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Abstract We derive a general expression for the absorptive
part of the one-loop photon polarization tensor in a strongly
magnetized quark-gluon plasma at nonzero baryon chem-
ical potential. To demonstrate the application of the main
result in the context of heavy-ion collisions, we study the
effect of a nonzero baryon chemical potential on the photon
emission rate. The rate and the ellipticity of photon emission
are studied numerically as a function the transverse momen-
tum (energy) for several values of temperature and chemical
potential. When the chemical potential is small compared to
the temperature, the rates of the quark and antiquark splitting
processes (i.e., q → q + γ and q̄ → q̄ + γ , respectively)
are approximately the same. However, the quark splitting
gradually becomes the dominant process with increasing the
chemical potential. We also find that increasing the chemical
potential leads to a growing total photon production rate but
has only a small effect on the ellipticity of photon emission.
The quark-antiquark annihilation (q + q̄ → γ ) also con-
tributes to the photon production, but its contribution remains
relatively small for a wide range of temperatures and chem-
ical potentials investigated.

1 introduction

Relativistic plasmas appear when a matter is subject to
extremely high temperatures or densities. Sufficiently high
temperatures existed, for example, in the Early Universe soon
after the Big Bang [1,2]. One can also produce a hot quark-
gluon plasma in heavy-ion collision experiments, often called

a e-mail: wangxy@ujs.edu.cn
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the Little Bangs [3]. High-density relativistic plasmas, on the
other hand, appear naturally inside compact stars [4–6]. Even
electron quasiparticles can form relativistic-like plasmas in
some topological semimetals [7].

Strong magnetic fields are ubiquitous in cosmology [8–
12], astrophysics [13–15], and heavy-ion collisions [16–18].
They can drastically modify the thermodynamic and trans-
port properties of relativistic plasmas. They also affect the
emission and absorption properties, change the spectra of
collective modes, etc. One of the characteristics that capture
the effects of the magnetic field is the photon polarization
tensor. Its real part, for example, determines the spectra of
electromagnetically active collective modes. The imaginary
part, on the other hand, is used in the calculation of the (opti-
cal) conductivity and the photon emission (absorption) rate.

There has been substantial progress in studies of the polar-
ization effects in magnetized plasmas in recent years. In the
regime of nonzero temperature, the polarization tensor was
calculated in the lowest Landau level approximation [19]
and the weak-field limit [20,21]. Some results beyond the
Landau level approximation were obtained as well [22–26].
Among other results, a closed-form analytical expression for
the absorptive part of the polarization tensor was derived
in Ref. [27] (see also Ref. [28]) by using the Landau level
representation for the fermion Green’s function. The gener-
alization of such studies to the case of a nonzero chemical
potential was still missing, however. It is the purpose of this
work to fill the corresponding knowledge gap.

By following the same approach as in Refs. [27,28], we
will start by deriving the general expression for the photon
polarization tensor and then concentrate on its absorptive
part. Note that the latter includes the imaginary part of the
symmetric tensor structure and the real part of the antisym-
metric tensor structure. While a specific choice of the rela-
tivistic plasma is not crucial in this study, we will assume
a two-flavor quark-gluon plasma for concreteness. Then, by
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using the absorptive part of the polarization tensor, we will
calculate the differential photon production rate, which is rel-
evant for heavy-ion physics. As we speculate, the qualitative
features of photon emission could provide a measure of the
magnetic field strength in the deconfined matter produced by
heavy-ion collisions. Note that, despite the high transparency
in relativistic collisions, the corresponding state of matter is
characterized by a nonzero chemical potential [29]. The latter
is an unavoidable artifact of the initial baryon charge carried
by the colliding ions. This study aims to quantify the effect of
a nonzero chemical potential on the direct photon emission
from a strongly magnetized quark-gluon plasma.

This paper is organized as follows. We outline the deriva-
tions of the photon polarization tensor in Sect. 2 and the pho-
ton emission rate in Sect. 3. The corresponding results gener-
alize the work of Refs. [27,28] to the case of a nonzero chem-
ical potential. The numerical results for the photon emission
are presented in Sect. 4. The summary and conclusions are
given in Sect. 5. Several appendices at the end of the paper
contain useful technical details.

2 Polarization function with finite chemical potential

The study in this paper is a continuation of the work started
in Refs. [27,28]. Here we extend the photon polarization
tensor of a magnetized quark-gluon plasma to the case of
a nonzero baryon chemical potential. The calculations are
at the leading-order one-loop approximation. It is a good
approximation at sufficiently strong magnetic fields and high
temperatures when the subleading corrections of order ααs

are under control. Note that α = 1/137 is the fine struc-
ture constant, while αs is the QCD coupling defined at a
relevant physics scale (e.g., temperature, chemical potential,
and/or magnetic field). After adjusting the electric charges
and masses of particles, the result will be also valid for the
QED plasma. In such a case, the validity of the one-loop
approximation will be excellent because the subleading cor-
rections of order α2 are negligible.

For simplicity, we assume that the masses of both light
quarks are the same, i.e., m f = m = 5 MeV, where f =
u, d. We define e f = eq f as the flavor-dependent quark
charge, where qu = 2/3, qd = −1/3, and e is the absolute
value of the electron charge. We choose the magnetic field
B to point in the +z direction. The corresponding vector
potential is taken in the Landau gauge, i.e.,A = (−By, 0, 0).

In a mixed coordinate-momentum space representation,
the translation invariant part of the quark propagator Ḡ f is
given by [30]:

Ḡ f (t; r) =
∫

dωdpz
(2π)2 e−iωt+i pz z Ḡ f (ω; pz; r⊥), (1)

where

Ḡ f (ω, pz; r⊥) = i
e−r2⊥/(4�2

f )

2π�2
f

∞∑
n=0

× D̃ f
n (ω, pz; r⊥)

(ω + μ)2 − p2
z − m2 − 2n|e f B| , (2)

and μ is the baryon chemical potential. We used the following
shorthand notation for the numerator of the nth Landau level
contribution:

D̃ f
n (ω, pz; r⊥) =

[
(ω + μ)γ 0 − p3γ 3 + m

]

×
[
P f

+Ln

(
r2⊥
2�2

f

)
+ P f

−Ln−1

(
r2⊥
2�2

f

)]

− i

�2
f

(r⊥ · γ ⊥)L1
n−1

(
r2⊥
2�2

f

)
, (3)

where r⊥ = (x, y) is the position vector in the transverse
(with respect to the magnetic field) plane, Lα

n (z) is the

generalized Laguerre polynomial, P f
± ≡ 1

2

(
1 ± is f

⊥γ 1γ 2
)

are spin projectors, and � f = √
1/|e f B| is the flavor-

specific magnetic length. By definition, s f
⊥ = sign(e f B)

and Lα−1(z) ≡ 0.
The photon polarization tensor in momentum space reads

[27]

�μν(i	m; k) = 4πNc

∑
f =u,d

α f T
∞∑

k=−∞

∫
dpz
2π

∫
d2r⊥e−ir⊥·k⊥ tr

× [γ μḠ f (iωk , pz; r⊥)γ ν Ḡ f (iωk − i	m , pz − kz; −r⊥)
]
, (4)

where α f = q2
f α and α = e2/(4π) is the fine structure

constant, Nc = 3 is the number of colors, and the trace runs
over the Dirac indices. By using the standard convention, the
fermionic and bosonic Matsubara frequencies are given by
ωk = (2k + 1)πT and 	m = 2mπT , respectively.

