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Abstract We prove that a resonance enhancement of neu-
trino oscillations in magnetic field is possible due to transi-
tion magnetic moments and demonstrate that this resonance
is strictly connected to the neutrino polarization. To study the
main properties of this resonance, we obtain the probabili-
ties of transitions between neutrino states with definite flavor
and helicity in inhomogeneous electromagnetic field in the
adiabatic approximation. Since the resonance is present only
when the adiabaticity condition is fulfilled, we also obtain
and discuss this condition.

The neutrino oscillations are usually described using the phe-
nomenological theory based on the ideas by Pontecorvo (see,
e.g. [1]). Within this approach the interaction with matter can
be taken into account with the help of an effective poten-
tial [2], which modifies the neutrino dispersion law. As a
result, the resonance behavior of flavor oscillations, i.e. the
Mikheev–Smirnov–Wolfenstein (MSW) effect [3,4], can be
observed [5]. However, since neutrino is a massive particle, it
is necessary to take into account not only the neutrino flavor
oscillations, but also the spin rotation effect to construct a
complete description of neutrino evolution.

When neutrino propagates in vacuum, in matter at rest or
parallel to the direction of magnetic field [6], the helicity does
not change. In this case it is possible to consider the evolu-
tion of a neutrino state with a definite helicity. Nevertheless,
the presence of electromagnetic field [7,8], moving or polar-
ized matter [9] (see also [10,11]) in general case can modify
neutrino spin orientation. Spin rotation of neutrino in electro-
magnetic field was widely discussed about 40 years ago (see,
e.g., [12–15]). In particular, spin rotation was considered as
a possible explanation of the solar neutrino problem. For the
first time the external medium as a factor, which results in
an actual spin precession of the neutrino, was considered in
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[9]. However, the neutrino propagation in moving matter has
been studied for a long time. The dispersion law for neutrino
in moving matter was considered in [16,17]. In [18–23] the
polarization of the background matter was taken into account
using the concept of induced neutrino magnetic moment. The
value of the induced magnetic moment should be calculated
for any preset composition of the background medium. In
particular, in [24] it was calculated for the medium composed
of electrons only.

Since there are correlations between flavor oscillations
and spin rotation, while describing neutrino evolution in the
general case it is necessary to take into account these pro-
cesses simultaneously. The results of such description may
be significant for astrophysics [25–32].

A rigorous quantum field theoretical description of Dirac
neutrino propagation taking into account both flavor oscilla-
tions and spin rotation can be constructed within the Stan-
dard Model modification [33–35], where both the mass states
and their arbitrary superpositions are considered as different
quantum states of an SU (3) neutrino multiplet. This descrip-
tion can be generalized for the case of neutrino propagating
in dense matter [36–39] and electromagnetic field [40]. Then
the neutrino evolution can be studied on the base of neutrino
wave equation, which has the same meaning as the Dirac–
Schwinger equation of quantum electrodynamics (see, e.g.
[41]). As a result of this approach in [40] we obtain that the
cosine of the effective mixing angle for neutrino, moving in
electromagnetic field with constant characteristics, changes
its sign as a function of the magnetic induction, and there-
fore the resonance behavior of probabilities due to neutrino
transition magnetic moments is possible [40]. As it is well-
known, the resonance can be observed when the background
characteristics vary slowly in space. In the present paper we
obtain explicit formulas for neutrino spin-flavor transition
probabilities in the case of inhomogeneous electromagnetic
field within the adiabatic approximation, which is usually
used to describe the MSW effect for neutrino in matter. We
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study the properties of the new resonance taking into account
the restrictions on the magnetic induction, for which the adi-
abatic approximation is valid.

