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Abstract In this paper, we present two new families of spa-
tially homogeneous black hole solution for z = 4 Hořava–
Lifshitz Gravity equations in (4+1) dimensions with general
coupling constant λ and the especial case λ = 1, consider-
ing β = −1/3. The three-dimensional horizons are con-
sidered to have Bianchi types I I and I I I symmetries, and
hence the horizons are modeled on two types of Thurston
3-geometries, namely the Nil geometry and H2 × R. Being
foliated by compact 3-manifolds, the horizons are neither
spherical, hyperbolic, nor toroidal, and therefore are not
of the previously studied topological black hole solutions
in Hořava–Lifshitz gravity. Using the Hamiltonian formal-
ism, we establish the conventional thermodynamics of the
solutions defining the mass and entropy of the black hole
solutions for several classes of solutions. It turned out that
for both horizon geometries the area term in the entropy
receives two non-logarithmic negative corrections propor-
tional to Hořava–Lifshitz parameters. Also, we show that
choosing some proper set of parameters the solutions can
exhibit locally stable or unstable behavior.

1 Introduction

1.1 General considerations

The non-relativistic power counting renormalizable theory
of Hořava–Lifshitz gravity was proposed by Hořava at the
Lifshitz point aimed at resolving the problems concerning
the ultraviolet behavior of Einstein gravity [1–3]. Hořava–
Lifshitz gravity explicitly breaks the Lorentz invariance and
restores Einstein’s general relativity at low-energy limits [4].
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This modified theory of gravity, which preserves spatial gen-
eral covariance and time reparametrization invariance, can
be regarded as a good candidate for presenting a quantum
field theory of gravity [5].

Hořava–Lifshitz gravity has received growing interest and
a large number of studies have explored the implications
of this proposal in detail. For instance, the cosmological
solutions of Hořava–Lifshitz gravity have been studied in
[6–10], cosmological perturbation and the related properties
have been discussed in [11–18], and some other properties of
Hořava–Lifshitz gravity have been investigated in [19–22].
Particularly, much attention has been paid to black hole solu-
tions and their thermodynamics behavior in the framework of
Hořava–Lifshitz gravity [23–32]. In this context, for instance,
the quantum gravity effects by using Hořava–Lifshitz black
hole have been investigated in [33], phase transition and the
quasinormal modes of a massive scalar field in the back-
ground of a rotating Hořava AdS black hole was analyzed
in [34,35], and properties of the black hole solutions were
researched in [29,36–40].

The Hořava–Lifshitz solutions are usually classified by
the anisotropy degree between space and time, indicated
by the so-called z parameter. Particularly, the z = 3
case has attracted much attention for which the theory
is a non-relativistic renormalizable gravity model at short
distance, providing a candidate quantum field theory of
gravity in the UV [27]. Many works have been done in
z = 3 Hořava–Lifshitz gravity, such as black hole solutions
[23,26,28], Hawking radiation [38], thermodynamical prop-
erties [36,41], perturbation [15], and observational effects
[42]. Soon after intruding the original Hořava–Lifshitz grav-
ity, the z = 4 Hořava–Lifshitz gravity was proposed in [27],
studied on (4 + 1) and (3 + 1) dimensions for instance in
[3,23,27,39,43]. Despite its importance, the z = 4 case has
been studied much less extensively than z = 3. One of the
main motivations to consider this case is its importance in
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(3 + 1) dimensions, where from the viewpoint of spectral
dimension, the z = 4 is favorable because of its consistency
with the results of lattice quantum gravity numerical simula-
tions [3,44]. On the other hand, in (4+1) dimensions, power
counting super renormalizability in UV region requires z = 4
[2]. Further discussions supporting z = 4 case have also been
presented [2,27,45].

In this work, we are going to consider z = 4 Hořava–
Lifshitz gravity in (4 + 1) dimensions, searching for new
topological black hole solutions. The topological black hole
solutions in Hořava–Lifshitz gravity were first found in [28].
So far, the horizon geometries of topological black hole solu-
tions in Hořava–Lifshitz theory in (4+1) and (3+1) dimen-
sions have been considered to be spherical, hyperbolic, or
flat, indicated by the constant scalar curvature of the hori-
zon, namely k = 1,−1, and 0. However, in (4 + 1) dimen-
sions the situation can be more extensive, where the event
horizon of a stationary black hole can be orientable compact
3-dimensional Riemann manifolds, which are required to be
endowed with a metric. Based on Thurston geometrization
conjecture [46], proved later by Perelman [47], the geometry
of such 3-manifolds is locally isometric to one of the eight
Thurston type geometries, including three isotropic constant
scalar curvature cases of spherical S3, Hyperbolic H3, and
Euclidean E3, product constant curvature types S2 × R,

H2 × R, and twisted product types of ˜SL2R, Solve geome-
try, and Nil geometry [46]. Except for S3 and E3, the other
Thurston type geometries are negatively curved spaces. All
of these model geometries admit homogeneous metrics and
show a close correspondence with the Bianchi types and
Kantowski–Sachs homogeneous models [48,49]. The homo-
geneous spacetimes, possessing a symmetry called the spatial
homogeneity [50], have been widely used in finding cosmo-
logical solution in the context of Einstein gravity [51], string
theory [52–56], and Hořava–Lifshitz gravity theory [9,10].

Particularly interesting families of (4 + 1) dimensional
black hole solutions of some gravity theories have been
presented in the framework of Bianchi type spacetimes,
where the horizons are modeled by some of the Thurston
3-geometries [57–65]. These types of black holes are espe-
cially of interest in the context of AdS/CFT and holography
approaches, where the generators of the translational sym-
metry are generalized to Bianchi symmetries to avoid some
complications for theories in (3 + 1) dimensions [57,64].
So far, no black hole solution with Thurston horizon geome-
tries has been obtained for the Hořava–Lifshitz gravity the-
ory. Thus, considering Hořava–Lifshitz gravity as a candidate
quantum gravity theory and the importance of investigating
AdS/CFT correspondence in the framework of this theory
[66,67], it is interesting to find black hole solutions with
special Thurston type horizon geometries for (4 + 1) dimen-

sional Hořava–Lifshitz gravity, for which the power counting
super renormalizability requires z = 4.

In this paper, we are interested in spatially homogeneous
black hole solutions for z = 4 Hořava–Lifshitz gravity on
(4+1) dimensional spacetimes, where the three-dimensional
horizons are particularly assumed to be homogeneous spaces
corresponding to Bianchi types I I and I I I with closed
geometries of Nil and H2×R, respectively. These negatively
curved homogeneous geometries are non-trivial in the sense
that they are not constant scalar curvature type geometries
that have been extensively studied in previous topological
black hole solutions in Hořava–Lifshitz gravity.

The paper is organized as follows: In Sect. 2, a review
on Hořava–Lifshitz gravity and its action for z = 4 case
in (4 + 1) dimensions is presented. In Sect. 3, we obtain
topological black hole solution for the equations of motion
of z = 4 Hořava–Lifshitz gravity on (4 + 1) dimensional
spacetimes, whose horizons corresponding to the Bianchi
types I I and I I I homogeneous spaces, have Nil geometry
and H2×R geometry, respectively. Then, the thermodynamic
behavior of the solutions is investigated in Sect. 4. Finally,
some concluding remarks are presented in Sect. 5.

2 Brief review on Hořava–Lifshitz gravity

In this section, we present some introductory remarks on
z = 4 Hořava–Lifshitz gravity [1,2,27]. On (D + 1) dimen-
sional spacetime, the ADM metric decomposition can be
considered as follows

dS2 = −N 2dt2 + gi j (dx
i − Nidt)(dx j − N jdt),

i, j = 1, . . . , D,
(1)

where N , Ni , and gi j are, respectively, the lapse function,
shift function, and spatial metric. The Hořava gravity mod-
els exhibit an anisotropic time and space scaling invariance,
given by

xi → lxi , t → lz t, (2)

where the dynamical critical exponent z indicates the degree
of anisotropy between space and time. Under this transfor-
mation gi j and N are invariant, but Ni is scaled as Ni →
l1−z N i . In the inverse spatial length units, the dimensions of
time and space in the Hořava–Lifshitz gravity are [t] = −z,
[x] = −1, [c] = z − 1, at the fixed point with Lifshitz
index z. The Hořava–Lifshitz gravity in z = 1 case yields the
familiar general relativity in the IR limit. In the UV region,
renormalizability of Hořava–Lifshitz theory requires differ-
ent values of z, where the theory becomes power-counting
renormalizable with zUV = D, and super-renormalizable
with zUV > D.
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The simplest kinetic for Hořava–Lifshitz gravity is given
by [1,2,27]

SK = 2

κ2

∫
dtdDx

√
gN (Ki j K

i j − λK 2), (3)

where g is determinant of the D-dimensional metric gi j , and

Ki j = 1

2N
(ġi j − ∇i N j − ∇ j Ni ), (4)

is the extrinsic curvature associated with the spatial met-
ric, K = gi j Ki j is its trace, κ is a coupling constant with
the scaling dimension at the fixed point [κ] = z−D

2 that is
dimensionless in D = z = 4 case, and λ is a dimensionless
parameter. Particularly, the λ = 1 restores the kinetic term
of Einstein’s theory.

The potential term, which satisfies the so-called “detailed
balance condition”, is given by [1,2]

SV = κ2

8

∫
dtdDx

√
gN Ei jGi jkl Ekl , (5)

where

Gi jkl = 1

2
(gikg jl + gil g jk) − λ̃gikg jl , λ̃ = λ

Dλ − 1
, (6)

is the inverse of DeWitt supermetric, defined by Gi jkl =
1
2 (gikg jl +gil g jk)−λgikg jl where Gi jmnGmnkl = 1

2 (δki δ
l
j +

δli δ
k
j ). Also, Ei j coming from the D-dimensional relativistic

action [1,2]

Ei j = 1√
g

δWD[gkl ]
δgi j

, (7)

is the detailed balance condition, which establishes the con-
nection between D-dimensional system described by the
action WD to a (D + 1) dimensional system described by
the action SK − SV . A theory with spatial isotropy would
require WD to be the action of relativistic theory in Euclidean
signature.

2.1 Action for z = 4 Hořava–Lifshitz gravity in (4 + 1)

dimensions

In this paper, our focus will be on z = 4 Hořava–Lifshitz
gravity in (4+1) dimensional spacetimes, where the theory is
power-counting renormalizable. In this case, 4-dimensional
relativistic Lagrangian is given in the following general form
[2,27]

W4 = 1

k2
w

∫
d4x

√
g (R − 2ΛW )

+ 1

M

∫
d4x

√
g

(
Ri j R

i j + βR2
)

,

(8)

in which kw, ΛW , M , and β are coupling constants and Ri j

and R are the Ricci tensor and Ricci scalar, respectively.
Noting that the Gauss-Bonnet combination is a topological

invariant in four dimensions, the second term in (8) includes
the most general form of curvature square contribution. Now,
according to (7), Ei j is given by

Ei j = − 1

k2
w

(Gi j + ΛWgi j ) − 1

M
Li j , (9)

where

Gi j = Ri j − 1

2
gi j R, (10)

Li j = (1 + 2β)(gi j∇2 − ∇i∇ j )R + ∇2Gi j

+ 2βR

(
Ri j − 1

4
gi j R

)
+ 2

(
Rimjn − 1

4
gi j Rmn

)
Rmn .