By substituting the fermion propagator in the Landau-
level representation (2) into Eq. (4) and performing the Mat-
subara sum with the help of Eq. (A5), we derive the following
expression for the polarization function:

�μν(i	m; k) = −
∑
f =u,d

α f Nc

π�4
f

∞∑
n,n′=0

∫
dpz
2π

∑
λ,η=±1

×
[
nF (En,pz , f + ημ) − nF (λEn′,pz−kz , f + ημ)

]
4λEn,pz , f En′,pz−kz , f

[
(En,pz , f − λEn′,pz−kz , f ) + iη	m

]

×
4∑

i=1

Iμν
i, f , (5)

where En,pz , f =
√
m2 + p2

z + 2n|e f B| are Landau-level

energies and Iμν
i, f are tensor functions defined in Eqs. (B16a)–

(B16c). Note that the result has the same general structure as
in the μ = 0 case [27,28]. However, the fermion distribution
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functions depend on the chemical potential now. Since the
energies of quarks and antiquarks are shifted by ±μ inside
the distribution functions, the charge conjugation symmetry
is broken explicitly.

After replacing i	m → 	 + iε, it is straightforward to
extract the absorptive part of the retarded polarization tensor.
The result reads

Im
[
�

μν
R (	 + iε;k)

]

=
∑
f =u,d

α f Nc

�4
f

∞∑
n,n′=0

∫
dpz
2π

∑
λ,η=±1

×
[
nF (En,pz , f + ημ) − nF (λEn′,pz−kz , f + ημ)

]
4ληEn,pz , f En′,pz−kz , f

×
4∑

i=1

Iμν
i, f δ

(
En,pz , f − λEn′,pz−kz , f + η	

)
. (6)

(Strictly speaking, the notation is not precise since the expres-
sion gives the absorptive part of the tensor that includes both
imaginary part of the symmetric tensor structures and real
part of antisymmetric ones.) Finally, by making use of the
δ-function and performing the integration over pz , we derive
the expression for the absorptive part of the polarization ten-
sor:

Im
[
�

μν
R (	;k)

] =
∑
f=u,d

α f Nc

4π�4
f

∞∑
n,n′=0

×
∑

λ,η=±1

∑
s=±1

�
n,n′
λ,η (	, kz)

×nF (En,pz , f + ημ) − nF (λEn′,pz−kz , f + ημ)

ηλ

√(
	2 − k2

z − (k f
−)2
) (

	2 − k2
z − (k f

+)2
)

×
4∑

i=1

Iμν
i, f

∣∣∣∣
pz=p(s)

z, f

, (7)

where the threshold function �
n,n′
λ,η (	, kz) is defined as fol-

lows:

�
n,n′
λ,η (	, kz) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ
(
(k f

−)2 + k2
z − 	2

)
for λ = 1, η = −1, n > n′,

θ
(
(k f

−)2 + k2
z − 	2

)
for λ = 1, η = 1, n < n′,

θ
(
	2 − k2

z − (k f
+)2
)

for λ = −1, η = −1,

(8)

and �
n,n′
λ,η (	, kz) = 0 otherwise. By definition, θ(x) is the

Heaviside step function and the momentum thresholds are

k f
± =

∣∣∣∣
√
m2 + 2n|e f B| ±

√
m2 + 2n′|e f B|

∣∣∣∣ . (9)

The solutions for the longitudinal momenta pz , satisfying the
energy conservation equation En,pz , f −λEn′,pz−kz , f +η	 =

0, are given by the following explicit expressions [27,28]:

p(±)
z, f = kz

2

[
1 + 2(n − n′)|e f B|

	2 − k2
z

± 	

|kz|

×
√√√√
(

1 − (k f
−)2

	2 − k2
z

)(
1 − (k f

+)2

	2 − k2
z

)⎤
⎦ . (10)

From the energy conservation equation En,pz , f + η	 =
λEn′,pz−kz , f , we find that

2η	En,pz , f = E2
n′,pz−kz , f

− E2
n,pz , f − 	2

= 2(n′ − n)|e f B| − 2pzkz + k2
z − 	2. (11)

This allows us to solve for one of the fermions energies,

En,pz , f
∣∣
pz=p(±)

z, f
= −η	

2

[
1 + 2(n − n′)|e f B|

	2 − k2
z

± |kz |
	

×
√√√√
(

1 − (k f
−)2

	2 − k2
z

)(
1 − (k f

+)2

	2 − k2
z

)⎤
⎦ ,

(12)

where we used the explicit expression for p(±)
z, f given in

Eq. (10). By making use of the energy conservation equa-
tion once again, we also find the other energy,

En′,pz−kz , f
∣∣
pz=p(±)

z, f
= λη	

2

[
1 − 2(n − n′)|e f B|

	2 − k2
z

∓|kz|
	

√√√√
(

1 − (k f
−)2

	2 − k2
z

)(
1 − (k f

+)2

	2 − k2
z

)⎤
⎦ . (13)

After combining all contributions to the absorptive part of
�

μν
R (	;k) and simplifying the final expression, we find that

the polarization tensor has the following structure:

�
μν
R (	;k) =

(
kμ
‖ kν‖
k2‖

− gμν
‖

)
�1 +

(
gμν
⊥ + kμ

⊥kν⊥
k2⊥

)
�2

+
(
kμ
‖ k̃ν‖ + k̃μ

‖ kν‖
k2‖

+ k̃μ
‖ kν⊥ + kμ

⊥k̃ν‖
k2⊥

)
�3

+
(
kμ
‖ kν⊥ + kμ

⊥kν‖
k2‖

+ k2⊥
k2‖

gμν
‖ − gμν

⊥

)
�4

+
(
Fμν

B
+ kμ

‖ k̃ν⊥ − k̃μ
⊥kν‖

k2‖

)
�̃5

+ k̃μ
‖ k̃ν⊥ − k̃μ

⊥k̃ν‖
k2‖

�̃6, (14)

where we used the following notation:

gμν
‖ = diag(1, 0, 0,−1), kμ

‖ = gμν
‖ kν = k0δ

μ
0 + kzδ

μ
3 ,

k̃μ
‖ = −εμ12νkν = kzδ

μ
0 + k0δ

μ
3 ,

gμν
⊥ = diag(0,−1,−1, 0), kμ

⊥ = gμν
⊥ kν = kxδ

μ
1 + kyδ

μ
2 ,
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k̃μ
⊥ = −ε0μν3kν = kyδ

μ
1 − kxδ

μ
2 . (15)

Note that k̃⊥,μk̃
μ
⊥ = k⊥,μk

μ
⊥ = −k2⊥, k̃‖,μk̃μ

‖ =
−k‖,μkμ

‖ = −k2‖ , and kμk̃
μ
⊥ = kμk̃

μ
‖ = 0. (For the photon

energy, we use the notations k0 and 	 interchangeably.)
The polarization tensor (14) has the same four symmetric

tensor structures and two antisymmetric ones as in the μ = 0
case [27]. However, all component functions depend on μ

now. Also, the antisymmetric terms, defined by the compo-
nent functions �̃5 and �̃6, do not vanish because the charge
conjugation symmetry is broken when μ 	= 0.