The wave equation for neutrino in electromagnetic field,
which takes into account the direct interaction of neutrino
multiplet with the field due to the anomalous magnetic
moments and the transition magnetic and electric moments,
is as follows [40](

iγ μ∂μI − M − i

2
μ0F

μνσμνM − i

2
FμνσμνMh

− i

2
�FμνσμνMah

)
Ψ (x) = 0. (1)

The wave functions Ψ (x) describe the SU (3) neutrino
multiplet as a whole. Here I is the identity matrix, M is the
neutrino mass matrix, �Fμν = − 1

2e
μνρλFρλ is the dual tensor

to the electromagnetic field tensor Fμν . The interaction with
the electromagnetic field via transition magnetic and transi-
tion electric moments is taken into account by introducing
the Hermitian matrix of transition magnetic moments Mh

and the matrix of the transition electric moments Mah . In
the first approximation the diagonal magnetic moments are
proportional to the neutrino masses, i.e. the matrix of the
diagonal magnetic moments is defined as μ0M, where

μ0 = 3eGF

8
√

2π2
. (2)

The evolution of ultra-relativistic neutrinos can be stud-
ied in the quasi-classical approximation. In this case we can
assume that the neutrino 4-velocity uμ, which is proportional
to the neutrino kinetic momentum, is constant [42]. Then the
evolution equation takes the form

iΨ̇ (τ ) = FΨ (τ), (3)

where

F = M − μ0Mγ 5γ μ �Fμνu
ν

−Mhγ
5γ μ �Fμνu

ν + Mahγ
5γ μFμνu

ν . (4)

The dot denotes differentiation with respect to the proper
time τ .

For simplicity we will consider the two-flavor model. In
the two-flavor model the mass matrix M and the matrices of
transition moments Mh , Mah are 2 × 2 matrices and may
be expressed in the terms of the Pauli matrices. The corre-
sponding wave functions Ψ (τ) are 8-component objects. In
the mass representation

M = 1
2 (σ0(m1 + m2) − σ3(m2 − m1)),

Mh = 1
2 (m1 + m2)μ1σ1,

Mah = 1
2 (m1 − m2)ε1σ2,

(5)

where σi , i = 1, 2, 3 are the Pauli matrices, σ0 is the identity
2 ×2 matrix. For the Standard Model neutrinos the values of
the coefficients μ1 and ε1, which characterize the neutrino

transition magnetic and electric moments, can be found in
[8] (see also [43]). Within the Standard Model the transi-
tion moments are suppressed in comparison to the diagonal
ones due to GIM-mechanism [46], and the neutrino transi-
tion electric moments are smaller than the transition magnetic
moments. In this work we assume that the transition electric
moments are small, and so we neglect them. In this case we
are able to obtain an analytical solution of the evolution equa-
tion in the two flavor model. Possible effects of the transition
electric moment are discussed further in the paper.

Then matrix (4) in the mass representation looks like

F → 1

2

{
(σ0(m1 + m2)

−σ3(m2 − m1))(1 − μ0γ
5γ μ �Fμνu

ν)

−σ1(m1 + m2)μ1γ
5γ μ �Fμνu

ν
}
. (6)

When the direction of the magnetic induction is constant,
the operator

S = γ 5γ μ �Fμνu
ν/N , N = √

uμ
�Fμα �Fανuν . (7)

is an integral of motion for the evolution equation (6). Note
that for neutrino propagating orthogonally to the purely mag-
netic field with the induction B we have N = u0|B|, and for
neutrino propagating parallel to the magnetic field N = |B|,
i.e. N is the absolute value of the magnetic induction in the
neutrino rest frame. The operator S defines the projection of
the spin on the direction of the magnetic field in the neutrino
rest frame. The corresponding neutrino polarization vector
is defined as follows

s̄μ = − �Fμνu
ν/N . (8)

If the magnetic field varies slowly, the operator S can be
considered as an approximate integral of motion, when the
energy of the neutrino interaction with the field due to the
magnetic moment is much larger than the inverse character-
istic time of the field variation. To put it in a more formal
way, the following conditions must be satisfied [44]

κ

2μ0N
� 1, (9)

�

κ
� 1, (10)

where

κ =
√
H2 Ḣ2 − (H Ḣ)2/N 2,

� = N
H2 Ḣ2−(H Ḣ)2 e

αβγ δ Ḧα ḢβHγ uδ.
(11)

Here Hμ = �Fμνuν .
However, the neutrino Lorentz factor is rather large

u0 � 1. Under the Lorentz transformations to the neutrino
rest frame the longitudinal component of the magnetic field
remains the same, while the orthogonal component increases
proportionally to u0. Hence, the direction of the magnetic
induction in the neutrino rest frame is almost orthogonal to
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the velocity of this reference frame, except for the case of the
neutrino propagating precisely in the direction of the mag-
netic field or against it. Except for this case, the directions
of the first and second derivatives of the magnetic induction
in the neutrino rest frame are also almost orthogonal to the
direction of the neutrino velocity, and condition (10) is sat-
isfied.

