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Abstract This paper is devoted to study the thermal aspects
of a photon gas within the context of Planck-scale-modified
dispersion relations. We study the spectrum of radiation and
the correction to the Stefan–Boltzmann law in different cases
when the Lorentz symmetry is no longer preserved. Explic-
itly, we examine two models within the context of CPT-even
and CPT-odd sectors respectively. To do so, three distinct sce-
narios of the Universe are considered: the Cosmic Microwave
Background (CMB), the electroweak epoch, and the infla-
tionary era. Moreover, the equations of state in these cases
turn out to display a dependence on Lorentz-breaking param-
eters. Finally, we also provide for both theories the analyses
of the Helmholtz free energy, the mean energy, the entropy
and the heat capacity.

1 Introduction

Although the Lorentz invariance is a well-established sym-
metry of the nature, its possible violation is assumed within
many contexts [1–3]. During the last years, the Lorentz
symmetry breaking and its possible implications are inten-
sively studied in different scenarios, see f.e. [4–8]. As it is
known, the Lorentz-breaking parameters are experimentally
presumed to be very tiny [9]. Nevertheless, this does not
imply that they contribute to the physical processes in a neg-
ligible manner. Moreover, the presence of Lorentz-violating
(LV) higher-derivative additive terms can imply in arising of
large quantum corrections [10,11].

All this clearly motivates us to investigate the higher-
derivative LV terms. The first known example of such term
was originally introduced by Myers and Pospelov many years
ago [12]. The key feature of this term is that it involves higher
(third) derivatives, being proportional to a Lorentz-breaking
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constant vector and to a small constant parameter (treated as
an inverse of some large mass scale). Furthermore, various
issues related to them were studied, including its perturba-
tive generation and dispersion relations (for a review on such
terms see f.e. [13]. An exhaustive list of such terms with
dimensions up to 6 can be found in [14]). It was argued in
Ref. [15] that a theory involving such a term can be treated
consistently as a series in the above-mentioned inverse mass
scale.

One of the important issues related to higher-derivative LV
theories is certainly their thermodynamical aspects. Studies
on the thermodynamics of LV extensions of various field the-
ory models could provide additional information about ini-
tial stages of expansion of the Universe, whose size at these
stages was compatible with characteristic scales of Lorentz
symmetry breaking [9]. The methodology for studying the
thermodynamical aspects in LV theories has firstly been pre-
sented in [16]. Since then, various applications of this pro-
cedure have been developed [17–26]. However, the higher-
derivative cases have not been much explored up to now in
this context.

In this paper, we follow the procedure proposed by
Amelino-Camelia [27] where the starting point in the study
is the LV dispersion relations rather than the Lagrangian for-
malism of the corresponding field models. Nevertheless, we
note that in many cases it is possible to indicate at least some
simplified models yielding such dispersion relations. We note
that the dispersion relations that we consider in the present
manuscript might possibly be used to describe some quantum
gravity effects (see discussions in [27]), or, at least, they can
probably arise in some LV extensions of QED. We consider
two examples, CPT-even and CPT-odd ones. In principle, our
results involving thermal radiation may be confronted with
experimental data as soon as they are available. In this sense,
our study might help in the investigation of any trace of the
Lorentz violation within cosmological scenarios concerning
thermal radiation as the starting point.
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2 Thermodynamical aspects of CPT-even
higher-derivative LV theory

Here, let us consider the higher-derivative LV theories. To
study their thermodynamical aspects, we will define the dis-
persion relations of these theories in which are generally suf-
ficient to obtain various related quantities such as free energy
[19]. Our first example is the following dispersion relation
[28]:

E2 = k2 + σ 4k6. (1)

Clearly, if we consider σ → 0, the usual dispersion relation
E2 = k2 is recovered. Physically, such a relation can arise
in Horava–Lifshitz-like theories involving both z = 1 and
z = 3 terms in the spatial sector, e.g. in a scalar field model
characterized by the Lagrangian L = 1