(11)

Then, combining the kinetic and potential terms, the z = 4
Hořava–Lifshitz gravity in (4 + 1) dimensions is given by
the following Lagrangian [27,68]

L = L0 + L1, (12)

L0 = √
gN

(
2

κ2

(
Ki j Ki j − λK 2

)
+ κ2(ΛW R − 2Λ2

W )

4k4
w(1 − 4λ)

)
, (13)

L1 = −√
gN

κ2

8

(
1

k4
w

Gi j G
i j + 2

Mk2
w

Gi j Li j

+ 2

Mk2
w

ΛW L + 1

M2 Li j Li j

−λ̃

(
L2

M2 − 2L

Mk2
w

(R − 4ΛW ) + 1

k4
w

R2

))
, (14)

in which

L = 2(1 + 3β)∇2R. (15)

In order to restore general relativity in the IR region, the
relations between the effective couplings and the speed of
light c, Newton coupling G, and the effective cosmological
constant Λ are emerged as

c = κ2

k2
w

√
8

√
Λw

1 − 4λ
, GN = κ2c

32π
, Λ = ΛW . (16)

Then, in IR region, the λ = 1 case gives rise to general
relativity, provided that the Λw takes negative value to have
a well-defined c. Then, with negative ΛW , reality of physical
parameters in (16) needs λ > 1

4 .

3 Topological (4+ 1) dimensional black hole solutions
for z = 4 Hořava–Lifshitz gravity

We are looking for black hole solutions of z = 4 Hořava–
Lifshitz gravity equations of motion on (4 + 1) dimensional
spacetime, where the r and t constant hypersurfaces will be
assumed to be given by homogeneous spaces correspond-
ing to Bianchi types I I and I I I . There is a correspondence
between geometries of Bianchi type I I and I I I symmetric
spaces and the Thurston type Nil and H2×R geometries [46],
respectively, where H2 denotes two-dimensional hyperbolic
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space. The former space is a twisted product manifold while
the latter one is a product of constant curvature manifolds.

Setting Ni = 0 in (1), we start with the following metric
ansatz

ds2 = −(N (r))2 f (r)dt2 + dr2

f (r)
+ gαβ(r)σασβ, (17)

where α = 1, 2, 3, and the σα are left invariant 1-form basis
of Bianchi types, given by [52,69]

I I : σ 1 = dx2 − x1dx3, σ 2 = dx3, σ 3 = dx1, (18)

I I I : σ 1 = dx1, σ 2 = dx2, σ 3 = ex
1
dx3. (19)

As long as the metric coefficients are independent of xi , the
metric will be automatically invariant under the Bianchi type
isometrics [57,69]. The horizons for these topological black
holes are negatively curved spaces that can not be described
by Einstein spaces metric, i.e. Rαβ = kgαβ .

It is difficult to obtain solutions for the general value of β in
(12). We will restrict our attention to special value β = − 1

3 .
Following the method of [26,28], we will obtain the solutions
by substituting the metric ansatz into the Hořava–Lifshitz
action with the Lagrangian (12).

3.1 Solution in Bianchi type II

In this Bianchi type, noting (17) and (18), the metric ansatz
can be considered as follows

ds2 = −(N (r))2 f (r)dt2 + dr2

f (r)
+ arn

(
dx2 − x1dx3

)2

+brm
((

dx1
)2 +

(
dx3

)2
)

, (20)

where n, m, a and b are constants. The a and b constants
introduce eventual additional scales. The components of Ri j ,
R, Ki j , and Li j for this case are presented in Appendix A,
considering β = − 1

3 . It is quite difficult to find the exact
solution for general values of n and m. Interestingly, setting
m = n leaves only the two derivative terms in the Hořava–
Lifshitz action1

I =
∫

dtdx4 κ2aN

b3k2
w

(
a2r− n

2

72b4M2

(
3b4Mn

(− f ′r + 2 f
)
r−2

−44a2k2
wr

−2n + 33b2Mar−n)

+ 1

32k2
w (4λ − 1)

(
(3n − 4λ − 2) ab2nr

n
2 −2 f

1 It is worth mentioning that for black hole solutions with Nil geometry
horizon the requirement of metric of type (20) to admit an additional
isometry corresponding to Lifshitz scale invariance, constraints the n
and m constants to n = 2m [57,60]. In this work, we will consider
only the 3-isometries of Bianchi types, letting n = m. However, if the
Lifshitz scaling invariance on the horizon is the case of interest with

m = n, it can be admitted by setting a =
√
r−n
H .

+3
(

3n2 − 4(λ − 1) − 6n
)
b4n2r

3
2 n−4 f 2

+3
((

8Λ f − f ′2 (λ − 1)
)
n − 8Λ f

)
b4nr

3
2 n−2

+3b4n2 (3n − 4 + 4λ) r
3
2 n−3 f ′ f

+nr−1+ n
2 b2 f ′ (a (2λ + 1) + 12Λb4rn

)

+ (3 − 11λ) a4r− n
2 + 16r

3
2 nb4Λ2 + 4r

n
2 b2Λa

))
,

(21)

where prim, here and hereafter, stands for derivative with
respect to r . Variation of this action with respect to f (r)
gives the following equation of motion

4ln(N )′
( − 3ab2M (2λ + 1) r2−n + 4 (4λ − 1) k2

wa
2r−2n+2

+ 9b4M
(−n (3n − 4 + 4λ) f + 2n f ′ (λ − 1) r − 2Λr2) )

+ 18r−1 f nb4M
(
3n2 + 6 (1 − 2λ) n − 8 + 8λ

)
− 8a2 (4λ − 1) (n − 2) k2

wr
−2n+1

− 6b2M ((2λ − 5) n + 4λ + 2) ar−n+1

+ 36b4M(n f ′ (3n − 4) (λ − 1) + 2(n (λ − 1) f ′′

+ Λ (n − 2))r) = 0.

(22)

Also, the equation of motion of N (r) function can be read
easily from the action (21).

In order to guarantee the existence of black hole solutions
which are not necessarily extremal, we impose the boundary
conditions at the event horizon with f (rH ) = 0, f ′(rH ) �=
0, and finite lapse function N (rH ), where the subscript H ,
here and in what follows, denotes quantities evaluated at the
horizon. Then, the equations of motions yield the following
conditions on the horizon

[
4ln(N )′

( − 3ab2M (2λ + 1) r2−n + 4 (4λ − 1) k2
wa2r−2n+2

+ 9b4M
(

2n f ′ (λ − 1) r − 2Λr2
) )

− 8a2 (4λ − 1) (n − 2) k2
wr

−2n+1

− 6b2M ((2λ − 5) n + 4λ + 2) ar−n+1

+ 36b4M(n f ′ (3n − 4) (λ − 1)

+ 2(n (λ − 1) f ′′ + Λ (n − 2))r)

]
r=rH

= 0,

(23)

[
a2r− n

2

72b4M2

(
−3b4Mn f ′r−1 − 44a2k2

wr
−2n + 33b2Mar−n

)

− 3 f ′2 (λ − 1) nb4nr
3
2 n−2 + f ′nr−1+ n

2 (a (2λ + 1)

+ 12Λb4rn)b2 + (−11λ + 3) a4r− n
2

+ 16r
3
2 nb4Λ2 + 4r

n
2 b2Λa

)]
r=rH

= 0.

(24)

It is worth mentioning that the negative Ricci scalar of the
horizon in this Bianchi type is R(3) = − a

2b2rnH
. Accordingly,
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we define the following parameter for further uses

α ≡ a

2b2 . (25)

Now, solving the equations of motion, we find the follow-
ing three classes of solutions:

• For special case λ = 1 we obtain the following solutions

N (r) = N0r
n
2 −1, (26)

f (r) = −4

3

r2Λ

n2 − 2

3

r2−nα

n2 + 16

9

α2k2
wr

2(1−n)

Mn2

−1

9

r2−n

Mb8n2

(
9nb8M2 (

9C1n
3b8 + 16a4 ln (r)

)

+256
(
3b4M − 2a2k2

wr
−n) a6k2

wr
−n

) 1
2

, (27)

in which the N0 and C1 are integrating constants. This
set of solutions satisfies the boundary conditions (23) and
(24), using f (rH ) = 0.

When the conditions (16) hold, general relativity in the
IR region can be recovered in the λ = 1 case, at M → ∞
limit, noting (8) and (9). Black hole solutions in the presence
of a negative cosmological constant with Nil geometry hori-
zon have been obtained for general relativity in [57,60,64],
however with different values for the m and n constants in
the metric (20), as a consequence of applying generalized
Lifshitz scaling invariance on the metric. Here, the obtained
solution for f (r) function with considering only the Bianchi
symmetry and setting m = n in metric (20), recasts the fol-
lowing form when M → ∞

f (r) = −4

3

r2Λ

n2 − 2

3

r2−nα

n2

− 1

3

r2−n

b4

(
9C1n

3b8 + 16a4 ln (r)
) 1

2
,

(28)

which compared to the solutions of [57,60] contains an extra
logarithmic term, even with n = 2. However, it is worth
mentioning that (28) may remind the Nil geometry solutions
with intermediate scaling obtained in [64], which contains
logarithmic function at the boundary.

• When λ is allowed to have any value, in the special case
of n = 2 we obtain

N (r) = N0, (29)

f (r) = −α

6
+ C2r

2 + C1

r2 , (30)

where C1 and C2 are integrating constants. C2 is actu-
ally the cosmological constant redefined up to a factor.

These two functions satisfy the boundary conditions on
the horizon, given by (23) and (24).

• Also, another class of solution can be obtained for general
values of n and λ as follows

N (r) = N0, (31)

f (r) = −4

3

r2Λ

n2 − 2

3

r2−nα

n2 +16

9

α2k2
wr

2(1−n)

Mn2

− C1r
s1 + C2r

s2 ,

(32)

in which

s1 = −3

4
(n − 2) − √

μ, s2 = −3

4
(n − 2) + √

μ,

(33)

and

μ = (3n + 2)2 λ − 21n2 + 12n − 4

16(λ − 1)
. (34)

The solutions (31) and (32) are consistent with the bound-
ary conditions on the horizon. Reminding the λ > 1

4
condition required by reality of the speed of light in
(16), we will also exclude the values of λ in the range
of 1 < λ < 21n2−12n+4

(3n+2)2 , for which μ is negative. Here,

similar to the solutions presented in [29], there are two
branches in (32). It is easy to find that s1 is negative for
any values of n and λ, but s2 can have different signs.
Practically, with n > 2, for λ > 21n2−12n+4

(3n+2)2 the power

of r in C1-dependent term is negative and in the range of
( 3

2 (2 − n),− 3
2n + 1), while for C2-dependent term the

power of r is in the range of ( 3
2 (2 − n), 2), which can

be either positive or negative, but still less than 2. Also,
with n > 2, for 1

4 < λ < 1 the power of C1-dependent
term is again negative, while for C2-dependent term the
power is larger than 2. On the other hand, for n < 2, s1

is again negative for any values of λ but s2, being pos-
itive, is less then 2 as 1

4 < λ < 1 and larger than 2 in

λ > 21n2−12n+4
(3n+2)2 range. Dominance of Λr2 term in (32) at

large distance suggests that the solution can have asymp-
totic behavior of AdS spacetime . But, in the cases that
the C2-dependent term, having the power of r larger than
2, is dominant at the large distances, the solutions may
not have clear physical meaning [29]. Considering this
point, to investigate the thermodynamic behavior of this
family of solutions we consider the following two cases:

(i) When n and λ are primarily independent and arbitrary
parameters, from the asymptotic behavior point of
view, similar to the solutions presented in [29] that
only the negative branch solutions were selected, we
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will focus only on the C1-dependent term which has
negative power of r for any values of λ and n.2

(ii) Another special case appears if, keeping the λ param-
eter general, the following relation between λ and n
holds

λ = 3

4

n (n − 2)

3n − 2
+ 1. (35)

It leads to s2 = 0 for n ≥ 2, where f (r) function
recasts the following form3

f (r) = −4

3

r2Λ

n2 − 2

3

r2−nα

n2 + 16r2(1−n)α2k2
w

9Mn2

+ C2 − r− 3
2 n+3C1,

(36)

where the Λ term is dominant at large r because the
exponents of the other terms are negative. Withn = 2,
which according to (35) is accompanied with λ = 1,
the f (r) function turns into that of (4 + 1) dimen-
sional black hole solution in z = 4 Hořava–Lifshitz
gravity with spherical, flat and hyperbolic horizons
for λ = 1 case, presented in [43], where the ther-
modynamic behavior of solutions has been also dis-
cussed. Hence, we will restrict our attention in this
case on n > 2.