In paper [40] we obtain solutions of the evolution equation
in the case of constant background conditions with the help
of the resolvent U (τ )

Ψ (τ) = 1√
2u0

U (τ )Ψ0. (12)

Here Ψ0 is a constant object, which defines the neutrino
initial state and in the two flavor model has 8 components.
For a neutrino pure state with a definite initial polarization it
can be presented in the form

Ψ0 = 1
2 (1 − γ 5γμs

μ
0 )(γμuμ + 1)

(
ψ0 ⊗ e j

)
,

Ψ̄0Ψ0 = 2.
(13)

Here ψ0 is a constant bispinor, e j is an arbitrary unit vector
in the two-dimensional vector space over the field of complex
numbers, and sμ

0 is a 4-vector of neutrino polarization such
that (us0) = 0.

When the external conditions vary slowly, it is also pos-
sible to write the resolvent U (τ ). Since the operator S with
the eigenvalues ζ can be considered as an integral of motion,
we can study the evolution of neutrino states with definite
ζ independently. Note that the states with definite ζ in the
general case are not the states with definite helicity.

The matrix, which determines the evolution equation for
the states with definite ζ , can be diagonalized in the mass
representation at a given point τ using the matrix U

(e f f )
ζ (τ )

U
(e f f )
ζ (τ ) =

(
cos θ ′

ζ (τ ) sin θ ′
ζ (τ )

− sin θ ′
ζ (τ ) cos θ ′

ζ (τ )

)
. (14)

Here θ ′
ζ (τ ) is an effective mixing angle in electromagnetic

field in the mass representation for the states with definite ζ

(for more detail see [40]). The value of the angle θ ′
ζ (τ ) is

determined by the relations

X ′
ζ (τ ) = sin 2θ ′

ζ (τ ),

Y ′
ζ (τ ) = cos 2θ ′

ζ (τ ),
(15)

where

Y ′
ζ (τ ) = 1

Zζ (τ )

((
m2 − m1

)(
1 − ζμ0N (τ )

))
,

X ′
ζ (τ ) = 1

Zζ (τ )

(
− ζμ1N (τ )

(
m2 + m1

))
,

Zζ (τ ) =
{((

m2 − m1
)(

1 − ζμ0N (τ )
))2

+
((
m2 + m1

)
μ1N (τ )

)2}1/2
, (16)

Then for sin θ ′
ζ (τ ) and cos θ ′

ζ (τ ) we have

sin θ ′
ζ (τ ) = sgnX ′

ζ (τ )
√

(1 − Y ′
ζ (τ ))/2,

cos θ ′
ζ (τ ) =

√
(1 + Y ′

ζ (τ ))/2.
(17)

The adiabatic approximation is valid when |θ̇ζ | � Zζ .
We can introduce the adiabaticity parameter � for neutrino
in electromagnetic field by analogy with what is usually done
for neutrino in matter (see, e.g., [45]). The adiabaticity con-
dition takes the form

� = 2Z3
ζ

μ1|Ṅ (τ )|(m2
2 − m2

1)
� 1. (18)

If the external conditions vary slowly, then the Hamiltonian
of the system is almost diagonal at every point. Then to write
down the solution with rather high accuracy, it is enough to
diagonalize the matrix of the equation at the current point τ

and to perform the inverse transformation at the initial point
τ = 0 [47]. The method is absolutely similar to what is usu-
ally done to describe MSW resonance. Using this approach,
we can obtain the resolvent U ′(τ ) in the mass representation
in the adiabatic approximation.

