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Abstract Gravitational lensing can happen not only for null
signals but also timelike signals such as neutrinos and mas-
sive gravitational waves in some theories beyond GR. In this
work we study the time delay between different relativistic
images formed by signals with arbitrary asymptotic velocity
v in general static and spherically symmetric spacetimes. A
perturbative method is used to calculate the total travel time
in the strong field limit, which is found to be a quasi-power
series of the small parameter a = 1 − bc/b where b is the
impact parameter and bc is its critical value. The coefficients
of the series are completely fixed by the behaviour of the
metric functions near the particle sphere rc and only the first
term of the series contains a weak logarithmic divergence.
The time delay �tn,m to the leading non-trivial order was
shown to equal the particle sphere circumference divided by
the local signal velocity and multiplied by the winding num-
ber and the redshift factor. By assuming the Sgr A* super-
massive black hole is a Hayward one, we were able to validate
the quasi-series form of the total time, and reveal the effects
of the spacetime parameter l, the signal velocity v and the
source/detector coordinate difference�φsd on the time delay.
It is found that as l increases from 0 to its critical value lc, both
rc and �tn,m decrease. The variation of �tn+1,n for l from
0 to lc can be as large as 7.2 × 101 [s], whose measurement
then can be used to constrain the value of l. While for ultra-
relativistic neutrino or gravitational wave, the variation of
�tn,m is too small to be resolved. The dependence of �tn,−n

on �φsd shows that to temporally resolve the two sequences
of images from opposite sides of the lens, |�φsd − π | has to
be larger than a certain value, or equivalently if |�φsd − π |
is small, the time resolution of the observatories has to be
good.

a e-mail: junjijia@whu.edu.cn (corresponding author)

1 Introduction

Deflection of light signals near massive celestial bodies was
the most convincing phenomenon that helped establishing
General Relativity (GR) as the correct description of grav-
ity [1]. Nowadays deflection of signals by gravity is almost
exclusively used in gravitational lensing (GL), which has
become a powerful tool in astrophysics and cosmology. GL
has been used to constrain not only properties of the lens,
such as the mass distribution of galaxy [2–4], the structure of
dark matter halos [5–7], accretion of materials [8,9], but also
those of the source, such as supernova explosion mechanism
[10,11]. Observables in GL can also correlate with properties
of signal particles forming the GL images [12].

Traditionally, GL observations were always done using
light signals of various wavelength. However, with the
discovery of neutrinos form SN1987A [13,14] and more
recently from blazer TXS 0506 + 056 [15,16], and the dis-
covery of gravitational waves (GW) due to binary black hole
(BH)/neutron star mergers [17–19], especially the GBR+GW
dual observation [20], it is clear that neutrinos and GW can
also act as messengers to have GL effects. Unlike light rays,
both neutrinos and GWs in some theories beyond GR are
timelike signals. Even for light rays in the real Universe, it
was known that their propagation becomes timelike in a cold
non-magnetized plasma [21]. The deflection and GL of these
signals could have qualitatively different features comparing
to null signals and therefore require separate treatment.

In (strong) GL observations, the apparent angle of the
images and the time delay between them are two most impor-
tant observables that were widely used to reveal informa-
tion about the lens, source and messenger. For both neutrino
and GW observatories, currently their angular resolution are
both too low to distinguish different images. However, the
time measurement for these signals are usually very precise,
reachingO(1) [ns] for neutrino events [22,23] andO(1) [ms]
for GW observations [20]. Therefore theoretical study and
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corresponding observations on time delay in GLs of these sig-
nals might bear fruit earlier than resolving different images
formed by them. While for light rays propagating in plasma
medium, the influence of the plasma on time delay was stud-
ied for Shapiro time delay of radio signals through the solar
corona [24,25].

In this work, we study time delay of timelike and null sig-
nals with general asymptotic velocity in the strong field limit
(SFL) in static and spherically symmetric (SSS) spacetimes.
In this limit, the signal’s trajectory approaches the critical
particle/photon sphere and the signal might loop around the
central lens many time before reaching the detector, forming
series of relativistic images from each side of the lens. The
time delay of light signal in SSS spacetimes in this limit has
been studied by Bozza in Ref. [26] as a distance estimator and
then followed by many researchers in particular spacetimes
or gravitational theories [27–37]. In this work, we not only
extend it to arbitrary signal velocity, but develop a trackable
way to calculate the total travel time and time delay to any
desired order, which was never done before. Moreover, we
also show that the time delay is given by a simple formula,
Eq. (36), allowing a very simple and intuitive understanding,
i.e., Eq. (37).

The work is organized as follows. In Sect. 2, we develop
the perturbative method used for the computation of the total
travel time in the SFL. We will show that the total travel
time takes a quasi-power series form, which is then used in
Sect. 3 to find the time delay between different images. We
emphasize that unlike the time delay computed using numer-
ical integration, results here are for arbitrary SSS metric and
the effect of any spacetime parameter can be recognized eas-
ily from them. It is also shown that the time delay equals to
the circumference of the particle sphere divided by the local
velocity of the signal and then multiplied by the redshift fac-
tor and the winding number. In Sect. 4, we then apply these
results to the Hayward BH spacetime and study the depen-
dence of the time delay on the spacetime charge parameter l
and signal velocity v. The result reveals that the time delay
can be used to constrain l quite well but not v since for both
supernova neutrinos and GWs, their speeds have been well
constrained to be extremely close to light speed.