It is worth adding a remark on the asymptotic isometries of
the considered classes of solutions with Nil geometry horizon
for λ = 1 and general λ. In general, the obtained metrics at
r → ∞ contain a generalized dilatation generator whose
action on the coordinates is given as following

t → ρt, r → ρ−1r, x1 → ρ
n
2 x1, x2 → ρnx2, x3 → ρ

n
2 x3, (37)

with constant ρ, using a scaling in the constant a of metric.
Note that for n = 2, there is only one anisotropic direction
x2, similar to the Nil horizon black hole solution for general
relativity obtained in [60], while for general values of n, or
equivalently the general values of λ, the anisotropy appears
in all xi directions.

3.2 Solutions in Bianchi type III

In this Bianchi type, noting (17) and (19), we can have the
following metric ansatz

2 However, as we will see in the following, a well-defined mass in
the Hamiltonian approach needs μ = 0, which practically leaves no
difference between C1 and C2-dependent terms in (32).
3 Similarly, for n < 2 we have s1 = 0, leading to the last two terms in

f (r) in the form of −C1 + C2r
3
2 n−3.

ds2 = −(N (r))2 f (r)dt2 + dr2

f (r)

+ arn
(
(dx1)2 + e2x1

(dx3)2
)

+ brm(dx2)2,

(38)

where n, m, a and b are constants. The components of Ri j ,
R, Ki j , and Li j for this case are presented in Appendix A.
Particularly, setting m = n and substituting the metric into
the action gives

I =
∫

dtdx4
√
bNκ2N

kw2M2a3

[
r− n

2

72
(6a2 f Mnr−2 − 3a2Mn f ′r−1

+12aMr−n − 4k2
wr

−2n) − r
n
2

32k2
w (4λ − 1)

(
4n(4λ

−3n + 2)a3M2r−2 f − 4na3M2 (2λ + 1)r−1 f ′

+3M2 f 2a4n2rn−4
(
−3n2 + 4λ + 6n − 4

)

−3n2a4 f ′M2rn−3 f (3n − 4 + 4λ)

+3na4M2r−2+n
(
(λ − 1) n f ′2 − 8Λ f (n − 1)

)

−4a2M2
(

(−4λ + 2) r−n

+aΛ
(

4 + a
(

3 f ′rn−1n + 4rnΛ
)) ))]

. (39)

Variation of this action with respect to f (r) gives the equation
of motion as follows

1

2
Mnr2na2 (λ − 1)

(
2 f ′′r2 + f ′ (3n − 4) r + 4 f

)

− ln(N )′
(1

2
(4λ + 3n − 4) na2M f r2n+1

−M f ′a2n (λ − 1) r2n+2 + 2

3
Ma (2λ + 1) r3+n

+2ΛMr2n+3a2 − 2

9
(4λ − 1) kw

2r3)

−1

3
aM ((2λ − 5) n + 4λ + 2) r2+n

−1

9
(n − 2) (4λ − 1) kw

2r2 + a2MΛ(n − 2) r2n+2

+3

4
n

(
n2 + (2 − 4λ) n

)
a2 f Mr2n = 0, (40)

where the equation of motion of N (r) can be easily read of the
action. Also, on the horizon, with the conditions f (rH ) = 0
and f ′(rH ) �= 0 and finite lapse function N (rH ), we should
have

[
1

2
Mnr2na2 (λ − 1)

(
2 f ′′r2 + f ′ (3n − 4) r

)

− ln(Ñ )′
( − M f ′a2n (λ−1) r2n+2+ 2

3
Ma (2λ + 1) r3+n

+ 2ΛMr2n+3a2 − 2

9
(4λ − 1) kw

2r3)
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− 1

9
(n − 2) (4λ − 1) kw

2r2 + a2MΛ(n − 2) r2n+2

− 1

3
aM ((2λ − 5) n + 4λ + 2) r2+n

]
r=rH

= 0, (41)

[
1

8
f ′a2Mn

( − 3r2nMna2 f ′ (λ − 1) + 12r2n+1a2MΛ

+ 4aM (2λ + 1) r1+n − 2

3
kw

2r (4λ − 1)
)

+ 2

9
r2kw

2 (4λ − 1)
(

3r−naM − r−2nkw
2
)

+ a2M2r2
(

2r2na2Λ2 + 2rnaΛ − 2λ + 1
) ]

r=rH

= 0.

(42)

The horizon geometry of the black hole solutions with
Bianchi type I I I with metric (38) is equivalent to H2 × R,
and the negative Ricci scalar of the horizon is R(3) = − 2

arnH
.

For further uses, we define the parameter α in this Bianchi
type by

α = 2

a
. (43)

Now, solving the equations of motion we obtain the following
classes of solutions:

• For the special case λ = 1, we obtain

N (r) = N0r
n
2 −1, (44)

f (r) = −4

3

r2Λ

n2 − 2

3

r2−nα

n2 + 1

9

r2(1−n)kw
2α2

Mn2

−1

9

r−n+2

n2M

(
9M2n

(
9C1n

3 + 4 ln (r) α2
)

+2α3kw
2r−n

(
12M − k2

wr
−nα

) ) 1
2

, (45)

which are consistent with the boundary conditions (41)
and (42), without any extra condition on the constants.
Similar to the solutions with Nil geometry horizon (27),
even at M → ∞, the obtained f (r) function for metric
(38) with m = n, contains logarithmic function that has
not appeared in the other solutions with H2×R geometry
horizon, where apart from the 3-isometries of Bianchi
type I I I , the metric was required to be invariant Lifshitz
generalized transformations imposing n = 0 [58].

• When λ is allowed to have general values, with n = 2
we find the solutions

N (r) = N0, (46)

f (r) = −α

6
+ C2r

2 − C1

r2 . (47)

• Also, for the general value of λ and n we obtain the solu-
tions

N (r) = N0, (48)

f (r) = −4

3

r2Λ

n2 − 2

3

r2−nα

n2 + 1

9

r2(1−n)kw
2α2

Mn2

−C1r
s1 + C2r

s2 , (49)

where the s1 and s2 constants are again given by (33).
Here, similar to what we had in the Bianchi type I I solu-
tions given by (31) and (32), we will highlight two cases.
First, when the n and λ are independent, we will focus
on the C1-dependent term. In the second case, imposing
the special relation (35) between λ and n, we obtain the
f (r) function in the following form

f (r) = −4

3

r2Λ

n2 − 2

3

r2−nα

n2 + 1

9

r2(1−n)kw
2α2

Mn2

+ C2 − r− 3
2 n+3C1,

(50)

in which no inconsistency arises in presence of C2-term.

The obtained solutions in all three classes of λ = 1, n = 2
and general λ for Bianchi types I I and I I I are seemed to
resemble each other closely. The thermodynamic behavior
of the solutions will be studied in the following, where we
can compare the physical behaviors. It is worth mentioning
that, the solutions in these two Bianchi type classes are not of
the constant curvature type with Rαβ = kgαβ , and the Ricci
scalar of the horizon is a function of the radius of the hori-
zon. However, the α parameters, defined by α = −R(3)rnH ,
appeared in the solutions somehow similar to the k parameter
of the topological black hole solutions with constant curva-
ture horizons [26–30].

All group of solutions obtained for H2 ×R horizon geom-
etry with general λ and λ = 1 are asymptotically invariant
under the following Lifshitz generalized transformations

t → ρt, r → ρ−1r, x1 → x1, x2 → ρ
n
2 x2, x3 → x3,

(51)

with constant ρ, if one uses the scaling of a. Accordingly,
for n = 2 the solutions are asymptotically isotropic, while
for general values of n, or equivalently general values of λ,
the anisotropy appears in x2 direction.

4 Thermodynamic properties of the black hole solutions

In this section we are going to establish the thermodynamic
of the obtained solutions, using the canonical Hamilton for-
mulation, where noting the metric (17), the Euclidean con-
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tinuation of the action is given by [29]

IE =
∫

dtdx4
(
π i j ġi j − √

f NH − NiHi

)
+ B, (52)

in which B denotes the boundary term. In our cases Ni = 0
and we have

IE = −βΩ

∫ ∞

r+
dr NH + B, (53)

where β is the period of Euclidean time, Ω = ∫
σ 1×σ 2×σ 3

denotes the volume of 3-dimensional closed space, and r+
is the radius of the black hole outer horizon defined by the
largest root of f (r) = 0. For static black holes, the constraint
H = 0 is required to be satisfied and then the Euclidean
action reduces to the boundary term B. Namely, for the on-
shell solutions we have

IE = B = B |∞ −B |r+ . (54)

In fact, supplementing the action with boundary term ensures
obtaining a well-defined variational principle on these non-
asymptotically flat space-times.

Regularity of Euclidean black hole solution requires the
time period β to follow the following relation [27,29]

β(N (r) f ′(r)) |r+= 4π, (55)

which yields the temperature of the black hole by

T = 1

β
. (56)

Also, the relation between Euclidean action and free energy
Fe

IE = βFe = βm − S, (57)

can be used to obtain the mass m and entropy S of the black
hole solutions.

4.1 Thermodynamics of Bianchi type I I black hole
solutions with Nil geometry horizon

There is a correspondence between the geometry of Bianchi
type I I spaces and Thurston’s Nil geometry and Heisenberg
group, whose isotropy groups are SO(2) and e, respectively
[49]. We have found the black hole solutions in this Bianchi
type in Sect. 3.1, represented in terms of the Hořava–Lifshitz
constants κ, kw, M , λ, and the horizon curvature constant
related parameter α = a

2b2 . The area of the horizon for this
Bianchi type solutions is

AH = √
2αb2r

3n
2+ Ω. (58)

We would like to investigate thermodynamic of the solutions
using a redefinition of the f (r) function in terms of a new
function F(r), similar to the procedure employed in [29].

For instance, with the obtained solutions for λ = 1 (27) and
general λ (32) in mind, defining

f (r) = −4

3

r2Λ

n2 − 2

3

r2−nα

n2 + 16r2(1−n)α2k2
w

9Mn2 − F(r),

(59)

the Euclidean action takes the following considerably sim-
plified form

IE = 3
√

2ακ2b2βΩ

32k4
wM2 (4λ − 1)

∫
dtdr Nr

3n
2 −4

[
F2M2n2(−3n2

+ 4λ + 6n − 4) + n2F ′2M2 (λ − 1) r2

+ 32

81
α2r4−4n (4λ − 1) (256α2k4

w + M(−96rnαk2
w

+ 9Mr2n)) − rn2M2FF ′ (3n − 4 + 4λ)

]
+ B.