The matrices in (5), (6) and the resolvent U (τ ) are pre-
sented in the mass representation. To obtain the same matri-
ces in the flavor representation one should use the transfor-
mation

U (τ ) = UU ′(τ )U†. (19)

Here U is the Pontecorvo–Maki–Nakagawa–Sakata mix-
ing matrix, which in the two-flavor model is defined by the
vacuum mixing angle θ as follows

U =
(

cos θ sin θ

− sin θ cos θ

)
, (20)

To obtain the resolvent in the flavor representation one needs
to take into account relation (19). So, in adiabatical approxi-
mation we derive the following expression for the resolvent
of the wave equation, which describes the neutrino multiplet
in inhomogeneous magnetic field

U (τ ) =
∑

ζ=±1

e
−i

τ∫
0
(Tζ (τ̃ )/2)d τ̃(

Cζ cos(θζ (τ ) − θζ (0))

−iSζ σ1 sin(θζ (τ ) + θζ (0))

+iCζ σ2 sin(θζ (τ ) − θζ (0))

+iSζ σ3 cos(θζ (τ ) + θζ (0))
)
�ζ . (21)

The values of the mixing angles in the flavor representation
are given by the relation

θζ (τ ) = θ + θ ′
ζ (τ ). (22)
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In Eq. (21) the following notations are used

Sζ = sin

τ∫
0

(
Zζ (τ̃ )/2

)
d τ̃ ,Cζ = cos

τ∫
0

(
Zζ (τ̃ )/2

)
d τ̃ ,

Tζ (τ ) = (
m2 + m1

)(
1 − ζμ0N (τ )

)
, (23)

which generalize the notations used in paper [40] for con-
stant electromagnetic field. The projection operators on the
eigenstates of operator S are defined by the expressions

�ζ = 1

2
(1 + ζS) , [γ μuμ,�ζ ] = 0, ζ = ±1. (24)

To calculate the probabilities of transitions between states
with definite flavor and polarization, we use quasi-classical
spin-flavor density matrices introduced similarly to the quasi-
classical spin density matrices (see [44])

ρα(τ) = 1

4u0U (τ )
(
γ μuμ + 1

) (
1 − γ 5γμs

μ
0

)
P

(α)
0 Ū (τ )

(25)

In this formula sμ
0 defines the initial polarization state of

the neutrino, the projection operator P(α)
0 defines its initial

flavor state and the resolvent U (τ ) is given by Eq. (21). The
probability of a transition from the state α to the state β in
the time τ is determined by the following relation

Wα→β = Tr
{
ρα(τ)ρ

†
β(τ = 0)

}
. (26)

Note that since in our model these states of the neutrino
multiplet are pure states, all the final formulas may also be
obtained using the neutrino multiplet wave functions.

In the flavor representation the projection operators on
states with the definite flavor take the form

P
(α)
0 = 1

2 (1 + ξασ3),P
(β)
0 = 1

2 (1 + ξβσ3),

ξα, ξβ = ±1.
(27)

To obtain the projection operators on the initial and final
state with the electron flavor one should choose ξα, ξβ = 1,
otherwise ξα, ξβ = −1. We assume that in the initial and
final states neutrino has a definite helicity, i.e.

s(α)μ
0 = ζαs

μ
sp, s(β)μ

0 = ζβs
μ
sp,

sμ
sp = {|u|, u0u/|u|}, ζα, ζβ = ±1,

(28)

where the values ζα, ζβ = 1 correspond to the right-handed
neutrino and ζα, ζβ = −1 correspond to the left-handed
neutrino. The spin-flavor transition probabilities can be pre-
sented in the form

Wα→β = 1 + ξαξβ

2

1 + ζαζβ

2
W1 + 1 + ξαξβ

2

1 − ζαζβ

2
W2

+1 − ξαξβ

2

1 + ζαζβ

2
W3

+1 − ξαξβ

2

1 − ζαζβ

2
W4, (29)

where

W1 = 1

8

(
(1−ζα(s̄ssp))

2

×(
1 + C2+1 cos 2�+1(τ ) + S2+1cos 2�+1(τ )

)
+(1+ζα(s̄ssp))

2(1 + C2−1cos 2�−1(τ ) + S2−1cos 2�−1(τ )
))

+1

2
(1−(s̄ssp)

2)
(
ξαF1(τ ) sin �(τ)+D1(τ) cos �(τ)

)
,

W2 = 1

8

(
(1−(s̄ssp)

2)
(
1 + C2+1 cos 2�+1(τ ) + S2+1 cos 2�+1(τ )

)

+(1−(s̄ssp)
2)

(
1 + C2−1 cos 2�−1(τ ) + S2−1cos 2�−1(τ )

))

−1

2
(1−(s̄ssp)