2φ(� + σ 4(∇2)3)φ,
in a spinor model involving terms with these values of z
[29], and perhaps for some degrees of freedom of a certain
LV gauge theory or, a Horava–Lifshitz-like gravity model
involving z = 3 and z = 1 terms [30]. Let us briefly dis-
cuss the possible physical significance of these relations. It
must be noted that the usual Lorentz-breaking extensions of
various field theory models considered within phernomeno-
logical context – their full list is given in [9] – have rather a
different form since they involve the same orders in space and
time derivatives until we choose the special form of Lorentz-
breaking parameters. More so, the models involving the dis-
persion relations like (1) can also be regarded for studies
of various physical problems; for instance, one of the most
important applications of this model has been developed in
[31] where it was used for an investigation of gamma-ray

bursts in the Lorentz-breaking context and allowed to esti-
mate the characteristic energy of quantum gravity mass. It is
easy to see that the dispersion relation in Eq. (1) gives rise
to six solutions. Nevertheless, only one of them allows us to
work on a positive defined real spatial momentum. In this
sense, we can write the solution of Eq. (1) as being

k =
(

3
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Next, we take the advantage of using the formalism of the
partition function in order to derive all relevant thermody-
namic quantities i.e., Helmholtz free energy, mean energy,
entropy and heat capacity. Initially, we calculate the number
of accessible states of the system [32–35]. By definition, it
can be represented as

�(E) = ζ

(2π)3

∫ ∫
d3x d3k, (3)

where ζ is the spin multiplicity whose magnitude in the pho-
ton sector is ζ = 2 [23]. More so, Eq. (3) can be rewritten
as

�(E) = V

π2

∫ ∞

0
dk|k|2, (4)

where V is the volume of the thermal reservoir and the inte-
gral measure dk is given by
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Next, we substitute (2) and (5) in (4), which yields
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and, therefore, we can explicitly write down the partition
function in a manner similar to Refs. [23,36] as follows:

ln [Z(β, �, σ )]

= − V
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where β = 1/(kBT ) is the inverse of the temperature. From
Eq. (7), the thermodynamic functions can be derived. It is
important to mention that all our calculations will provide
the values of these functions per volume V . The thermal
functions of interest are defined as

F(β, σ ) = − 1

β
ln [Z(β, σ )] ,U (β, σ ) = − ∂

∂β
ln [Z(β, σ )] ,

S(β, σ ) = kBβ2 ∂

∂β
F(β, σ ),CV (β, σ ) = −kBβ2 ∂

∂β
U (β, σ ).

(8)

Primarily, let us focus on the mean energy
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which implies the following spectral radiance:
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= hν
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Here, E = hν where h is the well-known Planck constant
and ν is the frequency. Now, let us examine how the param-
eter σ affects the spectral radiance of our theory. In addition,
it must be noted that, despite of showing explicitly the con-
stants h, kB , to obtain the following calculations, we choose
them as being h = kB = 1. At the beginning, we examine
how the black body spectra can be modified by the parame-
ter σ . Moreover, we consider three different configurations
of temperatures for our system, namely, CMB (T = 10−13
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Fig. 1 The plots exhibit the spectral radiance χ(ν) changing for dif-
ferent values of frequency ν and the Lorentz-breaking parameter σ (its
unit is GeV−1). The top left (dotted) is the configuration to the cos-
mic microwave background, i.e., β = 1013 GeV−1; the top right (dot-

dashed) is ascribed to the electroweak configuration, i.e., β = 10−3

GeV−1; the bottom plot shows the black body radiation to the inflation-
ary period of the Universe, i.e., β = 10−13 GeV−1

GeV), electroweak epoch (T = 103 GeV) and inflationary
era (T = 1013 GeV).

The results displayed at Fig. 1 show that the only one
configuration of the black body radiation took a proper place
in a prominent manner (in terms of shape of the curve) –
it was with the CMB temperature. Furthermore, taking into
account the electroweak scenario, we see that the graphics
started to increase reaching maxima peaks and, then, tended
to attenuate their values until having a constant behavior. On
the other hand, to the inflationary temperature, the plots show
a behavior closer to Wien’s energy density distribution [37].

Another interesting aspect to be verified is the correction
to the Stefan–Boltzmann law ascribed to the parameter σ . In
order to do this, let us define the constant:

α̃ ≡ U (β, σ )β4. (11)

As it can easily be noted, the above expressions are unsolv-
able analytically. Thereby, the calculations will be performed
numerically. Analogously, we regard the same previous con-
figurations of temperature and the plots are exhibited in
Fig. 2. For the CMB temperature, the curve exhibits a con-
stant behavior of α. Moreover, to the electroweak epoch, we
have a decreasing function α̃ when σ started to increase.
The inflationary era, on the other hand, shows an increasing
function of α̃ for positive changes of σ . To this latter case,
for α̃ < 20, the system seems to show instability. Next, we
shall acquire all the remaining thermodynamic properties in
what follows (Figs. 3, 4).