2 The perturbation method

The perturbative method we used here to calculate the total
travel time is adapted from Ref. [38] which was to calculate
the deflection angle in the SFL, while here this method is used
to a different integral. Therefore in this section, we will first
recap the essential steps to help understanding the method,
and then apply it to the suitable integral defining the total
travel time of the signal.

We start from the most general SSS metric described by

ds2 = −A(r)dt2 + B(r)dr2 + C(r)(dθ2 + sin2 θdφ2), (1)

where (t, r, θ, φ) are coordinates and A, B, C are metric
functions depending on r only. The corresponding geodesic
equations can always be transformed to the equatorial plane
(θ = π/2), and then become

ṙ2 =
(

E2

A(r) − κ
)
C(r) − L2

B(r)C(r)
, (2)

ṫ = E

A(r)
, (3)

φ̇ = L

C(r)
, (4)

where κ = 0, 1 for massless and massive signals respectively
and L , E are the angular momentum and energy of the signal
(per unit mass). L and E can relate to the impact parameter
b and the asymptotic velocity v of the signal by

L = bv√
1 − v2

, E = 1√
1 − v2

. (5)

The travel time from a source at r = rs to a detector at
r = rd (see Fig. 1), after using Eqs. (2) and (3), is then

t =
∑
i=s,d

∫ ri

r0

ṫ

ṙ
dr =

∑
i=s,d

∫ ri

r0

E
√
B(r)C(r)

L A(r)

· L√(
E2

A(r) − κ
)
C(r) − L2

dr, (6)

where r0 is the closest approach of the trajectory to the lens.
According to Eq. (2), r0 satisfies ṙ |r=r0 = 0, i.e.,
(

E2

A(r0)
− κ

)
C(r0) − L2 = 0. (7)

Together with Eq. (5), this provides a relation connecting the
closest approach r0 and the impact parameter b

1

b
=

√
E2 − κ

L
=
√√√√ E2 − κ(

E2

A(r0)
− κ

)
C(r0)

. (8)

On the other hand, when r0 or b is small enough, the signal
will spiral into a compact sphere, the particle (or photon)
sphere, and not escape back to infinity. The radius rc of this
sphere is defined as the critical point of the denominator of
Eq. (6)

d

[(
E2

A(r)
− κ

)
C(r)

]
/dr |r=rc = 0. (9)

If r0 approaches rc from above, we call the corresponding
b the critical impact parameter and denote it by bc. Using
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Eq. (8), it is related to rc by

1

bc
=
√√√√ E2 − κ(

E2

A(rc)
− κ

)
C(rc)

. (10)

The total travel time (6) in the SFL is difficult to compute
exactly even for the simpler SSS spacetimes and therefore
approximation methods are desired. In Ref. [38] we have
developed a perturbative way to expand a similar integral for
the computation of signal’s deflection angle. Here we adapt
that method to the computation of the total travel time in the
SFL. First, we define a function p(x) inspired by Eq. (8) as

p (x) = 1

bc
−
√√√√ E2 − κ(

E2

A(1/x) − κ
)
C (1/x)

, (11)

and define its inverse function as q(x). From Eq. (8), it is
clear that

p

(
1

r0

)
= 1

bc
− 1

b
≡ a

bc
, where a ≡ 1 − bc

b
(12)

so that taking its inverse function we have

1

r0
= q

(
1

bc
− 1

b

)
= q

(
1 − bc/b

bc

)
. (13)

We then can do the following change of variables in Eq. (6)
from r to ξ connected by function q or p

1

r
= q

(
ξ

bc

)
, i.e., p

(
1

r

)
= ξ

bc
. (14)

Note that although the analytical form of p(x) is clear once
the metric functions are given, the inversion process to find
q(x) is not always analytically possible. Fortunately, what
is required in our later computation is the series expansion
of q(x) and it can always be worked out using the Lagrange
inversion theorem from the series form of p(x). Under this
change of variables, and noticing Eqs. (11) and (12), the inte-
gration limits and various factors in the integrand of Eq. (6)
are changed according to

r0 → 1 − bc
b

= a, ri → bc p

(
1

ri

)
≡ ηi , i = s, d, (15a)

L√(
E2

A(r) − κ
)
C(r) − L2

→ 1 − ξ√(
bc
b

)2 − (ξ − 1)2

, (15b)

E
√
B(r)C(r)

L A(r)
→

√
B(1/q)C(1/q)

bvA(1/q)
, (15c)

dr → − q ′

q2

dξ

bc
, (15d)

where q = q
(

ξ
bc

)
and q ′ is its derivative. Here the ηs,d

are nothing but the sine value of the apparent angles of the
signal at the source and detector respectively [45]. In the

SFL and large rs,d limit, we have a → 0+ and ηs,d → 1−
respectively. Grouping these terms together, we obtain the
transformed total travel time as

t =
∑
i=s,d

∫ ηi

a

√
B(1/q)C(1/q)

A(1/q)

· ξ − 1√
(2 − a − ξ) (ξ − a)

· (1 − a)q ′

vb2
cq

2 dξ. (16)

Note that this form of t depends on the impact parameter b
through the parameter a and on the source/detector radius
through ηs,d . Its dependence on all other parameters of the
spacetime is through the metric functions and the critical
impact parameter bc, which also appears in q = q(ξ/bc).

