21]:

γγ V → Fγ V (Q2)γγ V . (32)

We now turn to the QCD-like cases, wherein all quantities
depend on both relative and total momentum.

3.2 Momentum-dependent interaction

In connection with RL truncation, a realistic momentum-
dependent interaction was introduced in Refs. [62,63]:
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1
Z2

2
G̃(s) = 8π2

ω4 De−s/ω2 + 8π2γmF(s)

ln
[
τ + (1 + s/	2

QCD)2
] , (33)

where γm = 12/25, 	QCD = 0.234 GeV, τ = e2 − 1, and
F(s) = {1 − exp(−s/[4m2

t ])}/s, mt = 0.5 GeV. This form
has been used widely; and amongst the more recent appli-
cations, predictions for vector-meson elastic form factors
[64] and semileptonic Bc → ηc, J/ψ transitions [65] are
most closely related to the analysis herein. The successes of
these recent applications highlight that RL truncation deliv-
ers an efficacious description of vertices describing the cou-
plings between quarks and electroweak gauge bosons, in part
because it ensures preservation of all relevant Ward–Green–
Takahashi identities. The omission of hadronic widths is a
minor issue for the ρ-meson, which is readily ameliorated
when any effects are noticeable [66]. As explained, e.g., in
Ref. [64, Sec. II.B]: Dω = (0.8 GeV)3, ω = 0.5 GeV for
u = d-, s-quarks; and Dω = (0.6 GeV)3, ω = 0.8 GeV
for c-, b-quarks. The shift in parameter values owes to the
diminishing strength of corrections to RL truncation as one
moves into the heavy-quark sector. (See, e.g., Ref. [67].)

Details relating to the development of Eq. (33) and its con-
nection with QCD are presented in Refs. [36,62,63]. Here,
we simply reiterate some points. (i) The interaction is con-
sistent with that found in studies of QCD’s gauge sector. It
expresses the result, enabled by strong non-Abelian gauge-
sector dynamics, that the gluon propagator is a bounded,
smooth function of spacelike momenta, whose maximum
value on this domain is at s = 0 [39,51,52], and capitalises on
the property that the dressed gluon-quark vertex does not pos-
sess any structure which can qualitatively alter these features
[68]. (ii) Equation (33) preserves the one-loop renormalisa-
tion group behaviour of QCD; hence, e.g., the quark mass-
functions produced are independent of the renormalisation
point. (iii) On s � (2mt )

2, Eq. (33) defines a two-parameter
Ansatz, the details of which determine whether such corollar-
ies of EHM as confinement and dynamical chiral symmetry
breaking (DCSB) are realised in solutions of the bound-state
equations [12,47]. Additionally, given a value of the prod-
uct Dω, results for observables are practically insensitive
to variations ω → ω(1 ± 0.1); thus, there is no issue of
fine tuning. (iv) The interaction is specified in Landau gauge
because, amongst other things, this gauge is a fixed point of
the renormalisation group and minimises sensitivity to the
form of the gluon-quark vertex, thus providing the condi-
tions for which RL truncation is most accurate. Naturally, all
Schwinger functions considered herein are gauge covariant;
hence, whilst quantitative characteristics respond to prop-
erly implemented changes in gauge, qualitative features and
observable quantities are gauge independent.

Employing Eqs. (18), (33) to complete the gap and Bethe–
Salpeter equations, one obtains the results in Table 2: the

mean absolute relative difference between calculation and
experiment is 4.5%, with median value 1.5%. It is worth
highlighting that Table 2 lists renormalisation-point-invariant
current-quark masses. One-loop evolution to ζ = ζ2 =
2 GeV yields mζ2

u = 0.0046 GeV; mζ2
s = 0.112 GeV; and

solving for the one-loop heavy-quark mass produces mmc
c =

1.19 GeV, mmb
b = 4.38 GeV. All these values are commen-

surate with those typically quoted [61].
We are now in a position to test Eq. (30) in the realistic

case of nonpointlike vector-mesons produced by a QCD-
constrained momentum-dependent interaction. The neces-
sary generalisation brings some complications because, as
noted above, the Poincaré-covariant Bethe–Salpeter ampli-
tude associated with a nonpointlike vector-meson has eight
independent components, each one multiplied by an associ-
ated Poincaré-invariant scalar function expressing a
momentum-dependent strength factor [28]. (Illustrative
numerical solutions are drawn elsewhere [27, Sec. V].) The
dominant amplitude is that associated with γ · ε(Q), which
is conventionally written as F1(k2, k · Q; Q2): the other
seven functions in Γ λ

V (k; Q) are driven to be nonzero by
F1(k2, k · Q; Q2) �= 0. Consequently, it is sufficient to work
with γ · ελ(Q) ×F1(k2, k · Q; Q2). For subsequent use, we
note that the zeroth Chebyshev moment of this or any anal-
ogous function is (k · Q =: x√k2Q2):

