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Abstract In this work, we provide estimates of the branch-
ing ratios, direct CP asymmetries and triple product asym-
metries in B(s) → (ππ)(Kπ) decays in the perturbative
QCD approach, where the ππ and Kπ invariant mass spec-
tra are dominated by the vector resonances ρ(770) and
K ∗(892), respectively. Some scalar backgrounds, such as
f0(500, 980) → ππ and K ∗

0 (1430) → Kπ are also
accounted for. The ρ(700) is parametrized by the Gounaris-
Sakurai function. The relativistic Breit-Wigner formula for
the f0(500) and Flatté model for the f0(980) are adopted to
parameterize the time-like scalar form factors FS(ω

2). We
also use the D.V. Bugg model to parameterize the f0(500)

and compare the relevant theoretical predictions from dif-
ferent models. While in the region of Kπ invariant mass,
the K ∗

0 (1430) is described with the LASS lineshape and
the K ∗(892) is modeled by the Breit-Wigner function. We
find that the decay rates for the considered decay modes
agree with currently available data within errors. As a by-
product, we extract the branching ratios of two-body decays
B(s) → ρ(770)K ∗(892) from the corresponding four-body
decay modes and calculate the relevant polarization frac-
tions. Our prediction of longitudinal polarization fraction for
B0 → ρ(770)0K ∗(892)0 decay deviates a lot from the recent
LHCb measurement, which should be resolved. It is shown
that the direct CP asymmetries are large due to the sizable
interference between the tree and penguin contributions, but
they are small for the tree-dominant or penguin-dominant
processes. The PQCD predictions for the “true” triple prod-
uct asymmetries are small which are expected in the standard
model, and consistent with the current data reported by the
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LHCb Collaboration. Our results can be tested by the future
precise data from the LHCb and Belle II experiments.

1 Introduction

Multi-body B meson decays offer one of the best tools for
studying direct CP violation and provide an interesting test-
ing ground for strong interaction dynamical models. Theo-
retically, B(s) → V1V2, S1S2, S1V2, V1S2 decays (here V1,2

and S1,2 denote the vector and scalar mesons, respectively)
are treated as two-body final states and have been studied in
the two-body framework using QCD factorization (QCDF)
[1–6], the perturbative QCD (PQCD) approaches [7–19],
the soft-collinear-effective theory (SCET) [20–25] and the
factorization-assisted topological amplitude approach (FAT)
[26]. While they are at least four-body decays on the experi-
mental side shown in Fig. 1, since the vector (scalar) mesons
decay via the strong interaction with a nontrivial width. In
recent years, four-body charmless hadronic B decays have
been reported by BABAR [27–32], Belle [33–36] and LHCb
[37–44] Collaborations, and the branching ratios for many
partial waves have been measured, see Tables 1 and 2 for
a summary of the experimental results. In addition to the
branching ratios and the polarization fractions, other observ-
ables constructed from the helicity amplitudes are also inter-
esting. The phenomenology of these decay modes provides
rich opportunities for our understanding of the mechanism
for hadronic weak decays and their CP asymmetry, and the
search for physics beyond the standard model (SM).

Besides the directCP asymmetries, there is another signal
of CP violation in the angular distribution of B(s) → V1V2

decays, which is called triple-product asymmetries (TPAs)
[47–55]. These triple products are odd under the time rever-
sal transformation (T ), and also contribute potential sig-
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nals of CP violation due to the CPT theorem. TPAs have
already been measured by BABAR, Belle, CDF and LHCb
[40,43,56–60]. It is known that a non-vanishing direct CP
violation needs the interference of at least two amplitudes
with a weak phase difference �φ and a strong phase dif-
ference �δ. The direct CP violation is proportional to
sin �φ sin �δ, while TPAs go as sin �φ cos �δ. If the strong
phases are quite small, the magnitude of the direct CP viola-
tion is close to zero, but the TPA is maximal. Hence directCP
violation and TPAs complement each other. Even if the effect
of CP violation is absent, T -odd triple products (also called
“fake” TPAs), which are proportional to cos �φ sin �δ, can
provide useful complementary information on new physics
[51]. TPAs are excellent probes of physics beyond the SM
since most TPAs are expected to be tiny within the SM and
are not suppressed by the small strong phases.

As is well known, the kinematics of two-body decays
is fixed, while the multi-body decay amplitudes depend
on at least two kinematic variables. Meanwhile, the multi-
body decays not only receive the resonant and nonreso-
nant contributions, but also involve the possible significant
final-state interactions (FSIs) [61–63]. In this respect, multi-
body decays are considerably more challenging than two-
body decays, but provide a number of theoretical and phe-
nomenological advantages. In two-body B decays, the mea-
sured CP violation is just a number while the CP asym-
metry depends on the invariant mass of the two-meson
pair and varies from region to region in the Dalitz plot
[64,65] in the three-body modes [66]. In addition, strong
phases in multi-body decays arise nonperturbatively already
at the leading power, through complex phases in matrix ele-
ments such as Fπ ∼< 0| j |ππ > and so on. Since the
B(s) → V1V2, V1S2, S1V2, S1S2 decays are expected to pro-
ceed through V1(S1) → P1P2 and V2(S2) → Q1Q2 with
P1,2 (Q1,2) denoting pseudoscalar meson π or K , it is mean-
ingful to study such decays in the four-body framework,
which provide useful information for understanding theCP-
violation mechanisms.

As addressed above, multi-body decays of heavy mesons
involve more complicated dynamics than two-body decays.
A factorization formalism that describes a multi-body decay
in full phase space is not yet available at present. It has
been proposed that the factorization theorem of three-body
B decays is approximately valid when two particles move
collinearly and the bachelor particle recoils back [67,68].
More details can also be found in Refs. [69,70]. This situa-
tion exists particularly in the low ππ or Kπ invariant mass
region (�2 GeV) of the Dalitz plot where most resonant
structures are seen. The Dalitz plot is typically dominated
by resonant quasi-two-body contributions along the edge.
This proposal provides a theoretical framework for stud-
ies of resonant contributions based on the quasi-two-body-
decay mechanism. Several theoretical approaches have been

developed for describing the three-body hadronic decays
of B mesons based on the symmetry principles [71–76],
the QCDF [77–87] and the PQCD approaches [88–102].
Recently, the localized CP violation and branching frac-
tion of the four-body decay B̄0 → K−π+π+π− have been
calculated by employing a quasi-two-body QCDF approach
in Refs. [103,104]. Similar to three-body B meson decays,
four-body B(s) → R1R2 → (P1P2)(Q1Q2) decay modes
(R1,2 represents the vector or scalar intermediate resonance)
are assumed to proceed dominantly with two intermediate
resonances R1 or R2 each decaying to a pseudoscalar pair.
As a first step, we can only restrict ourselves to the specific
kinematical configurations in which each two particles move
collinearly and two pairs of final state particles recoil back
in the rest frame of the B meson, see Fig. 1. Naturally the
dynamics associated with the pair of final state mesons can
be factorized into a two-meson distribution amplitude (DA)
�h1h2 [105–111]. Thereby, the typical PQCD factorization
formula for the considered four-body decay amplitude can
be described as the form of,

A = �B ⊗ H ⊗ �P1P2 ⊗ �Q1Q2 , (1)

where �B is the universal wave function of the B meson and
absorbs the non-perturbative dynamics in the process. The
�P1P2,Q1Q2 is the two-hadron DA, which involves the reso-
nant and nonresonant interactions between the two moving
collinearly mesons. The hard kernel H describes the dynam-
ics of the strong and electroweak interactions in four-body
hadronic decays in a similar way as the one for the corre-
sponding two-body decays.

In this work, we study the four-body decays B(s) →
(ππ)(Kπ) in the PQCD approach based on kT factorization
with the relevant Feynman diagrams illustrated in Fig. 2.
In the considered (ππ) invariant-mass range, the vector
resonance ρ(770) is expected to contribute, together with
the scalar resonances f0(500) and f0(980). The Kπ spec-
trum is dominated by the vector K ∗(892) resonance and the
scalar resonance K ∗

0 (1430). Throughout the remainder of
the paper, the symbol ρ is used to denote the ρ(770) res-
onance and K ∗ is for K ∗(892) resonance. For a compari-
son with the LHCb experiment [43], the invariant mass of
the ππ pair is restricted from 300 to 1100 MeV and the
range of invariant mass for Kπ pair varies from 750 to
1200 MeV. We calculate the branching ratios and polariza-
tion fractions of each partial waves. Besides, a set of CP-
violating observables is investigated using B(s) meson decays
reconstructed in the (ππ)(Kπ) quasi-two-body final state.
Particular emphasis is placed on the TPAs of the consid-
ered decays. It should be mentioned that there is a pos-
sibility of existing two identical final state pions. Taking
the B+ → ( f0(980) →)π+π−(K ∗+ →)K 0π+ decay for
an example, in the experimental side, they see four final
states π+

1 π−K 0π+
2 first, and have to pair one of the posi-
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Fig. 1 Graphical definitions of the helicity angles θ1, θ2 and φ. Taking
the B0 → R1R2 decay as an example, with each quasi-two-body inter-
mediate resonance decaying to two pseudoscalars (R1 → π+π− and
R2 → K+π−), θ1(θ2) is denoted as the angle between the directions
of motion of π+ (π−) in the R1(R2) rest frame and R1(R2) in the B0

rest frame, and φ is the angle between the plane defined by π+π− and
the plane defined by K+π− in the B0 rest frame

tive charged pions with the π−. They have to try two pos-
sible combinations. From the theoretical point of view, we
deal with B+ → f0(980)K ∗+ → π+

1 π−K 0π+
2 in the

quasi-two-body mechanism and see f0(980)K ∗+ first. Then
each quasi-two-body intermediate resonance decays into two
pseudoscalars ( f0(980) → π+

1 π− and K ∗0 → K 0π+
2 ),

respectively. Each meson pair generates a smaller invariant
mass and flies back-to-back as shown in Fig. 1. It is evident
that the final states π+ have been already specified unam-
biguously on the theoretical side. Certainly, it is experimen-
tally difficult to identify which resonance a π+ comes from
in the nonresonant region on a Dalitz plot. From the theo-
retical viewpoint, this difficulty implies that the tail of our
Breit-Wigner propagator may not describe the events in the
nonresonant region correctly. However, it is known that the
nonresonant region gives a minor contribution, so the mis-
paring of a π+ with other final states should not make a
significant impact to our results.

The layout of the present paper is as follows. In Sect. 2,
we give an introduction for the theoretical framework. The
numerical values and some discussions will be given in
Sect. 3. Section 4 contains our conclusions. The Appendix
collects the explicit PQCD factorization formulas for all the
decay amplitudes.

2 Framework

2.1 Kinematics

Consider a four-body B(pB) → R1(p)R2(q) → P1(p1)

P2(p2)Q1(q1)Q2(q2) decay, we will work in the B meson
rest frame and employ the light-cone coordinates for momen-
tum variables. The B meson momentum pB , the total
momenta of the pion-pion and kaon-pion pairs, p = p1 + p2,
q = q1 + q2, and the quark momentum ki in each meson are

chosen as

pB = mB√
2
(1, 1, 0T), kB =

(
0, xB

mB√
2
, kBT

)
,

p = mB√
2
(g+, g−, 0T), kp =

(
x1g

+mB√
2
, 0, kT

)
,

q = mB√
2
( f −, f +, 0T), kq =

(
0, x2 f

+mB√
2
, k3T

)
, (2)

where mB is the mass of B meson. The momentum fractions
xB , x1 and x2 run from zero to unity.

The factors g± and f ± can be obtained through the
momentum conservation pB = p + q, and p2 = ω2

1 and
q2 = ω2

2, respectively. The explicit expressions of g± and
f ± are written in the following form

g± = 1

2

[
1 + η1 − η2 ±

√
(1 + η1 − η2)2 − 4η1

]
,

f ± = 1

2

[
1 − η1 + η2 ±

√
(1 + η1 − η2)2 − 4η1

]
, (3)

with the factor η1,2 = ω2
1,2

m2
B

. If the meson pairs are in the

P-wave configuration, the corresponding longitudinal polar-
ization vectors are defined as

εp = 1√
2η1

(g+,−g−, 0T ), εq = 1√
2η2

(− f −, f +, 0T ),

(4)

which satisfy the normalization ε2
p = ε2

q = −1 and the
orthogonality εp · p = εq · q = 0.