(60)

To have a well-defined variation principle the variation of the
boundary term B should have the following form

δB = δB∞ − δBr+

= 3
√

2αb2n2κ2βΩ

32 (4λ − 1) k4
w

[
r

3
2 n−3N ((3n − 4 + 4λ) F

−2r (λ − 1) F ′)δF
]∞
r+ . (61)

To evaluate this variation on the boundary at the horizon, we
will use the following identity for the variation of F [70]

δF |r+=
(

∂F

∂ f

)
r+

[δ f ]r+ , (62)

where

[δ f ]r+ +
(
d f

dr

)
r+

δr+ = 0, (63)

leads to

δF |r+= −
(

∂F

∂ f

)
r+

(
d f

dr

)
r+

δr+ =
(
d f

dr

)
r+

δr+. (64)

4.1.1 The λ = 1 case

In this case, the equations of motion of (60) gives N (r) and
F(r) in agreement with (26) and (27), and we have

F(r) = 1

9

r2−n

Mb8n2

(
9nb8M2

(
9C1n

3b8 + 16a4 ln (r)
)

+ 256
(

3b4M − 2a2k2
wr

−n
)
a6k2

wr
−n) 1

2 , (65)

The constant N0 in the lapse function (26) can be removed by
a time redefinition and hence it is not a physical parameter.
Also, the mass m and N0 are a conjugate pair, where N0

should be kept fixed while m is being varied [29]. The only
solution parameter that will be varied here is theC1 constant,
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which is related to the physical parameter mass. Using (65),
at the boundary at infinity we have

δB∞ = 3
√

2αβκ2n3b2

64k4
w

ΩN0δC1, (66)

and on the horizon, using (64), the variation of the boundary
term is given by

δBr+ = −
√

2απκ2nb2Ω

12Mk4
w

( − 8α2k2
wr+−n

+6ΛMr+n + 3Mα
)
r+

n
2 −1δr+. (67)

Also, using (55) and (56), temperature in this class of solu-
tions is given by

T = N0r
3
2 n+

3nMπ

(
44

(
8r−n+ αk2

w − 3M
)
k2
wα3r−2n+

+12r−n+ M2α2 − 3M2Λ
(
2rn+Λ + α

) )

×
(

6r2n+ ΛM − 8α2k2
w + 3Mrn+α

)−1
. (68)

Here, we can calculate the entropy either by using the δB+
and free energy or by using the first law of thermodynamics
(assuming its validity) S = ∫

T−1 dm
dr+ dr+ + S0, where S0 is

an integrating constant.4 Either way, we get

S =
√

2αb2c3

8MGΛ

(
2ΛMr

3
2 n+ + 3αMr

n
2+ + 8α2k2

wr
− n

2+
)

Ω + S0.

(69)

The first term is proportional to the area of the horizon. The
entropy does not contain logarithmic correction term that is
common in (3 + 1) dimensional Hořava–Lifshitz black hole
solutions, but still diverges at r+ → 0. The first two terms
in the entropy resemble the entropy of (4 + 1) dimensional
black hole solutions with spherical and hyperbolic horizon
[27,43]. Here, for non-constant scalar curvature horizon with
Nil geometry, the entropy included also the Hořava–Lifshitz
parameter kw dependent term which is actually proportional

to A
− 1

3
H .

Also, using (16), the mass recasts the following form in
terms of the radius of horizon r+

m = −
√

2αΩb2c3N0

48πnGΛM2

(
176r−2n+ α4kw

4 − 12α2 ln (r+) nM2

−132r−n+ Mα3kw
2 + 3ΛM2r+n(rn+Λ + α)

) + m0, (70)

where m0 is an integrating constant. To investigate the local
stability of the solutions we can consider the heat capacity,
which using the mass and temperature is given by

C = ∂m

∂T

4 The S0 is an additive integrating constant that cannot be fixed using
the first law of thermodynamics [71]. However, in some cases it can be
selected appropriately based on some physical remarks [29].

= −r
3
2 n+ c3√

2αb2Ω

24MGΛ

(
6r +2n ΛM − 8α2kw

2 + 3Mrn+α
)2

×
(

− 1

2
r+nΛ2M2 + α

(
88

3
r−3n+ α3kw

4 − 11α2k2
wr

−2n+ M

+r−n+ M2α − 1

4
ΛM2

))(
7

3
M

(
176k2

wΛ − 13M
)

α4k2
wr

n+

+M2α3
(
M − 112k2

wΛ
)
r2n+ + 5

12
ΛM2α2r3n+ (15M

−16k2
wΛ) + r4n+ Λ2M3α + r5n+ Λ3M3

+176

3
α5k4

w

(
3M − 4r−n+ αk2

w

) )
.−1 (71)

It is not straightforward to use the heat capacity (71) in
its general form to determine whether this black hole solu-
tion is thermodynamic stable or not. We would like, though,
to provide some examples choosing particular set of val-
ues for the constants. For instance, with {n = 3,Λ =
−1/4, kw = M = α = b = 1} the positive definiteness
of temperature demands r+ � 1.55, where the heat capac-
ity is always positive. On the other hand, for example with
{n = 3, M = 1/3, kw = 1/2,Λ = −0.1, α = b = 1},
temperature is positive definite between 1.54 � r+ � 1.68,
where the heat capacity starting from zero, is positive until a
divergent point at r+ ≈ 1.6 and then negatively approaches
zero at the upper bound of r+. Hence, similar to the other
black hole solutions of Hořava–Lifshitz gravity [29], depend-
ing on the values of parameters, this class of solutions can
exhibit locally stable or non-stable behaviors.

As it has been mentioned before, in the λ = 1 case
Hořava–Lifshitz gravity can reduce to general relativity.
Black hole solutions for vacuum Einstein field equations with
Nil geometry horizon have been obtained in [57,60], where
suitable parameters have been selected to provide a horizon
metric admitting additional isometry corresponding to Lif-
shitz scale invariance and hyperscaling violation. Although
we have considered only the 3-isometries of Bianchi types
to obtain the solutions, the horizon metric in (20) can be
rewritten in the form of the Lifshitz scale invariant met-
ric given in [57], by setting a = r

− n
2+ , or equivalently

α = 2
3r

n+Λ (4p − 3) in which for further simplicity we set
b = 3

2
√−3Λ(3−4p)

, where p is a constant. In this case, as
M → ∞ the obtained thermodynamic quantities for λ = 1
solutions behave similar to the general relativity solutions
with

m=c3r
5n
2+

Gπ
Ω, S= pc3

G
Ah, T= 10

3πp

√−3Λ(3 − 4p)r
n
2+ ,

(72)

where Ah = 3
2
√−3Λ(3−4p)

r2n+ and N0 has been eliminated
by a rescaling in time. The entropy in this limit, being propo-
sitional to the area of horizon, is in the form of Bekenstein–
Hawking entropy. However, despite the Nil geometry solu-
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tions with hyperscaling violation [60], the entropy is positive
with positive T .

4.1.2 A non-Einstein case: general λ and n = 2

To investigate the thermodynamic behavior of this class of
solutions, given by (29) and (30), noting that the C2 constant
in (30) can be removed by a rescaling of r , we define the new
function F(r) by

f (r) = −α

6
+ C2r

2 − F(r), (73)

which yields the action

IE = κ2

k4
w

√
2αb2NβΩ

∫
dtdr

(
− α2

9M2r5

(
3k2

wr
3MF ′

− 6r2k2
wMF − 3M2r4 + 32r2kw

2αM − 88k4
wα2)

+ 1

8(4λ − 1)

(
3(λ − 1)

(
F ′2r + 4F2r−1

)

+ 6r
(
r F ′ + 2F

)
(3C2 + Λ)

− 6 (2λ + 1) FF ′ − 4r3 (3C2 + Λ)2
))

+ B,

(74)

whose equation of motion gives

F(r) = C1r
−2, N = N0. (75)

From the variation of (74), we find that the variation of the
boundary term B should be given by

δB = − 3
√

2αb2NΩκ2β

4Mk4
w (4λ − 1)

[(
Mr (λ − 1) F ′ − M (2λ + 1) F

+ r2M (Λ + 3C2) − 4k2
wα2

9r2 (4λ − 1)

)
δF

]∞

r+
.

(76)

On the horizon using f (r+) = 0 and (64) we obtain

δBr+ = −b2κ2
√

2απΩ

18r2+Mk4
w (4λ − 1)

(
54M (Λ − 4C2 (λ + 1)) r4+

+3α (4λ − 1)
(

3r2+M − 8αkw
2
) )

δr+, (77)

and at infinity we have

δB∞ = −3βκ2b2
√

2αΩ

4kw
4 (4λ − 1)

(Λ + 3C2) N0δC1. (78)

Removing the variations from this kind of equations to
obtain the mass and entropy needs boundary conditions to
be imposed [72,73].5 In particular, it requires C2 to be func-

5 In fact, it was first observed in AdS context in [72] that for Einstein-
Scalar models with scalar filed φ = α

r + β
r the integrability of energy in

Hamiltonian formalism, which contains δQφ = ∫
βδαdΩ + . . . term,

forces the coefficients in the asymptotic expansion of the scalar field α

and β to be functionally related.

tionally related to C1. We will take advantageous of the first
law of thermodynamics to determine this functional relation.

The temperature of the black hole can be computed using
Euclidean regularity, which gives

T = N0

12πr+

(
12C2r

2+ − α
)

. (79)

The first law of thermodynamics

dm = TdS, (80)

is then satisfied if the C2 constant takes one of the following
forms

Cex
2 = α

12r2+
, C2 = α

(
3Mr+2 − 8αk2

w

)
18Mr+4 , (81)

which also gives the relation between C1 and C2 using
f (r+) = 0. The first expression, being denoted by the “ex”
symbol that here and hereafter stands for the extremal case,
coincides with the determined C2 by the condition of degen-
erate horizon f (r) = f ′(r) = 0 . Generally, the C2 parame-
ters in (81) are accompanied by the following C1 expression,
respectively,

Cex
1 = −αr2+

12
, C1 = −4k2

wα2

9M
. (82)

Considering these points, the extremal radius of horizon is
given by

r ex+ = 4
√

3αMkw

3M
. (83)

Now, performing the integrals, the mass and entropy are
obtained as follows

m = c3b2α
3
2
√

2N0Ω

96ΛGπM2

(
Mr4+α

(
3M − 32k2

wΛ
)

ln (r+) r4+

+ 3ΛM2r6+ + 12α2k2
wMr2+ − 32α3k4

w

3

) + m0,

(84)

S =
√

2αb2c3Ω

8MΛG

(
2MΛr3+ + 3Mαr+ + 8k2

wα2r−1+
)

+ S0.

(85)

Also, the heat capacity is given by

C = −b2
√

2αc3Ω

24MGΛ

(
3Mr2+ − 16αk2

w

)
r+

(
Mr2+ − 16αk2

w

)
×

(
6Mr4+Λ + 3Mr+

2α − 8k2
wα2

)
.