3 Photon emission rate and ellipticity

In this section we use the absorptive part of the polarization
tensor to derive the expression for the photon production rate
in a magnetized quark-gluon plasma at a nonzero baryon
chemical potential. By definition, the rate is given by [31]

k0 d3R

dkxdkydkz
= − 1

(2π)3

Im
[
�

μ
R,μ(k)

]

exp
(
k0
T

)
− 1

. (16)

In addition to the rate itself, it is also interesting to study
the ellipticity of the photon emission. The conventional mea-
sure of ellipticity is quantified by

v2(kT ) = − 1

(2π)3R
∫ 2π

0

Im
[
�

μ
R,μ(k)

]

exp
(
k0
T

)
− 1

cos(2φ)dφ, (17)

where φ is the angle between the photon momentum k and
the reaction plane. The normalization factor R is defined by

R = − 1

(2π)3

∫ 2π

0

Im
[
�

μ
R,μ(k)

]

exp
(
k0
T

)
− 1

dφ. (18)

By following the same approach as in Refs. [27,28], it is
straightforward to obtain the imaginary part of the Lorentz

contracted polarization tensor Im
[
�

μ
R,μ(k)

]
from Eq. (7).

The result reads

Im
[
�

μ
R,μ

]
=
∑
f =u,d

Ncα f

4π�4
f

∞∑
n>n′

�1

×
∑
s=±1

nF (En′,pz−kz , f − μ) − nF (En,pz , f − μ)√
[(k f

−)2 − k2
y][(k f

+)2 − k2
y]

×
(
F f

1 + F f
4

) ∣∣∣∣
pz=p(s)

z, f ,λ=1,η=−1

+
∑
f =u,d

Ncα f

4π�4
f

×
∞∑

n<n′
�1

∑
s=±1

nF (En,pz , f + μ) − nF (En′,pz−kz , f + μ)√
[(k f

−)2 − k2
y][(k f

+)2 − k2
y]

×
(
F f

1 + F f
4

) ∣∣∣∣
pz=p(s)

z, f ,λ=η=1

+
∑
f =u,d

Ncα f

4π�4
f

×
∞∑

n,n′=0

�2

∑
s=±1

nF (En,pz , f − μ) + nF (En′,pz−kz , f + μ) − 1√
[k2

y − (k f
−)2][k2

y − (k f
+)2]

×
(
F f

1 + F f
4

) ∣∣∣∣
pz=p(s)

z, f ,λ=η=−1

, (19)

where we used the notations: �1 = θ((k f
−)2 + k2

z −
	2) and �2 = θ(	2 − k2

z − (k f
+)2). We also introduced

the following Lorentz contracted functions: F f
i = gμν I

μν
i, f .

Their explicit expressions are given in Eqs. (B18)–(B21) in
Appendix B. Out of the four functions, only F f

1 and F f
4 are

nontrivial.
For numerical calculations, it is convenient to rewrite the

final expression as follows:

Im
[
�

μ
R,μ

]
=
∑
f =u,d

Ncα f

4π�4
f

×
∞∑

n>n′

[[
g(n, n′) + g(n′, n)

]
θ
(
(k f

−)2 + k2
z − 	2

)
− 2g(n, n′)θ

(
	2 − k2

z − (k f
+)2
)]

√(
(k f

−)2 + k2
z − 	2

) (
(k f

+)2 + k2
z − 	2

)
(
F f

1 + F f
4

)

−
∑
f =u,d

Ncα f

4π�4
f

∞∑
n=0

g0(n)θ
(
	2 − k2

z − (k f
+)2
)

√(
	2 − k2

z

) (
	2 − k2

z − (k f
+)2
)
(
F f

1 + F f
4

)
, (20)

where

F f
1 + F f

4 = 8π
(
n + n′ + m2�2

f

)

×
[
In,n′

0, f (ξ) + In−1,n′−1
0, f (ξ)

]
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−8π

(
n + n′ − 	2 − |k|2

2
�2
f

)

×
[
In,n′−1

0, f (ξ) + In−1,n′
0, f (ξ)

]
, (21)

and

g(n, n′)=2 −
∑

s1,s2=±
nF

[
	

2
− s1μ + s1

	(n − n′)|e f B|
	2 − k2

z

+s2
|kz|
2

√√√√
(

1 − (k f
−)2

	2 − k2
z

)(
1 − (k f

+)2

	2 − k2
z

)⎤
⎦ , (22)

g0(n) ≡ g(n, n) = 2 −
∑

s1,s2=±
nF

×
(

	

2
− s1μ + s2

|kz|
2

√
1 − 4(m2 + 2n|e f B|)2

	2 − k2
z

)
. (23)

We use this result in the next section to analyze the differential
photon emission rate numerically.

4 Numerical results

In this section, we calculate the photon emission rate and
the photon ellipticity in a strongly magnetized quark-gluon
plasma at μ 	= 0 numerically by using Eqs. (16) and (17)
with the imaginary part in Eq. (20). We assume that x–y
is the reaction plane and the beam direction is along the x-
axis. This is a self-consistent configuration for noncentral
collisions at mid-rapidity, where the magnetic field direction
is (approximately) perpendicular to the reaction plane. At
mid-rapidity, we can also set kx = 0. The remaining two
components of the photon momentum are parametrized as
follows: ky = kT cos φ and kz = kT sin φ, where kT is the
transverse momentum (with respect to the beam) and φ is the
angle measured from the reaction plane. Note that the photon
transverse momentum kT is the same as its energy 	 when
kx = 0.

Here we will consider a magnetized quark-gluon plasma
with the same representative choices of the magnetic field
strength (i.e., |eB| = m2

π and |eB| = 5m2
π ) and temperature

(i.e., T = 0.2 GeV and T = 0.35 GeV) as in Ref. [28].
By following the standard convention, we give the values
of the field in units of m2

π , where mπ = 0.135 GeV. In
conventional units, the two values of the field correspond to
B ≈ 3.08 × 1018 G and B ≈ 1.54 × 1019 G, respectively.

To understand qualitative effects of a nonzero baryon
chemical potential on the photon emission rate, we will
start by comparing the results for μ = 0, μ = 0.1 GeV,
μ = 0.2 GeV, and μ = 1 GeV, see Fig. 1. (Note that the
rates at μ = 0 are the same as those reported in Ref. [28]
but given in units of m2

π .) The two smallest values of the
chemical potential (μ = 0.1 GeV and μ = 0.2 GeV) can

be viewed as typical for the quark-gluon plasma produced in
heavy-ion collisions. While the largest value (μ = 1 GeV)
is unrealistic, it is included for instructive purposes to get a
deeper insight into the role of the chemical potential under
extreme conditions.