As usual we also define the momentum p1,2 of pion-pion
pair and q1,2 for the kaon-pion pair as

p1 =
(
mB√

2
(ζ1 + r1 − r2

2η1
)g+,

mB√
2

(1 − ζ1 + r1 − r2

2η1
)g−, pT

)
,

p2 =
(
mB√

2
(1 − ζ1 − r1 − r2

2η1
)g+,

mB√
2

(ζ1 − r1 − r2

2η1
)g−, −pT

)
,

q1 =
(
mB√

2
(1 − ζ2 + r3 − r4

2η2
) f −,

mB√
2

(ζ2 + r3 − r4

2η2
) f +, qT

)
,

q2 =
(
mB√

2
(ζ2 − r3 − r4

2η2
) f −,

mB√
2

(1 − ζ2 − r3 − r4

2η2
) f +, −qT

)
,

p2
T = ζ1(1 − ζ1)ω

2
1 + (m2

1 − m2
2)

2

4ω2
1

− m2
1 + m2

2

2
,

q2
T = ζ2(1 − ζ2)ω

2
2 + (m2

3 − m2
4)

2

4ω2
2

− m2
3 + m2

4

2
, (5)

with ζ1 + r1−r2
2η1

= p+
1 /p+ and ζ2 + r3−r4

2η2
= q−

1 /q−
characterizing the momentum fraction for one of pion-pion
(kaon-pion) pair, and the mass ratios r1,2,3,4 = m2

1,2,3,4/m
2
B ,

m1,2,3,4 being the masses of the final state meson.
One can obtain the relation between ζ1,2 and the polar

angle θ1,2 in the dimeson rest frame in Fig. 1,

2ζ1 − 1 =
√

1 − 2
r1 + r2

η1
+ (r1 − r2)2

η2
1

cos θ1,
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Table 1 Experimental branching fractions (in units of 10−6) of B → (ππ)(Kπ) decays [45,46]

Mode BABAR Belle HFLAV PDG2020

B(B+ → ρ0K ∗(892)+) 4.6 ± 1.0 ± 0.4 [31] 4.6 ± 1.1 4.6 ± 1.1

B(B+ → ρ+K ∗(892)0) 9.6 ± 1.7 ± 1.5 [27] 8.9 ± 1.7 ± 1.2 [33] 9.2 ± 1.5 9.2 ± 1.5

B(B+ → f0(980)K ∗(892)+) × B( f0(980) → π+π−) 4.2 ± 0.6 ± 0.3 [31] 4.2 ± 0.7 4.2 ± 0.7

B(B0 → ρ0K ∗(892)0) 5.1 ± 0.6+0.6
−0.8 [32] 2.1+0.8+0.9

−0.7−0.5 [34] 3.9 ± 0.8 3.9 ± 1.3

B(B0 → ρ−K ∗(892)+) 10.3 ± 2.3 ± 1.3 [32] 10.3 ± 2.6 10.3 ± 2.6

B(B0 → ρ0K ∗
0 (1430)0) 27 ± 4 ± 2 ± 3 [32] 27 ± 5 27 ± 6

B(B0 → ρ−K ∗
0 (1430)+) 28 ± 10 ± 5 ± 3 [32] 28 ± 11 28 ± 12

B(B0 → f0(980)K ∗(892)0) × B( f0(980) → ππ) 5.7 ± 0.6 ± 0.4 [32] 1.4+0.6+0.6
−0.5−0.4 [34] 3.9 ± 0.5 3.9+2.1

−1.8

B(B0 → f0(980)K ∗
0 (1430)0) × B( f0(980) → ππ) 2.7 ± 0.7 ± 0.5 ± 0.3 [32] 2.7 ± 0.9 2.7 ± 0.9

B(B0
s → ρ0 K̄ ∗(892)0) < 767

Table 2 Experimental CP asymmetries (in units of %) of B → (ππ)(Kπ) decays [45,46]

Mode BABAR HFLAV PDG2020

B+ → ρ0K ∗(892)+ 31 ± 13 ± 3 [31] 31 ± 13 31 ± 13

B+ → ρ+K ∗(892)0 −1 ± 16 ± 2 [27] −1 ± 16 −1 ± 16

B+ → f0(980)K ∗(892)+ −15 ± 12 ± 3 [31] −15 ± 12 −15 ± 12

B0 → ρ0K ∗(892)0 −6 ± 9 ± 2 [32] −6 ± 9 −6 ± 9

B0 → ρ−K ∗(892)+ 21 ± 15 ± 2 [32] 21 ± 15 21 ± 15

B0 → f0(980)K ∗0(892) 7 ± 10 ± 2 [32] 7 ± 10 7 ± 10

(a) (b) (d)

(e) (f) (g) (h)

(c)

Fig. 2 Typical leading-order Feynman diagrams for the four-body
decays B → (R1 →)ππ(R2 →)Kπ with q = (u, d, s), where the
symbol • denotes a weak interaction vertex. The diagrams (a)–(d)
represent the B → (R1 →)ππ transition, as well as the diagrams

(e)–(h) for annihilation contributions. If we exchange the position of
R1(→ ππ) and R2(→ Kπ), we will find the diagrams (a)–(d) for the
B → (R2 →)Kπ transition

2ζ2 − 1 =
√

1 − 2
r3 + r4

η2
+ (r3 − r4)2

η2
2

cos θ2, (6)

with the upper and lower limits of ζ1,2

ζ1max,min = 1

2

[
1 ± √

1 + 4α1

]
,

ζ2max,min = 1

2

[
1 ± √

1 + 4α2

]
. (7)

For the sake of simplicity, we generally use the factor α1 =
− r1+r2

2η1
+ (r1−r2)2

4η2
1

and α2 = − r3+r4
2η2

+ (r3−r4)
2

4η2
2

in the following

sections.
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Table 3 Parameters used to describe intermediate states in our framework. GS and RBW refer to the Gounaris-Sakurai and relativistic Breit-Wigner
line shapes, respectively

Resonance Mass (MeV) Width (MeV) J P Model Source

f0(500) 471 ± 21 534 ± 53 0+ RBW LHCb [125]

f0(980) 965 ± 8 − 0+ Flatté BES [126]

ρ(770) 775.02 ± 0.31 149.59 ± 0.67 1− GS BABAR [127]

K ∗(892) 895.55 ± 0.20 47.3 ± 0.5 1− RBW LHCb [124]

K ∗
0 (1430) 1425 ± 50 270 ± 80 0+ LASS LHCb [124]

The differential branching fraction for the B(s) →
(ππ)(Kπ) in the B(s) meson rest frame is expressed as

d5B
d�

= τBk(ω1)k(ω2)k(ω1, ω2)

16(2π)6m2
B

|A|2, (8)

where d� with � ≡ {θ1, θ2, φ, ω1, ω2} stands for the five-
dimensional measure spanned by the three helicity angles
and the two invariant masses, and

k(ω1, ω2) =
√

[m2
B − (ω1 + ω2)2][m2

B − (ω1 − ω2)2]
2mB

, (9)

is the momentum of the ππ pair in the B(s) meson rest frame.
The explicit expression of kinematic variables k(ω) is defined
in the h1h2 center-of-mass frame

k(ω) =
√

λ(ω2,m2
h1

,m2
h2

)

2ω
, (10)

with the Källén function λ(a, b, c) = a2 +b2 +c2 −2(ab+
ac + bc) and mh1,h2 being the final state mass.

The four-body phase space has been derived in the anal-
yses of the K → ππlν decay [112], the semileptonic
B̄ → D(D∗)πlν decays [113], semileptonic baryonic
decays [114,115], and four-body baryonic decays [116].
One can confirm that Eq. (8) is equivalent to those in Refs.
[114,116] by appropriate variable changes. Replacing the
helicity angle θ by the meson momentum fraction ζ via
Eq. (6), the Eq. (8) is turned into

d5B
dζ1dζ2dω1dω2dφ

= τBk(ω1)k(ω2)k(ω1, ω2)

4(2π)6m2
B

√
1 + 4α1

√
1 + 4α2

|A|2. (11)

2.2 Helicity amplitudes

One can disentangle the helicities of R1(→ ππ)R2(→ Kπ)

final state via an angular analysis, depicted in Fig. 1. Taking
the B0 → R1R2 → (π+π−)(K+π−) decay as an example,
the θ1 is the angle between the π+ direction in the (π+π−)

rest frame and the (π+π−) direction in the B0 rest frame,
θ2 is the angle between the K+ direction in the (K+π−)

rest frame and the (K+π−) direction in the B0 rest frame,
and φ is the angle between the (π+π−) and (K+π−) decay
planes. A ππ(Kπ) pair can be produced in the S or P-wave
configuration in the selected invariant mass regions.

One decomposes the decay amplitudes into six helicity
components: h = VV (3), V S, SV , and SS, each with a cor-
responding amplitude Ah . The first three, commonly referred
to as the P-wave amplitudes, are associated with the final
states, where both ππ and Kπ pairs come from intermedi-
ate vector mesons. In the transversity basis, a P-wave decay
amplitude can be decomposed into three components: A0, for
which the polarizations of the final-state vector mesons are
longitudinal to their momenta, and A‖ (A⊥), for which the
polarizations are transverse to the momenta and parallel (per-
pendicular) to each other. As the S-wave ππ(Kπ) pair arises
from R1 (R2) labelled in Fig. 2a, the corresponding single S-
wave amplitude is denoted ASV (AV S). The double S-wave
amplitude ASS is associated with the final state, where both
two-meson pairs are generated in the S wave. Specifically,
these helicity amplitudes for the B(s) → (ππ)(Kπ) decay
denote

AVV : B(s) → ρ(→ ππ)K ∗(→ Kπ),

AV S : B(s) → ρ(→ ππ)K ∗
0 (1430)(→ Kπ),

ASV : B(s) → f0(500, 980)(→ ππ)K ∗(→ Kπ),

ASS : B(s) → f0(500, 980)(→ ππ)

K ∗
0 (1430)(→ Kπ). (12)

Relying on the Eq. (6), we get the full decay amplitude in
Eq. (11) as a coherent sum of the P-, S-, and double S-wave
components by including the ζ1,2 dependencies instead of
θ1,2 and azimuth-angle dependencies,

A = A0
2ζ1 − 1√
1 + 4α1

2ζ2 − 1√
1 + 4α2

+A‖2
√

2

√
ζ1(1 − ζ1) + α1

1 + 4α1

√
ζ2(1 − ζ2) + α2

1 + 4α2
cos φ

+i A⊥2
√

2

√
ζ1(1 − ζ1) + α1

1 + 4α1

√
ζ2(1 − ζ2) + α2

1 + 4α2
sin φ

+AV S
2ζ1 − 1√
1 + 4α1

+ ASV
2ζ2 − 1√
1 + 4α2

+ ASS . (13)
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On basis of Eq. (11), we can obtain the branching ratio for
each helicity state,

Bh = τB

4(2π)6m2
B

2π

9
Ch

×
∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)|Ah |2, (14)

where the invariant masses ω1,2 are integrated over the cho-
sen ππ and Kπ mass window, respectively. The coefficients
Ch are the results of the integrations over ζ1, ζ2, φ in terms
of Eq. (14) and listed as follows,

Ch =

⎧⎪⎨
⎪⎩

(1 + 4α1)(1 + 4α2) h = 0, ‖,⊥
3(1 + 4α1,2) h = V S, SV

9 h = SS.

(15)

The CP-averaged branching ratio and the direct CP
asymmetry in each component are defined as below,

Bavg
h = 1

2
(Bh + B̄h), Adir

h = B̄h − Bh

B̄h + Bh
, (16)

respectively, where B̄h is the branching ratio of the corre-
sponding CP-conjugate channel.

For the VV decays, the polarization fractions fλ with λ =
0, ‖, and ⊥ are described as

fλ = Bλ

B0 + B‖ + B⊥
, (17)

with the normalisation relation f0 + f‖ + f⊥ = 1.