F0
1 (k2; Q2) = 2

π

∫ 1

−1
dx

√
1 − x2 F1(k

2, k · Q; Q2). (34)

Regarding the other side of the equation, the dressed
photon-quark vertex has twelve independent structures, eight
of which are essentially transverse [31,32], contributing
nothing to resolving the Ward–Green–Takahashi identity and
expressing all on-shell overlap with any vector-meson bound-
states. Indeed, on the mass-shell of any vector-meson, just as
with the contact interaction:

ελ · Γ γ (k; Q)
Q2+m2

V 
0= 2 fV mV

Q2 + m2
V

Γ λ
V (k; Q). (35)

In the photon-quark vertex, the leading component is also
that associated with γ · ελ(Q).

The VMD issue we are exploring was studied in Ref. [33],
with a focus on the ρ-meson. Therein, owing to the Ward
identity, Eq. (9a), it was concluded that there is zero over-
lap between a real massless photon and a massive com-
posite vector-meson at Q2 = 0, i.e., ελ · Γ γ (k; Q)|Q2
0
receives no contribution from any such vector-meson bound-
state. Mathematically, this is true, as we demonstrated in
Sect. 2. However, given the phenomenological character of
the VMD Ansatz, we choose to admit the possibility of
a serviceable correspondence between ελ · Γ γ |Q2
0 and
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Table 2 Masses and decay constants obtained using the bound-state
equations defined by Eqs. (18), (33): m̂ is the renormalisation-group-
invariant current-quark mass for the identified quark; 0− labels ground-
state pseudoscalar systems; and V , ground-state vector states. The 0−

ss̄
state is a fictitious pseudoscalar meson computed as a benchmark in

both continuum and lattice analyses, e.g., Ref. [69]. For comparison,
where known, empirical values are [61]: mπ = 0.138, mηc = 2.98,
mηb = 9.40, fπ = 0.092, fηc = 0.24, mρ = 0.775, mφ = 1.019,
mJ/ψ = 3.10, mϒ = 9.46 fρ = 0.156(1), fφ = 0.161(3), f J/ψ =
0.29, fϒ = 0.51. (Dimensioned quantities in GeV.)

Quark m̂ m0− f0− mV fV

u = d 0.00664 0.138 0.093 0.735 0.146

s 0.162 0.691 0.130 1.074 0.183

c 1.51 2.98 0.284 3.12 0.300

b 7.34 9.26 0.475 9.33 0.505

Γ λ
V (k; Q)|Q2+m2

V 
0 and seek evidence for or against this
hypothesis.

In this case, with momentum-dependent interactions and
vertices, we begin to address the issue of the fidelity of
the VMD assumption by comparing the zeroth Chebyshev
moments of the functions multiplying the leading matrix
structure on both sides of Eq. (35).2 These functions are
readily obtained using a suitably chosen projection opera-
tor; and defining this leading term in ελ(Q) ·Γ γ (k; Q) to be
γ ·ελ(Q)G1(k2, k ·Q; Q2), the following comparison arises
for consideration:

G0
1(k

2; Q2 = 0) vs.
2 fV
mV

F0
1 (k2;−m2

V ). (36)

Namely, one measure of the accuracy of the VMD assump-
tion is the ratio:

RV (k2; Q2 = 0) := 2 fV
mV

F0
1 (k2;−m2

V )

G0
1(k

2; Q2 = 0)
, (37)

which is the obvious analogue of Eq. (30). As here, it is
momentum-dependent in QCD; and only if RV (k2; Q2 =
0) ≈ 1 can the VMD assumption be considered reliable.
Naturally, referring to Eq. (10), and using the Ward identity,
Eq. (9a),

G0
1(k

2; Q2 = 0) = A(k2), (38)

where the appropriate form for A(k2) is obtained from the
gap equation for the relevant quark flavour.

We computed the dimensionless ratio in Eq. (37) for each
vector-meson in Table 2 and depict the results in Fig. 2A.
As expected mathematically, since the on-shell photon is
a massless pointlike object and an on-shell vector-meson
is a massive composite object, the ratio RV (k2; Q2 = 0)

reveals that there is no overlap between these two states

2 All other moments and functions are more sensitive to vector-meson
compositeness and nonlocality; so if the fidelity is poor for the zeroth
moment of the dominant amplitude, it will be worse for every other
possible comparison.