2.1 Perturbative expansion of total travel time

The beauty of the above change of variables (14) is that it
transforms the large integration range to a finite range and
allow the resultant integrand to be expanded in the small ξ

limit, so that an perturbative integration can be carried out.
To see how the expansion is carried out, we first split the

integrand into two factors, 1√
ξ−a

and y(ξ) with

y(ξ) =
√
B(1/q)C(1/q)

A(1/q)
· ξ − 1√

2 − a − ξ
· (1 − a)q ′

vb2
cq

2 . (17)

The factor 1√
ξ−a

will be directly integrated later while the

factor y(ξ) should be further treated. Since in the SFL, the
main part of the total time is contributed from the integration
near small ξ , we can further split y(ξ) into two factors and
expand them in the small ξ limit, i.e.,

1√
2 − a − ξ

=
∞∑
n=0

(2n − 1)!!
(2n)!!

ξn

(2 − a)n+ 1
2

, (18a)

√
B(1/q)C(1/q)

A(1/q)

(ξ − 1) (1 − a)q ′

vb2
cq

2 = (1 − a)

∞∑
n=−1

fnξ
n
2 ,

(18b)

where in Eq. (18b) the index starts from −1 because of the
q ′ term, and the fn are the expansion coefficients that can
be worked out once the metric functions are known. We
point out that it is in expansion (18b) that the series form
of q(ξ/bc) is needed and can be obtained using the Lagrange
inversion theorem from the series expansion of p(x). We also
emphasize that the coefficients fn will not depend on the ini-
tial/boundary conditions of the trajectory, such as the impact
parameter b and rs,d , but only on the metric functions and
spacetime parameters therein.
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Collecting these expansions according to the powers of ξ ,
we see that y(ξ) becomes

y(ξ) =
∞∑

n=−1

1 − a

(2 − a)[ n+1
2 ]+ 1

2

[ n+1
2 ]∑

m=0

yn,ma
mξn/2, (19)

where a sum over a finite terms of am appears because dif-
ferent powers of the denominator factor (2 − a) in Eq. (18a)
mix into the coefficient of the same ξn/2 power. The coeffi-
cients yn,m can be obtained from the coefficients fn and other
factors in Eqs. (18) but their exact forms are too tedious to
show here. Further substituting Eq. (19) into the total time,
we finally get

t =
∑
i=s,d

∞∑
n=−1

[ n+1
2 ]∑

m=0

1 − a

(2 − a)[ n+1
2 ]+ 1

2

yn,ma
m
∫ ηi

a

ξn/2

√
ξ − a

dξ.

(20)

The integrability of this formula relies on the integration of

the form
∫ ηi
a

ξn/2√
ξ−a

dξ . Fortunately, this kind of integrals can
always be worked out for integers n, and the results are given
in Eq. (A1) in Appendix A. Using these results, the total
travel time t becomes

t =
∑
i=s,d

∞∑
k=0

k∑
m=0

(1 − a) am

(2 − a)k+ 1
2

{
y2k−1,m

· akCk
2k

4k

[
− ln a + 2 ln

(√
ηi + √

ηi − a
)

+
k∑
j=1

4 jη
j
i

ja jC j
2 j

√
1 − a

ηi

]
+ y2k,m

·
k∑
j=0

2C j
k a

k− j (ηi − a) j+1/2

2 j + 1

}
. (21)

Here the first and second terms in the curly bracket are due to
the integration of odd and even powers of ξn/2 respectively.
It is also important to notice that all the dependence of t on
a and ηs,d in this formula has been shown explicitly, and the
coefficients yn,m only contain the signal kinetic parameter v

and spacetime parameters through bc.
It is not difficult to notice that all the functions involved

in t are quite elementary. Because of this, in the SFL (i.e,
b → b+

c , a → 0+), it can be further expanded into a quasi-
power series of small a

t =
∞∑
k=0

[Ck ln a + Dk(ηs, ηd)] a
k, (22)

where in the coefficient of each order of ak , there is only
one term that contains ln a. The coefficients Ck and Dk can
be worked out from Eq. (21) and it is seen that only the

Dk’s (but not the Ck’s) depend on ηs,d . This total time (22)
resembles the same form as the deflection angle in the SFL
in Ref. [38], although their coefficients Ck and Dk will be
different. When the source and detector radius rs,d are not
infinite, then in the a → 0 limit, there is only one divergent
term in t contributed by theO(a)0 order. To theO (a)0 order,
one can also directly recognize from Eq. (21) that only the
m = k = 0 terms contribute. The result to this order is

t (rs, rd , b) =
∑
i=s,d

⎧⎨
⎩−

√
2

2
y−1,0 ln a +

√
2

2
y−1,0 ln (4ηi )

+
∞∑
n=0

yn,0

2

[
n+1

2

]
+ 1

2

· 2η
n+1

2
i

n + 1

⎫
⎬
⎭+ O (a)1 . (23)

= C0 ln a + D0(ηs, ηd) + O (a)1 (24)

from which we can read off the coefficients C0 and D0 in
Eq. (22) as

C0 = −√
2y−1,0, (25)

D0(ηs , ηd ) =
∑
i=s,d

⎡
⎣

√
2

2
y−1,0 ln (4ηi ) +

∞∑
n=0

yn,0

2

[
n+1

2

]
+ 1

2

· 2η
n+1

2
i

n + 1

⎤
⎦ .