(86)

Evidently, the thermodynamic behavior is independent of the
value of λ. Generally, the heat capacity vanishes when r+
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equals to one of the following radii

r2
1 = 16αk2

w

3M
,

r2
2,3 = − α

12MΛ

(
3M ∓

√
192MΛk2

w + 9M2

)
,

(87)

and diverges when

r+ = √
3r1 ≡ r4 (88)

Temperature is positive definite for r+ � r1 and r1 is actu-
ally the extremal point indicated by (83). Obviously, the heat
capacity divergent point r4 is in the positive temperature
range of r+. But for the zero points r2 and r3, depending on
the values of parameters, we can have different situations:

(i) If a set of parameters is selected for which
192ΛMk2

w + 9M2 < 0, there are no real r2 and r3 and
the solutions at r+ � r1 range are stable until r+ = r4

and then become unstable.6

On the other hand, if 192ΛMk2
w + 9M2 > 0, the r2 and

r3 are both real. Then,

(ii) If one selects a set of parameters for which r2 < r1 <

r4 < r3, then the solutions are unstable in r1 < r+ < r4,
stable after the divergent point r4 in r4 < r+ < r3 range,
and then become unstable.7

(iii) If a set of parameters is selected to have r2 < r1 < r3 <

r4, the solutions with T > 0 are unstable as r1 < r+ < r3,
stable as r3 < r+ < r4, and then become unstable.8

4.1.3 Non-Einstein case: general λ

When the Hořava–Lifshitz coupling constant λ is allowed to
have any value, the black hole solutions with Nil geometry
horizon have been obtained as given by (31) and (32). As we
have mentioned earlier, we intend to consider two cases in
this class of solutions. First, in the most general case when n
and λ have general and primarily independent values, noting
the asymptotic behavior of metric, similar to the solutions
obtained in [29], our emphasis is on the negative power of
r branch in (32), indicated by C1 term. The second case is
when there is a special relation of type (35) between λ and
n, which leaded to f (r) function of the form (36).

In the first category, for which only theC1 term in the f (r)
function (36) is present, to investigate the thermodynamics
in Hamiltonian formalism we consider the F(r) function

6 For example with {Λ = − 1
4 , M = 1

2 , kw = 1
2 , α = 1}.

7 For example with {Λ = −0.1, M = 4, kw = α = 1}.
8 For example with {Λ = − 1

2 , M = 1
2 , kw = 0.6, α = 1}.

defined by (59), where the Euclidean action takes the form
of (60), and the solution for its equations of motion gives

F(r) = C1r
s, N = N0, s = −3

4
(n − 2) − √

μ, (89)

where μ is given by (34). Noting the variation of the boundary
term of Euclidean action, given by (61), it is easy to find that
a definite and non-vanishing δB∞ demands

2s + 3

2
n − 3 = 0, (90)

which, practically, relates the n constant in metric to the λ

parameter by

λ = 21n2 − 12n + 4

9n2 + 12n + 4
. (91)

This is, on the other hand, equivalent to μ = 0, which prac-
tically leaves no difference between C1 and C2 dependent
terms in (60). Applying this condition we get

δB∞ = 3βκ2n3b2N0 (3n + 2)

32 (5n − 2) k4
w

√
2αC1δC1Ω, (92)

δB+ = −
√

2απnb2κ2 (3n + 2)

12M (5n − 2) k4
w

( − 8r+−2nα2k2
w

+ 6ΛM + 3r−n+ αM
)
r

3
2 n−1
+ Ω.

(93)

Also, temperature of this black hole solution is given by

T = N0r+
72Mn2π

(
8α2k2

w (2 − 5n) r−2n+
+3αM (n − 2) r−n+ − 6ΛM (3n + 2)

)
. (94)

These thermodynamic quantities satisfy the first law of ther-
modynamics. Also, the C1 constant can be written in terms
of radius of horizon as follows

C1 = −2r
3
4 n+ 1

2+
9Mn2

(
−8r−2n+ α2k2

w + 6ΛM+3r−n+ αM
)

. (95)

Noting this, we can perform the integrating to obtain the mass
and entropy as follows

m = −Ωb2N0
√

2αc3 (5n − 2)

576π (3n + 2)GΛM2n
r

3
2 n+1
+

( − 16α2k2
wr

−2n+
(
6ΛM

− 4r−2n+ α2k2
w + 3r−n+ αM

)

+ 9M2
(

4Λ2 + 4Λr−n+ α + α2r−2n+
) ) + m0,

(96)

S = c3 (5n − 2) b2Ω
√

α

8ΛG (3n + 2) M

(
2ΛMr

3
2 n+ + 82α2k2

wr
− n

2+

+ 3αMr
n
2+
) + S0.

(97)

The first term in entropy is proportional to the area of hori-
zon AH , given by (58), and there is a divergent in mass and
entropy at r+ → 0 limit. The heat capacity for this class of
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solution is given by

C = −9b2n3Ωc3
√

2α (5n − 2)

32ΛG (3n + 2)
r

3
4 n− 1

2+ C1

×(
8α2k2

w (5n − 2) r−2n+ − 3M(α (n − 2) r−n+
−2Λ(3n + 2))

)( − 8α2 (2n − 1) (5n − 2) k2
wr

−2n+
+3M

(
α (n − 1) (n − 2) r−n+ + 2Λ(3n + 2)

) )−1
,

(98)

which vanishes when r+ equals to either of the following
radii

r2n
1,2 = − α

12ΛMb2

(
3M ∓

√
192ΛMk2

w + 9M2
)

,

r2n
3,4 = 1

16k2
w (5n − 2) α

(
3M (n − 2)

× ∓(
9 (n − 2)2 M2 − 192MΛk2

w (3n + 2) (5n − 2)
) 1

2
)
,

(99)

and diverges when r+ equals to the following radii

r−2n
5,6 = 1

16k2
w

(
10n2 − 9n + 2

)
α

(
3M

(
n2 − 3n + 2

)

∓(
9M2

(
n2 − 3n + 2

)2 + 192ΛMk2
w(30n3

−7n2 − 12n + 4)
) 1

2
)
. (100)

Noting Λ < 0, r3 is not real, even for odd valued n. As
r+ = r4, this category of black hole solutions becomes
extremal with vanishing temperature. The reality of these
radii and local stability depend on the values of parameters.
For example, choosing the set of parameters {n = 4,Λ =
−0.02, kw = M = α = 1} that keeps only the r1 < r4 < r2

real, the temperature is positive as r+ > r4 and in this region
the heat capacity is negative until r+ = r2, and then becomes
positive without any divergent. As an another example, if one
sets {n = 4, M = 2,Λ = −0.01, kw = 0.1, α = 1}, the real
radii are in the order of r1 < r4 < r6 < r5 < r2. Here, the
positive definiteness of temperature demands, again, r+ >

r4. In this region, the solutions are unstable as r4 < r+ < r5,
then become stable between two divergent points r5 and r6,
and then the unstable phase in r5 < r+ < r2 range is followed
by another stable phase where r+ > r2.

In the second case of this class of solutions we consider
the category of parameters for the solutions (32) in which
λ and n are related to each other by the relation (35), and
consequently the f (r) function reduces to (36), in which no
asymptotic problem occurs in presence of the C2 constant.
As we have mentioned before, the λ = 1 case in this class
of solutions, which corresponds to n = 2, is similar to the
solutions for λ = 1 presented in [43], however with differ-
ent horizon geometries of flat, spherical, and hyperbolic. Our
focus here is on n > 2 case. The solution contains two inte-
grating constant C1 and C2, while the only physical parame-
ter characterizing this black hole is mass. In topological black

hole solutions, whose horizons are constant curvature Ein-
stein spaces, the requirement of asymptotic AdS behavior of
the spacetime relates the integrating constant of type C2 to
the curvature constant k of the horizon [74]. However, the
Bianchi type I I space does not admit Einstein space metric
and the horizon curvature depends on rH . Hence, we con-
sider C2 as a yet undetermined constant. Then, rewriting the
action in terms of the new function F(r) defined by

F(r) = −4

3

r2Λ

n2 − 2

3

r2−nα

n2 + 16r2(1−n)α2k2
w

9Mn2

+ C2 − f (r),
(101)

we obtain the Euclidean action

IE = −βΩ

∫
dr

3r
3
2 nb2

√
2αk2N

32M2k4
w (n + 2)

(
n3M2 (2 − n) F ′2

4r2 (n − 1)

+3M2n3 (n − 2) (F − C2)
2r−4

+4M2n3F ′ (F − C2)r
−3

−32α2

81
(n + 2) (256r−4nα2k4

w

−96Mr−3nαk2
w + 9M2r−2n)

)
+ B, (102)

whose equations of motion gives

F(r) = C1r
− 3n

2 +3, N = N0. (103)

The variation of the boundary term for (102) should be given
by

δB = 3
√

2αβκ2b2n3Ω

64 (n + 2) (n − 1) k4
w

[
Nr

3
2 n−3( (2 − n) r F ′

+ 8 (n − 1) (F − C2)
)
δF

]∞
r+ .

(104)

Then, using (103), at infinity and on the horizon we obtain

δB∞ = −3β
√

2αN0n3κ2b2Ω

8k4
w (n + 2)

C2δC1, (105)

δBr+ = − κ2πn
√

2αb2r
3
2 n+ Ω

96M (n + 2) (n − 1) k4
w

(
2 (n + 2)

× (3n − 2) r−2n−1+ (−8α2k2
w + 6r2n+ ΛM

+3rn+αM) − 27C2n
2 (n − 2)2 Mr−3+

)
δr+. (106)

Similar to (78), removing the variations from these equations
to obtain the mass and entropy needs boundary conditions to
be imposed as a functional relation between C2 and C1, or
equivalently r+. To obtain the explicit form of this functional
relation we establish the first law of thermodynamics. Noting
that, based on Euclidean regularity, the temperature is given
by

T = N0

72rMn2π

( − 3(2α (n − 2) r2−n+ + 4r2+Λ(3n − 2)

−9C2n
2 (n − 2))M − 16k2

wα2 (n + 2) r2−2n+
)
, (107)
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the first law of thermodynamics revels that the obtained ther-
modynamic quantities satisfy the first law if we have

C2 = r2+
27 (n − 2) n2M

( − 16k2
wα2 (n − 4) r−2n+

+12M
(
α (n − 2) r−n+ + Λ(3n − 4)

)
±2r+−2n(−12ΛMr2n+ + 3Mα (n − 2) rn+
−16k2

wα2 (n − 1))
)
, (108)

which also fixes the relation between C1 and C2 using
f (r+) = 0. Substituting the expression of C2 with posi-

tive sign in (108) into f (r+) = 0 leads to C1r
3
2 (n−2)

+ = 0,
which is not an interesting case. On the other hand, the neg-
ative sign in (108) gives an expression for C2 coincided
with the C2 obtained in extremal case from the conditions
f (r+) = f ′(r+) = 0, which is accompanied by the follow-
ing form of C1 constant

Cex
1 = 1

27

r
3
2 n−1
+

(n − 2) n2M

(
64k2

wα2 (n − 1) r−2n+

− 12M
(
α (n − 2) r−n+ − 4Λ

) )
.

(109)

Hence, the consistent solutions in this class is the extremal
case. Temperature vanishes for this solutions and entropy is
given by

Sex = b2c3
√

2αΩ

16MGΛ(3n − 2)

(
4MΛ(3n − 2) r

3
2 n+

+16α2kw
2 (n + 2) (n − 1) r

− n
2+

+3Mα
(
n2 + 4n − 4

)
r

n
2+
)
. (110)

The near horizon geometry for this extremal solutions can be
obtained by using the following change of the variables

r →
(
r2−2n+ + ε

r

) 1
2−2n

, t → t

ε
, (111)

and then sending ε → 0, which yields the near horizon metric
as follows

ds2 = −N0W
dt2

r2 + 1

W

dr2

r2 + rn+
(
a

(
dx2 − x1dx3

)2

+b

((
dx1

)2 +
(
dx3

)2
) )

, (112)

where

W = r2n−2+
72Mn2 (n − 1)2

(
16α2k2

w (n + 2) (n − 1)

+ 3Mα (n − 2)2 rn+ − 12 (3n − 2) MΛr+2n).
(113)

By a scaling of time, the above solution can be rewritten as
a product space of AdS2 × Nil with different radii

ds2 = 1

W

−dt2 + dr2

r2 + rn+
(
a

(
dx2 − x1dx3

)2

+ b

((
dx1

)2 +
(
dx3

)2
) )

.