Using the expressions above, we can first obtain the
Helmholtz free energy as being

123



Eur. Phys. J. C (2021) 81 :843 Page 5 of 16 843

Fig. 2 The figure shows the correction to the Stefan–Boltzmann law ascribed to parameter α̃ as a function of σ (its unit is GeV−1) for the
temperatures of cosmic microwave background (top left), electroweak scenario (top right) and the early inflationary universe (bottom)

Fig. 3 This figure shows the behavior of the equation of states when
the high temperature limit, namely β

σ
� 1, is taken into account
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Fig. 4 This figure shows the behavior of the equation of states when
the low temperature limit, namely β

σ
� 1, is taken into account
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the entropy
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and, lastly, the heat capacity
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Fig. 5 The figure shows the modification of the Helmholtz free energy F(σ ) due to the parameter σ (its unit is GeV−1) considering the temperatures
of cosmic microwave background (top left), electroweak scenario (top right) and the early inflationary universe (bottom)

Their behaviors are shown in Figs. 5, 6, and 7 respectively.
Moreover, the thermal quantities were also calculated [38–
43] into different contexts. In the context of CMB, all of
them turned out to have no contribution to our calculations.
For Helmholtz free energy, we obtained decreasing curves
with an expressive curvature when σ increases for both elec-
troweak and inflationary cases. The entropy, on the other
hand, showed a decreasing behavior for different values of σ

for both electroweak and inflationary cases. It is worth men-
tioning that such behavior does not imply an instability since
the entropy is still an increasing function when it is analyzed
against the temperature for fixed values of σ – as it should
be. Lastly, the heat capacity exhibited a strong increasing

behavior when σ started to change for both cases as well,
i.e., the CMB and the inflationary temperatures. In principle,
this fact might signalize the possibility of some phase tran-
sition at some large σ ; nevertheless, this hypothesis requires
further investigation.

Whenever we are dealing with the thermodynamic sys-
tems, one question naturally arises: what is the form of the
equation of state when the parameter σ , which characterizes
the magnitude of Lorentz symmetry breaking, is taken into
account? To answer such a question, we must start with the
following relation:

dF = −S dT − p dV, (15)
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Fig. 6 The plots show the modification to the entropy S(σ ) as a function of σ (its unit is GeV−1) considering the temperatures of cosmic microwave
background (top left), electroweak scenario (top right), and the early inflationary universe (bottom)
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Fig. 7 The plots show the modification to the heat capacity CV (σ ) as a function of σ (its unit is GeV−1) considering the temperatures of cosmic
microwave background (top left), electroweak scenario (top right), and the early inflationary universe (bottom)

Here, we focus on the study of the behavior of pressure –
which leads to the equation of states. After introducing new
dimensionless variable t = σ E , we get

p = 1
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With these above expressions, let us examine some limits.
Initially, at the very high temperature limit, namely β

σ
=

1
σT � 1, we perform the expansion in the Taylor series. After
that, only the first two terms are considered, which yields p =

1
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β
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σ 4π2 , where ch = ∫ ∞
0 dt F(t)t , i.e.,

at T → ∞ (β → 0), the pressure tends to a constant. Such
behavior is displayed in Fig. 3; next, at the natural limit of
low Lorentz symmetry breaking or low temperature, one has
β
σ

� 1. In this case, the exponential is strongly suppressed,
and one has p = cl

σ 3βπ2 , where cl = ∫ ∞
0 dt F(t), i.e., the

pressure grows linearly with the temperature. Thereby, its
corresponding behavior is shown in Fig. 4.

3 Thermodynamical aspects of CPT-odd
higher-derivative LV theory

In this section, let us consider the theory described by the
following dispersion relation [44]:

E2 + αl E3 + βl Ek2 = k2 + m2. (18)

where l is a parameter characterizing the intensity of the
Lorentz symmetry breaking. It is clear that in the limit l → 0,
the standard massive dispersion relation E2 = k2 + m2 is
recovered. Such a relation, being similar to relations stud-
ied in Ref. [27], can arise e.g. in a scalar field theory with
the higher-derivative quadratic Lagrangian of the scalar field
looking like L = 1

2φ(� + m2 + ρμνλ∂μ∂ν∂ρ)φ, with ρμνλ

being a completely symmetric third-rank tensor whose only
non-zero components are ρ000 = βl, and ρ0i j = 1

3αlδi j . In
principle, it is natural to expect that such a relation, in the
massless case, can also arise in a specific higher-derivative
LV extension of QED. In particular, the dispersion relation
displayed in Eq. (18) can be applied to understand how
Planck-scale effects may affect translation transformations.
This is relevant due to the fact that it carries the information
on the distance between source and detector, and it factors
in the interplay between quantum-spacetime effects and the
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Fig. 8 The plots show how the spectral radiance χ̄ (ν) changes as a
function of frequency ν and l(whose dimension is m · kg−1/2 · s−1) for
three different cases. The top left (dotted) is configuration to the cosmic
microwave background, i.e., β = 1013 GeV; the top right (dot-dashed)

is ascribed to the electroweak configuration, i.e., β = 10−3 GeV; the
bottom plot shows the black body radiation to the inflationary period of
the Universe, i.e., β = 10−13 GeV

curvature of spacetime [44,45]. In the literature, some propo-
sitions are addressed in the context of gamma-ray-burst neu-
trinos and photons [46], and IceCube and GRB neutrinos
[45].