We study the same range of the transverse momenta,
from kT,min = 0.01 GeV to kT,max = 1 GeV, and use
the same discretization step �kT = 0.01 GeV as in Ref.
[28]. Similarly, we cover the same azimuthal angles between
φmin = 10−4 π

2 and φmax = π
2 − φmin with the discretization

step �φ = 10−3 π
2 . To avoid potential problems in numerical

calculations, we do not consider the limiting values φ = 0
and φ = π

2 . When evaluating the Landau-level sums, we
include a finite but rather large number of Landau levels, i.e.,
nmax = 1000. Such a choice insures that numerical results are
reliable for a sufficiently wide range of transverse momenta:√|eB|/√2nmax � kT �

√
2nmax|eB|.

By comparing the results in Fig. 1, we see that the total
photon emission rate grows with increasing both tempera-
ture and chemical potential. However, the dependence on the
chemical potential remains relatively weak for μ � 0.2 GeV.
At its peak value, for example, the rate at μ = 0.2 GeV is
only about 40% larger than at μ = 0. The differences are
even smaller away from the peak. In hindsight, this is not
surprising since both representative values of temperature
are relatively large. With that said, a more careful analysis
reveals some surprises. As we will discuss below, each of the
partial contributions of the three different types of processes
depends much stronger on μ.

As explained in detail in the earlier studies [27,28], the
photon rate must have a local maximum as a function of
the transverse momentum (or energy). It is connected with
the Landau-level quantization, which becomes important at
small kT . As we see from Fig. 1, a similar peak exists at
sufficiently small values of kT also when μ 	= 0. More-
over, the location of the peak does not change much when
μ � 0.2 GeV. At large μ, the maximum tends to shift to
smaller values of kT . Such a behavior is not surprising since
the Landau-level quantization is not affected directly by the
chemical potential. However, since a nonzero μ also changes
the occupation numbers of the Landau levels and, in turn, the
kinematics of the relevant processes, a weak dependence does
appear.

As we stated before, the baryon chemical potential breaks
the charge conjugation symmetry. Among other things, this
implies that the partial contributions of the quark splitting and
antiquark splitting processes (i.e, q → q+γ and q̄ → q̄+γ ,
respectively) should be different. For example, when μ is
positive, the relevant number densities of quarks (antiquarks)
will be enhanced (suppressed) by the Fermi distribution func-
tions. The corresponding enhancement (suppression) will be
also reflected in the photon emission rates. One may expect
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(a) (b)

(c) (d)

Fig. 1 Photon production rate as a function of the transverse momen-
tum kT for four different values of the chemical potential: μ = 0 (gray
lines), μ = 0.1 GeV (red dashed lines), μ = 0.2 GeV (green dot-
ted lines), and μ = 1 GeV (blue dot-dashed lines). The left panels

(a, c) show the results for T = 200 MeV and the right panels (b, d)
for T = 350 MeV. The top and bottom panels show the results for
|eB| = m2

π and |eB| = 5m2
π , respectively

that the rate of the annihilation process q+q̄ → γ is affected
as well.

In the case of the weaker magnetic field, |eB| = m2
π , the

breakdown of the total photon emission rate into its partial
contributions from the three different types of processes is
shown in Fig. 2. The results for T = 200 MeV are shown in
the three panels on the left (a, c, and e), and the results for
T = 350 MeV are shown in the three panels on the right (b,
d, and f). It is not surprising that the rates are larger at higher
temperature. By comparing the rates at μ = 0.1 GeV (panels
a and b), μ = 0.2 GeV (panels c and d), and μ = 1 GeV
(panels e and f), we observe a qualitative dependence that
was expected from general considerations. First, the differ-
ence between the rates of the two processes, q → q + γ

and q̄ → q̄ + γ , grows with μ. Second, the correspond-
ing difference grows faster and becomes more pronounced
at T = 200 MeV, compared to the case of T = 350 MeV.
Again, this is not surprising since a growing temperature
tends to wash away the effects of a nonzero μ. Third, the

annihilation rate remains relatively small compared to the
rate of the quark splitting q → q + γ and, to a lesser degree,
even the antiquark splitting q̄ → q̄ + γ . The hierarchiy of
rates tends to change at sufficiently large values of kT . The
switch of the regimes, where the rates of q̄ → q̄ + γ and
q + q̄ → γ become equal, is pushed to smaller kT when
μ increases. On the other hand, the switch of the regimes,
where the rates of q → q+γ and q̄ → q̄+γ become equal,
is pushed to higher kT .

To show how the rate for each process type changes with
μ, we presented their partial contributions in several panels
of Fig. 3. Each panel represents only one of the processes but
combines the results for all four different values of the chemi-
cal potential. As we see from panels (a) and (b), the rate of the
quark splitting q → q + γ increases with μ for both values
of the temperatures, T = 200 MeV and T = 350 MeV. The
behavior is opposite for the antiquark splitting q̄ → q̄ + γ ,
shown in panels (c) and (d). The corresponding rates decrease
with μ. The situation for the annihilation rate, represented by
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Partial contributions of different types of processes, i.e., q →
q +γ (orange lines), q̄ → q̄ +γ (brown dashed lines), and q + q̄ → γ

(purple dot-dashed lines), to the photon production rate at |eB| = m2
π

as a function of the transverse momentum kT . The left panels (a, c,

e) show the results for T = 200 MeV and the right panels (b, d, f)
for T = 350 MeV. The top row (panels a and b) shows the results for
μ = 0.1 GeV, the middle row (a, b) for μ = 0.2 GeV, and the bottom
row (a, b) for μ = 1 GeV

panels (e) and (f), is somewhat more complicated. (Note that
the range on the vertical axis is different in these two panels.)
While the overall rate tends to decrease with μ, it may have
a non-monotonous dependence on μ at large kT values.