(26)

Later on, we will use the total time (23) to calculate the
time delay between different relativistic images in the SFL.
Different images correspond to different impact parameters
and consequently, different a, but their rs,d and other space-
time parameters are exactly the same. This also implies that
when subtracting two total times along the trajectories with
slightly different b, the D0 term will not contribute to the
time delay at this order.

2.2 Computing coefficients yn,m

From the relation (13) and the change of variables (14) we
knew that the ξ → 0+ limit is also the r0 → r+

c , b → b+
c

limit. Therefore the expansions (18) at small ξ or equiva-
lently the coefficients yn,m should also be determined from
the series expansion of the metric functions at r = rc. Assum-
ing these expansions are

A(r → rc) =
∞∑
n=0

an(r − rc)
n, (27a)

B(r → rc) =
∞∑
n=0

bn(r − rc)
n, (27b)

C(r → rc) =
∞∑
n=0

cn(r − rc)
n, (27c)
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where ai , bi and ci are the coefficients, then the very defi-
nition of rc in Eq. (9) becomes a constraint between the first
few coefficients

c1

(
E2

a0
− κ

)
= a1c0E2

a2
0

. (28)

The impact parameter in Eq. (10) can also be expressed using
a0 and c0 as

bc = 1

v

√
c0

a0

(
1 − a0 + v2a0

)
. (29)

Using these metric expansions and going through the pro-
cess from Eqs. (17) to (19), the yn,m’s can be computed. In
particular, the first two yn,0 are found to be

y−1,0 = 1√
2va0

√
b0c0

T2
, (30a)

y0,0 = −bc [(2a1b0c0 − a0b1c0 − a0b0c1) T2 + 2a0b0c0T3]

2va2
0

√
b0c0T 2

2

,

(30b)

where

T2 = 1

v2a0

[
c2

(
1 − a0 + a0v

2
)

− a1c1 + a2c0

a0
+ a2

1c0

a2
0

]
,

(31a)

T3 = 1

v2a0

[
c3

(
1 − a0 + a0v

2
)

− a1c2 + a2c1 + a3c0

a0

+a2
1c1 + 2a1a2c0

a2
0

− a3
1c0

a3
0

]
. (31b)

Higher order yn,0 (n > 0) and yn,m (m > 0) can also be read-
ily computed but are too long to be presented here. However
from these higher orders, we are able to assert that for general
n, yn,0 is determined by the metric expansion coefficients up
to an+3, bn+1 and cn+3.

3 Time delay in the SFL

In time measurement in GL, what is measured is not the total
travel time but the time delay between different images of
the source. For GL in the SFL, a typical path is illustrated in
Fig. 1. There will exist two basic kinds of time delay: the time
delay between signals from the same side of the lens but with
different winding numbers around the center, and the time
delay between signals from different sides of the lens but with
the same winding number around the center. A general time
delay, which we denote as �tn,m (n,m ∈ Z) to represent
the time delay between images winding around the center
counter-clockwisely n and m times, should be a combination

Fig. 1 The GL in the SFL. (rd , φd ) and (rs , φs) are respectively the
radial and angular coordinates of the detector D and source S. The signal
winds clockwisely one loop around the lens L. b is the impact parameter
and the shadow stands for the BH

of the former two basic time delays. Using Eq. (24), this time
difference can be written as

�tn,m = t (rs, rd , bn) − t (rs, rd , bm)

= C0 ln

[
1 − bc/bn
1 − bc/bm

]
+ O(a)1, (32)

where bn and bm are the impact parameters of the two images.
Note the D0a0 term in Eq. (24) does not affect the time delays
since it is independent of b and therefore the same for all tra-
jectories. Furthermore, here n, m could be negative integers
if the winding is indeed clockwise (although bn and bm are
always positive). Note that the case that winding does not
actually happen corresponds to the weak field limit of the
time delay and was considered in our previous work [39].

Clearly, in order to compute the time delay, we shall find
the corresponding impact parameters for the images in the
SFL first. For this purpose, we will directly use the result
from Eq. (38) of Ref. [38],

bn = bc

1 − Exp
[−(2|n|+1+sign(n))π+Da0+sign(n)�φsd

−Ca0

] , (33)

where �φsd = φs − φd is the difference between the angu-
lar coordinates φs of the source and φd of the detector (see
Fig. 1). The coefficient

Ca0 = −bc
√
b0/(c0T2), (34)

while the coefficient Da0 is given in Eq. (28) of Ref. [38]
and does not contribute to the time delay, as we will show in
Eq. (36).