2.3 Triple product asymmetries

In this work, we not only calculate the direct CP asym-
metries, but also pay more attention to the TPAs. Consider
a four-body decay B → R1(→ P1P2)R2(→ Q1Q2), in
which one measures the four particles’ momenta in the B
rest frame. We define n̂Ri (i = 1, 2) is a unit vector perpen-
dicular to the Ri decay plane and ẑ is a unit vector in the
direction of R1 in the B rest frame. Thus we have

n̂R1 · n̂R2 = cos φ, n̂R1 × n̂R2 = sin φ ẑ, (18)

implying a T -odd scalar triple product

(n̂R1 × n̂R2) · ẑ = sin φ,

2(n̂R1 · n̂R2)(n̂R1 × n̂R2) · ẑ = sin 2φ. (19)

One can define a TPA as an asymmetry between the num-
ber of decays involving positive and negative values of sin φ

or sin 2φ,

A1
T = �(cos θ1 cos θ2 sin φ > 0) − �(cos θ1 cos θ2 sin φ < 0)

�(cos θ1 cos θ2 sin φ > 0) + �(cos θ1 cos θ2 sin φ < 0)
,

(20)

A2
T = �(sin 2φ > 0) − �(sin 2φ < 0)

�(sin 2φ > 0) + �(sin 2φ < 0)
. (21)

According to Eq. (6), the TPAs associated with A⊥ for the
considered four-body decays are derived from the partially
integrated differential decay rates as [40,50]

A1
T = �((2ζ1 − 1)(2ζ2 − 1) sin φ > 0) − �((2ζ1 − 1)(2ζ2 − 1) sin φ < 0)

�((2ζ1 − 1)(2ζ2 − 1) sin φ > 0) + �((2ζ1 − 1)(2ζ2 − 1) sin φ < 0)

= − 2
√

2

πD
∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)Im[A⊥A∗
0], (22)

A2
T = �(sin 2φ > 0) − �(sin 2φ < 0)

�(sin 2φ > 0) + �(sin 2φ < 0)

= − 4

πD
∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)Im[A⊥A∗‖],
(23)

with the denominator

D =
∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)

×(|A0|2 + |A‖|2 + |A⊥|2). (24)

It has been found that TPAs originate from the interfer-
ence of the CP-odd amplitudes A⊥ with the other CP-even
amplitudes A0, A‖. The above TPAs contain the integrands
Im[A⊥A∗

i ] = |A⊥||A∗
i | sin(�φ + �δ) with i = 0, ‖, where

�φ and �δ denote the weak and strong phase differences
between the amplitudes A⊥ and Ai , respectively. As already
noted, Im[A⊥A∗

i ] can be nonzero even if the weak phases
vanish. Thus, it is not quite accurate to identify a nonzero
TPA as a signal of CP violation. To obtain a true CP vio-
lation signal, one has to compare the TPAs in the B and B̄
meson decays. The helicity amplitude for theCP-conjugated
process can be inferred from Eq. (13) through A0 → Ā0,
A‖ → Ā‖ and A⊥ → − Ā⊥, in which the Āλ are obtained
from the Aλ by changing the sign of the weak phases. Thus,
the TPAs Āi

T for the charge-conjugate process are defined
similarly, but with a multiplicative minus sign. We denote by
Ā0, Ā‖, Ā⊥ transversity amplitudes for the CP-conjugate
decay B̄ → R̄1(→ P̄1 P̄2)R̄2(→ Q̄1 Q̄2) and the corre-
sponding three angles will be denoted by θ̄1, θ̄2, and φ̄. Obvi-
ously θ1 = θ̄1, θ2 = θ̄2 and φ = φ̄. We then have the TPAs
for the CP-averaged decay rates [50]

A(1)ave
T (true)

≡ [�(T > 0) + �̄(T̄ > 0)] − [�(T < 0) + �̄(T̄ < 0)]
[�(T > 0) + �̄(T̄ > 0)] + [�(T < 0) + �̄(T̄ < 0)]

= − 2
√

2

π(D + D̄)

∫
dω1dω2k(ω1)k(ω2)k(ω1, ω2)

Im[A⊥A∗
0 − Ā⊥ Ā∗

0], (25)
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A(2)ave
T (true)

≡ [�(sin 2φ > 0) + �̄(sin 2φ̄ > 0)] − [�(sin 2φ < 0) + �̄(sin 2φ̄ < 0)]
[�(sin 2φ > 0) + �̄(sin 2φ̄ > 0)] + [�(sin 2φ < 0) + �̄(sin 2φ̄ < 0)]

= − 4

π(D + D̄)

∫
dω1dω2k(ω1)k(ω2)k(ω1, ω2)

×Im[A⊥A∗‖ − Ā⊥ Ā∗‖], (26)

A(1)ave
T (fake)

≡ [�(T > 0) − �̄(T̄ > 0)] − [�(T < 0) − �̄(T̄ < 0)]
[�(T > 0) + �̄(T̄ > 0)] + [�(T < 0) + �̄(T̄ < 0)]

= − 2
√

2

π(D + D̄)

∫
dω1dω2k(ω1)k(ω2)k(ω1, ω2)

×Im[A⊥A∗
0 + Ā⊥ Ā∗

0], (27)

A(2)ave
T (fake) ≡ [�(sin 2φ > 0) − �̄(sin 2φ̄ > 0)] − [�(sin 2φ < 0) − �̄(sin 2φ̄ < 0)]

[�(sin 2φ > 0) + �̄(sin 2φ̄ > 0)] + [�(sin 2φ < 0) + �̄(sin 2φ̄ < 0)]
= − 4

π(D + D̄)

∫
dω1dω2k(ω1)k(ω2)k(ω1, ω2)

×Im[A⊥A∗‖ + Ā⊥ Ā∗‖], (28)

with �̄ being the decay rate of the CP-conjugate process,
T = (2ζ1−1)(2ζ2−1) sin φ and T̄ = (2ζ1−1)(2ζ2−1) sin φ̄

and the denominator is

D̄ =
∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)

×(| Ā0|2 + | Ā‖|2 + | Ā⊥|2), (29)

for the CP-conjugate decay.
It is shown that the term Im[A⊥A∗

0,‖ − Ā⊥ Ā∗
0,‖] is propor-

tional to sin �φ cos �δ, which is nonzero only in the pres-
ence of the weak phase difference. Then TPAs provide an
alternative measure ofCP violation. Furthermore, compared
with directCP asymmetries,A(i)ave

T (true) does not suffer the
suppression from the strong phase difference, and is maximal
when the strong phase difference vanishes. While for the term
Im[A⊥A∗

0,‖ + Ā⊥ Ā∗
0,‖] ∝ cos �φ sin �δ, the A(i)ave

T (fake)
can be nonzero when the weak phase difference vanishes.
Such a quantity is referred as a fake asymmetry (CP con-
serving), which reflects the effect of strong phases [50,51],
instead of CP violation.

For a more direct comparison with the measurements from
LHCb [43], the so-called true and f ake TPAs are then
defined as

A1
T (true) ≡ 1

2
(A1

T + Ā1
T )

= −
√

2

π

∫
dω1dω2k(ω1)k(ω2)k(ω1, ω2)

×Im

[
A⊥A∗

0

D − Ā⊥ Ā∗
0

D̄

]
, (30)

A2
T (true) ≡ 1

2
(A2

T + Ā2
T )

= − 2

π

∫
dω1dω2k(ω1)k(ω2)k(ω1, ω2)

×Im

[
A⊥A∗‖
D − Ā⊥ Ā∗‖

D̄

]
, (31)

A1
T (fake) ≡ 1

2
(A1

T − Ā1
T )

= −
√

2

π

∫
dω1dω2k(ω1)k(ω2)k(ω1, ω2)

×Im

[
A⊥A∗

0

D + Ā⊥ Ā∗
0

D̄

]
, (32)

A2
T (fake) ≡ 1

2
(A2

T − Ā2
T )

= − 2

π

∫
dω1dω2k(ω1)k(ω2)k(ω1, ω2)

×Im

[
A⊥A∗‖
D + Ā⊥ Ā∗‖

D̄

]
, (33)

where the true or f ake labels refer to whether the asym-
metry is due to a real CP asymmetry or due to effects from
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final-state interactions that are CP symmetric. It should be
stressed that two asymmetries defined in Eqs. (25) and (30)
are different in the most case, as well as two asymmetries in
Eqs. (26) and (31). They become equal when no direct CP
violation occurs in the total rate, namely D = D̄.

2.4 Two-meson distribution amplitudes

2.4.1 S-wave two-meson DAs

Here we briefly introduce the S and P-wave two-meson DAs
and the corresponding time-like form factors used in our
framework. One can see that resonant contributions through
two-body channels can be included by parameterizing the
two-meson DAs. The S-wave two-meson DA is written in
the following form [117],

�S(z, ω) = 1√
2Nc

[p/φ0
S(z, ω

2)

+ωφs
S(z, ω

2) + ω(n/v/ − 1)φt
S(z, ω

2)]. (34)

In what follows the subscripts S and P are always associated
with the corresponding partial waves.

For the scalar resonances f0(500) and f0(980), the asymp-
totic forms of the individual DAs in Eq. (34) have been
parameterized as [105–108]

φ0
S(z, ω

2) = 9FS(ω
2)√

2Nc
aSz(1 − z)(1 − 2z), (35)

φs
S(z, ω

2) = FS(ω
2)

2
√

2Nc
, (36)

φt
S(z, ω

2) = FS(ω
2)

2
√

2Nc
(1 − 2z), (37)

with the time-like scalar form factor FS(ω
2) and the

Gegenbauer coefficient aS . While for the scalar resonance
K ∗

0 (1430), we will adopt similar formulas as those for a
scalar meson [118,119], bearing in mind large uncertainties
that may be introduced by this approximation. The detailed
expressions of DAs for various twists are as follows:

φ0
S = 6

2
√

2Nc
FS(ω

2)z(1 − z)

×
[

1

μS
+ B1C

3/2
1 (t) + B3C

3/2
3 (t)

]
, (38)

φs
S = 1

2
√

2Nc
FS(ω

2), (39)

φt
S = 1

2
√

2Nc
FS(ω

2)(1 − 2z), (40)

where the Gegenbauer polynomialsC3/2
1 (t) = 3t ,C3/2

3 (t) =
5
2 t (7t

2 − 3) with t = 1 − 2z and μS = ω/(m02 − m01). ω

is the Kπ invariant mass and m01,02 are the running current
quark masses. The Gegenbauer moments B1,3 at the 1 GeV

scale from Scenario I in the QCD sum rule analysis and the
related running current quark masses can be found in Refs.
[2,119,120].

2.4.2 P-wave two-meson DAs

The P-wave two-meson DAs related to both longitudinal
and transverse polarizations are organized in analogy with
those in Ref. [92]. The explicit expressions of the P-wave
pion-pion (kaon-pion) DAs associated with longitudinal and
transverse polarization are described as follows,

�L
P (z, ζ, ω) = 1√

2Nc

[
ωε/pφ

0
P (z, ω2) + ωφs

P (z, ω2)

+ p/1 p/2 − p/2 p/1

ω(2ζ − 1)
φt
P (z, ω2)

]
(2ζ − 1), (41)

�T
P (z, ζ, ω) = 1√

2Nc

[
γ5ε/T p/φ

T
P (z, ω2)

+ ωγ5ε/Tφa
P (z, ω2)

+iω
εμνρσ γμεT ν pρn−σ

p · n−
φv
P (z, ω2)

]

× √
ζ(1 − ζ ) + α1. (42)

The two-pion DAs for various twists are expanded in terms
of the Gegenbauer polynomials:

φ0
P (z, ω2) = 3F‖

P (ω2)√
2Nc

z(1 − z)

×
[

1 + a0
2ρ

3

2
(5(1 − 2z)2 − 1)

]
, (43)

φs
P (z, ω2) = 3F⊥

P (ω2)

2
√

2Nc
(1 − 2z)

×
[
1 + as2ρ(10z2 − 10z + 1)

]
, (44)

φt
P (z, ω2) = 3F⊥

P (ω2)

2
√

2Nc
(1 − 2z)2

×
[

1 + at2ρ

3

2
(5(1 − 2z)2 − 1)

]
, (45)

φT
P (z, ω2) = 3F⊥

P (ω2)√
2Nc

z(1 − z)

×
[

1 + aT2ρ

3

2
(5(1 − 2z)2 − 1)

]
, (46)

φa
P (z, ω2) = 3F‖

P (ω2)

4
√

2Nc
(1 − 2z)

×
[
1 + aa2ρ(10z2 − 10z + 1)

]
, (47)

φv
P (z, ω2) = 3F‖

P (ω2)

8
√

2Nc

×
{ [

1 + (1 − 2z)2] + av
2ρ

[
3(2z − 1)2 − 1

] }
,

(48)
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with the Gegenbauer coefficients ai2ρ and the two P-wave

form factors F‖
P (ω2) and F⊥

P (ω2).
For the kaon-pion DAs, the various twist DAs φi

P have
similar forms as the corresponding ones for the K ∗ meson
[121] by replacing the decay constants with the time-like
form factors,

φ0
P (z, ω2) = 3F‖

P (ω2)√
2Nc

z(1 − z)

×
[

1 + a||
1K ∗3t + a||

2K ∗
3

2
(5t2 − 1)

]
, (49)

φs
P (z, ω2) = 3F⊥

P (ω2)

2
√

2Nc
t, (50)

φt
P (z, ω2) = 3F⊥

P (ω2)

2
√

2Nc
t2, (51)

φT
P (z, ω2) = 3F⊥

P (ω2)√
2Nc

z(1 − z)

×
[

1 + a⊥
1K ∗3t + a⊥

2K ∗
3

2
(5t2 − 1)

]
, (52)

φa
P (z, ω2) = 3F‖

P (ω2)

4
√

2Nc
t, (53)

φv
P (z, ω2) = 3F‖

P (ω2)

8
√

2Nc
(1 + t2), (54)

with t = (1−2z). The Gegenbauer moments associated with
longitudinal polarization a‖

1K ∗ , a
‖
2K ∗ are determined in Ref.

[102], while the Gegenbauer moments associated with trans-
verse polarization a⊥

1K ∗ , a⊥
2K ∗ are adopted the same values as

those longitudinal ones.