In the case of the stronger magnetic field, |eB| = 5m2
π , the

breakdown of the total photon emission rate into its partial
contributions from the three different types of processes is
shown in multiple panels of Fig. 4. As we see, all qualitative
features remain the same as in the case of the weaker field.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Partial contributions of the three types of processes to the photon
production rate at |eB| = m2

π as functions of the transverse momen-
tum kT for four different values of the chemical potential: μ = 0 (gray
lines), μ = 0.1 GeV (red dashed lines), μ = 0.2 GeV (green dotted
lines), and μ = 1 GeV (blue dot-dashed lines). The left panels (a, c,
e) show the results for T = 200 MeV and the right panels (b, d, f)

for T = 350 MeV. The top row (a, b) gives the rates due to the quark
splitting q → q + γ , the middle row (a, b) gives the rates due to the
antiquark splitting q̄ → q̄+γ , and the bottom row (a, b) gives the rates
due to the quark-antiquark annihilation q + q̄ → γ . Note that the range
on the vertical axis is different in the two bottom panels
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Partial contributions of different types of processes, i.e., q →
q +γ (orange lines), q̄ → q̄ +γ (brown dashed lines), and q + q̄ → γ

(purple dot-dashed lines), to the photon production rate at |eB| = 5m2
π

as a function of the transverse momentum kT . The left panels (a, c, e)

show the results for T = 200 MeV and the right panels (b, d, f) for
T = 350 MeV. The top row (a, b) shows the results for μ = 0.1 GeV,
the middle row (a, b) for μ = 0.2 GeV, and the bottom row (a, b) for
μ = 1 GeV

In particular, with growing μ, the difference between the
rates of quark and antiquark splitting processes increases,
but the effect is less pronounced at a higher temperature. The
interplay of the annihilation and the two splitting processes
is qualitatively the same as in Fig. 2.

For the |eB| = 5m2
π case, the partial rates of different

process types for all four values of the chemical potential are
summarized in several panels of Fig. 5. Again, the qualita-
tive features remain the same as in the case of the weaker
magnetic field in Fig. 3.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Partial contributions of the three types of processes to the photon
production rate at |eB| = 5m2

π as functions of the transverse momen-
tum kT for four different values of the chemical potential: μ = 0 (gray
lines), μ = 0.1 GeV (red dashed lines), μ = 0.2 GeV (green dotted
lines), and μ = 1 GeV (blue dot-dashed lines). The left panels (a, c,
e) show the results for T = 200 MeV and the right panels (b, d, f)

for T = 350 MeV. The top row (a, b) gives the rates due to the quark
splitting q → q + γ , the middle row (a, b) gives the rates due to the
antiquark splitting q̄ → q̄ + γ , and the bottom row (panels a and b)
gives the rates due to the quark-antiquark annihilation q+ q̄ → γ . Note
that the range on the vertical axis is different in the two bottom panels
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(a) (b)

(c) (d)

Fig. 6 Ellipticity of photon emission as a function of the transverse
momentum kT for four different values of the chemical potential: μ = 0
(gray lines), μ = 0.1 GeV (red dashed lines), μ = 0.2 GeV (green dot-
ted lines), and μ = 1 GeV (blue dot-dashed lines). The left panels

(a, c) show the results for T = 200 MeV and the right panels (b, d)
for T = 350 MeV. The top and bottom panels show the results for
|eB| = m2

π and |eB| = 5m2
π , respectively

The ellipticity measure v2 for the photon emission is
shown as a function of the transverse momentum in Fig. 6.
As in the zero chemical potential case [27,28], the value of
v2 is negative at small transverse momenta (kT �

√|eB|)
and positive at at large momenta (kT �

√|eB|). The former
implies a stronger photon emission in the direction out of
the reaction plane, while the latter implies a stronger photon
emission along the reaction plane. Overall, the ellipticity is
not affected much by a nonzero chemical potential even in
the case of a very large μ (μ = 1 GeV). As in the μ = 0
case, the value of v2 is of the order of 0.2 at large trans-
verse momenta. The weak dependence of v2 on the chemi-
cal potential is probably explained by the fact that the rate is
dominated by the same quark (and, to a lesser degree, the anti-
quark) splitting processes q → q + γ in almost all regimes.
While the chemical potential affects the kinematics of the
corresponding processes, the anisotropy of the correspond-

ing synchrotron-like emission with respect to the magnetic
field direction is largely the same.

5 Summary and conclusions

In this paper, we generalized the derivation of the pho-
ton polarization tensor in a strongly magnetized relativistic
plasma to the case of a nonzero chemical potential. We found
that the polarization tensor is determined by the same four
symmetric and two antisymmetric structures that were iden-
tified in the μ = 0 study [27]. However, while the antisym-
metric parts of the tensor vanish at μ = 0, they are nonzero
at μ 	= 0. This is the consequence of the charge conjugation
symmetry breaking by the chemical potential.

While the formal expressions are obtained for both real
and imaginary parts of the polarization tensor, it is the absorp-
tive part that was the main focus of this study. The latter is
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determined by the quark and antiquark splitting processes,
q → q+γ and q̄ → q̄+γ , respectively, as well as the quark-
antiquark annihilation, q + q̄ → γ . Because of a broken
charge conjugation symmetry at μ 	= 0, the two splitting pro-
cesses give nonequal contributions. As expected, the quark
(antiquark) splitting dominates over the antiquark (quark)
one when the value of the baryon chemical potential is posi-
tive (negative). Also, the relative difference between the rates
tends to go away with decreasing the chemical potential and
increasing the temperature. As for the total photon produc-
tion rate, it tends to grow with increasing of both temperature
and chemical potential. We found that the contribution of the
quark-antiquark annihilation remains small for a wide range
of temperatures and chemical potentials relevant for heavy-
ion collisions. In general, it gets larger with increasing the
temperature and decreasing the chemical potential.

The ellipticity of the photon emission from a strongly
magnetized quark-gluon plasma is not affected dramatically
by a nonzero chemical potential. In fact, quantitative effects
become noticeable only when μ is very large (∼ 1 GeV).
This can be understood by recalling that a nonzero ellip-
ticity is driven largely by the quark and antiquark splitting
processes. While the relative weight of the two processes
changes with μ, their kinematics is not affected much by the
chemical potential. As in the μ = 0 case, the photon emis-
sion is characterized by a negative ellipticity coefficient v2 at
small transverse momenta, kT �

√|eB|, and a positive v2 at
large momenta, kT �

√|eB|. In other words, the profile of
emission is approximately prolate at small kT and oblate at
large kT . Because of the Landau-level quantization and the
associated threshold effects, the ellipticity coefficient v2 is
neither smooth nor strictly monotonic function of the trans-
verse momenta (energy). It is expected, however, that the
interaction effects at subleading order will partially smooth
out the corresponding dependence [27].

In application to heavy-ion collisions, the findings of this
study reconfirm that the photon emission from a strongly
magnetized quark-gluon plasma is highly anisotropic [27,
28,32–34]. Such anisotropy, rather than a hydrodynamic flow
of matter could explain a large v2 in direct photon produc-
tion observed in experiment [35–37]. As we show, a nonzero
baryon chemical potential does not modify dramatically the
existing theoretical predictions for the ellipticity of photon
emission. Since the total rate is affected, however, the overall
recalibration of the existing models might be needed.