2)
(
ξαF1(τ ) sin �(τ)+D1(τ ) cos �(τ)

)
,

W3 = 1

8

(
(1−ζα(s̄ssp))

2(1 − C2+1cos 2�+1(τ ) − S2+1cos 2�+1(τ )
)

+(1+ζα(s̄ssp))
2(1 − C2−1cos 2�−1(τ ) − S2−1cos 2�−1(τ )

))

+1

2
(1−(s̄ssp)

2)
(
ξαF2(τ )sin �(τ)+D2(τ ) cos �(τ)

)
,

W4 = 1

8

(
(1−(s̄ssp)

2)
(
1 − C2+1cos 2�+1(τ ) − S2+1cos 2�+1(τ )

)

+(1−(s̄ssp)
2)

(
1 − C2−1cos 2�−1(τ ) − S2−1cos 2�−1(τ )

))

−1

2
(1−(s̄ssp))

2)
(
ξαF2(τ ) sin �(τ)+D2(τ ) cos �(τ)

)
.

(30)

Here we use the notations

�(τ) = μ0(m1 + m2)

τ∫
0

N (τ̃ )d τ̃ ,

F1(τ ) = C+1S−1 cos �+1(τ ) cos �−1(τ )

−S+1C−1 cos �+1(τ ) cos �−1(τ ),

D1(τ ) = C+1C−1 cos �+1(τ ) cos �−1(τ )

+S+1S−1 cos �+1(τ ) cos �−1(τ ),

F2(τ ) = C+1S−1 sin �+1(τ ) sin �−1(τ )

−S+1C−1 sin �+1(τ ) sin �−1(τ ),

D2(τ ) = C+1C−1 sin �+1(τ ) sin �−1(τ )

+S+1S−1 sin �+1(τ ) sin �−1(τ ), (31)

where

�±1(τ ) = θ±1(τ ) − θ±1(0),�±1(τ ) = θ±1(τ ) + θ±1(0).

(32)

In the general case the formulas are rather complicated
even in the two-flavor model. The spin-flavor transition prob-
abilities can be simplified for a neutrino, which is generated
in the region with high values of magnetic induction and
detected in vacuum. Then the final value of the mixing angle
in the flavor representation is θζ (τ ) = θ , and the initial value
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we denote as θ0
ζ = θζ (0). As we usually have no informa-

tion concerning the exact location of the neutrino generation
process, we should average the probabilities over the proper
time τ . Thus, the averaged values of the probabilities are

W1 = 1

8

(
(1 − ζα(s̄ssp))

2(1 + cos 2θ cos 2θ0+1

)

+(1 + ζα(s̄ssp))
2(1 + cos 2θ cos 2θ0−1

))
,

W2 = 1

8
(1 − (s̄ssp)

2)
(
2 + cos 2θ(cos 2θ0+1 + cos 2θ0−1)

)
,

W3 = 1

8

(
(1 − ζα(s̄ssp))

2(1 − cos 2θ cos 2θ0+1

)

+(1 + ζα(s̄ssp))
2(1 − cos 2θ cos 2θ0−1

))
,

W4 = 1

8
(1 − (s̄ssp)

2)
(
2 − cos 2θ(cos 2θ0+1 + cos 2θ0−1)

)
.

(33)

For high energy neutrinos the assumption (s̄ssp) = 0 is
valid with high accuracy, except for a narrow region of angles
when neutrino velocity and the vector of magnetic induction
are almost parallel (see [40]). Therefore, the probabilities
take the form

W1,2 = 1

8

(
2 + cos 2θ(cos 2θ0+1 + cos 2θ0−1)

)
,

W3,4 = 1

8

(
2 − cos 2θ(cos 2θ0+1 + cos 2θ0−1)

)
. (34)

Taking into account Eqs. (15) and (22), we have

cos 2θ0
ζ = Y ′

ζ cos 2θ − X ′
ζ sin 2θ. (35)

In the explicit form (22) can be presented as follows

cos 2θ0
ζ =

(
(m2 − m1)(1 − ζμ0N (0)) cos 2θ

+ζ(m2 + m1)μ1N (0) sin 2θ
)

×
((

(m2 − m1)(1 − ζμ0N (0))
)2

+(
(m2 + m1)μ1N (0)

)2
)−1/2

. (36)

Note that when the neutrino state can be described as a
superposition of the mass eigenstates, the effective mixing
angles θζ are equal to their vacuum values.