2.4.3 Time-like form factor

The strong interactions between the resonance and the final-
state meson pair, including elastic rescattering of the final-
state meson pair, can be factorized into the time-like form
factor FS,P (ω2), which is guaranteed by the Watson theorem
[122]. We usually use the relativistic Breit-Wigner (BW) line
shape for a narrow resonance to parameterize the time-like
form factors F‖(ω2) [123]. The explicit formula is expressed
as [124],

F‖(ω2) = m2
i

m2
i − ω2 − imi�i (ω2)

, (55)

where the mi and �i are the pole mass and width of the cor-
responding resonances shown in Table 3, respectively. The
mass-dependent width �i (ω) is defined as

�i (ω
2) = �i

(mi

ω

) (
k(ω)

k(mi )

)(2LR+1)

. (56)

The k(ω) is the momentum vector of the resonance decay
product measured in the resonance rest frame, while k(mi )

is the value of k(ω) when ω = mi . LR is the orbital angu-
lar momentum in the ππ (Kπ ) system and LR = 0, 1, . . .

corresponds to the S, P, . . . partial-wave resonances. Due
to the limited studies on the form factor F⊥(ω2), we use
the two decay constants f (T )

i of the intermediate particle to
determine the ratio F⊥(ω2)/F‖(ω2) ≈ ( f Ti / fi ).

The BW formula does not work well for f0(980), since
its pole mass is close to the K K̄ threshold. For scalar res-
onance f0(980), we adopt the Flatté parametrization where
the resulting line shape is above and below the threshold
of the intermediate particle [128]. If the coupling of a res-
onance to the channel opening nearby is very strong, the
Flatté parametrization shows a scaling invariance and does
not allow for an extraction of individual partial decay widths.
Thus, we employ the modified Flatté model suggested by
Bugg [129] following the LHCb collaboration [125,130],

F(ω2) = m2
f0(980)

m2
f0(980) − ω2 − im f0(980)(gππρππ + gKKρKK F2

KK )
.

(57)

The coupling constants gππ = 0.167 GeV and gKK =
3.47gππ [125,130] describe the f0(980) decay into the final
states π+π− and K+K−, respectively. The phase space fac-
tors ρππ and ρKK read as [125,128,131]

ρππ = 2

3

√
1 − 4m2

π±
ω2 + 1

3

√
1 − 4m2

π0

ω2 ,

ρKK = 1

2

√
1 − 4m2

K±
ω2 + 1

2

√
1 − 4m2

K 0

ω2 . (58)

If there are overlapping resonances or there is significant
interference with a nonresonant component both in the same
partial wave, the relativistic BW function leads to unitarity
violation within the isobar model [132]. This is the case for
the Kπ S-wave at low Kπ mass, where the K ∗

0 (1430) reso-
nance interferes strongly with a slowly varying NR S-wave
component. In this work, the time-like scalar form factor
FS(ω

2) for the S-wave Kπ system is parametrized by using
a modified LASS line shape [133] for the S-wave resonance
K ∗

0 (1430), which has been widely used in experimental anal-
yses [124],

FS(ω
2) = ω

k(ω)[cot(δB) − i]
+e2iδB

m2
0�0/k(m0)

m2
0 − ω2 − im2

0
�0
ω

k(ω)
k(m0)

, (59)

with

cot(δB) = 1

ak(ω)
+ rk(ω)

2
, (60)

where the first term in Eq. (59) is an empirical term from
the elastic kaon-pion scattering and the second term is the
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resonant contribution with a phase factor to retain unitar-
ity. Here m0 and �0 are the pole mass and width of the
K ∗

0 (1430) state. The parameters a = (3.1 ± 1.0) GeV−1

and r = (7.0 ± 2.4) GeV−1 are the scattering length and
effective range [124], respectively. The slowly varying part
(the first term in the Eq. (59)) is not well modeled at high
masses and it is set to zero for m(Kπ) values above 1.7 GeV
[124].

In experimental investigations of three-body hadronic B
meson decays, the wide ρ resonant contribution is usually
parameterized as the Gounaris–Sakurai (GS) model [134]
based on the BW function [123]. It is a way to interpret
the observed structures beyond the ρ resonance in terms of
higher mass isovector vector mesons. By taking the ρ − ω

interference and the excited states into account, the form
factor F‖(ω2) can be written in the form of [127]

F‖(ω2) =
[

GSρ(s,mρ, �ρ)
1 + cωBWω(s,mω, �ω)

1 + cω

+�ciGSi (s,mi , �i )

]
[1 + �ci ]

−1 , (61)

where s = m2(ππ) is the two-pion invariant mass squared,
i = (ρ′(1450), ρ′′(1700), ρ′′′(2254)), �ρ,ω,i is the decay
width for the relevant resonance, mρ,ω,i are the masses of
the corresponding mesons, respectively. The explicit expres-
sions of the function GSρ(s,mρ, �ρ) are described as follows
[123]

GSρ(s,mρ, �ρ)

= m2
ρ[1 + d(mρ)�ρ/mρ]

m2
ρ − s + f (s,mρ, �ρ) − imρ�(s,mρ, �ρ)

, (62)

with the functions

�(s,mρ, �ρ) = �ρ

s

m2
ρ

(
βπ(s)

βπ (m2
ρ)

)3

,

d(m) = 3

π

m2
π

k2(m2)
ln

(
m + 2k(m2)

2mπ

)

+ m

2πk(m2)
− m2

πm

πk3(m2)
,

f (s,m, �) = �m2

k3(m2)

[
k2(s)[h(s) − h(m2)]

+(m2 − s)k2(m2)h′(m2)
]
,

k(s) = 1

2

√
sβπ(s),

h(s) = 2

π

k(s)√
s

ln

(√
s + 2k(s)

2mπ

)
, (63)

where βπ(s) = √
1 − 4m2

π/s. Since the process ω → π+π−
suffers the G-parity suppression, we find that the interference
between the ρ and ω does not significantly change the values

in our calculations. Hence, it’s reasonable to set cω = 0 in
our latter numerical calculations.

In contrast to the vector resonances, the identification of
the scalar mesons is a long-standing puzzle. Scalar reso-
nances are difficult to resolve because some of them have
large decay widths, which cause a strong overlap between res-
onances and background. For a comparison, we here param-
eterize the f0(500) contribution in two different ways: the
BW and the Bugg model [135], respectively. The form fac-
tor of f0(500) with the Bugg resonant lineshape is written in
the following form [135]

T11(s) = M �1(s)

[
M2 − s − g2

1
s − sA
M2 − sA

×
[
j1(s) − j1(M

2)
]

− iM
4∑

i=1

�i (s)

]−1

, (64)

where s = ω2 = m2(π+π−), j1(s) = 1
π

[
2 + ρ1 ln

(
1−ρ1
1+ρ1

)]
,

the functions g2
1(s), �i (s) and other relevant functions in

Eq. (64 ) are the following

g2
1(s) = M(b1 + b2s) exp[−(s − M2)/A],

M �1(s) = g2
1(s)

s − sA
M2 − sA

ρ1(s),

M �2(s) = 0.6g2
1(s)(s/M2) exp(−α|s − 4m2

K |)ρ2(s),

M �3(s) = 0.2g2
1(s)(s/M2) exp(−α|s − 4m2

η|)ρ3(s),

M �4(s) = M g4π ρ4π (s)/ρ4π (M2), with

ρ4π (s) = 1.0/[1 + exp(7.082 − 2.845s)]. (65)

For the parameters in Eqs. (64, 65), we use their values as
given in the fourth column of Table I in Ref. [135]:

M = 0.953GeV, sA = 0.41 m2
π , b1 = 1.302GeV2,

b2 = 0.340, A = 2.426GeV2, g4π = 0.011GeV. (66)

And the parameters ρ1,2,3 in Eq. (65) are the phase-space
factors of the decay channels ππ , KK and ηη respectively,
and have been defined as [135]

ρi (s) =
√

1 − 4
m2

i

s
, (67)

with m1 = mπ ,m2 = mK and m3 = mη.

3 Numerical results

In this section, we calculate the CP-averaged branching
rations (B), direct CP-violating asymmetries (ACP) and the
polarization fractions fλ, as well as estimate the size of TPAs,
respectively. The pole mass and decay width for the corre-
sponding resonance have been summarized in Table 3. Before
proceeding with the numerical analysis, the meson masses
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and the decay constants (in units of GeV), together with
the B meson lifetimes (in units of ps) are collected below
[13,46,89]:

mB = 5.280, mBs = 5.367,

mb = 4.8, mK± = 0.494,

mK 0 = 0.498, mπ± = 0.140,

mπ0 = 0.135, fB = 0.21 ± 0.02,

fBs = 0.23 ± 0.02, fρ = 0.216 ± 0.003,

f Tρ = 0.184, fK ∗ = 0.217 ± 0.005,

f TK ∗ = 0.185 ± 0.010, τB0 = 1.519,

τB± = 1.638, τBs = 1.512. (68)

The values of the Wolfenstein parameters are adopted as
given in Ref. [136]: A = 0.836 ± 0.015, λ = 0.22453 ±
0.00044, ρ̄ = 0.122+0.018

−0.017, η̄ = 0.355+0.012
−0.011.

The Gegenbauer moments are adopted the same values as
those determined in Refs. [2,92,102,137]

aS = 0.2 ± 0.2,

B1 = −0.57 ± 0.13,

B3 = −0.42 ± 0.22,

a0
2ρ = 0.08 ± 0.13,

as2ρ = −0.23 ± 0.24,

at2ρ = −0.354 ± 0.062,

aT2ρ = 0.50 ± 0.50,

aa2ρ = 0.40 ± 0.40,

av
2ρ = −0.50 ± 0.50,

a||
1K ∗ = a⊥

1K ∗ = 0.31 ± 0.16,

a||
2K ∗ = a⊥

2K ∗ = 1.188 ± 0.098. (69)

In our numerical calculations, the theoretical uncertain-
ties quoted in the tables are estimated from three sources: the
first theoretical uncertainty results from the parameters of the
wave functions of the initial states, such as the shape parame-
ter ωB = 0.40±0.04 GeV or ωBs = 0.48±0.048 GeV in B(s)

meson wave function. The second one is due to the Gegen-
bauer moments in various twist DAs of ππ and Kπ pair with
different intermediate resonances. The last one is caused by
the variation of the hard scale t from 0.75t to 1.25t (without
changing 1/bi ) and the QCD scale �QCD = 0.25±0.05 GeV,
which characterizes the effect of the next-to-leading-order
QCD contributions. The possible errors due to the uncer-
tainties of CKM matrix elements are very small and can
be neglected safely. The major uncertainty comes from the
Gegenbauer moments, which amounts to 30–50% in magni-
tude. These parameters need to be constrained more precisely
in order to improve the accuracy of theoretical predictions for
four-body B meson decays.

We perform an amplitude analysis of B(s) → (ππ)(Kπ)

decays in the two-body invariant mass regions 300< m(ππ)

<1100 MeV, accounting for the ρ, f0(500) and f0(980) reso-
nances, and 750< m(Kπ) <1200 MeV, which is dominated
by the K ∗(892) meson, but the S-wave resonance K ∗

0 (1430)

is expected to contribute. From the numerical results, one can
address some issues as follows.