In this study, similarly to other theoretical studies of the
photon emission in the presence of a magnetic field, the calcu-
lations are done at the zeroth order in the strong coupling con-
stant αs . This is a limitation that needs to be overcome before
the qualitative conclusions about the ellipticity of emission
are fully accepted. To this end, a systematic study of the
gluon-mediated processes [38–45] has to be performed for
a magnetized plasma. The corresponding generalization is

quite challenging from a technical viewpoint however. Not
only the complicated structure of the quark propagator com-
plicates the problem, but also the resummation of the so-
called hard “magnetic loops” might be necessary [45].
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Appendix A: Matsubara sums

In this Appendix, we present several general results for the
fermionic Matsubara sums needed in the calculation of the
photon polarization function at a nonzero chemical potential,
i.e.,

T
∞∑

k=−∞

1[
(ωk − iμ)2 + a2

] [
(ωk − 	m − iμ)2 + b2

]

= [1 − nF (a − μ) − nF (b + μ)]

4ab (a + b − i	m)

+ [1 − nF (a + μ) − nF (b − μ)]

4ab (a + b + i	m)

+ [nF (a − μ) − nF (b − μ)]

4ab (a − b − i	m)

+ [nF (a + μ) − nF (b + μ)]

4ab (a − b + i	m)
, (A1)

T
∞∑

k=−∞

(ωk − iμ)(ωk − 	m − iμ)[
(ωk − iμ)2 + a2

] [
(ωk − 	m − iμ)2 + b2

]

= [1 − nF (a − μ) − nF (b + μ)]

4 (a + b − i	m)

+ [1 − nF (a + μ) − nF (b − μ)]

4 (a + b + i	m)
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− [nF (a − μ) − nF (b − μ)]

4 (a − b − i	m)

− [nF (a + μ) − nF (b + μ)]

4 (a − b + i	m)
, (A2)

T
∞∑

k=−∞

iωk + μ[
(ωk − iμ)2 + a2

] [
(ωk − 	m − iμ)2 + b2

]

= [1 − nF (a − μ) − nF (b + μ)]

4b (a + b − i	m)

− [1 − nF (a + μ) − nF (b − μ)]

4b (a + b + i	m)

+ [nF (a − μ) − nF (b − μ)]

4b (a − b − i	m)

− [nF (a + μ) − nF (b + μ)]

4b (a − b + i	m)
, (A3)

T
∞∑

k=−∞

i(ωk − 	m) + μ[
(ωk − iμ)2 + a2

] [
(ωk − 	m − iμ)2 + b2

]

= − [1 − nF (a − μ) − nF (b + μ)]

4a (a + b − i	m)

+ [1 − nF (a + μ) − nF (b − μ)]

4a (a + b + i	m)

+ [nF (a − μ) − nF (b − μ)]

4a (a − b − i	m)

− [nF (a + μ) − nF (b + μ)]

4a (a − b + i	m)
. (A4)

where nF (ε) = 1/
[
exp(ε/T ) + 1

]
is the Fermi-Dirac dis-

tribution function, and ωk = (2k + 1)πT and 	m = 2mπT
are the fermionic and bosonic Matsubara frequencies, respec-
tively. Note that the distribution function satisfies the follow-
ing relation: nF (−x) = 1 − nF (x).
By making use of Eqs. (A1) through (A4), it is straightfor-
ward to derive the following Matsubara sum of a more general
type:

T
∞∑

k=−∞

(iωk + μ)(iωk − i	m + μ)X + (iωk + μ)Y1 + (iωk − i	m + μ)Y2 + Z[
(iωk + μ)2 − a2

] [
(iωk − i	m + μ)2 − b2

]

=
∑

λ=±1

∑
η=±1

[nF (a + ημ) − nF (λb + ημ)]

4λab (a − λb + ηi	m)
[λabX − η (aY1 + λbY2) + Z ] , (A5)

where coefficient X , Y1, Y2, and Z are arbitrary func-
tions of momenta. After replacing a and b with the Lan-

dau level energies, En,pz , f =
√
p2
z + m2 + 2n|e f B| and

En′,pz−kz , f =
√

(pz − kz)2 + m2 + 2n′|e f B|, we obtain the
Matsubara sums for the polarization function in the main text.

Appendix B: Explicit expressions for Iμν
i

The four types of traces needed in the calculation of the polar-
ization tensor are

Tμν
1, f = tr

[
γ μ
(Q‖γ‖ + m

)
(P+Ln + P−Ln−1) γ ν

× ((Q‖ − k‖)γ‖ + m
) (P+Ln′ + P−Ln′−1

)]
, (B1)

Tμν
2, f = i

�2
f

tr
[
γ μ
(Q‖γ‖ + m

)
(P+Ln

+P−Ln−1) γ ν(r⊥ · γ ⊥)L1
n′−1

]
, (B2)

Tμν
3, f = − i

�2
f

tr
[
γ μ(r⊥ · γ ⊥)L1

n−1γ
ν
(
(Q‖ − k‖)γ‖ + m

)

× (P+Ln′ + P−Ln′−1
)]

, (B3)

Tμν
4, f = 1

�4
f

tr
[
γ μ(r⊥ · γ ⊥)L1

n−1γ
ν(r⊥ · γ ⊥)L1

n′−1

]
, (B4)

where Q‖γ‖ ≡ (p0 +μ)γ 0 − p3γ 3 = (iωk +μ)γ 0 − p3γ 3

and (Q‖ − k‖)γ‖ ≡ (p0 + μ − k0)γ
0 − (p3 − k3)γ 3 =

(iωk + μ − i	m)γ 0 − (p3 − k3)γ 3. After calculating the

corresponding integrals over the transverse spatial coordi-
nates, r⊥, the results are given by

Iμν
1, f =

∫
d2r⊥e−ir⊥·k⊥e−r2⊥/(2�2

f )Tμν
1, f

= −4π�2
f g

μν
⊥
[
(Q‖((Q‖ − k‖) − m2

] [
In,n′−1

0, f (ξ) + In−1,n′
0, f (ξ)

]

+4π�2
f

[
Qμ

‖ (Q‖ − k‖)ν + (Q‖ − k‖)μQν‖ − gμν
‖

×
[
Q‖(Q‖ − k‖) − m2

]] [
In,n′

0, f (ξ) + In−1,n′−1
0, f (ξ)

]

+4π i�4
f e f F

μν
[
Q‖(Q‖ − k‖) − m2

]

×
[
In,n′−1

0, f (ξ) − In−1,n′
0, f (ξ)

]
, (B5)

Iμν
2, f =

∫
d2r⊥e−ir⊥·k⊥e−r2⊥/(2�2

f )Tμν
2, f

= −4π� f

(
Qμ

‖ k̂
ν⊥ + k̂μ

⊥Qν‖
)

×
[
In,n′−1

1, f (ξ) + In−1,n′−1
1, f (ξ)

]

+4π i�3
f e f

(
Qμ

‖ F
νρ k̂⊥,ρ

−Fμρ k̂⊥,ρQν‖
) [

In,n′−1
1, f (ξ) − In−1,n′−1

1, f (ξ)
]
, (B6)

Iμν
3, f =

∫
d2r⊥e−ir⊥·k⊥e−r2⊥/(2�2

f )Tμν
3, f

= 4π� f

(
(Q‖ − k‖)μk̂ν⊥ + k̂μ

⊥(Q‖ − k‖)ν
)
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×
[
In′,n−1

1, f (ξ) + In′−1,n−1
1, f (ξ)

]