(114)

4.2 Thermodynamics of Bianchi type III solutions with
H2 × R horizon geometry

Thurston closed geometries of product constant curvature

type H2 ×R and twisted product type ˜SL2R can locally pos-
sess Bianchi type I I I symmetry with SO(2) isotropy [49].
In our considered case, for the Bianchi type I I I symmetric
spacetime metric (38) the geometry of horizon is equivalent
to H2 × R. Families of black hole solutions for this Bianchi
type have been obtained in (44)-(49) for λ = 1 and general λ,
given in terms of horizon curvature related parameter α = 2

a .
The area of horizon for these solutions is given by

AH =
√
b

α
r

3n
2+ . (115)

Having found the solutions for f (r) function beforehand,
to investigate the thermodynamics of the solutions (45) and
(49) we can rewrite the action in terms of new F(r) function

F(r) = −4

3

r2Λ

n2 − 2

3

αr2−n

n2 + 1

9

α2r2−2nk2
w

n2M
− f (r),

(116)

which gives the Euclidean action

IE = −βΩ

∫
dtdr

9
√
br−4+ 3

2 nκ2N

16M2αk4
w (4λ − 1)

[
M2

3
(1 − λ) (F ′2r2

−4FF ′r + 4F2)n2 + n3 (
F (n − 2) + r F ′) FM2

−2α2

243
(4λ − 1) (3Mrn

(
3Mrn − 2k2

wα
)

+k4
wα2)r4−4n

]
+ B. (117)

Here, the variation of boundary term B must have the fol-
lowing form

δB = 3κ2
√
bn2βΩ

16αkw
4 (4λ − 1)

×
[(

3nF + 2 (λ − 1)
(
2F − F ′)) Nr

3
2 n−3δF

]∞
r+

.

(118)

The solutions for this Bianchi type have similar structure to
those of Bianchi type I I , and to study the thermodynamic
properties we will follow the same procedures here.
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4.2.1 The λ = 1 case

With λ = 1, the solution of equations of motion of action
(117), being in agreement with (44) and (45), gives

F(r) = r−n+2

9n2M

(
2α3kw

2r−n
(

12M − k2
wr

−nα
)

+ 9M2n
(

9C1n
3 + 4 ln (r) α2

) ) 1
2 .

(119)

Using f (r+) = 0, temperature in this class of solutions is
given by

T = N0r
n
2+

12Mnπ

( (
k2
wr

−n+ α − 6M
)
r−n+ α3k2

w

+ 6M2
(
−8Λ2r2n+ + α

(−4Λrn+ + α
)))

×
(

12Mr2n+ Λ − k2
wα2 + 6Mrn+α

)−1
.

(120)

Also, using (118) and (119) we have

δB∞ = 3
√
bβn3κ2Ω

32αk4
w

N0δC1, (121)

δBr+ = −r
− n

2 −1
+ n

√
bk2πΩ

12αk4
wM

(
12Mr2n+ Λ

−k2
wα2 + 6Mrn+α

)
δr+. (122)

The first law of thermodynamics is satisfied and the mass and
entropy can be calculated up to additive constants as follows

m = −
√
bc3ΩN0

384nαπM2GΛ

(
k2
wα3r+

−n
(
r−n+ k2

wα − 12M
)

+ 12M2
(
−nα2 ln (r+) + 4Λ2r2n+ + 4Λr+nα

) ) + m0

(123)

S =
√
bc3Ω

8αMGΛ

(
4ΛMr

3n
2+ + 6Mαr

n
2+ + α2k2

wr
− n

2+
)

+ S0. (124)

Also, the heat capacity is given by

C =
√
bΩ2c3r

− 3
2 n+

4608αMGΛ

(
12ΛMr2n+ − α2k2

w + 6Mrn+α
)

×
((

6M − r−n+ αk2
w

)
r−n+ α3k2

w + 6M2(8r2n+ Λ2

+ 4Λrn+α − α2)

)(
α4

96

(
14kw

2Λ − 17M
)
k2
wMr−n+

+ 1

16
M2α3

(
M − 12k2

wΛ
)

+ Λ2M3r2n+ α

+ 5

24
α2ΛM2rn+

(
3M − 2k2

wΛ
)

+ Λ3M3r+3n

+ 1

16
Mr−2n+ α5k4

w − r−3n+ α6kw
6

192

)−1

.

(125)

Depending on the values of parameters we can have sta-
ble and unstable solutions here. For example with {Λ =
−1/3, kw = 2, n = 3, α = M = 1}, temperature is positive
definite at r+ � 1.02, where the heat capacity is always pos-
itive. Also, as an another example, with {Λ = −1/30, kw =
2, n = 4, α = M = 1}, respecting the positive definiteness
of temperature, the solutions are stable at 0.645 � r+ � 0.68
and r+ > 2.12, but unstable in 0.9 � r+ � 1.95 range.

For this class of solutions, to have Lifshitz rescaling invari-
ant horizon metric, similar to that of H2 × R horizon geom-
etry solutions for Einstein field equations with negative Λ

presented in [58], one can set a = − 3
2Λ

r−n+ or equivalently
α = − 4Λ

3 rn+. Then, at M → ∞ limit, when the Hořava–
Lifshitz theory tends to general relativity, the thermodynamic
quantities are obtained as

m= 3
√
bc3

2Gπ | Λ |r+
nΩ, S= c3

4G
AH , T= 8

π
r+

n
2 , (126)

where AH = 3Ω
2|Λ|

√
brn+ and we have eliminated N0 by

rescaling of time. The entropy is explicitly in the form of
Bekenestein–Hawking entropy form obtained in the solu-
tions of general relativity.

4.2.2 A non-Einstein case: general λ and n = 2

Noting the original form of solutions obtained for general
λ and n = 2, given by (46) and (47), here we consider a
different F(r) from that is given by (116), as

F(r) = −α

6
+ C2r

2 − f (r), (127)

which leads to

IE = κ2

k4
w

βΩ

∫
dtdr N

√
b

[
α

144M2r5

( − 6k2
wr

3MF ′

+ 12r2k2
wMF + 6M2r4 − 4r2k2

wαM + k4
wα2)

+ 1

α (4λ − 1)

(
3

4r
(λ − 1)

(
r2F ′2 + 4F2

)

+ r

2
(3C2 + Λ)

(
3r F ′ − (3C2 + Λ) r2 + 6F

)

− 3

2
(1 + 2λ)FF ′

)]
+ B,

(128)

whose equations of motion gives

F(r) = C1r
−2, N = N0. (129)

The variation of the Euclidean action requires the variation
of the boundary term in the following form

δB = −3
√
bκ2βΩN

2(4λ − 1)αMk4
w

[(
Mr3(λ − 1)F ′ − MFr2(1 + 2λ)

123



Eur. Phys. J. C (2021) 81 :865 Page 15 of 21 865

+r4(3C2 + Λ)M − 1

36
k2
wα2(4λ − 1)

)
r−2δF

]∞

r+
,

(130)

where, using (129), we get

δB∞ = −3

2

√
bκ2βN0Ω(Λ + 3C2)δC1

k4
wα(4λ − 1)

, (131)

δBr+ = − 6
√
bΩπκ2

r2+ (4λ − 1) k4
wαM

(
M (−4C2 (λ + 1) + Λ) r4+

+ α

36
(4λ − 1)

(
6r2+M − kw

2α
) )

δr+. (132)

Also, the temperature based on Euclidean regularity is given
by

T = 2N0r+
24π

(6C2 − r+). (133)

Satisfaction of the first law of thermodynamics by these ther-
modynamic quantities restricts the C2 constant to have one
of the following forms

Cex
2 = α

12r2+
, C2 = α

(
6r2+M − αkw

2
)

36r4+M
, (134)

where the first expression is identical to the extremal case.
Using f (r+) = 0, these two C2 are accompanied by the
following C1 constant

Cex
1 = −αr2+

12
, C1 = −α2k2

w

36M
. (135)

It is worth mentioning that, in this case the extremal radius
of horizon is given in terms of Hořava–Lifshitz parameters
as follows

r ex+ =
√

3Mαkw

3M
. (136)

Now, using the second expressions in (134) and (135), and
performing the integrals we obtain

m = − ΩN0
√
bc3

1152πGΛM2r4+

(
24Mαr4+

(
2Λk2

w − 3M
)

ln (r+)

−72r6+ΛM2 + α3k4
w − 18α2kw

2Mr2+
) + m0, (137)

S =
√
bΩc3

8GΛαM

(
4r3+MΛ + 6r+Mα + α2kw

2r−1+
)

+ S0.

(138)

Also, the heat capacity is given by

C = − c3
√
bΩ

12αMGΛ

(
3r2+M − αk2

w

)
r+

(
r2+M − αk2

w

)
×

(
12r4+MΛ + 6r2+Mα − k2

wα2
)

,

(139)

which vanishes when the r+ equals to the following radiuses

r2
1 = αk2

w

3M
,

r2
2,3 = − α

12MΛ

(
3M ∓

√
12MΛk2

w + 9M2

)
,

(140)

and diverges when

r+ = √
3r1 ≡ r4. (141)

Behavior of heat capacity of this family of solutions is similar
to that of the Bianchi type I I solutions, given by (86). Tem-
perature is positive definite for r+ � r1 and r1 is actually the
extremal radius of horizon introduced by (136). Depending
on the values of parameters, we can have different behaviors:

(i) If a set of parameters is chosen that makes
12ΛMk2

w + 9M2 < 0, there are no real r2 and r3 and
the solutions at r+ � r1 are stable until r+ = r4 and then
become unstable.9

(ii) If a set of parameters is chosen that holds
12ΛMk2

w + 9M2 > 0, giving r2 < r1 < r4 < r3,
the solutions are unstable at r1 < r+ < r4 region, and
then, after the divergent point r4, showing stable behav-
ior at r4 < r+ < r3 range, becomes unstable at r+ > r3

region.10

(iii) If a set of parameters is chosen that yields
12ΛMk2

w+9M2 > 0, giving the real radii in the order of
r2 < r1 < r3 < r4, the solutions with T > 0 are unstable
when r1 < r+ < r3, stable when r3 < r+ < r4 and after
divergent point r4 become unstable.11

4.2.3 Non-Einstein case: general λ

When λ and n constants are arbitrary, the solutions for
Bianchi type Bianchi type I I I spacetime are given by (48)
and (49). There is a resemblance between these solutions
and those of Bianchi type I I spacetime, given by (31) and
(32), whose thermodynamic behavior has been studied in
Sect. 4.1.3. Similarly, we would like to study the thermody-
namic behavior of this family of solutions in two cases.