The theoretical predictions for the Standard Model neutri-
nos give μ1/μ0 ∼ 10−4 (see [8]), and so it can be expected
that

r = μ1(m1 + m2)

μ0(m2 − m1)
� 1. (37)

In this case in the first approximation the transition prob-
abilities take the form

W1,2 = 1

8

(
2+

(
1+sgn

(
1−μ0(m2−m1)

m2 − m1
N (0)

))
cos2 2θ

)
,

W3,4 = 1

8

(
2−

(
1+sgn

(
1−μ0(m2−m1)

m2 − m1
N (0)

))
cos2 2θ

)
.

(38)

Obviously, when μ0N (0) ≈ 1, expression (38) is not
valid, and the exact formula (34) is necessary.

However, if the adiabaticity condition is not fulfilled,
even for initial fields, which exceed the resonance value,
the resonance behavior of transition probabilities will not be
observed. Since in the resonance region
Zζ ≈ μ1N (m1 + m2), the adiabaticity parameter � in (18)
becomes proportional to μ2

1. Hence, though μ1 is absent in
Eq. (38), if we put μ1 = 0 from the start, the adiabaticity
condition can not be fulfilled in the resonance region and
we will not obtain the resonance behavior of the transition
probabilities.

The coefficient r defined by Eq. (37) actually determines
the region of the fields, where μ1 can not be neglected. That
means, the greater is the parameter r , the wider is the reso-
nance region. Note that for smaller values of r the adiabaticity
condition (18) results in stronger restrictions on the possible
value of the field gradient.

In Fig. 1 the behavior of the neutrino flavor-survival prob-
ability W1 + W2 for different values of r is demonstrated
in the case when the neutrino velocity is orthogonal to the
magnetic induction vector. Here we choose the value of the
vacuum mixing angle such that sin2 θ = 0.307.

In the present paper we neglect the transition electric
moment, since no explicit analytical solution can be found for
arbitrary values of the transition electric moment. However,
the resonance behavior of the flavor transition probabilities
will still be present, since it is determined by the diagonal
elements of the matrices in the wave equation expressed in
the mass representation. For the Standard Model neutrinos
the effect of the transition magnetic and electric moments
becomes significant only for the values of the initial mag-
netic field, which are in the resonance region μ0N ∼ 1. That
is, the resonance denominator of the effective mixing angle
contains the value Zζ , which can be approximated as

Zζ ≈
((

(m2 − m1)(1 − ζμ0N )
)2 + (

(m1 + m2)μ1N
)2

+(
α(m2 − m1)ε1 Ñ

)2
)1/2

, (39)

where |α| ≤ 1. Indeed, the interaction with the electric tran-
sition moment is determined by the spin operator

S̃ = −γ 5γ μFμνu
ν/Ñ , Ñ = √

uμFμαFανuν . (40)

The square of this operator, as well as the square of any
spin operator, is equal to unity, and therefore this approxi-
mation can be obtained. Obviously, the electric moment will
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Fig. 1 The dependence of the flavor survival probability on the initial
magnetic induction for a neutrino propagating orthogonally to the mag-
netic field for r = 0.005 (the solid line) and for r = 0.1 (the dashed
line)

not make the resonance disappear. When the transition elec-
tric moment is taken into account, no spin integral of motion
exists for Eq. (4). Thus, the neutrino can not propagate in
any spin eigenstate. This may lead to the following con-
sequences. Firstly, the value of the resonance field may be
slightly changed. Secondly, the probabilities W1 and W2 may
differ from each other, as well as W3 may differ from W4 (see
(34)).

For high values of magnetic field all the spin-flavor tran-
sition probabilities become equal

W1 = W2 = W3 = W4 = 1

4
. (41)

This means that all the information about neutrino initial
state is lost. Expression (41) follows directly from Eq. (34)
not only when condition (37) is satisfied.

Although for most situations the condition (s̄ssp) = 0 is
satisfied, there is a region of angles, for which neutrino veloc-
ity and the vector of magnetic induction are almost parallel
and this condition is not fulfilled. As it is already mentioned,
for ultra-relativistic neutrinos this region of angles is very
narrow, and even a small angular deviation makes neutrino
behave almost like in the case of orthogonal propagation [40].
Because of this instability, from the phenomenological point
of view the situation is hardly of any practical value.