3.1 Branching ratios and polarization fractions of two-body
B(s) → ρK ∗ decays

The isospin conservation is assumed for the strong decays of
an I = 1/2 resonance K ∗ to Kπ , namely,

�(K ∗0 → K+π−)

�(K ∗0 → Kπ)
= 2/3,

�(K ∗+ → K+π0)

�(K ∗+ → Kπ)
= 1/3, (70)

where we assume the K ∗ → Kπ branching fraction to be
100%. According to the relation of the decay rates between
the quasi-two-body and the corresponding two-body decay
modes

B(B(s) → ρ(→ ππ)K ∗(→ Kπ))

≈ B(B(s) → ρK ∗) × B(ρ → ππ) × B(K ∗ → Kπ),

(71)

with B(ρ → ππ) = 100%, we extract the two-body B(s) →
ρK ∗ branching ratios and summarize them in Table 4. The
polarization fractions of the two-body B(s) → ρK ∗ decays
calculated in this work are also listed in Table 4. For a com-
parison, we show the updated predictions in the QCDF [3,4],
the previous predictions in the PQCD approach [18], SCET
[25] and FAT [26]. Experimental results for branching ratios
are taken from Table 1 and for polarization fractions from
[45]. One can see that, except for the colour-suppressed (“ C
”) decay B0

s → ρ0 K̄ ∗(892)0, our predictions of the branch-
ing ratios are in good agreement with those two-body anal-
yses as presented in the PQCD approach [18], and also sim-
ilar to those predicted in the QCDF approach [3,4], SCET
[25] and FAT [26] within errors. However, the situation of
the “ C ”-type decay B0

s → ρ0 K̄ ∗(892)0 is more compli-
cated: (a) as claimed in Ref. [88] that the widths of the
resonant states and the interactions between the final state
meson pairs will show their effects on the branching ratios,
the new four-body prediction deviates from the previous cal-
culations in the PQCD approach, but agrees well with the
corresponding results in the QCDF approach, SCET and FAT
within errors; (b) the transverse polarization contribution in
the PQCD approach is comparable to the longitudinal one due
to the chirally enhanced annihilation and the hard scattering
diagrams, which is quite different from those predictions in
the QCDF approach, SCET and FAT. More precise data from
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Table 4 CP-averaged branching ratios and polarization fractions of
the two-body B(s) → ρK ∗ decays in the PQCD approach compared
with the previous predictions in the PQCD approach [18], the updated
predictions in the QCDF [3,4], SCET [25] and FAT [26]. Experimental
results for branching ratios are taken from Table 1 and for polarization

fractions from [45]. The theoretical uncertainties are attributed to the
variations of the shape parameter ωB(s) in the B(s) meson DA, of the
Gegenbauer moments in various twist DAs of ππ and Kπ pair, and of
the hard scale t and the QCD scale �QCD

Modes B(10−6) f0(%) f‖(%) f⊥(%)

B+ → ρ+K ∗0 11.6+1.5+2.2+4.8
−1.2−2.3−3.5 73.5+2.5+8.9+2.4

−2.3−9.4−3.3 13.4+1.2+4.7+1.1
−1.3−4.6−1.2 13.1+1.1+4.7+2.2

−1.2−4.3−1.2

PQCD (former) 9.9+4.7
−4.1 70 ± 5 13.7+2.1

−1.9

QCDF 9.2+3.8
−5.5 48+52

−40

SCET 8.93 ± 3.18 45 ± 18 24.9 ± 11.1

FAT 10.4 ± 2.6 46.0 ± 12.9 27.2 ± 7.0

Expt.a 9.2 ± 1.5 48 ± 8

B+ → ρ0K ∗+ 7.5+1.3+1.3+2.7
−0.9−1.2−2.2 78.4+2.3+6.6+2.5

−2.1−7.1−3.4 13.3+1.0+3.9+2.3
−1.2−3.9−1.9 8.3+1.1+3.3+1.2

−1.1−2.9−0.8

PQCD (former) 6.1+2.8
−2.4 75+4

−5 11.9+2.3
−2.0

QCDF 5.5+1.4
−2.5 67+31

−48

SCET 4.64 ± 1.37 42 ± 14 26.6 ± 9.9

FAT 5.83 ± 1.20 40.7 ± 10.6 29.8 ± 5.9

Expt. a 4.6 ± 1.1 78 ± 12

B0 → ρ0K ∗0 4.4+0.4+0.9+1.9
−0.3−0.8−1.3 63.3+1.3+10.3+1.3

−1.2−9.9−1.5 13.9+1.1+4.5+0.7
−1.1−4.4−1.0 22.8+0.1+5.5+2.4

−0.2−5.9−2.0

PQCD (former) 3.3+1.7
−1.4 65+4

−5 16.9+2.7
−1.8

QCDF 4.6+3.6
−3.5 39+60

−31

SCET 5.87 ± 1.87 61 ± 13 17.6 ± 7.9

FAT 5.09 ± 1.23 48.7 ± 12.3 25.8 ± 6.7

Expt.a 3.9 ± 1.3 40 ± 14

B0 → ρ−K ∗+ 10.5+1.2+2.2+4.3
−0.9−1.6−3.1 72.9+2.2+8.7+2.1

−2.1−8.8−3.0 13.6+1.1+4.4+1.1
−1.2−4.5−1.0 13.5+1.0+4.3+1.9

−1.1−4.3−1.1

PQCD (former) 8.4+3.8
−3.5 68 ± 5 15.6 ± 2.5

QCDF 8.9+4.9
−5.6 53+45

−32

SCET 10.6 ± 3.2 55 ± 14 20.3 ± 8.6

FAT 10.5 ± 2.3 38.9 ± 11.3 30.8 ± 6.3

Expt.a 10.3 ± 2.6 38 ± 13

B0
s → ρ+K ∗− 34.2+12.2+3.4+2.4

−8.5−3.3−2.2 91.2+0.1+1.0+0.3
−0.2−1.3−0.4 6.8+0.1+1.0+0.3

−0.0−0.7−0.1 2.0+0.1+0.4+0.1
−0.1−0.4−0.1

PQCD (former) 24.0+11.0
−9.1 95 ± 1 2.31+0.22

−0.21

QCDF 21.6+1.6
−3.2 92+1

−4

SCET 28.1 ± 4.2 99.1 ± 0.3 0.4 ± 0.18

FAT 38.6 ± 8.3 94.4 ± 1.2 2.74 ± 0.64

B0
s → ρ0 K̄ ∗0 1.3+0.4+0.1+0.3

−0.4−0.3−0.4 53.4+0.7+6.9+5.4
−0.4−6.5−5.2 25.2+0.0+3.3+2.3

−0.2−3.4−2.8 21.4+0.4+3.3+2.9
−0.5−3.5−2.8

PQCD (former) 0.40+0.22
−0.17 57+9

−13 22.5+7.3
−4.7

QCDF 1.3+2.6
−0.7 90+5

−24

SCET 1.04 ± 0.30 87 ± 5 5.81 ± 2.84

FAT 1.18 ± 0.46 79.8 ± 8.0 10.2 ± 4.1

Expt.a < 767

aThe experimental results are obtained by multiplying the relevant measured two-body branching ratios according to the Eq. (71)

the future LHCb and Belle II experiments will help us dif-
ferentiate these factorization approaches and understand the
underlying mechanism of the multi-body B meson hadronic
weak decays.

For the charmless B(s) → ρ(→ ππ)K ∗(→ Kπ) decays,
it is naively expected that the helicity amplitudes satisfy the
hierarchy pattern |A0|  |A+|  |A−|, which are related
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to the spin amplitudes (A0, A‖, A⊥) in Appendix by

A± = A‖ ± A⊥√
2

, (72)

while A0 is common to both bases. The above hierarchy rela-
tion satisfies the expectation in the factorization assumption
that the longitudinal polarization should dominate based on
the quark helicity analysis [138,139]. However, large trans-
verse polarization of order 50% is observed in B → K ∗φ,
B → K ∗ρ and Bs → φφ decays, which poses an inter-
esting challenge for the theory. The interest in the polar-
ization in penguin transition, such as b → s decays B →
ρK ∗, is motivated by their potential sensitivity to physics
beyond the SM. Measurements of the longitudinal polar-
ization fraction in B → ρK ∗ by BABAR [27,31,32] and
Belle [33] reveal a large fraction of transverse polarization,
indicating an anomaly of polarization. An angular analy-
sis of the B0 → ρ0K ∗0 decay by LHCb measurement
found an unexpectedly low longitudinal polarization frac-
tion f0 = 0.164 ± 0.015 ± 0.022 where the first uncertainty
is statistical and the second systematic [43].

As shown in Table 4, the longitudinal polarization frac-
tion f0 for the B(s) → ρK ∗ decays from the PQCD approach
(including the present work) are around 50–80%, which are
mostly greater than the transverse one fT = f‖ + f⊥ in
contrast to observations. The QCDF [3,4], SCET [25] and
FAT [26] yield the similar pattern f0 ∼ fT in despite of
large uncertainties. In the PQCD approach, the large trans-
verse polarization fraction can be interpreted on the basis of
the chirally enhanced annihilation diagrams, especially the
(S−P)(S+P) penguin annihilation, introduced by the QCD
penguin operator O6 [140], which is originally introduced in
Ref. [141]. A special feature of the (S − P)(S + P) penguin
annihilation operator is that the light quarks in the final states
are not produced through chiral currents. So, there is no sup-
pression to the transverse polarization caused by the helicity
flip. Then the polarization fractions satisfy f0 ≈ fT . How-
ever, these effects are not able to fully account for the above
polarization anomaly. Our predictions for the longitudinal
polarization fractions agree with the previous PQCD calcu-
lations [18]. It is worth mentioning that we have employed
the same Gegenbauer moments for the transversely polarized
Kπ DAs as those for the longitudinal polarized ones (see
Eq. (69)) in this work, together with the same Gegenbauer
moments for ππ associated with the transverse polarizations
from previous work [92]. The Gegenbauer moments from the
twist-3 DAs of Kπ pair may make significant sense to the
polarization fractions, which has been verified in Ref. [7]. To
be honest, these Gegenbuaer moments should be fitted simi-
larly as those in Ref. [102]. With more and more experimental
measurements, we can determine the precise values of these
Gegenbauer moments for transversely polarized DAs.

3.2 Branching ratios of
B(s) → [SS, SV, V S] → (ππ)(Kπ) decays

In contrast to the vector resonances, the identification of the
scalar mesons is a long-standing puzzle. Scalar resonances
are difficult to resolve because some of them have large decay
widths, which cause a strong overlap between resonances
and background. In fact, compared with the B(s) → VV →
(ππ)(Kπ) decays, there are much less experimental data for
the B(s) → [SS, SV, V S] → (ππ)(Kπ) decays. Further-
more, the underlying structure of scalar mesons is not the-
oretically well established (for a review, see Ref. [46]). We
hope that the situation can be improved using nonperturbative
QCD tools including lattice QCD simulations. The f0(980) is
strongly produced in D+

s decay [142], which implies a large
s̄s component, assuming Cabibbo-favored c → s decay.
Meanwhile, the prominent appearance of the f0(980) points
to a dominant (s̄s) component in the semileptonic Ds decays
and decays of B(s) mesons. However, there also exists some
experimental evidences indicating that f0(980) is not purely
an s̄s state. Ratios of decay rates of B and/or Bs mesons
into J/ψ plus f0(980) or f0(500) were proposed to allow
for an extraction of the flavor mixing angle and to probe
the tetraquark nature of those mesons within a certain model
[143,144]. The phenomenological fits of the LHCb do neither
support a contribution of the f0(980) in the B → J/ψππ

[130] nor an f0(500) in Bs → J/ψππ decays [125] by
employing the isobar model. Hence the authors conclude
that their data is incompatible with a model where f0(980)

is formed from two quarks and two antiquarks (tetraquarks)
at the eight standard deviation level. In addition, they extract
an upper limit for the mixing angle of 17◦ at 90% confi-
dence level between the f0(980) and the f0(500) that would
yield a substantial (s̄s) content in f0(980) [130]. But in fact
a substantial f0(980) contribution is also found in the B-
decays in a dispersive analysis of the same data that allows
for a model-independent inclusion of the hadronic final state
interactions in Ref. [145], which puts into question the con-
clusions of Ref. [130]. At this stage, the quark structure of
scalar particles are still quite controversial. On the theory
side, there are some studies on the f0(980) by assuming the
f0(980) as a pure s̄s state. For example, the authors studied
the Bs → J/ψ f0(980) with the light-cone QCD sum rule
and factorization assumption in Ref. [146] and using gener-
alized factorization and SU(3) flavor symmetry in Ref. [147].
In Ref. [148], the authors calculated the B̄s → f0(980) form
factor from the light-cone sum rules with B-meson DAs, and
investigated the S-wave B̄s → KK form factors to study
the width effect, where the f0(980) is dominated by the s̄s
configuration. As a first approximation, we take into account
the scalar meson f0(500), f0(980), K ∗

0 (1430) in the q̄q den-
sity operator with q = (u, d, s). The S-wave time-like form
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Table 5 CP-averaged branching ratios (in units of 10−6) for the four-body B → [SS, SV, V S] → (ππ)(Kπ) decays, with S =
[ f0(500), f0(980), K ∗

0 (1430)] and V = [ρ, K ∗]. The experimental data are taken from [46]. The sources of the theoretical errors are the same as
in Table 4