+4π i�3
f e f

(
(Q‖ − k‖)μFνρ k̂⊥,ρ − Fμρ k̂⊥,ρ(Q‖ − k‖)ν

)

×
[
In′,n−1

1, f (ξ) − In′−1,n−1
1, f (ξ)

]
, (B7)

Iμν
4, f =

∫
d2r⊥e−ir⊥·k⊥e−r2⊥/(2�2

f )Tμν
4, f

= 8π
[
gμν
‖ In−1,n′−1

2, f (ξ) −
(
gμν
⊥ + 2k̂μ

⊥k̂
ν⊥
)
In−1,n′−1

3, f (ξ)
]
,

(B8)

where ξ = k2⊥�2
f /2. The explicit expressions for functions

In,n′
i, f (ξ) (i = 1, 2, 3, 4) are given in [27]

In,n′
0, f (ξ) = (−1)n+n′

e−ξ Ln′−n
n (ξ) Ln−n′

n′ (ξ) , (B9)

In,n′
1, f (ξ) = √2ξ(−1)n+n′

e−ξ Ln′−n+1
n (ξ) Ln−n′

n′ (ξ) ,

(B10)

In,n′
2, f (ξ) = 2(−1)n+n′

(n′ + 1)e−ξ Ln′−n
n (ξ) Ln−n′

n′+1 (ξ) ,

(B11)

In,n′
3, f (ξ) = 2(−1)n+n′

ξe−ξ Ln′−n+1
n (ξ) Ln−n′+1

n′ (ξ) .

(B12)

For properties and relations that these functions satisfy, see
Ref. [27].

After performing the Matsubara sums, making the ana-
lytical continuation i	m → 	 + iε, and using the energy
conservation condition (En,pz , f − λEn′,pz−kz , f + η	 = 0),
one finds that the Iμν

i, f (ξ) functions in the final result will be
replaced by analogous expressions, where only the following
replacements are made:

Qμ
‖ → Q̄μ

‖
∣∣∣
pz=p(±)

z, f

= −ηEn,pz , f δ
μ
0 + pzδ

μ
3

∣∣∣
pz=p(±)

z, f

= 1

2
kμ
‖
(

2(n − n′)|e f B|
	2 − k2

z
+ 1

)

±1

2
k̃μ
‖

√√√√
(

1 − (k f
−)2

	2 − k2
z

)(
1 − (k f

+)2

	2 − k2
z

)
, (B13)

(Q‖ − k‖)μ → (Q̄‖ − k‖)μ
∣∣∣
pz=p(±)

z, f

= −ηλEn′,pz−kz , f δ
μ
0 + (pz − kz)δ

μ
3

∣∣∣
pz=p(±)

z, f

= 1

2
kμ
‖
(

2(n − n′)|e f B|
	2 − k2

z
− 1

)

±1

2
k̃μ
‖

√√√√
(

1 − (k f
−)2

	2 − k2
z

)(
1 − (k f

+)2

	2 − k2
z

)
, (B14)

Q‖(Q‖ − k‖) → Q̄‖(Q̄‖ − k‖)
∣∣∣
pz=p(±)

z, f

= λEn,pz , f En′,pz−kz , f − pz(pz − kz)
∣∣∣
pz=p(±)

z, f

= m2 + (n + n′)|e f B| − 1

2
k2‖ . (B15)

where kμ
‖ = 	δ

μ
0 + kzδ

μ
3 and k̃μ

‖ = kzδ
μ
0 + 	δ

μ
3 . Note

that k‖,μk̃μ
‖ = 0 and k̃‖,μk̃μ

‖ = −k2‖ . The definition of
the transverse threshold momenta k± are given in Eq. (9).
Note that there is no dependence on the chemical potential in
Eqs. (B13)–(B15). It is the consequence of the general result
for the Matsubara sum in Eq. (A5).

By using the above results, we can derive the expressions
for Iμν

i, f tensors, which have the same form as in the μ = 0
case [27], i.e.,

Iμν
1, f

∣∣∣
pz=p(±)

z, f

= −4π�2
f g

μν
⊥
[
(n + n′)|e f B| − 1

2
k2‖
]

×
[
In,n′−1

0, f (ξ) + In−1,n′
0, f (ξ)

]

−4π�2
f g

μν
‖
[
(n + n′)|e f B| − 1

2
k2‖
]

×
[
In,n′

0, f (ξ) + In−1,n′−1
0, f (ξ)

]

+4π i�4
f e f F

μν

[
(n + n′)|e f B| − 1

2
k2‖
]

×
[
In,n′−1

0, f (ξ) − In−1,n′
0, f (ξ)

]

+4π�2
f A

μν
±
[
In,n′

0, f (ξ) + In−1,n′−1
0, f (ξ)

]
, (B16a)

Iμν
2, f + Iμν

3, f

∣∣∣
pz=p(±)

z, f

= −4π� f B
μν
±

×
[
In,n′−1

1, f (ξ) + In−1,n′−1
1, f (ξ)

]

−4π� f

(
kμ
‖ k̂

ν⊥ + kν‖ k̂
μ
⊥ − Bμν

±
)

×
[
In′,n−1

1, f (ξ) + In′−1,n−1
1, f (ξ)

]

−4π i�3
f
e f B

k⊥
Cμν

±

×
[
In,n′−1

1, f (ξ) − In−1,n′−1
1, f (ξ)

]

−4π i�3
f
e f B

k⊥

[
Cμν

± −
(
kμ
‖ k̃

ν⊥ − kν‖ k̃
μ
⊥
)]

×
[
In′,n−1

1, f (ξ) − In′−1,n−1
1, f (ξ)

]
, (B16b)

Iμν
4, f

∣∣∣
pz=p(±)

z, f

= 8π
[
gμν
‖ In−1,n′−1

2, f (ξ)

−
(
gμν
⊥ + 2k̂μ

⊥k̂
ν⊥
)

In−1,n′−1
3, f (ξ)

]
. (B16c)

Note that the upper and lower signs correspond to p(+)
z, f and

p(−)
z, f , respectively. Also we used the following shorthand

notation:
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Aμν
± = − 1

2
kμ
‖ k

ν‖

(
1 − 4(n − n′)2(e f B)2

(	2 − k2
z )

2

)
+ 1

2
k̃μ
‖ k̃

ν‖

×
⎛
⎝1 −

4
[
m2 + (n + n′)|e f B|

]

	2 − k2
z

+ 4(n − n′)2(e f B)2

(	2 − k2
z )

2

⎞
⎠

±
(
kμ
‖ k̃

ν‖ + kν‖ k̃
μ
‖
)

(n−n′)|e f B|
	2−k2

z

√
1− 4

[
m2+(n+n′)|e f B|]

	2 − k2
z

+ 4(n−n′)2(e f B)2

(	2 − k2
z )

2
,

(B17a)

Bμν
± = 1

2

(
kμ
‖ k̂

ν⊥ + kν‖ k̂
μ
⊥
)