A

B

Fig. 2 Upper panel – A: Ratio in Eq. (37) computed using matched
solutions of the gap and Bethe–Salpeter equations defined by Eqs. (18),
(33) for V = ρ, φ, J/ψ,ϒ . Lower panel – B: Ratio in Eq. (40), com-
puted analogously. In cases where the VMD hypothesis were sound, all
these curves would lie close to the thin horizontal line drawn at unity.

at Q2 = 0. In QCD, vector-meson compositeness requires
that F0

1 (k2;−m2
V ) vanish as 1/k2 with increasing k2, up to

logarithmic corrections, whereas for the pointlike photon,
G0

1(k
2; Q2 = 0) → 1 with increasing k2, again up to loga-

rithmic corrections.
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To complete the picture, it is worth analysing a different
term in the photon-quark vertex, viz. the piece whose appear-
ance in the absence of Higgs couplings into QCD is a direct
consequence of DCSB, which is a corollary of EHM. Once
again, this term can be read using the Ward identity, Eq. (9a):

G3(k
2; Q2 = 0) = −2

d

dk2 B(k2). (39)

Denoting the related term in the vector-meson Bethe–
Salpeter amplitude by F8(k2, k ·Q;−m2

V ), one is led to con-
sider the ratio:

RB
V (k2; Q2 = 0) := fV

mV

F0
8 (k2;−m2

V )

G0
3(k

2; Q2 = 0)
, (40)

which is plotted for each vector-meson in Fig. 2B. The obser-
vations made in connection with Fig. 2A are equally appli-
cable here, except for the fact that both the numerator and
denominator here fall as 1/k2 up to logarithmic corrections.

Comparing the curves in both panels of Fig. 2, within
each panel and across panels, it becomes apparent that
the momentum-dependence in any quark+anti-quark loop
describing scattering in the process e+p → e′+V+p is very
different from that in the process V + p → V + p. Moreover,
this mismatch is compounded by the fact that the Q2 = 0
photon-quark vertex has only three nontrivial momentum-
dependent components, whereas the on-shell vector-meson
has eight distinct, momentum-dependent terms. Hence, only
one other Q2 = 0 ratio is nonzero. The other five are iden-
tically zero. Consequently, an expedient like that in Eq. (32)
is inadequate in the realistic case.

It is important to reiterate that analyses based on Eqs. (18),
(33) have delivered sound results for the properties of ground-
state vector-mesons, and also many other systems, includ-
ing baryons [70–72]. This being so, then it is justified to
draw conclusions about physical processes from the mate-
rial in this subsection. Hence, in light of its revelations, the
best hope for a measure of usefulness in the VMD assump-
tion is that damping introduced by the wave functions of
the initial- and final-state protons and the final-state vector-
meson restricts the loop integration(s) that express the pro-
cess q + q̄ + p → V + p to a domain that is not over-
whelmingly sensitive to the differences between the “wave
functions” of a pointlike as compared to a composite object;
namely, to a domain throughout which RV (k2; Q2 = 0) and
its nonzero analogues are ≈ 1 and the other nonzero terms in
the initial-state vector-meson Bethe–Salpeter amplitude may
be neglected.

Regarding Fig. 2, this might be plausible for the ρ-meson
and, with less confidence, the φ-meson, so that the VMD
assumption may be useable in these channels in some cir-
cumstances. However, again, one must bear in mind that five

of the structures in the vector-meson Bethe–Salpeter ampli-
tude are ignored by the VMD assumption.

On the other hand, confirming the result obtained by other
means in Ref. [64], it is not the case for the heavy mesons. So,
it is unsound to use e+e− decays of these systems in order to
estimate effective strength factors, γγ J/ψ , γγϒ . The force of
this conclusion is magnified by the following facts: RV (k2; 0)

in Fig. 2A compares only the zeroth Chebyshev moments of
the leading amplitudes; the situation for all other moments
and amplitudes is significantly worse, as highlighted by
Fig. 2B and especially because the VMD Ansatz omits five
components of the vector-meson Bethe–Salpeter amplitude;
and these last remarks emphasise once more that no single
overall multiplicative function can remedy the diverse array
of mismatched momentum dependences.

Consequently, the VMD assumption is false for heavy
vector-mesons. Furthermore, there is no model-independent
way to estimate and/or correct for the degree by which it dis-
torts any interpretation of the e + p → e′ + V + p reaction
in terms of the V + p → V + p process; and it is only the
latter for which a QCD multipole expansion has been used
to draw connections with the proton’s glue distribution [10].
Stated figuratively, in order to ensure a quantitatively accu-
rate analysis of e + p → e′ + V + p, one would need to
use

γγ V → γγ VM (k2, k · Q, Q2), (41)

where M (k2, k · Q, Q2) is a matrix-valued function whose
reliable estimation will only become possible after develop-
ment of a realistic reaction theory for q + q̄ + p → V + p.