Modes PQCD Experimenta

B+ → ( f0(500) →)π+π−(K ∗
0 (1430)+ →)K 0π+ BW 17.5+8.1+12.0+6.3

−5.3−8.1−5.5

B+ → ( f0(500) →)π+π−(K ∗
0 (1430)+ →)K 0π+ Bugg 19.2+8.9+12.1+7.0

−5.9−8.2−6.2

B0 → ( f0(500) →)π+π−(K ∗
0 (1430)0 →)K+π− BW 18.5+8.5+12.2+6.6

−5.6−8.3−5.9

B0 → ( f0(500) →)π+π−(K ∗
0 (1430)0 →)K+π− Bugg 20.3+9.4+12.3+7.4

−6.2−6.5−9.8

B0
s → ( f0(500) →)π+π−(K̄ ∗

0 (1430)0 →)K−π+ BW 0.4+0.1+0.6+0.1
−0.1−0.3−0.1

B0
s → ( f0(500) →)π+π−(K̄ ∗

0 (1430)0 →)K−π+ Bugg 0.4+0.1+0.6+0.1
−0.1−0.3−0.1

B+ → ( f0(980) →)π+π−(K ∗
0 (1430)+ →)K 0π+ 1.6+0.4+0.6+0.8

−0.3−0.5−0.5

B0 → ( f0(980) →)π+π−(K ∗
0 (1430)0 →)K+π− 1.5+0.4+0.6+0.8

−0.3−0.5−0.5 1.2 ± 0.4

B0
s → ( f0(980) →)π+π−(K̄ ∗

0 (1430)0 →)K−π+ 0.07+0.03+0.03+0.05
−0.03−0.03−0.03

B+ → ( f0(500) →)π+π−(K ∗+ →)K 0π+ BW 1.1+0.2+1.5+0.4
−0.2−0.2−0.2

B+ → ( f0(500) →)π+π−(K ∗+ →)K 0π+ Bugg 1.1+0.2+1.6+0.4
−0.2−0.2−0.2

B0 → ( f0(500) →)π+π−(K ∗0 →)K+π− BW 1.0+0.2+1.4+0.4
−0.2−0.2−0.2

B0 → ( f0(500) →)π+π−(K ∗0 →)K+π− Bugg 1.0+0.2+1.2+0.4
−0.2−0.2−0.2

B0
s → ( f0(500) →)π+π−(K̄ ∗0 →)K−π+ BW 0.17+0.04+0.22+0.04

−0.04−0.10−0.06

B0
s → ( f0(500) →)π+π−(K̄ ∗0 →)K−π+ Bugg 0.17+0.04+0.22+0.04

−0.04−0.08−0.04

B+ → ( f0(980) →)π+π−(K ∗+ →)K 0π+ 3.1+0.9+0.7+0.7
−0.7−0.7−0.9 2.8 ± 0.5

B0 → ( f0(980) →)π+π−(K ∗0 →)K+π− 2.9+0.9+0.5+1.2
−0.7−0.6−0.8 2.6+1.4

−1.2

B0
s → ( f0(980) →)π+π−(K̄ ∗0 →)K−π+ 0.02+0.01+0.01+0.01

−0.01−0.01−0.01

B+ → (ρ+ →)π+π0(K ∗
0 (1430)0 →)K+π− 14.1+6.1+4.9+5.5

−3.9−4.3−3.4

B+ → (ρ0 →)π+π−(K ∗
0 (1430)+ →)K 0π+ 5.1+2.2+2.1+2.3

−1.5−1.8−1.3

B0 → (ρ0 →)π+π−(K ∗
0 (1430)0 →)K+π− 7.9+3.3+2.3+2.9

−2.3−2.2−1.7 18 ± 4

B0 → (ρ− →)π−π0(K ∗
0 (1430)+ →)K 0π+ 11.8+5.1+4.2+4.7

−3.4−3.7−2.9 19 ± 8

B0
s → (ρ+ →)π+π0(K ∗

0 (1430)− →)K̄ 0π− 14.1+4.3+4.4+1.0
−3.2−3.9−1.0

B0
s → (ρ0 →)π+π−(K̄ ∗

0 (1430)0 →)K−π+ 0.4+0.1+0.2+0.1
−0.1−0.2−0.1

BW denotes the time-like form factor for f0(500) parameterized by Breit–Wigner formulas
Bugg denotes the time-like form factor for f0(500) parameterized by D.V. Bugg model
aThe experimental results are obtained by multiplying the relevant measured two-body branching ratios according to the Eq. (71)

factor FS(ω
2) used to parameterize the S-wave two-pion and

kaon-pion DAs have been determined in Refs. [117,137].
We list the branching ratios of the four-body decays

B(s) → [SS, SV, V S] → (ππ)(Kπ) with experimen-
tal data [46] in Table 5. So far, only five of them, say
B+ → ( f0(980) →)π+π−(K ∗+ →)K 0π+, B0 →
( f0(980) →)π+π−(K ∗0 →)K+π−, B0 → (ρ− →
)π−π0(K ∗

0 (1430)+ →)K 0π+, B0 → (ρ0 →)π+π−
(K ∗

0 (1430)0 →)K+π−, and B0 → ( f0(980) →)π+π−
(K ∗

0 (1430)0 →)K+π−, have been reported by experiments.
It is shown that, except for the colour suppressed (“ C ”) decay
B0 → (ρ0 →)π+π−(K ∗

0 (1430)0 →)K+π−, our predic-
tions of other four channels are consistent with the available
experimental data within errors, with the remaining predic-
tions awaiting for the examinations from future experimen-
tal measurements. However, the branching ratio B(B0 →

(ρ0 →)π+π−(K ∗
0 (1430)0 →)K+π−) = (7.9+4.9

−3.6) × 10−6

estimated in this work is smaller than the experimental data
B = (18 ± 4) × 10−6 [46] by a factor of ∼ 2. Since only
leading order contributions are considered in this work, it
indicates that this decay mode might be more sensitive to
next-to-leading order corrections, and it is similar to the situ-
ation of other “ C ”-type decays, such as B0 → π0π0, ρ0ρ0.
Besides, under the isospin limit, it is naively expected that

R = B(B0 → (ρ0 →)π+π−(K ∗
0 (1430)0 →)K+π−)

B(B0 → (ρ− →)π−π0(K ∗
0 (1430)+ →)K 0π+)

= 1

2
,

(73)

which is not borne out by experiment and needs to be fur-
ther studied in the future. Among the three different kinds of
theoretical errors considered in our work, one can see that
the most important theoretical uncertainties for the branch-
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ing ratio are caused by the nonperturbative input parameters
of the wave functions for some decay modes. Taking the
decay B+ → ( f0(500) →)π+π−(K ∗+ →)K 0π+ as an
example, which is dominated by the B → ( f0(500) →)ππ

transition progress, its branching ratio is much more sensi-
tive to the Gegenbauer moment aS from the S-wave DAs.
In the PQCD approach, wave functions are the most impor-
tant input parameters and the improved knowledge of them is
expected to yield improved estimates of the branching ratios
and other observables, which may lead to better consistency
with the data.

Since the f0(500) is very broad, we use BW formula and
Bugg model to parameterize the f0(500) resonance and com-
pare their results. It is found that the model-dependence of
the decay rate is indeed not significant. The central values of
PQCD predictions based on the Bugg model are consistent
with the ones from the BW formula. Our prediction of B0 →
( f0(980) →)π+π−(K ∗0 →)K+π− is consistent with the
current data, and also comparable with that from Table III in
[104] within errors. In order to compare our predictions with
other theoretical results for decays involving f0(980), we use
the B( f0(980) → π+π−) = 0.50, which is taken from [6]
and in agreement with the value of B( f0(980) → π+π−) =
0.46 obtained in [131]. We can extract the branching ratios of
the two-body decays B → f0(980)K ∗ from the correspond-
ing four-body decays B → f0(980)(→ ππ)K ∗(→ Kπ)

in Table 5 under the narrow width approximation. Taking
the decay B0 → f0(980)K ∗0 as an example, we obtain
its branching ratio B(B0 → f0(980)K ∗0) = 8.7 × 10−6,
which is in good agreement with previous two-body results
in the QCDF approach [6] and PQCD approach [15]. Strictly
speaking, the narrow width approximation is not fully justi-
fied since such approximation has its scope of application.
As mentioned above, the nonperturbative input parameters
from the wave functions make important sense to the branch-
ing ratios. We can fit the related Gegenbauer moments with
abundant data to match the experiment in the future. How-
ever, the fact that their rates can be accommodated in the
two-quark picture for f0(980) does not mean that q̄q com-
position should be supported. It is too difficult to make theo-
retical predictions on these decay modes based on the four-
quark picture for scalar resonances. We just assume they are
constituted by two quarks at this moment.

The decays B → ρK ∗
0 (1430) have already been stud-

ied systematically in the two-body framework within the
PQCD approach [16]. Taking the two measured channels
B0 → ρ−K ∗

0 (1430)+ → (π−π0)(K 0π+) and B0 →
ρ0K ∗

0 (1430)0 → (π+π−)(K+π−) as examples, we have:

B(B0 → ρ−K ∗
0 (1430)+ → (π−π0)(K 0π+))

=
⎧⎨
⎩

(11.8+8.1
−5.8) × 10−6 this work,

(7.0+2.9
−1.7) × 10−6 PQCD [16],

(19 ± 8) × 10−6 Data [46],
(74)

B(B0 → ρ0K ∗
0 (1430)0 → (π+π−)(K+π−))

=
⎧⎨
⎩

(7.9+4.9
−3.6) × 10−6 this work,

(3.2+1.0
−0.7) × 10−6 PQCD [16],

(18 ± 4) × 10−6 Data [46].
(75)

The results from the previous PQCD work [16] are obtained
by multiplying the relevant two-body branching ratios
according to Eqs. (70)–(71). Since the width of the reso-
nant state and the interactions between the final state meson
pair will show their effects on the branching ratios, the new
four-body predictions are relatively larger than the converted
values from previous PQCD calculations, but more close to
the experimental data. Therefore, it seems more appropriate
to treat these decay modes as four-body decays.

3.3 Direct CP asymmetries

In Table 6, we show the direct CP asymmetries with each
helicity state (ACP

0,‖,⊥) for the four-body B(s) → VV →
(ππ)(Kπ) decays together with those summed over all
helicity states (ACP). For comparison, the updated results
of the QCDF [3,4], SCET [25] and FAT [26] as well as the
PQCD predictions in two-body framework [18] are also pre-
sented. Meanwhile, directCP asymmetries for the four-body
B(s) → [SS, SV, V S] → (ππ)(Kπ) decays are displayed
in Table 7. As we know, the kinematics of the two-body
decays is fixed, the decay amplitudes of the quasi-two-body
decays depend on the invariant mass of the final-state pairs,
which result in the differential distribution of direct CP
asymmetries. The CP asymmetry in the four-body frame-
work is moderated by the finite width of the intermediate res-
onance appearing in the time-like form factor F(ω2). Thus,
it is reasonable to see the differences of direct CP asym-
metries between the two-body and four-body frameworks in
the PQCD approach. By comparing the numerical results as
listed in Table 6, due to the different mechanism and ori-
gins of the strong phase, one can see that the QCDF and
SCET results for the direct CP asymmetries are quite dif-
ferent from ours for some decay modes. As is well known,
besides the weak phase from the CKM matrix elements, the
direct CP asymmetry is proportional to the strong phase. In
the SCET, the strong phase is only from the nonperturba-
tive charming penguin at leading power and leading order,
while in the QCDF and PQCD approaches, the strong phase
comes from the hard spectator scattering and annihilation
diagrams respectively. Besides, the power corrections such
as penguin annihilation, which are essential to resolve the
CP puzzles in the QCDF, are often plagued by the endpoint
divergence that in turn break the factorization theorem [3].
In the PQCD approach, the endpoint singularity is cured by
including the parton’s transverse momentum. Anyway, since
current experimental measurements still have relatively large
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Table 6 DirectCP asymmetries (in units of %) for the B(s) → VV →
(ππ)(Kπ) decays compared with the previous predictions in the PQCD
approach [18], the updated predictions in the QCDF [3,4], SCET [25]

and FAT [26]. Experimental results for branching ratios are taken from
Table 2. The sources of the theoretical errors are the same as in Table 4