First, we consider the case that n and λ are essentially
arbitrary and independent, where concerning the asymptotic
behavior for C1 and C2 dependent terms in f (r) function
(49), similar to the solutions of [29], we keep only the C1-
dependent terms which has negative power of r for all values
of n and λ. Using the Euclidean action (117), written in terms
of the F(r) function defined by (116), where the variation of
boundary term is given by (118), the solution for the equation

9 For example with {Λ = 1
40 , M = 1

3 , kw = 4, α = 1}
10 For example with {Λ = −0.05, M = 0.5, kw = 0.6, α = 1}.
11 For example with {Λ = − 1

20 , M = 1
3 , kw = 2, α = 1}.
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of motion of (117) gives the F(r) by

F(r) = C1r
s, N = N0, s = −3

4
(n − 2) − √

μ, (142)

where μ is given by (34). It can be checked that in order to
have non-vanishing and definite δB∞, the constraint of type
(90) and (91) is again required for this Bianchi type solutions.
Applying this condition we get

δB∞ = 3
√
bβκ2n3N0 (3n + 2)

32α (5n − 2) k4
w

C1δC1Ω, (143)

δB+ = −
√
bΩn (3n + 2) πκ2

12Mαk4
w (5n − 2)

×
(
−r−2n+ k2

wα2 + 12ΛM + 6r−n+ αM
)
r

3
2 n−1
+ δr+.

(144)

Also, temperature of this black hole solution is given by

T = N0r+
144Mn2π

(
(2 − 5n) α2k2

wr
−2n+

+ 6αM (n − 2) r−n+ − 12ΛM (3n + 2)
)
.

(145)

These thermodynamic quantities satisfy the first law of ther-
modynamics. Noting that, the C1 constant is given in terms
of radius of horizon by

C1 = 1

9Mn2

(
r−2n+ k2

wα2 − 12ΛM − 6r−n+ αM
)
r

3
4 n+ 1

2+ , (146)

the mass and entropy are obtained as follows

m = − r
3
2 n+1
+ c3 (5n − 2) N0Ω

√
b

1152αnM2 (3n + 2) πGΛ

(
− α2kw

2r−2n+
(
24ΛM

+ α
(
−r−2n+ αk2

w + 12Mr−n+
) )

+ 36M2
(

4Λr−n+ α + r−2n+ α2 + 4Λ2
))

+ m0,

(147)

S =
√
bc3 (5n − 2) Ω

8α (3n + 2) MGΛ

(
4ΛMr

3
2 n+ + r+− n

2 k2
wα2

+ 6r
n
2+ αM

) + S0.

(148)

Also, the heat capacity for this class of solutions is

C = − 9n3c3√
b (5n − 2) Ω

16 (3n + 2)GΛα
C1r

3
4 n− 1

2+
(
(5n − 2) α2k2

wr
−2n+

+ 6
(
−α (n − 2) r−n+ + 2 (3n + 2) Λ

)
M

)

× (
k2
wα2 (5n − 2) (1 − 2n) r−2n+ + 6M(2 (3n + 2) Λ

+ α (n − 1) (n − 2) r+−n)
)−1

,

(149)

which vanishes when r+ equals to either of following radii

r2n
1,2 = −

α
(

3M ∓ √
12ΛMk2

w + 9M2
)

12ΛMb2 ,

r2n
3,4 = 1

k2
w (5n − 2) α

(
3M (n − 2) ∓ (

9M2 (n − 2)2

−12ΛMk2
w

(
15n2 + 4n − 4

) ) 1
2

)
, (150)

and diverges when r+ equals to

r−2n
5,6 = 1

k2
wα

(
10n2 − 9n + 2

)−1
(

3M
(
n2 − 3n + 2

)

∓ (
12ΛMk2

w

(
30n3 − 7n2 − 12n + 4

)

+ 9M2
(
n2 − 3n + 2

)2 ) 1
2

)
.

(151)

Similar to what we had in (99), the r3 is not real with Λ < 0.
In addition, positive definite temperature requires r+ � r4,
where r4 is the extremal radius of horizon.

To explore the thermodynamic behavior of heat capacity
we choose some values for the appeared parameters in the
solutions. As an example, setting {n = 4,Λ = −0.02, kw =
M = α = 1} that keeps only the r1 < r4 < r2 real, in
the r+ � r4 region the heat capacity is negative until r+ =
r2 and then becomes positive without any divergence. Also,
as an another example, if one sets {n = 4, M = 2,Λ =
−0.01, kw = 0.1, α = 1}, the order of real radii is r1 < r4 <

r6 < r5 < r2. Here, the solutions are unstable in r4 < r+ <

r5 region, then become stable between two divergent points
r5 and r6, and then there is an unstable phase as r5 < r+ < r2,
which is followed by a stable phase in r+ > r2 region.

The second group of solutions for (49) is indicated by the
f (r) function given by (50), where there is a relation of type
(35) between n and λ. To study the thermodynamic behavior
of this kind of solutions, similar to what have been done in
Sect. 4.1.3, we rewrite the action in terms of the new function
F(r), defined by

F(r) = C2 − 4

3

r2Λ

n2 − 2

3

αr2−n

n2 + α2r2−2nk2
w

9n2M
− f (r), (152)

which results in

IE = −βΩ

∫
dr

r
3
2 nκ2√

bΩN (r) β

48k4
wαM2 (n + 2)

[
2

9
r−4n (n + 2)

(
k4
wα2

+M
(
−6rnk2

wα + 9Mr2n
) )

α2

+M2n3(
27(2 − n) (F − C2)2r−4

−36F ′ (F − C2)r−3 + 9

4
F ′2 (n − 2)(n − 1) r−2)] + B,

(153)

whose equation of motion gives

F(r) = C1r
− 3n

2 +3, N = N0. (154)

The temperature of the black hole based on Euclidean regu-
larity is given by

T = N0

72n2rMπ

( − k2
wα2 (n + 2) r2−2n+
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+3M
((

9n2C2 − 2αr2−n+
)

(n2) − 4r2+Λ(3n − 2)
) )

.

(155)

Also, from the variation of the Euclidean action, we find that
the variation of the boundary term is given by

δB = 3
√
bβn3κ2Ω

32αk4
w (n + 2) (1 − n)

[
r

3
2 (n−2)

(
8 (n − 1) (F − C2)

− r F ′ (n − 2)
)
NδF

]∞

r+
,

(156)

which, using (154), leads to

δB∞ = −3

4

√
bN0βκ2n3Ω

αk4
w(n + 2)

C2δC1, (157)

δBr+ = 3πκ2n
√
bN0Ω

16αMk4
w (n + 2) (n − 1)

(
1

9
(n + 2) (2 − 3n)

×
(

12r2nΛM − k2
wα2 + 5αrnM

)
r
− n

2 −1
+

+ 3

4
Mn2C2 (n − 2)2 r

3
2 (n−2)

+
)

δr+.

(158)

Satisfactions of the first law of thermodynamics by these
thermodynamic quantities demands the C2 constant to have
one of the following forms

C2 = r2+
27n2M (n − 2)

(
k2
wα2 (4 − n) r−2n+

+ 12M
(
(n − 2) αr−n+ + Λ(3n − 4)

)

± 2
(
k2
w (n − 1) α2r−2n+ − 3M

(
(n − 2) αr−n+ − 4Λ

)) )
.

(159)

Similar to what we had in (108), the positive sign is not an
interesting case since substituting it into f (r+) = 0 leads to

C1r
3
2 (n−2)

+ = 0. But, with the negative sign, the expression
for C2 constant is identical to the expression given by the
condition of degenerate horizon f (r) = f ′(r) = 0 [36],
where the C1 constant is given by

Cex
1 = r

3
2 n−1
+

27n2M (n − 2)

(
4α2k2

w (n − 1) r−2n+

− 12M
(
(2 − n) αr−n+ − 4Λ

) )
.

(160)

Then, we have T ex = 0 and

Sex = c3
√
bΩ

8 (3n − 2)GΛMα

(
4MΛ(3n − 2) r+

3
2 n

+ α2k2
w (n + 2) (n − 1) r

− n
2+

+ 3Mα
(
n2 + 4n − 4

)
r

n
2+
)
.

(161)

The near horizon geometry of the above solutions can be
found by using the following change of the variables

r →
(
r2−2n+ + ε

r

) 1
2−2n

, t → t

ε
, (162)

where sending ε → 0 and scaling of time gives the near
horizon metric as a product space of AdS2 × H2 × R with
different radii

ds2 = 1

W

−dt2 + dr2

r2

+ rn+
(
a

(
(dx1)2 + e2x1

(dx3)2
)

+ b(dx2)2
)

,

(163)

where

W = c3
√
bΩr+

3
2 n

8 (3n − 2)GΛMα

(
α2k2

w (n + 2) (n − 1) r−2n+

+ M
(

3α
(
n2 + 4n − 4

)
r−n+ + 4Λ(3n − 2)

) )
.

(164)

5 Conclusion

We have found black hole solutions to z = 4 Hořava–Lifshitz
gravity in (4+1) dimensions, assuming that the horizons pos-
sess Bianchi types I I and I I I symmetries. These solutions
can be regarded as topological black hole solutions whose
negatively curved three-dimensional horizons are modeled
on two types of Thurston’s closed 3-geometries, namely the
Nil geometry and H2 × R, which are twisted product and
product of constant curvature type, respectively. The consid-
ered negatively curved geometries do not admit the constant
curvature type metric on the horizon, i.e. the Einstein metric
Rαβ = kgαβ . The solutions have been found for β = − 1

3
in two cases of λ = 1 and general λ. The thermodynamic
properties of the solutions have been investigated using the
canonical Hamiltonian method. Interestingly, except for the
differences in the coefficients, the solutions for two Bianchi
types I I and I I I have similar forms of metric component
functions f (r) and thermodynamic behaviors.

Generally, the solutions and their thermodynamic quan-
tities are given in terms of some constants, including nega-
tive cosmological constant Λ, Hořava–Lifshitz constants kw,
and M , the horizon Ricci scalar dependent parameter α that
appears similar to the k parameter of the topological black
hole solutions with constant curvature horizons [26–29], the
constant n of metric that is used to provide distinct classes of
solutions, and the two integrating constant C1 and C2 which
are not independent and can be given in terms of radius of
horizon using the first law of thermodynamics. Also, the a
and b constants in the metric, which can provide additional
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scaling, besides being interpreted in terms of α, have been
used to establish generalized Lifshitz scaling invariance on
the horizon and asymptotic region.

For λ = 1, one of the interesting outputs of the considered
horizon geometries for z = 4 Hořava–Lifshitz gravity in
(1 + 4) dimensions was existence of a logarithmic branch
in the solutions for metric. Even though, similar to the other
(1+4) dimensional z = 4 black hole solutions, their entropy
does not contain logarithmic correction that appears in z = 3
black hole solutions in (1 + 3) dimensions. Also, it has been
shown that when the Hořava–Lifshitz terms are neglected at
M → ∞ limit, the λ = 1 solutions can behave similar to
the solutions obtained for vacuum Einstein equations with
negative cosmological constant [58,60,64].

For generalλ, we first considered the special case ofn = 2.
In addition, allowing n to primarily have arbitrary value, we
considered two cases using the asymptotic behavior of the
solutions and imposing relations between n and λ. Then,
the appearing n constant in these classes of solutions refers
actually to the general value of λ. It turned out that for the
solutions that possess two integrating constants C1 and C2,
the energy in Hamiltonian formalism requires more informa-
tion to be integrated, and the two integrating constants need
to be subject to a boundary condition imposed as a func-
tional relation between C1 and C2. In fact, this feature and
the necessity of imposing the boundary condition were first
observed in Einstein-Scalar theory [72], where in the Hamil-
tonian formalism of mass the functional relation between
dilaton charge and the dilaton asymptotic value is required,
which can be fixed uniquely if the asymptotic AdS symmetry
is of interest [73,75,76], leading to satisfaction of first law
without including the variation of the non-physical charge
of Dilaton [63,77]. Here, having only the mass as the phys-
ical characteristic of the black hole solutions, we employed
the first law of thermodynamics to determine the suitable
functional relation between C1 and C2, which enabled us to
calculate the well-defined mass in terms of the radius of the
horizon.