×
(

2(n − n′)|e f B|
	2 − k2

z
+ 1

)
± 1

2

(
k̃μ
‖ k̂

ν⊥ + k̃ν‖ k̂
μ
⊥
)

×
√

1 − 4
[
m2 + (n + n′)|e f B|]

	2 − k2
z

+ 4(n − n′)2(e f B)2

(	2 − k2
z )

2
, (B17b)

Cμν
± = 1

2

(
kμ
‖ k̃

ν⊥ − kν‖ k̃
μ
⊥
)

×
(

2(n − n′)|e f B|
	2 − k2

z
+ 1

)

± 1

2

(
k̃μ
‖ k̃

ν⊥ − k̃ν‖ k̃
μ
⊥
)

×
√

1 − 4
[
m2 + (n + n′)|e f B|]

	2 − k2
z

+ 4(n − n′)2(e f B)2

(	2 − k2
z )

2
. (B17c)

Now, let us introduce the Lorentz contracted expression func-
tions: F f

i = gμν I
μν
i, f , by using the definitions in Eq. (B16),

one finds that

F f
1 = 8π

[
k2‖�2

f

2
− (n + n′)

]

(
In−1,n′

0, f (ξ)

+In,n′−1
0, f (ξ)

)
+ 8π�2

f m
2

(
In,n′

0, f (ξ) + In−1,n′−1
0, f (ξ)

)
, (B18)

F f
2 = gμν I

μν
2, f = 0, (B19)

F f
3 = gμν I

μν
3, f = 0, (B20)

F f
4 = = 16π In−1,n′−1

2, f (ξ). (B21)

By adding together the nonvanishing functions Fi , we obtain

F f
1 + F f

4 = 8π
(
n + n′ + m2�2

f

)

×
[
In,n′

0, f (ξ) + In−1,n′−1
0, f (ξ)

]

+8π

(
k2‖ − k2⊥

2
�2
f − (n + n′)

)

×
[
In,n′−1

0, f (ξ) + In−1,n′
0, f (ξ)

]
. (B22)

Note that the second term simplifies when photons satisfy
the on-shell condition k2‖ = k2⊥.

Appendix C: Tensor structure of Im
[
�μν

]

By making use of the expression for the polarization tensor
in Eq. (7) and the definition of tensors Iμν

i in Appendix B, we
find that the imaginary part of �

μν
R (	;k) has the following

structure:

Im
[
�

μν
R (	;k)

] =
(
kμ
‖ kν‖
k2‖

− gμν
‖

)
Im [�1]

+
(
gμν
⊥ + kμ

⊥kν⊥
k2⊥

)
Im [�2]

+
(
kμ
‖ k̃ν‖ + k̃μ

‖ kν‖
k2‖

+ k̃μ
‖ kν⊥ + kμ

⊥k̃ν‖
k2⊥

)
Im [�3]

+
(
kμ
‖ kν⊥ + kμ

⊥kν‖
k2‖

+ k2⊥
k2‖

gμν
‖ − gμν

⊥

)
Im [�4]

+
(
Fμν

B
+ kμ

‖ k̃ν⊥ − k̃μ
⊥kν‖

k2‖

)
Im
[
�̃5

]

+ k̃μ
‖ k̃ν⊥ − k̃μ

⊥k̃ν‖
k2‖

Im
[
�̃6

]
, (C1)

where we utilized the shorthand notations introduced in
Eq. (15). Note that kμk̃

μ
⊥ = kμk̃

μ
‖ = 0 and Fμνk⊥,ν = Bk̃μ

⊥.

One can also check that k̃⊥,μk̃
μ
⊥ = k⊥,μk

μ
⊥ = −k2⊥ and

k̃‖,μk̃μ
‖ = −k‖,μkμ

‖ = −k2‖ .
To simplify the representation of the six component func-

tions in the imaginary part of polarization tensor (C1), it is
convenient to introduce the following operator:

X̂ (. . .) =
∑
f =u,d

Ncα f

4π�4
f

∞∑
n,n′=0

∑
λ,η=±1

∑
s=±1

�
n,n′
λ,η (	, kz)

× nF (En,pz, f + ημ) − nF (λEn′,pz−kz, f + ημ)

ηλ

√(
	2 − k2

z − (k f
−)2
) (

	2 − k2
z − (k f

+)2
) (. . .).

(C2)

Note that, with the help of the operator X̂ , the polariza-
tion tensor in Eq. (7) can be rewritten in a compact form
as Im

[
�

μν
R

] = X̂∑4
i=1 I

μν
i, f .

By using the operator in Eq. (C2), we can also write down
the explicit expressions for the individual tensor component
functions. In particular, the first four components, defining
the symmetric tensor structures, are
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Im [�1] = 8πX̂
(

2(n − n′)2

k2‖�2
f

− m2�2
f − (n + n′)

)

×
[
In,n′

0, f (ξ) + In−1,n′−1
0, f (ξ)

]
, (C3)

Im [�2] = −16πX̂ In−1,n′−1
3, f (ξ)

= −8πX̂
{
(n + n′)

[
In,n′−1

0, f (ξ) + In−1,n′
0, f (ξ)

]

− (n − n′)2

ξ

[
In,n′

0, f (ξ) + In−1,n′−1
0, f (ξ)

] }
, (C4)

Im [�3] = ±4πX̂ (n − n′)

√√√√
(

1 − k2−
k2‖

)(
1 − k2+

k2‖

)

×
[
In,n′

0, f (ξ) + In−1,n′−1
0, f (ξ)

]
, (C5)

Im [�4] = −2πX̂
{ k2‖�2

f + 2(n − n′)
k⊥� f

×
[
In,n′−1

1, f (ξ) + In−1,n′−1
1, f (ξ)

]

+ k2‖�2
f − 2(n − n′)
k⊥� f

[
In′,n−1

1, f (ξ) + In′−1,n−1
1, f (ξ)

] }

= −2πX̂
{
k2‖�2

f

[
In,n′−1

0, f (ξ) + In−1,n′
0, f (ξ)

]

−2(n − n′)2

ξ

[
In,n′

0, f (ξ) + In−1,n′−1
0, f (ξ)

]}
. (C6)

Similarly, the component functions of the antisymmetric con-
tributions read

Im
[
�̃5

]
= −2π is⊥X̂

(
k2‖�2

f − 2(n + n′)
)

×
[
In,n′−1

0, f (ξ) − In−1,n′
0, f (ξ)

]
, (C7)

and

Im
[
�̃6

]
= ∓2π iX̂ s⊥k2‖�2

f

k⊥� f

√√√√
(

1 − k2−
k2‖

)(
1 − k2+

k2‖

)

×
[
In,n′−1

1, f (ξ) − In−1,n′−1
1, f (ξ) + In′,n−1

1, f (ξ) − In′−1,n−1
1, f (ξ)

]

= ∓4π i
s⊥
k2⊥

X̂ (n + n′)
√(

k2‖ − k2−
) (

k2‖ − k2+
)

×
[
In,n′

0, f (ξ) − In−1,n′−1
0, f (ξ)

]
. (C8)
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