Modes ACP
0 ACP‖ ACP⊥ ACP

B+ → (ρ+ →)π+π0(K ∗0 →)K+π− 0.3+0.3+0.7+2.2
−0.1−0.1−1.1 1.2+0.0+0.5+1.0

−0.1−1.3−1.7 2.5+0.0+0.9+0.5
−0.4−1.1−1.8 0.7+0.2+0.6+1.7

−0.1−0.3−1.1

PQCD (former) −0.36+0.12
−0.11 0.98+0.20

−0.25 −1.0+0.3
−0.4

QCDF −0.3+2
−0

SCET −0.68 ± 0.77 0.56 ± 0.61 −0.56 ± 0.61

FAT 1.40 ± 0.56 −1.19 ± 0.19 1.00 ± 0.17

Expt. −1 ± 16

B+ → (ρ0 →)π+π−(K ∗+ →)K 0π+ 20.5+0.3+2.3+6.0
−0.2−2.5−5.2 1.1+0.1+4.6+1.3

−0.8−4.6−1.5 −53.8+5.3+5.5+7.4
−5.8−6.4−6.7 11.8+0.3+3.8+3.8

−0.3−4.3−3.7

PQCD (former) 11.3+2.3
−2.4 −34.0+3.7

−2.8 22.7+2.9
−3.2

QCDF 43+13.4
−28

SCET 40.4 ± 51.3 −29.3 ± 31.0 29.3 ± 31.0

FAT 35.0 ± 19.8 −24.2 ± 9.0 34.6 ± 8.3

Expt. 31 ± 13

B0 → (ρ0 →)π+π−(K ∗0 →)K+π− 3.5+0.8+4.1+6.0
−0.6−2.5−4.5 −35.9+4.8+6.6+5.1

−4.9−9.6−5.7 12.3+0.0+3.2+2.9
−0.4−3.2−3.1 0.04+0.0+2.3+3.6

−0.1−2.6−3.0

PQCD (former) 3.64+1.20
−1.07 −7.71+1.97

−1.86 −8.9+3.1
−3.0

QCDF −15+16.5
−16.1

SCET −2.10 ± 2.67 3.30 ± 3.91 −3.30 ± 3.91

FAT −0.41 ± 4.3 0.39 ± 4.06 −0.6 ± 4.0

Expt. −6 ± 9

B0 → (ρ− →)π−π0(K ∗+ →)K 0π+ 25.0+0.9+2.2+8.5
−0.5−2.9−5.9 −23.2+2.6+3.8+3.1

−3.1−4.3−3.1 −27.0+2.7+2.7+3.6
−3.1−2.7−3.1 11.5+1.0+4.7+4.6

−0.7−5.2−3.8

PQCD (former) 23.8+4.7
−5.1 −50.9+4.9

−3.9 24.5+3.1
−3.8

QCDF 32+2.2
−14.3

SCET 16.8 ± 21.7 −20.6 ± 23.3 20.6 ± 23.3

FAT 37.2 ± 18.9 −23.8 ± 6.9 34.3 ± 6.3

Expt. 21 ± 15

B0
s → (ρ+ →)π+π0(K ∗− →)K̄ 0π− −13.6+1.8+1.5+1.9

−1.7−1.3−2.0 30.8+4.6+6.3+6.0
−4.2−6.5−5.1 54.3+6.6+10.8+9.0

−6.5−11.4−9.2 −9.2+1.2+1.4+1.5
−1.0−1.1−1.2

PQCD (former) −2.71+0.68
−0.72 55.0+10.3

−10.5 −9.1+1.7
−1.9

QCDF −11+4.1
−1.4

SCET −0.07 ± 0.09 7.68 ± 9.19 −7.68 ± 9.19

FAT 0.91 ± 0.45 −15.4 ± 9.5 −10.9 ± 3.0

B0
s → (ρ0 →)π+π−(K̄ ∗0 →)K−π+ 13.8+1.3+6.9+18.7

−3.5−11.5−17.6 34.9+4.8+13.2+7.0
−5.0−13.5−6.0 41.9+4.7+13.1+5.3

−5.0−13.3−8.9 25.1+0.5+6.4+7.3
−1.7−8.2−9.2

PQCD (former) −17.5+21.2
−13.0 22.0+29.9

−31.4 62.7+14.4
−18.8

QCDF 46+18
−30

SCET 2.87 ± 4.00 −19.5 ± 23.5 19.5 ± 23.5

FAT 0.47 ± 4.69 −1.89 ± 18.3 4.9 ± 18.3

uncertainties, we have to wait for more time to test these dif-
ferent predictions.

In Tables 6 and 7 , a large CP asymmetry can be under-
stood due to the sizable interference between the tree and
penguin amplitudes, while a small value of CP asymme-
try is attributed to the dominant tree or penguin ampli-
tudes. For example, among the six considered B(s) →
ρK ∗ → (ππ)(πK ) decays as presented in Table 6, the
CP asymmetries ACP for the two penguin-dominant pro-

cesses B0 → (ρ0 →)π+π−(K ∗0 →)K+π− and B+ →
(ρ+ →)π+π0(K ∗0 →)K+π− are indeed quite small: less
than 1%. However, for the “ Color-suppressed ” decay
B0
s → (ρ0 →)π+π−(K̄ ∗0 →)K−π+, due to the large

penguin contributions from the chirally enhanced annihi-
lation diagrams, the sizable interference between the tree
and penguin contributions makes the direct CP asymme-
tries ACP as large as ∼ 30%. For four B+,0 → ρK ∗ →
(ππ)(Kπ) decays, our predictions of CP asymmetries are
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Table 7 Direct CP
asymmetries (in units of %) for
the four-body B →
[SS, SV, V S] → (ππ)(Kπ)

decays, with S =
[ f0(500), f0(980), K ∗

0 (1430)]
and V = [ρ, K ∗]. The sources
of the theoretical errors are the
same as in Table 4

Modes PQCD

B+ → ( f0(500) →)π+π−(K ∗
0 (1430)+ →)K 0π+ BW 4.1+0.8+1.9+0.6

−0.7−2.6−0.4

B+ → ( f0(500) →)π+π−(K ∗
0 (1430)+ →)K 0π+ Bugg 4.1+0.9+1.7+0.5

−0.7−2.9−0.4

B0 → ( f0(500) →)π+π−(K ∗
0 (1430)0 →)K+π− BW 3.4+0.6+2.1+0.9

−0.5−3.2−0.2

B0 → ( f0(500) →)π+π−(K ∗
0 (1430)0 →)K+π− Bugg 3.4+0.6+2.0+0.6

−0.5−3.2−0.2

B0
s → ( f0(500) →)π+π−(K̄ ∗

0 (1430)0 →)K−π+ BW −77.0+7.9+22.1+13.9
−6.8−4.1−5.3

B0
s → ( f0(500) →)π+π−(K̄ ∗

0 (1430)0 →)K−π+ Bugg −76.9+8.5+20.8+13.7
−6.8−4.3−5.3

B+ → ( f0(980) →)π+π−(K ∗
0 (1430)+ →)K 0π+ −0.3+0.8+1.2+1.1

−0.0−1.2−2.7

B0 → ( f0(980) →)π+π−(K ∗
0 (1430)0 →)K+π− −0.3+0.3+1.1+3.3

−0.0−0.9−2.3

B0
s → ( f0(980) →)π+π−(K̄ ∗

0 (1430)0 →)K−π+ 2.8+0.8+0.7+1.9
−0.6−1.5−1.6

B+ → ( f0(500) →)π+π−(K ∗+ →)K 0π+ BW −31.4+3.5+19.3+4.7
−4.5−4.7−7.6

B+ → ( f0(500) →)π+π−(K ∗+ →)K 0π+ Bugg −34.4+3.5+19.6+3.1
−4.5−5.4−7.2

B0 → ( f0(500) →)π+π−(K ∗0 →)K+π− BW 17.9+0.5+0.6+2.4
−1.4−17.3−6.4

B0 → ( f0(500) →)π+π−(K ∗0 →)K+π− Bugg 18.3+0.1+0.6+1.7
−0.3−18.0−6.3

B0
s → ( f0(500) →)π+π−(K̄ ∗0 →)K−π+ BW 41.3+1.0+2.9+6.3

−1.2−41.4−7.5

B0
s → ( f0(500) →)π+π−(K̄ ∗0 →)K−π+ Bugg 39.1+1.1+4.2+7.5

−0.5−39.6−7.2

B+ → ( f0(980) →)π+π−(K ∗+ →)K 0π+ 0.2+0.3+0.7+0.5
−0.4−0.9−0.4

B0 → ( f0(980) →)π+π−(K ∗0 →)K+π− −0.2+0.0+0.9+1.4
−0.0−0.6−0.4

B0
s → ( f0(980) →)π+π−(K̄ ∗0 →)K−π+ 1.3+0.2+0.8+0.1

−0.4−0.1−1.8

B+ → (ρ+ →)π+π0(K ∗
0 (1430)0 →)K+π− 2.5+1.0+1.2+1.2

−0.4−1.2−1.2

B+ → (ρ0 →)π+π−(K ∗
0 (1430)+ →)K 0π+ −3.6+0.0+1.6+0.0

−1.4−7.3−4.8

B0 → (ρ0 →)π+π−(K ∗
0 (1430)0 →)K+π− 6.8+1.5+4.7+0.0

−1.3−3.9−1.6

B0 → (ρ− →)π−π0(K ∗
0 (1430)+ →)K 0π+ 2.4+0.1+1.0+0.0

−1.4−3.8−3.4

B0
s → (ρ+ →)π+π0(K ∗

0 (1430)− →)K̄ 0π− 7.8+1.1+0.7+1.6
−1.0−1.0−1.3

B0
s → (ρ0 →)π+π−(K̄ ∗

0 (1430)0 →)K−π+ 56.3+4.0+10.4+12.1
−3.1−9.7−5.6

BW denotes the time-like form factor for f0(500) parameterized by Breit–Wigner formulas
Bugg denotes the time-like form factor for f0(500) parameterized by D.V. Bugg model

in agreement with observations within uncertainties. More-
over, a helicity-specific analysis would provide interesting
further insights. Very recently, LHCb [43] has reported the
CP asymmetry associated with longitudinal polarization
A0

ρK ∗ = −0.62 ± 0.09 ± 0.09, where the first uncertainty is
statistical and the second systematic. The data is much differ-
ent from our prediction ACP

0 (B0 → ρ0(→ π+π−)K ∗0(→
K+π−)) = 3.5%. Considering the branching ratio of the
B0 → ρ0(→ π+π−)K ∗0(→ K+π−) decay associated
with the longitudinal polarization, the contributions of the
penguin diagrams (B = 2.98×10−6) are larger than the tree
ones (B = 5.74 × 10−8) by roughly a factor of 52, which
results in the smallness of direct CP asymmetries. The big
gap between the theory and experiment should be resolved
in the future.

In the limit of U -spin symmetry, some of Bs decays can
be related to B0 ones. For B(s) → VV decays, it has been
studied in [4,18] and seems to hold well. Since we have
calculated the B and Bs decays to VV in this work in the
PQCD approach, we also check theU -spin symmetry in some

decay modes studied in [4,18]:

ACP (
Bs → ρ+K ∗−)

= −ACP(B0 → ρ−K ∗+)
B(B0 → ρ−K ∗+)

B(Bs → ρ+K ∗−)

τBs

τB0
,

ACP
(
Bs → ρ0 K̄ ∗0

)

= −ACP
(
B0 → ρ0K ∗0

) B (
B0 → ρ0K ∗0

)
B (

Bs → ρ0 K̄ ∗0
) τBs

τB0
. (76)

On basis of these U -spin relations along with the branch-
ing ratios, the lifetimes of B and Bs mesons and the direct
CP asymmetries in B decays, we can get the relevant direct
CP asymmetries in Bs decays. This can be then compared
with the corresponding predictions in the PQCD approach to
check whether the U -spin symmetry works well or not. We
show this comparison in Table 8, where the entries in the last
two columns have to be compared with each other. It turns
out that U -spin symmetry is in general acceptable within the
calculational errors.
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Table 8 The direct CP asymmetries (%) in Bs → ρK ∗ decays via U -spin relation together with the direct PQCD prediction

Modes B(10−6) ACP(%) Modes B(10−6) ACP(%)(U ) ACP(PQCD)

B0 → ρ−K ∗+ 10.5 11.5+6.7
−6.5 Bs → ρ+K ∗− 34.2 -3.5 −9.2+2.4

−1.9

B0 → ρ0K ∗0 4.4 0.04+4.3
−4.0 Bs → ρ0 K̄ ∗0 1.3 -0.13 25.1+9.7

−12.4

Table 9 PQCD predictions for the TPAs (%) of the four-body B(s) → (ρ →)ππ(K ∗ →)Kπ decays. The sources of theoretical errors are same
as in Table 4 but added in quadrature