Now substituting Eq. (33) into (32) and after a small sim-
plification we have

�tn,m = 2πC0

Ca0

{
(|n| − |m|)

+
[
sign(n) − sign(m)

]
(π − �φsd)

2π

}
(35)

= 2π
√
c0√

1 − a0(1 − v2)

1√
a0

{
(|n| − |m|)

123



894 Page 6 of 12 Eur. Phys. J. C (2021) 81 :894

+
[
sign(n) − sign(m)

]
(π − �φsd)

2π

}
(36)

where C0 in Eq. (25), Ca0 in Eq. (34) and bc in Eq. (29)
are substituted and simplified. It is seen that the time delay
depends only on the following parameters: the metric expan-
sion coefficients a0, c0, the asymptotic signal velocity v and
an angular factor determined by the number of loops n, m
and angular coordinate difference �φsd , but not on the finite
distance ri and r f of the source and detector.

We emphasize that this time delay is a very general result:
it applies to GL with general asymptotic velocity v, general
source/detector angular coordinate difference �φsd , general
SSS spacetime with a particle sphere and arbitrary n and m.
Setting v = 1 in Eq. (36) reduces it to previously known
result in Ref. [26] (Eq. (40) and (41)), which concentrated
on null signals.

Although the source and detector in GL in the SFL are
usually far from the BH center, one would expect however
when the winding numbers of two signals n and m are both
large (in this case, n, m ≥ 1 are enough), the time delay
between them, observed by a far away observer, should be
equivalent to the circumference 2πrc of the particle sphere
divided by local signal velocity vl and then multiplied by the
difference of loops �l (not necessarily an integer) between
the two paths, and finally the gravitational redshift factor γ

from the particle sphere to the detector. That is, it is natural
to expect that

�tn,m = 2πrc
vl

· �l · γ. (37)

Here we show that indeed, the above is exactly the time delay
result (36), which is found from more rigorous and lengthy
calculations.

For arbitrary SSS spacetime, it is always possible to
choose the metric function C(r) = r2 and therefore the its
expansion coefficient at rc is c0 = r2

c . That is, the particle
sphere circumference 2πrc = 2π

√
c0, i.e., the numerator of

the first factor in Eq. (36). For the local velocity vl , in the SFL
the signal circulates around the particle sphere, and therefore
we only need to consider the velocity due to angular motion.
In an SSS spacetime, this is given by

vl = rcφ̇

γsr
(38)

where γsr = 1/

√
1 − v2

l is the special relativity gamma fac-

tor. Then using Eqs. (4), (5) (settingb tobc), (29), and c0 = r2
c

sequentially, it is just an elementary algebra to solve the local
velocity as

vl =
√

1 − a0(1 − v2), (39)

which is exactly the denominator of the first factor in Eq. (36).
Thirdly, the difference in the number of loops �l, after prop-

erly taking into account the opposite direction case, is simply
the last factor of Eq. (36). Lastly, in an asymptotically flat
SSS spacetime described by metric (1), the gravitational red-
shift factor from rc to the detector which is located far away
is simply 1/

√
A(rc) = 1/

√
a0, the second factor of Eq. (36).

Grouping these factors together, therefore it is verified that
for general SSS spacetime and timelike or null signals, the
time delay to the leading order in the SFL, Eq. (36), has a
very simple and intuitive understanding, Eq. (37).

4 The Hayward BH spacetime case

In this section, we apply our result to some particular space-
times to check its validity, and examine the effect of v, �φsd ,
number of loops n and m, and more importantly the space-
time parameters. The spacetime we study is the Hayward BH
spacetime whose metric functions are [40]

A(r) = 1 − 2Mr2

r3 + 2l2M
, B(r) = 1

A(r)
, C(r) = r2,

(40)

where M is the spacetime mass and l is the charge parame-
ter. |l| < 4M/(3

√
3) ≡ lc in order for the spacetime to be a

BH one. We choose this spacetime because its gravitational
lensing (not including the time delay) in the SFL was studied
previously in Ref. [38] and we can directly quote the expan-
sion coefficients near rc of its metrics from there. Moreover,
this spacetime also has a Schwarzschild limit l → 0 whose
time delay in the SFL was studied for light rays [26]. There-
fore, we can compare our result against it and study the effect
of a nonzero charge parameter l in the Hayward spacetime.

Using Eqs. (5) and (9), the equation determining the par-
ticle sphere radius rc of this spacetime becomes

4l4M2v2 − 8l2M2(v2 − 1)r2
c + 4l2Mv2r3

c

+ 4M2(v2 − 1)r4
c + M(1 − 4v2)r5

c + v2r6
c = 0. (41)

This is a six order polynomial of rc whose solution does
not have a closed algebraic form. However, after formally or
numerically solving it, then substituting rc into the metrics
(40) and further into Eq. (10), the critical impact parameter
bc is found as

bc =
√

2l2Mv2r2
c − 2M

(
v2 − 1

)
r4
c + v2r5

c

v2
(
2l2M − 2Mr2

c + r3
c

) . (42)

To solve the yn,m that are needed in the total travel time
(23) and the time delay (36), then we should expand the
metric functions at r = rc according to Eq. (27). The first
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few of these expansion coefficients are [38]

a0 =
(

1 − 2Mr2
c

2l2M + r3
c

)
, a1 = −2M

(
4l2Mrc − r4

c

)
(
2l2M + r3

c

)2 ,

a2 = − 2M
(
4l4M2 − 14l2Mr3

c + r6
c

)
(
2l2M + r3

c

)3 , (43a)

b0 = 2l2M + r3
c

2l2M − 2Mr2
c + r3

c
, (43b)

c0 = r2
c , c1 = 2rc, c2 = 1. (43c)