A generic feature of the obtained solutions is that the
entropy for all classes of solutions with both horizon geome-
tries of Nil and H2 × R, besides containing a term propor-
tional to the area of horizon AH , receive two negative correc-

tions of type A
1
3
H proportional to Λ−1, and A

− 1
3

H proportional
to Hořava–Lifshitz constant kw. The latter one, which shows
a divergent at r+ → 0 limit, is a particular consequence of the
considered unusual horizon geometries and does not appear
in the entropy of (1 + 4) dimensional topological black hole
solutions of z = 4 Hořava–Lifshitz gravity with spherical and
hyperbolic horizons, obtained in [27,43]. However, similar
to the constant curvature horizon (1 + 4) dimensional z = 4
solutions presented in [27,43], the entropy for our obtained
solutions with horizon geometries of Nil and H2 × R did

not receive logarithm correction that is common in (1 + 3)

dimensional black hole solutions in Hořava–Lifshitz gravity
[29,36,78]. Furthermore, investigating the behavior of heat
capacity, it is found out that with proper choices of parame-
ters, the locally stable or unstable phases can appear for all
classes of solutions.

In addition, classes of extremal black hole solutions have
been provided for both Bianchi types I I and I I I models. We
have shown that with general λ if there is a relation of type
(90) between λ and n, the consistent solutions are restricted
to be in the extremal cases. The near horizon geometries for
these extremal black holes were obtained as AdS2 × Nil
and AdS2 × H2 × R for Bianchi types I I and I I I solu-
tions, respectively. These solutions possess finite entropy at
zero temperature, similar to extreme near horizon Reissner–
Nordstrom black hole solution. This is also similar to the
behavior of Bianchi type I I and I I I charged black hole
solutions in extremal near horizon limit that we have studied
in [63] in the context of string theory.

The (4 + 1) dimensional black hole solutions for z = 4
Hořava–Lifshitz gravity with flat, hyperbolic and spherical
horizons have been already studied in [29,39,43]. There
is a correspondence between these geometries and Bianchi
types I , V (isotropic expansion), and I X . It would be also
desirable to investigate black hole solutions for Hořava–
Lifshitz gravity with horizons modeled on the other Thurston

type geometries of ˜SL2R and solve geometry, which cor-
respond to the homogeneous spaces with Bianchi types
V I I I and V I−1 symmetries. A difficulty in finding solu-
tions with these symmetries is that the equations of motions
contain higher derivative terms that can not be eliminated
by suitable choices of constants, however, further work
is under progress in this sense. Also, in view of applica-
tions of black holes with Thurston horizon geometries in
AdS/CFT context, where the symmetry requirements on
spatial directions are slightly relaxed considering homo-
geneity instead of usual translational symmetries [57,64],
it would be interesting to further analyze the (1 + 4) dimen-
sional black holes we obtained for z = 4 Hořava–Lifshitz
gravity.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This work is
entirely theoretical, so we have not used any specific data.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-

123



Eur. Phys. J. C (2021) 81 :865 Page 19 of 21 865

ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

A Appendix

In this appendix, we present Ricci scalars and the components
of Ri j , Ki j , and Li j tensors for both Bianchi types I I and
I I I models, where the i and j indices run over the radial
coordinate r and the Bianchi space part indices {1, 2, 3}.

A.1 Bianchi type I I

For this Bianchi type, with the considered metric ansatz (20),
the non-zero component of Ricci tensor are given by

Rrr = − 1

4r2 f

(
f ′r(2m + n) + 2m f (m − 2) + n f (n − 2)

)
,

(165)

R11 = − 1

4brm+2

(
f ′r2m+1b2m + 2r2m f b2m(m − 1)

+n f b2r2mm + 2arn+2)
, (166)

R22 = − arn

4b2r2m+2

(
f ′r2m+1b2n + 2n f b2r2m(m − 1)

+r2m f b2n2 − 2arn+2)
, (167)

R23 = arnx1

4b2r2m+2 ( f ′r2m+1b2n + 2n f b2r2m(m − 1)

+r2m f b2n2 − 2arn+2), (168)

R33 = 1

4r2

(
− (an(x1)2rn + bmrm)r f ′

− f (2m + 1 − 2)
(
mbrm + an(x1)2rn

)

−2arn+2(b−1r−m − ab−2rn−2m(x1)2)

)
. (169)

Also, the Ricci scalar is

R = 1

2b2r2m+2

( − b2(2m + n)r2m+1 f ′

−(3m2 + (2n − 4)m + n2 − 2n)b2 f r2m − arn+2).
(170)

The extrinsic curvature tensor Ki j , defined by (4), does not
have non-zero components with the metric (20). Also, for Li j

defined by (11), we have the following components, consid-
ering β = − 1

3

Lrr = 1

48 f b4r4m+4

(
b4r4m+2(m − n)2

(
− 4 f f ′′ + f ′2

−4r−1 f

(
m − 2 + n

2

)
f ′

)
− (n − 2) f 2(4m − n

−6)r−2 + 20ab2rn+2m+2 f (m − n)2 − 16r2n+4a2
)

, (171)

L11 = 1

48

1

b3r3m+4

(
r4m+2b4(m − n)

(
− 4r f f ′′′

−8

(
1

4
r f ′ + f

(
m + 3

4
n − 2

))
f ′′ − 3

(
m + 1

3
n − 2

)
f ′2

+20r−2m−1b−2
(

− 1

5
f b2

(
m2 +

(
7

2
n − 9

)
m − 11

2
n

+12

)
r2m + arn+2

)
f ′ − f b−2r−2((2 − n) f b2(n − 4

+m)(n + 6 − 4m) + 5ar−2m+n+2(m − 2n + 2))

)

+48a2r2n+4
)

, (172)

L22 = −5

3

rna

b4r4m+4

(
b4(m − n)

(
− 1

10
r4m+3 f f ′′′

−1

4
r2

(
1

5
r f ′ + f

(
m + 2

5
n − 8

5

))
r4m f ′′

+1

2
b−2r

(
− 3

10
b2 f

(
− 1

6
n2 +

(
13

6
m − 3

)
n + m2

−20

3
m + 8

)
r2m + arn+2

)
r2m f ′ − 1

16

(
m + 3

5
n

−12

5

)
r4m+2 f ′2 − 3

20

(
m − 3

2
− 1

4
n

)
f 2(n − 2)

(
m

−8

3
+ 1

3
n

)
r4m − 1

4
r2m+n+2 f ab−2(m − 3n + 4)

)

+r2n+4a2
)

, (173)

L23=5

3

arnx1

b4r4m+4

(
b4r4m(m−n)

(
− 1

10
f r3 f ′′′ − 1

20
r2

(
f ′r

+5

(
m + 2

5
n − 8

5

)
f

)
f ′′ + 1

2

(
3

10

(
1

6
n2 −

(
13

6
m − 3

)
n

−m2 + 20

3
m − 8

)
b2 f r2m + arn+2

)
r−2m+1b−2 f ′

− 1

16
r2

(
m + 3

5
n − 12

5

)
f ′2 − 3

20

(
m − 3

2

−1

4
n

)
f 2(n − 2)

(
m − 8

3
+ 1

3
n

)

−1

4
rn+2 f ab−2(m−3n+4)r−2m

)
+r2n+4a2

)
, (174)

L33= 1

48b4r4m+4

(
(m−n)b4r4m

(
8(rn(x1)2a−1

2
rmb

)
r3 f ′′′

+4

(
r

(
rn(x1)2a − 1

2
rmb

)
f ′ +

(
− 2b

(
m + 3

4
n − 2

)
rm

+rn(x1)2a(5m + 2n − 8)

)
f

)
r2 f ′′ + r2(−b(3m + n

−6)rm + rn(x1)2a(5m + 3n − 12)) f ′2

− f ′b−2r−2m+1
(

4

(
m2 + (

7

2
n − 9)m − 11

2
n

+12

)
b3 f r3m − 12a

(
m2 +

(
13

6
n − 20

3

)
m − 1

6
n2

−3n + 8

)
r2m+n(x1)2b2 f − 20abrm+n+2
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+40a2r2n+2(x1)2)

+(n + 6 − 4m)(n − 2)b(n − 4 + m) f 2rm

−arn(n + 6 − 4m)(3m − 8 + n)(x1)2(n − 2) f 2r

−20ab−1rn−m+2 f (m − 2n + 2)

+20a2b−2r2n−2m+2(x1)2 f (m − 3n + 4)
)

+48rm+2n+4a2b − 80r3n+4a3(x1)2)
. (175)

A.2 Bianchi type I I I

For Bianchi type I I I , with the metric ansatz (38), the non-
zero components of Ricci tensor are

Rrr = − 1

4 f r2

(
r(m + 2n) f ′ + f (m2 + 2n2 − 2m − 4n)

)
,

R11 = − 1

4r2

(
f ′arn+1n + an f (m + 2n − 2)rn + 4r2

)
,

R22 = −bm

4
rm−2 (

f ′r + f (m + 2n − 2)
)
,

R33 = − e2x1

4r2 ( f ′arn+1n + an f (m + 2n − 2)rn + 4r2). (176)

The Ricci scalar is given by

R = − 1

2arn+2 (arn+1(m + 2n) f ′ + f a(m2

+(2n − 2)m + 3n2 − 4n)rn + 4r2). (177)

The extrinsic curvature Ki j , defined by (4), vanishes with
metric (38), and the non-zero components of tensor Li j ,
defined by (11), considering β = − 1

3 , are as follows

Lrr = 1

48

1

f r2n+4a2

(
(m − n)2r2n( − 4a2r2 f f ′′ + a2r2 f ′2

−2a2r f (m − 4 + 2n) f ′ + a2 f 2(m − 2)

×(m − 4n + 6)
) − 16r4)

, (178)

L11 = 1

48

1

arn+4

(
r2n(m − n)

(
4a2r3 f f ′′ + 6a2r2 f ′′

(
1

3
r f ′

+ f

(
m + 4

3
n − 8

3

))
+ a2r2(m + 3n − 6) f ′2

+14ra2 f f ′
(

2

7
n2 +

(
m − 18

7

)
n − 11

7
m + 24

7

)

−a2 f 2(m − 2)(6 − 4n + m)(n − 4 + m)

)
+ 16r4

)
,

(179)

L22 = −rmb

6a2r2n+4

(
(m − n)r2n

(
a2r3 f f ′′′ +

(
1

2
r f ′

+ f

(
m + 5

2
n − 4

))
r2a2 f ′′ + 3

8
r2a2

(
m + 5

3
n − 4

)
f ′2

−1

4
a2(m2 + (18 − 13n)m − 6n2 + 40n − 48) f r f ′

−1

8
f 2a2(m − 2)(6 − 4n + m)(3n − 8 + m)

)
+ 2r4

)
,

(180)

L33 = e2x1

8arn+4

(
(m − n)a2r2n

(
2

3
f r3 f ′′′ + r2

(
1

3
r f ′

+ f

(
m + 4

3
n − 8

3

))
f ′′ + 1

6
r2(m + 3n − 6) f ′2

+1

3
r f f ′(2n2 + (7m − 18)n − 11m + 24)

−1

6
f 2(m − 2)(−4n + 6 + m)(n − 4 + m)

)
+ 8

3
r4

)
.

(181)
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