Thereby, we restrict ourselves to a particular massless
case, i.e., we set m = 0, α = 1 and β = 1. In this sense, it is
convenient to rewrite Eq. (18) as

k2 = E2 + l E3

1 − l E
, (19)

where, analogously with the previous section, the accessible
states can be derived:

�̄(l) = �

2π2

∫ ∞

0

(
E2 + l E3

1 − l E

)1/2

×
[
(2E + 3l E2)(1 − l E) + l(E2 + l E3)

(1 − l E)2

]
dE .

(20)

With this, we are able to write down the corresponding par-
tition function as follows

ln
[
Z̄(β, l)

]
= − �

π2

∫ ∞

0

(
E2 + l E3

1 − l E

)1/2

×
[
(2E + 3l E2)(1 − l E) + l(E2 + l E3)

(1 − l E)2

]

×ln
(

1 − e−βE
)

dE . (21)

Using Eq. (21), we can obtain the thermodynamic functions
per volume � as well. Here, we provide the calculation of
Helmholtz free energy F̄(β, l), mean energy Ū (β, l), entropy
S̄(β, l), and heat capacity C̄V (β, l). Let us start with the mean
energy

Ū (β, l) = 1

π2

∫ ∞

0
E

(
E2 + l E3

1 − l E

)1/2

×
[
(2E + 3l E2)(1 − l E) + l(E2 + l E3)

(1 − l E)2

]

× e−βE(
1 − e−βE

)dE, (22)

which implies the spectral radiance given by:
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Fig. 9 The figure shows the correction to the Stefan–Boltzmann law represented by parameter ᾱ as a function of l(whose dimension is m ·kg−1/2 ·
s−1) considering the temperatures of cosmic microwave background (top left), electroweak scenario (top right), and the early inflationary universe
(bottom)

χ̄ (l, ν)

= (hν)

(
(hν)2 + l(hν)3

1 − l(hν)

)1/2

×
[

(2(hν) + 3l(hν)2)(1 − l(hν)) + l((hν)2 + l(hν)3)

(1 − l(hν))2

]

× e−β(hν)(
1 − e−β(hν)

) . (23)

The respective plots of these thermal quantities are presented
in Fig. 8. Here, we show the black body radiation spectra for
different values of l corresponding to the Cosmic Microwave
Background, electroweak epoch and inflationary era of the
Universe. Moreover, the black body radiation shape is main-
tained for the three of them, differently what happened in
our first example in the previous section. Note that when
l → 0, we recover the usual radiation constant of the Stefan–
Boltzmann law, namely, uSB = αT 4. In other words, we have

α = 1

π2

∫ ∞

0

E3 e−βE(
1 − e−βE

)dE = π2

15
. (24)

Furthermore, for the sake of examining how the parameter
l affects the correction to the Stefan–Boltzmann law, we also

consider

ᾱ ≡ U (β, l)β4. (25)

The plots are exhibited in Fig. 9 taking differently into
account three scenarios, i.e., the temperatures of: CMB, elec-
troweak epoch and the early inflationary era of the universe.
Furthermore, the high-energy limit 2E + 3l E2 � 1 − l E is
also regarded. Here, when the CMB temperature is consid-
ered, we see a constant behavior of the curve. On the other
hand, to the electroweak scenario, we obtain a monotonically
increasing function as l changes. Finally, in the inflationary
era, we also have a stable model showing a rising behavior
when l increases.

In the same manner, the remaining thermodynamic func-
tions can be explicitly computed:

F̄(β, l) = 1

π2β

∫ ∞

0

(
E2 + l E3

1 − l E

)1/2

×
[

(2E + 3l E2)(1 − l E) + l(E2 + l E3)

(1 − l E)2

]

×ln
(

1 − e−βE
)

dE, (26)
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Fig. 10 The figure shows the modification of the Helmholtz free energy F̄ as a function of l(whose dimension is m · kg−1/2 · s−1) considering
the temperatures of cosmic microwave background (top left), electroweak scenario (top right), and the early inflationary universe (bottom)