Substituting them into Eqs. (30) and (31), we can obtain the
coefficients yn,0 for the Hayward spacetime. The first two of
them, denoted as y−1,0,H and y0,0,H, are

y−1,0,H = rc
v
√

2T2

[
2l2M + r3

c

2l2M + r2
c (rc − 2M)

]3/2

, (44a)

y0,0,H = bc
√

2l2M + r3
c

vT 2
2

[
2l2M + r2

c (rc − 2M)
]5/2

×
{

4l4M2(T2 − rcT3) + 4l2Mr2
c [M(rcT3 + 2T2)

+rc(T2 − rcT3)]

+r5
c [M(2rcT3 − 5T2) + rc(T2 − rcT3)]

}
, (44b)

where

T2 = r2
c + 2Mr4

c

v2
[
2l2M − 2Mr2

c + r3
c

] , (45a)

T3 = 1

v2
(
2l2M − 2Mr2

c + r3
c

)2

×
[
8v2l4M2rc + 16

(
1 − v2

)
l2M2r3

c + 8v2l2Mr4
c

−8
(

1 − v2
)
M2r5

c + 2M
(

1 − 4v2
)
r6
c + 2v2r7

c

]
.

(45b)

High order yn,0,H (n > 0) can also be obtained by simi-
lar calculation but are too long to be shown here. The total
travel time in the SFL in the Hayward spacetime can then be
obtained from Eq. (23)

t (rs , rd , b) =
∑
i=s,d

⎧
⎨
⎩−

√
2

2
y−1,0,H ln a +

√
2

2
y−1,0,H ln (4ηi )

+
∞∑
n=0

yn,0,H

2

[
n+1

2

]
+ 1

2

· 2η
n+1

2
i

n + 1

⎫
⎬
⎭ . (46)

Substituting metric expansion coefficients (43) into Eq. (36),
the time delay in the Hayward spacetime is simplified to

�tn,m,H = 2πrc
(
2l2M + r3

c

)

2l2M + r2
c (rc − 2M)

[
2Mr2

c

2l2M + r2
c (rc − 2M)

+ v2
]− 1

2

Fig. 2 Total travel time in Hayward spacetime as a function of b using
truncated series (48) (dashed or dotted lines) and the exact result using
numerical integration of Eq. (6) (the solid line). Inset: the ratio between
the result truncated at order 10 and the numerical integral

×
{

(|n| − |m|) +
[
sign(n) − sign(m)

]
(π − �φsd )

2π

}
.

(47)

This time delay depends on a few kinds of parameters:
the spacetime parameters including its mass M and charge
l, the signal property – its speed v, the winding numbers n
and m, and the source/detector angular coordinate difference
�φsd when n andm are not the same direction. Among these,
the mass M provides an overall scale for the time delay. As
pointed out in Sect. 3, the first line of Eq. (47) actually is the
time interval cost for the signal to loop one cycle around the
particle/photon sphere. In Schwarzschild spacetime, this time
interval for light would be 2πrc,S/

√
1 − 2M/rc,S = 6

√
3M

where rc,S = 3M for photon sphere in this spacetime. The
charge l is the main parameter characterizing this spacetime
and v is the parameter different from usual GL by light signal.
As l deviates from zero or v from 1, then this time interval
also changes from the above value in a way dictated by the
first line of Eq. (47).

To verify whether the time delay Eq. (46) is accurate, we
can first truncate the sum in its second term to order m and
define

tm(rs , rd , b) =
∑
i=s,d

⎧⎨
⎩−

√
2

2
y−1,0,H ln a +

√
2

2
y−1,0,H ln (4ηi )

+
m∑

n=0

yn,0,H

2

[
n+1

2

]
+ 1

2

· 2η
n+1

2
i

n + 1

⎫
⎬
⎭ , (48)

and then compare tm(rs, rd , b)with the total time tnum(rs, rd , b)
obtained directly from numerical integration of Eq. (6). As
long as the numerical integration is done to high enough pre-
cision, tnum can be thought as the true value of the total travel
time. In Fig. 2, we plot t1, t5, t10, t20, t30 as well as tnum for
b around bc, which is about 5.19M when we set l = 0.1M
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and rs = rd = 20M, v = 1. It is seen that as the truncation
order increases, the total time approaches its true value for all
b considered, and t30 is non-distinguishable from tnum in the
plot. Moreover, in the inset we see that for any fixed trunca-
tion order (we took t10 as an example), the smaller the b−bc,
the better it approximates the true value of the travel time.
We also point out here that one of the advantage of the series
form of the total time and time delay such as Eqs. (46) and
(47) over the numerical integration method, is that the former
can produce a result to high accuracy very easily because the
allowed order can be very high and the involved computa-
tions are only algebraic. While the accuracy of the numerical
integration method is often hindered by the singularity of the
integral near b → bc and the smallness or largeness of the
astronomical quantities used, such as the angular position of
the signal source, the mass and distance of the galaxy etc.