It is worth remarking that these conclusions are consistent
with dispersion theory. For example, consider the usual spec-
tral representation of the elastic electromagnetic form factor
of a light-quark hadron. In this case, the spectral function,
σ(t), has a prominent feature associated with the ρ-meson,
broadened by its hadronic width, not too far removed from the
π+π− production threshold. The hadron’s electromagnetic
radii receive a modest contribution from this part of σ(t);
but the exact amounts depend on how one chooses to draw
the boundaries on this ρ-meson spectral feature [19, Sec. 2.3].
For analogous cases involving heavy vector-mesons, the kin-
dred spectral feature lies deep in the timelike region, e.g.,
t = 16m2

ρ for the J/ψ and t = 150m2
ρ for the ϒ , and is nar-

row in both instances. Here, the spectral strength in the neigh-
bourhood t 
 0 is not dominated by those distant bound-state
features, but, instead, by nonresonant quark+antiquark scat-
tering processes.

One may compare these conditions with those prevailing
when using Sullivan-like processes [73] to explore the struc-
ture of π and K targets, e.g., e+ p → e′ + π(K ) + n or e+
p → e′+X+n. In such cases, the off-shell quark+antiquark
correlation serves as a valid π(K ) target on −t � 1(1.5)m2

ρ
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[74], which is the domain to which completed and planned
experiments restrict themselves [6,11,12,75–83].

4 Summary and perspective

We examined the fidelity of the single-pole vector meson
dominance (VMD) hypothesis as a tool for interpreting
vector-meson photo/electroproduction reactions, like e +
p → e′ + V + p, as an access route to a different, desired
reaction; to wit, V + p → V + p in the exemplifying case.

As the first step in this study, we considered the pho-
ton vacuum polarisation tensor, Πμν(Q), where Q is the
photon momentum; and reaffirmed that there is no vector-
meson contribution to this polarisation at Q2 = 0, i.e., the
photoproduction point (Sect. 2). This outcome reveals that
massless real photons are readily distinguishable from mas-
sive vector-bosons and the current-field identity [Eq. (7)],
typical of VMD implementations, cannot be used literally
and alone because it leads to violations of Ward–Green–
Takahashi identities in quantum electrodynamics.

We then considered the dressed photon-quark vertex,
Γ

γ
ν (k; Q). It possesses a pole at the mass of any vector-meson

bound-state, which is a physical property, expressing the fact
that V → e+e− decay proceeds via a timelike virtual photon.
From this perspective, the VMD hypothesis may be viewed as
an assertion that Γ

γ
ν (k; Q)

∣∣
Q2
0 maintains an unambiguous

link in both strength and momentum-dependence with the
bound-state amplitude of an on-shell vector-meson (Sect. 3).

We explored this possibility using two models for the
quark+quark scattering kernel. Supposing that the kernel is
momentum-independent (Sect. 3.1), then such a link does
exist because the vector-mesons produced by a contact inter-
action are described by momentum-independent bound-state
amplitudes. On the other hand, any use of the V → e+e−
decay width to estimate the coupling strength via the current-
field identity leads one to overestimate the relation between
the cross-section for e + p → e′ + V + p and that for
V + p → V + p by a factor of ∼ 50 for heavy vector-
mesons.

In the realistic case (Sect. 3.2), where the quark+quark
scattering kernel is momentum dependent, as it is in QCD,
the VMD hypothesis is false for heavy-mesons because the
momentum-dependence of the Q2 = 0 photon-quark vertex
is entirely different from that of the vector-meson Bethe–
Salpeter amplitude. Hence, the process γ (∗)(Q2 ≥ 0)+ p →
V + p has no discernible link to V + p → V + p, either in
strength or in the momentum dependence of the integrands
that would appear in computing the different reaction ampli-
tudes.

Given that the momentum-dependent kernel we used to
complete the analysis herein is known to provide a real-
istic description of ground-state vector-mesons and many

other systems, including ground-state baryons, this conclu-
sion may reasonably be transferred to QCD processes. If that
is so, then, in connection with heavy mesons, no existing
attempt to connect e + p → e′ + V + p reactions with
V + p → V + p via VMD can be viewed as reliable. This
conclusion is strengthened by the analysis in Ref. [24], which
shows that even if VMD were valid, then viable coupled-
channels processes exist that could obscure any connection
between e + p → e′ + V + p and V + p → V + p reac-
tions. Amongst other things, these results make tenuous any
interpretation of e+ p → e′ + V + p reactions as a route to
hidden-charm pentaquark production or as a means of uncov-
ering the origin of the proton mass.

As demonstrated in numerous applications [43,45–48],
including γ ∗γ → π0, η, η′, ηc, ηb [84,85], a viable alterna-
tive to the VMD hypothesis consists in adapting the contin-
uum Schwinger function methods we have employed herein
to directly analyse processes like γ (∗)+ p → V + p. Regard-
ing vector-meson photo/electroproduction from the proton,
Ref. [86] illustrates how one might proceed. Given develop-
ments in the past vicennium, it is now possible to improve
upon such studies. The mechanisms identified in Ref. [24]
may also play a role here.
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