S̄(β, l) = kB
π2

∫ ∞

0

{
−

(
E2 + l E3

1 − l E

)1/2

×
[

(2E + 3l E2)(1 − l E) + l(E2 + l E3)

(1 − l E)2

]
ln

(
1 − e−βE

)

+E

(
E2 + l E3

1 − l E

)1/2

[
(2E + 3l E2)(1 − l E) + l(E2 + l E3)

(1 − l E)2

]
e−βE

1 − e−βE

}
dE,

C̄V (β, l) = kBβ2

π2

∫ ∞

0
dE

×
{
E2

(
E2 + l E3

1 − l E

)1/2

×
[

(2E + 3l E2)(1 − l E) + l(E2 + l E3)

(1 − l E)2

]
e−2βE(

1 − e−βE
)2

+E2
(
E2 + l E3

1 − l E

)1/2

×
[

(2E + 3l E2)(1 − l E) + l(E2 + l E3)

(1 − l E)2

]
e−βE

1 − e−βE

}
.

(27)

Initially, we provide the analysis of the Helmholtz free energy
displayed in Eq. (26); it is considered within three differ-

ent scenarios of the Universe: CMB, primordial electroweak
epoch, and inflationary era. All these results are demonstrated
in Fig. 10, which displays a trivial contribution to the first
case, and a decreasing characteristic for the latter two ones.
Next, we examined the entropy which was shown in Eq. (27);
we investigated such thermal function in the same differ-
ent scenarios of the Universe. All these considerations were
shown in Fig. 11, which exhibited the same trivial contribu-
tion to the first case, despite of showing an increase char-
acteristic to the latter two ones. Finally, we studied the heat
capacity exhibited in Eq. (27); we also examined this ther-
mal function in the same different scenarios of the Universe.
All these considerations were shown in Fig. 12, exhibiting
a trivial contribution to the first case as well, and increasing
curves for the next two ones.

Here, just as we did in the previous section, we also present
the analysis of the equation of state. Moreover, since there
is no analytical solution to perform our analysis, we have to
consider a particular limit to obtain its magnitude as we did
before. The limit that we study is (E2+l E3)1/2/(1−l E)2 �
1. With it, we obtain the following expression

p = 1

45π2 T
6
[

270l2ζ(5) + 4π4 l

T
+ 90

1

T 2 ζ(3)

]
. (28)
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Fig. 11 The figure shows the modification of the entropy S̄ as a function of l(whose dimension is m · kg−1/2 · s−1) considering the temperatures
of cosmic microwave background (top left), electroweak scenario (top right) and the early inflationary universe (bottom)

The behavior of Eq. (28) is displayed in Fig. 13. Differently
with what happens to the model involving σ , the dispersion
relation coming from Eq. (18) has a fascinating feature: the
shape exhibited to the equation of states turns out to be sensi-
tive to the modification of the values of l. Furthermore, note
that, if we consider l → 0, we obtain

p = 90ζ(3)

45π2 T 4. (29)

4 Conclusion

We considered the thermodynamical aspects of two higher-
derivative Lorentz-breaking theories, namely, CPT-even and
CPT-odd ones. Within our study, we focused on the disper-
sion relations rather than the specific form of the Lagrangians.
In this way, we expect that our results can be applied not only
to scalar field models as we assumed, but also to specific
gauge or spinor field theories.

We calculated the modification to the black body radi-
ation spectra and to the Stefan–Boltzmann law due to the
parameters σ and l. For these theories, we explicitly obtained
the corresponding equation of states and the thermodynamic
functions as well, i.e., the mean energy, the Helmholtz free
energy, the entropy, and the heat capacity. Moreover, all the
calculations presented in this work were performed taking
into account three different scenarios of the Universe: cosmic
microwave background, electroweak epoch, and inflationary
era.

Furthermore, since the heat capacity rapidly increased
with the Lorentz-breaking parameters at high temperatures,
perhaps one might expect a phase transition in those sce-
narios. Nevertheless, a further investigation in this direction
might be accomplished in order to provide a proper exam-
ination. Thereby, as a further perspective, we suggest the
detailed study of the whole field of Horava–Lifshitz grav-
ity model and the possible phase transitions in our models.
Another feasible continuation of this study can consist in its
application to other higher-derivative Lagrangians of certain
known field theories, f.e. those ones discussed in [15].
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Fig. 12 The figure shows the modification of the heat capacity C̄V as a function of l(whose dimension is m · kg−1/2 · s−1) considering the
temperatures of cosmic microwave background (top left), electroweak scenario (top right) and the early inflationary universe (bottom)

Fig. 13 The figure shows the equation of states for different values of p, T , and l(whose dimension is m · kg−1/2 · s−1)
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