Although the truncated tm(rs, rd , b) in Eq. (48) approx-
imates the true value pretty well in Fig. 2 in the SFL, the
location of the source and especially the detector used there
is much smaller than their practical values. When rd/M (and
rs/M) is as large as in any practical GL, a numerical study
shows that to achieve the same accuracy in the total travel
time as in Fig. 2, the truncation order of tm(rs, rd , b) would
be formidably high, even in the SFL. Fortunately, this will
not affect the accuracy of the time delay (36) because in the
SFL, the time delay between different trajectories mainly
happens when the signal is very close to the particle sphere,
for which part the total time (48) is a very good approxima-
tion. In other words, for any two trajectories, the travel times
corresponding to the parts from large rd or rs to some small
radius – below which the time delay happens – cancel out.
This indeed leaves the time delay formula (36) very accurate
even we truncated at a relatively low order, as can be seen
from Fig. 3.

The effects of the spacetime charge l and signal velocity
v, as well as �φsd when sign(n) 	= sign(m) are shown in
Fig. 3b–d by assuming that the Sgr A* supermassive BH is
a Hayward BH. To help understanding these effects, we first
plot the particle sphere radius rc as a function of l/M and v in
Fig. 3a. It is seen that for any particular signal velocity, as the
charge l increases from 0 to lc = 4/(3

√
3M), rc decreases

monotonically from its Schwarzschild value to a minimal
value. In particular, for light signal, this is from 3M to about
2.65M . For fixed l and decreasing v on the other hand, rc
increases from its light signal value to a larger but still finite
radius. Comparing to the Reissner–Nordström spacetime, we
see that the effects of l and v on rc are qualitatively similar to
those of the electrostatic charge and particle velocity in that
spacetime [41].

Then for the time delay �tn,m,H in Eq. (47), it is clear that
as l increases to lc, rc decreases and changes of terms in both
the denominator and numerator of the first factor cancel to a
large extent. Therefore this factor has a very minimal varia-

tion. Similar trend happens for the second term and therefore
the time delay depends relatively weakly on l, as can be seen
from Fig. 3b. In the entire range of l from 0 to lc, the time
delay �tn,m,H for light signals from the same side of the lens
changes from 0.183|n − m| [h] to 0.163|n − m| [h], a dif-
ference of 7.20 × 101 [s] per loop. For the signal velocity,
it is seen that as v/c decreases from 1 to 0.5, the time delay
increases from 0.183|n−m| [h] to 0.227|n−m| [h], a differ-
ence of 2.64 × 102 [s] per loop. From the time measurement
perspective, fortunately both these two changes per loop are
well resolvable, as long as the characteristic time scale of the
source event is not larger than these values. Events satisfying
this certainly include typical supernova explosion and binary
BH/neutron star merger, whose characteristic time scale are
maximally ∼ 10 s [42] and 0.1 ∼ 1 s respectively. There-
fore their observation might be used to constrain the value of
parameter l to good accuracy.

While to constrain signal velocity, for typical supernova
neutrinos with energy at theO(10) [MeV] level, their velocity
can only deviate from light speed by 1.25 × 10−17c at most
[43] and speed of GW has already been constrained to be
within 3×10−15c from light speed [20]. For these velocities,
using plot Fig. 3c one can estimate the maximal difference
between the time delays of these timelike signals and that of
the light signal. For the former, this difference is only about
6.60 × 10−15 [s] and for the latter 1.58 × 10−12 [s]. These
are not only much shorter than characteristic time scale of
supernova and binary merger, but also smaller by several
orders than the corresponding detector resolution (O(1) [ns]
for neutrino observatories and O(1) [ms] for GW detectors
[20]). Therefore using time delay caused by Sgr A* in the
SFL to constrain speed of such ultra-relativistic signals seems
not likely.

Finally, for the case of signals from opposite sides of
the lens, i.e., sign(n) 	= sign(m), the dependence of the
time delay on �φsd is shown in Fig. 3d. When n =
−m and �φsd = π , i.e., the source is perfectly aligned
along the observer-lens axis and the trajectories from two
sides have a mirror symmetry, then clearly we should have
�t−m,m,H(�φsd = π) = 0, as shown in Fig. 3d. Unlike GL
in the weak field limit, angle �φsd does not need to be very
close to π if GL in the SFL can really be observed in the
future. As �φsd deviates from π , the time delay �t−1,1,H

becomes linear to (�φsd − π). The arrival time of the each
series of images from one side of the lens will form an arith-
metic sequence which is equivalent to �tn,1,H (n = 2, 3, . . .)

or �tn,−1,H (n = −2,−3, . . .). The two sequences from
two sides will have a relative shift �t−n,n,H that is linear to
(�φsd − π) too, as shown in Fig. 3d. Because of this rela-
tion, it is seen that for a given characteristic time scale of
the source event or observatory time resolution (whichever
is larger), there exist a minimal �φsd − π that allows the
two sequences to be temporally separated. Taking 2 [ms] for
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(a)

(b) (c)

(d)