However, understanding this case is very important since
it helps us to explain, why in the general case the number of
the neutrinos of the second flavor does not predominate the
number of the neutrinos of initial flavor even for the magnetic
fields higher than the resonance field (see Fig. 1). Let us
consider the limiting case, when the neutrino moves either
in the direction of the magnetic field or against it. In these
cases the helicity operator becomes an integral of motion,
and the spin-flip transitions are absent since (s̄ssp) = ±1,
i.e. W2 = W4 = 0.

For neutrino moving against the direction of the magnetic
field we have (s̄ssp) = 1. Hence,

W1 = 1 − ζα

4
(1 + cos 2θ cos 2θ0+1)

+1 + ζα

4
(1 + cos 2θ cos 2θ0−1),

W3 = 1 − ζα

4
(1 − cos 2θ cos 2θ0+1)

+1 + ζα

4
(1 − cos 2θ cos 2θ0−1). (42)

If inequality (37) holds, we can write the approximate
expressions for the transition probabilities

W1 = 1−ζα

4

(
1+sgn

(
1−μ0(m2−m1)

m2 − m1
N (0)

)
cos22θ

)

+1+ζα

4
(1+cos2 2θ),

W3 = 1−ζα

4

(
1−sgn

(
1−μ0(m2−m1)

m2 − m1
N (0)

)
cos22θ

)

+1+ζα

4
(1−cos2 2θ). (43)

According to these formulas, the resonance is present for
left-handed neutrinos, while for right-handed neutrinos it is
absent.

For neutrino moving in the direction of the magnetic field
we have (s̄ssp) = −1. The probabilities in this case can be
obtained if we change ζα → −ζα in (42), (43). So the reso-
nance is present only for right-handed neutrinos, which are
not observed in experiments. The dependence of the flavor-
survival probability W1 + W2 on the value of the magnetic
induction is demonstrated in Fig. 2.

Therefore, an important conclusion can be derived. The
presence of the resonance depends on the neutrino polar-
ization. Let us look back at formula (34). For a left-handed
particle propagating orthogonally to the magnetic field the
probabilities to observe the spin projection in the direction
of the field and opposite to it are both equal to 1/2, and the
neutrino spin-flavor transition probabilities are the sum of the
resonant and non-resonant terms. It is a well-known fact that
the MSW resonance is observed for the left-handed neutrinos
only. Since for the neutrinos in matter at rest the helicity is
conserved, the problem of the correlation between the pos-
sibility of the resonance behavior and the actual polarization
of the particle did not arise in the studies of the resonance
in matter. In this sense the description of resonance in the
magnetic field is a more complicated problem, than of the
MSW resonance for neutrino propagation in matter at rest.
In this paper we consider in detail the case of neutrinos with
definite initial and final helicities. However, our approach
enables one to study the states with any polarization. It can
be seen from (33) that the transition probabilities exhibit full
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Fig. 2 The dependence of the flavor survival probability on the initial
magnetic induction for a left-handed neutrino propagating against the
direction of the magnetic field (or a right-handed neutrino propagating
in the direction of the field) for r = 0.005 (the solid line) and for r = 0.1
(the dashed line)

resonance when the initial neutrino spin is directed along the
magnetic induction vector, and the resonance is absent when
the neutrino spin is directed opposite the magnetic induction
no matter what the direction of neutrino velocity is. This may
be important for the case of low neutrino energies, when the
neutrino chiral states differ significantly from the neutrino
helicity states.