Fig. 3 a The radius of the particle sphere as a function of spacetimes
parameter l and signal velocity v. Time delay between signals from
same side but with different winding numbers as a function of: b l
while holding v = 1 and; c v while holding l/M = 0.1. In d, the time

delay as a function of �φsd for signals from opposite sides but with the
same absolute wind number, with parameter l/M = 0.1, v = 1 and
rs = rd = rSgr A∗ and n > 0

the time resolution of GW signal as an example, then it is
seen that for the two sequence to be separated by this inter-
val, |�φsd − π | has to be larger than 2 [′′]. On the other
hand, if GL of an event is to be both observed in the weak
field limit and temporally resolved in the SFL, then since GL
in the weak field limit are usually observed for β � 10 [′′]
[47] or roughly �φsd � 20 [′′], Fig. 3d implies that both

the characteristic time scale of the event and the observatory
time resolution have to be smaller than 20 [ms]. Therefore
temporally resolving the two sequences from two sides cer-
tainly imposes stringent requirement on the time measure-
ment uncertainty of observatories, e.g., the GRB measure-
ment uncertainty which is current about 50 [ms] [44].
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5 Conclusion and discussion

In this work we proposed a perturbative method to compute
the total travel time t and time delay �t in the SFL in SSS
spacetimes for signal with arbitrary asymptotic velocity. The
total travel time takes a simple quasi-power series form

t =
∞∑
k=0

[Ck ln a + Dk] ak, (49)

where a =
(

1 − bc
b

)
and coefficients Ck and Dk can be

expressed as rational functions of the metric expansion coef-
ficients at the particle sphere radius. In the SFL, the lead-
ing contribution to t is given by the ln a term. Using impact
parameter corresponding to each relativistic image, we were
able to show that �t is given by Eq. (36). This result allows
an intuitive and yet quantitatively precise understanding: to
the leading order of a, the time delay is given by the circum-
ference of the particle sphere divided by the local velocity
of the signal and then multiplied by the winding number dif-
ference and the redshift factor from the particle sphere to the
far away detector.

We applied the results of t and �t to the Hayward BH
spacetime. The correctness of the total travel time is verified
by truncating the series to different orders. The time delay
in this case is found in Eq. (46). To understand it, we first
studied the dependence of the particle sphere radius rc on the
spacetime charge l and signal velocity v. It is found that as
l increases or v decreases, rc decreases or increases respec-
tively. Assuming the Sgr A* central BH is a Hayward BH,
we were able to compute �t between images on the same
side and opposite sides. It is found that as l increases from
0 to its critical value, the time delay per loop can vary by
7.2 × 101 [s], which is well within the time resolution of
typical light, neutrino or GW observatories. Therefore mea-
suring �t caused by the Sgr A* BH will constrain its charge
l very well. On the other hand, for the supernova neutri-
nos or GW whose velocities deviate from that of the light by
10−15 or less, measuring difference between �t’s of different
signals would not further constrain their velocities, because
of the time measurement accuracy/characteristic time of the
corresponding events are larger by a few orders.

Regarding directions to extend the current work, the first
and most straightforward one is to extend the perturbative
method to the case of the equatorial plane in the stationary
and axisymmetric spacetime. Based on the weak field limit
experience [46], we expect that the spin parameter would
play a non-trivial role in affecting the time delay between
relativistic images with different winding directions. A more
interesting extension is to apply the method to the time delay
of asymptotically non-flat spacetimes. From the quasi-power
series (22) for the total time, we saw that the coefficients Ck

and Dk are completely determined by the behavior of the

metric functions around the particle sphere. Although GL in
the weak field limit in these spacetimes is often problematic
to study due to the difficulty to take the infinite radius limit,
the metric functions behave normally at small radius and
therefore the SFL can still be taken. We are pursuing along
these directions.
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Appendix A: Integration formulas and higher order yn,0

The integrals in Eq. (20) can be worked out as the following:
for even n = 2k,

∫ ai

a

ξ k√
ξ − a

dξ =
k∑
j=0

2Ck
j a

k− j (ai − a) j+1/2

2 j + 1

and for odd n = 2k − 1, (A1a)

∫ ai

a

ξ k−1/2

√
ξ − a

dξ = akCk
2k

4k

⎡
⎣2 ln

(√
ai
a

+
√
ai
a

− 1

)

+
k∑
j=1

4 j

jC j
2 j

(ai
a

) j
√

1 − a

ai

⎤
⎦ , (A1b)

where k are non-negative integers.
The higher order coefficient yn,0 (n > 0) in Eq. (30) can

be worked out with the help of a symbolic computation tool.
Here we will only give one more order, i.e.,

y1,0 =
√
b0c0

4
√

2va3
0b

2
0c

2
0T

7/2
2

{a2
0 [b2

0(−2b2
c (6c0c1T2T3

+ c0(3c0(4T2T4 − 5T 2
3 ) − 4c2T

2
2 ) + c2

1T
2

2 ) + 12c2
0T

3
2 )
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+ 4b0c0b
2
c T2(−3b1c0T3 + b1c1T2 + 2b2c0T2)

− 2b2
1c

2
0b

2
c T

2
2 ] − 8a0b0c0b

2
c T2[a1(−3b0c0T3 + b0c1T2

+ b1c0T2) + 2a2b0c0T2] + 16a2
1b

2
0c

2
0b

2
c T

2
2 }, (A2)

where

T4 = 1

v2a0

[
c4(1 − a0 + a0v

2)

− (a1c3 + a2c2 + a3c1 + a4c0)

a0

+ (a2
1c2 + 2a1a2c1 + 2a1a3c0 + a2

2c0)

a2
0

− (a3
1c1 + 3a2

1a2c0)

a3
0

+ a4
1c0

a4
0

]
. (A3)
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