The resonance condition is μ0N ≈ 1, and therefore it is
determined by the value of the magnetic induction in the neu-
trino rest frame. Since the value of μ0 given by the Standard
Model is very small, extremely high values of the magnetic
field are required. The estimates of the values of neutrino
energy and the magnetic field, which are necessary for the
resonance to take place, are discussed in detail in [40]. For
neutrino propagating orthogonally to the magnetic field the
resonance is reached when u0B/B0 ≈ 1.3 × 1013, where
B0 = 4.41 × 1013 Gauss is the Schwinger magnetic field.
That is, B ≈ 5.8×1026(mν/Eν) Gauss, wheremν is the aver-
age neutrino mass and Eν is the neutrino energy. For neutrino
with the massmν = 0.033 eV in the magnetic field B = 1016

Gauss the energy about 1.9 GeV is needed for the resonance
to take place. These estimates indicate that not only the res-
onance, but even the spin oscillations are very unlikely to be
observed in currently known magnetars, since the character-
istic length of spin oscillations seems to be much greater than
the size of the corresponding astrophysical objects. It is also
very important that since for the Standard Model neutrinos
r � 1, the adiabaticity condition (18)

r2(m2
2 − m2

1)

Eν

� |dN/dx |
N

. (44)

seems to give a very strict restriction on the value of the field
gradient dN/dx . Here Eν is the neutrino energy, and x is the
spacial coordinate along the neutrino trajectory. Even when
the magnetic field and the neutrino energy are high enough

for the resonance to take place, if relation (44) is violated,
no resonance will be present. The resonance might become
observable for Standard Model neutrinos if some exotic com-
pact objects with higher values of magnetic fields or larger
size than the currently known magnetars are discovered. In
our opinion taking into account this resonance as well as
neutrino spin rotation might also be interesting in the studies
of the Early Universe, since these effects change the flavor
and helicity characteristics of the neutrino flux and therefore
might influence the particle composition of the background
matter.

However, there are models of New Physics, which pre-
dict greater values of neutrino magnetic moments than the
Standard Model. Since the Standard Model theoretical pre-
diction is μν = μ0mν ∼ 3 · 10−19

( mν

1eV

)
μB and the current

experimental restriction on the neutrino magnetic moment
is μν < 2.9 · 10−11μB [48,49], these models can not be
excluded. If such New Physics exists, then near magnetars
the spin-flip effect and even the resonance behavior of neu-
trino transition probabilities may be observed (see Fig. 1).
For such models the mass matrix and the matrix of the diag-
onal magnetic moments may be not proportional. Obviously,
our results are valid within the models of New Physics with
the values of the transition moments, which are significantly
smaller than the diagonal magnetic moments. For this case
our results are also applicable. To obtain the expressions for
transition probabilities within such models one should only
replace in all our formulas

μ0m1 → μ11, μ0m2 → μ22,

μ1(m1 + m2) → 2μ12.
(45)

Here μ11, μ22 are the diagonal magnetic moments, and
μ12 is the transition magnetic moment. The resonance con-
dition in this case takes the form

N
|μ22 − μ11|
|m2 − m1| = |1 − r tan 2θ |−1, (46)

where r = 2μ12/|μ22 − μ11|. For neutrinos propagating
parallel to the magnetic field this condition was obtained in
[6]. If r � 1 the adiabaticity condition (18) takes the form

(m2
2 − m2

1)

Eν

� |dN/dx |
N

(47)

and the following effects might become observable. The spin
rotation effect might become significant for neutrinos pro-
duced inside the magnetars or other compact objects with
the high values of the magnetic field. Therefore, the total
flux of observable neutrinos of all flavors might become less
than the initial flux, since only left-handed neutrinos interact
with a terrestrial detector. For solar neutrinos the possibil-
ity of this effect was discussed in [12,13]. The flavor com-
position of the flux of the neutrinos produced inside some
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compact object might differ significantly from the the same
flux measured in terrestrial conditions due to the resonance
studied above. However, what effects will really be observed
depends on the definite value of μν . It should be emphasized
that in the models of New Physics with large neutrino transi-
tion moments for the high values of the magnetic field all the
averaged spin-flavor transition probabilities become approx-
imately equal to 1/4 similar to the case of Standard Model
neutrinos (see (41)).

In this paper we generalize the approach used in [40],
where the problem was studied in the case of constant exter-
nal conditions. We find analytical expressions for solutions
of the neutrino wave equation in magnetic field in adia-
batic approximation in two-flavor model taking into account
transition magnetic moments. We derive the formulas for
the transition probabilities and indeed obtain a resonance
enhancement of neutrino oscillations due to transition mag-
netic moments, which was predicted in paper [40]. We show
that the type of the resonance is determined by the neutrino
polarization and in the case of extra-high value of magnetic
fields the averaged values of all spin-flavor transition proba-
bilities are equal to 1/4.
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