Modes TPAs-1
A1

T Ā1
T A1

T-true A1
T-fake A(1)ave

T-True A(1)ave
T-fake

B+ → (ρ+ →)π+π0(K ∗0 →)K+π− 24.94+2.05
−3.27 −25.65+3.81

−2.72 −0.36+0.28
−0.54 25.29+2.37

−3.33 −0.07+0.29
−0.56 25.29+2.36

−3.34

B+ → (ρ0 →)π+π−(K ∗+ →)K 0π+ 14.51+3.55
−4.06 −24.52+3.37

−2.35 −5.00+1.44
−1.33 19.52+2.64

−3.47 −2.79+1.20
−1.22 18.95+2.87

−3.67

B0 → (ρ0 →)π+π−(K ∗0 →)K+π− 23.55+3.59
−4.74 −29.96+2.49

−2.44 −3.20+1.55
−2.19 26.76+2.62

−3.12 −3.14+1.58
−2.04 26.75+2.66

−3.20

B0 → (ρ− →)π−π0(K ∗+ →)K 0π+ 19.50+2.41
−3.09 −28.19+2.35

−2.02 −4.34+1.02
−1.20 23.84+1.94

−2.51 −1.56+1.33
−1.70 23.34+2.00

−2.73

B0
s → (ρ+ →)π+π0(K ∗− →)K̄ 0π− −3.79+1.61

−1.53 3.72+0.76
−0.73 −0.04+0.86

−0.88 −3.75+0.91
−0.85 0.30+0.85

−0.93 −3.75+0.87
−0.81

B0
s → (ρ0 →)π+π−(K̄ ∗0 →)K−π+ −30.96+1.31

−0.42 29.56+2.57
−4.69 −0.70+1.68

−2.10 −30.26+2.67
−0.94 −8.97+3.06

−1.89 −30.45+2.31
−0.51

Modes TPAs-2
A2

T Ā2
T A2

T-true A2
T-fake A(2)ave

T-True A(2)ave
T-fake

B+ → (ρ+ →)π+π0(K ∗0 →)K+π− −1.44+1.08
−1.07 1.54+1.10

−1.04 0.05+0.12
−0.04 −1.49+1.06

−1.08 0.04+0.11
−0.07 −1.49+1.06

−1.08

B+ → (ρ0 →)π+π−(K ∗+ →)K 0π+ −1.18+1.32
−1.39 −9.81+2.51

−2.56 −5.49+1.63
−1.72 4.31+1.14

−1.17 −5.00+1.53
−1.61 3.69+1.08

−1.16

B0 → (ρ0 →)π+π−(K ∗0 →)K+π− −1.73+1.51
−1.27 16.27+3.73

−3.97 7.27+2.07
−2.06 −9.00+2.12

−1.93 7.25+2.07
−2.18 −8.98+2.21

−1.98

B0 → (ρ− →)π−π0(K ∗+ →)K 0π+ −0.93+0.65
−1.03 1.55+1.05

−1.02 0.31+0.25
−0.21 −1.24+0.83

−0.83 0.16+0.21
−0.11 −1.20+0.80

−0.82

B0
s → (ρ+ →)π+π0(K ∗− →)K̄ 0π− −0.58+0.28

−0.28 0.64+0.13
−0.16 0.04+0.10

−0.16 −0.61+0.18
−0.16 0.08+0.12

−0.13 −0.61+0.17
−0.16

B0
s → (ρ0 →)π+π−(K̄ ∗0 →)K−π+ −3.43+0.49

−0.39 1.80+0.45
−0.72 −0.81+0.25

−0.37 −2.61+0.50
−0.35 −1.53+0.39

−0.28 −2.84+0.46
−0.29

3.4 Triple product asymmetries in
B(s) → ρ(→ ππ)K ∗(→ Kπ) decays

The predicted TPAs for the B(s) → (ππ)(Kπ) decays are
displayed in Table 9. It is shown that our PQCD predictions
of “true”CP-violating TPAs are very small in the SM, which
makes the measurement of a large value for that TPA point
clearly towards the presence of new physics. As “fake” TPAs
are due to strong phases and require no CP violation, the
large fakeA1,2

T-fake simply reflects the importance of the strong
final-state phases.

Since the left-handedness of the weak interaction A− �
A+ is expected, it implies A‖ ≈ A⊥. The A2

T term requires
both transversely polarized components A‖ and A⊥ and the
decay amplitude associated with transverse polarization is
smaller than that for longitudinal polarization in the naive
expectation. Hence A2

T is power suppressed relative to A1
T .

Meanwhile, the smallness of A2
T is also attributed to the sup-

pression from the strong phase difference between the per-
pendicular and parallel polarization amplitudes, which was
found in the PQCD framework [18] and supported by the
LHCb Collaboration [43]. An observation of A2

T with large
values can signify physics beyond the SM. As mentioned

above, (A1,2
T + Ā1,2

T )/2 �= A(1,2)ave
T (true) when the decay

channel has a nonzero CP asymmetries. We find that the
greater difference between the A1,2

T (true) and A(1,2)ave
T (true)

appears with the larger direct CP asymmetry.
Recently, the measurements of “true” and “fake” TPAs for

B0 → ρ0K ∗0 → (π+π−)(K+π−) have been reported by
LHCb Collaboration [43]. The PQCD prediction of A1

T-true

agrees well with the experiment AρK ∗,1
T-true = −0.0210 ±

0.0050±0.0022, where the first uncertainty is statistical and
the second systematic. While for “fake” TPAs, our predic-
tions are a little larger than the measurements but compatible
within large uncertainties. It should be stressed that there
are large uncertainties in both experimental measurements
and the theoretical calculations for TPAs, so the discrepancy
between the data and the theoretical results could be clarified
with the high precision both in experimental and theoreti-
cal sides. Since “fake” TPAs strongly affected by the strong
phases, we lack a perfect knowledge of all the possible signals
of the strong phases, such as final-state interactions. For this
reason, we just estimate the size of the corresponding TPAs.
We hope the future experiments can test our predictions.
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4 Conclusion

In this work, we have presented six helicity amplitudes of
four-body decays B(s) → (ππ)(Kπ), where ππ invariant-
mass spectrum is dominated by the vector ρ resonance
and scalar f0(500), f0(980) resonances, and the vector K ∗
resonance and scalar resonance K ∗

0 (1430) are expected
to contribute in the Kπ invariant-mass range. We have
examined the branching ratios, polarization fractions, direct
CP asymmetries, triple product asymmetries in B(s) →
[VV, SS, SV, V S] → (ππ)(Kπ) decays. In our numeri-
cal study, there exist many theoretical uncertainties in the
calculation. The uncertainties of the nonperturbative param-
eters of the two-meson DAs and the variation of the hard scale
provide the dominant theoretical errors to the theoretical pre-
dictions for branching ratios and other physical observables.
Therefore, the relevant Gegenbauer moments should be fur-
ther constrained to improve the precision of theoretical pre-
dictions and meet with future data. In addition, one should
make a great effort to evaluate the higher-order contributions
to four-body B meson decays in order to reduce the sensitiv-
ity to the variation of the hard scales.

We have extracted the branching ratios of two-body B →
ρK ∗ decays from the results for the corresponding four-body
decays under the narrow-width approximation and shown
the polarization fractions of the related decay channels. The
obtained two-body branching ratios agree well with previ-
ous theoretical studies performed in the two-body framework
within errors. The predicted hierarchy pattern for the longi-
tudinal polarization fractions in the B(s) meson decays into
the P-wave ππ and Kπ pairs is compatible with the data
roughly. However, there is a big gap between our prediction
of longitudinal polarization fraction for B0 → ρ0K ∗0 and
the recent LHCb measurement, which should be resolved.
In addition, we have calculated the branching ratios of the
four-body decays B(s) → [SS, SV, V S] → (ππ)(Kπ).
For the decays associated with scalar resonance f0(500),
we have used the BW and Bugg models to parameterize the
wide f0(500) meson respectively but found that the model-
dependence of the PQCD predictions is not significant. The
branching ratios of B0 → (ρ− →)π−π0(K ∗

0 (1430)+ →
)K 0π+ and B0 → (ρ0 →)π+π−(K ∗

0 (1430)0 →)K+π−
decays, which are related to isospin limit, remain puzzling
and need to be resolved.

We have calculated the direct CP asymmetries with each
helicity state (ACP

0,‖,⊥) for the four-body B(s) → VV →
(ππ)(Kπ) decays, together with the directCP asymmetries
of B(s) → [SS, SV, V S] → (ππ)(Kπ) decays. The CP
asymmetry in the four-body framework is dependent on the
invariant mass of the final-state pairs, which results in the
differences between the two-body and four-body frameworks
in the PQCD approach. Meanwhile, we perform an angular
analysis on four-body B(s) → ρK ∗ → (ππ)(Kπ) decays

to obtain the triple product asymmetries in detail. We found
that most “true” TPAs are very small, which are consistent
with the predictions of the standard model. A “true” TPA that
is predicted to vanish provides an excellent place for looking
for new physics because there is no suppression from the
strong phases.
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Appendix A: Decay amplitudes

In this Appendix we present the PQCD factorization formulas
for the amplitudes of the considered four-body hadronic B
meson decays:

• B → ρK ∗ → (ππ)(Kπ) decay modes (h = 0, ‖,⊥)

Ah(B
0 → (ρ0 →)π+π−(K ∗0 →)K+π−)

= GF

2

{
V ∗
ubVus

[(
C1 + C2

3

)
FLL ,h
eK ∗ + C2M

LL ,h
eK ∗

]

−V ∗
tbVts

[
3

2

(
C7 + C8

3
+ C9 + C10

3

)
FLL ,h
eK ∗

+3C10

2
MLL ,h

eK ∗ + 3C8

2
MSP,h

eK ∗

−
(
C3

3
+ C4 − C9

6
− C10

2

)(
FLL ,h
eρ + FLL ,h

aρ

)

−
(
C5

3
+ C6 − C7

6
− C8

2

)
FSP,h
aρ
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−
(
C3 − C9

2
)(MLL ,h

eρ + MLL ,h
aρ

)

−
(
C5 − C7

2
)(MLR,h

eρ + MLR,h
aρ

)]}
, (A1)

Ah(B
+ → (ρ+ →)π+π0(K ∗0 →)K+π−)

= GF√
2

{
V ∗
ubVus

[
(
C1

3
+ C2)F

LL ,h
aρ + C1M

LL ,h
aρ

]

−V ∗
tbVts

[(
C3

3
+ C4 − C9

6
− C10

2

)
FLL ,h
eρ

+
(
C3 − C9

2

)
MLL ,h

eρ +
(
C5 − C7

2

)
MLR,h

eρ

+
(
C3

3
+ C4 + C9

3
+ C10

)
FLL ,h
aρ

+
(
C5

3
+ C6 + C7

3
+ C8

)
FSP,h
aρ

+(C3 + C9)M
LL ,h
aρ + (C5 + C7)M

LR,h
aρ

]}
, (A2)

Ah(B
+ → (ρ0 →)π+π−(K ∗+ →)K 0π+)

= GF

2

{
V ∗
ubVus

[(
C1

3
+ C2

)(
FLL ,h
eρ + FLL ,h

aρ

)

+C1

(
MLL ,h

eρ + MLL ,h
aρ

)

+C2M
LL ,h
eK ∗ +

(
C1 + C2

3

)
FLL ,h
eK ∗

]

−V ∗
tbVts

[(
C3

3
+ C4 + C9

3
+ C10

)(
FLL ,h
eρ + FLL ,h

aρ

)

+(C3 + C9)

(
MLL ,h

eρ + MLL ,h
aρ

)

+(C5 + C7)

(
MLR,h

eρ + MLR,h
aρ

)

+
(
C5

3
+ C6 + C7

3
+ C8

)
FSP,h
aρ

+3

2

(
C7 + C8

3
+ C9 + C10

3

)
FLL ,h
eK ∗

+3C10

2
MLL ,h

eK ∗ + 3C8

2
MSP,h

eK ∗

]}
, (A3)

Ah(B
0 → (ρ− →)π−π0(K ∗+ →)K 0π+)

= GF√
2

{
V ∗
ubVus

[
(
C1

3
+ C2)F

LL ,h
eρ + C1M

LL ,h
eρ

]

−V ∗
tbVts

[(
C3

3
+ C4 + C9

3
+ C10

)
FLL ,h
eρ

+(C3 + C9)M
LL ,h
eρ + (C5 + C7)M

LR,h
eρ

+
(
C3

3
+ C4 − C9

6
− C10

2

)
FLL ,h
aρ

+
(
C5

3
+ C6 − C7

6
− C8

2

)
FSP,h
aρ

+
(
C3 − C9

2

)
MLL ,h

aρ +
(
C5 − C7

2

)
MLR,h

aρ

]}
, (A4)

Ah(B
0
s → (ρ+ →)π+π0(K ∗− →)K̄ 0π−)

= GF√
2

{
V ∗
ubVud [(

C1

3
+ C2)F

LL ,h
eK ∗ + C1M

LL ,h
eK ∗ ]

−V ∗
tbVtd

[
(
C3

3
+ C4 + C9

3
+ C10)F

LL ,h
eK ∗

+(C3 + C9)M
LL ,h
eK ∗ + (C5 + C7)M

LR,h
eK ∗

+
(
C3

3
+ C4 − C9

6
− C10

2

)
FLL ,h
aK ∗

+
(
C5

3
+ C6 − C7

6
− C8

2

)
FSP,h
aK ∗

+
(
C3 − C9

2

)
MLL ,h

aK ∗ +
(
C5 − C7

2

)
MLR,h

aK ∗

]}
, (A5)

Ah(B
0
s → (ρ0 →)π+π−(K̄ ∗0 →)K−π+)

= GF

2

{
V ∗
ubVud [(C1 + C2

3
)FLL ,h

eK ∗ + C2M
LL ,h
eK ∗ ]

−V ∗
tbVtd

[
(−C3

3
− C4 + 3C7

2
+ C8

2
+ 5C9

3
+ C10)F

LL ,h
eK ∗

+
(

− C3 + C9

2
+ 3C10

2

)
MLL ,h

eK ∗

−(C5 − C7

2
)MLR,h

eK ∗ + 3C8

2
MSP,h

eK ∗

−
(
C3

3
+ C4 − C9

6
− C10

2

)
FLL ,h
aK ∗

−
(
C5

3
+ C6 − C7

6
− C8

2

)
FSP,h
aK ∗

−(C3 − C9

2
)MLL ,h

aK ∗ − (C5 − C7

2
)MLR,h

aK ∗

]}
, (A6)

• B → f0K ∗ → (ππ)(Kπ) decay modes

A(B+ → ( f0(980) →)π+π−(K ∗+ →)K 0π+)

= GF√
2

{
V ∗
ubVus

[
(
C1

3
+ C2)F

LL
aK ∗ + C1M

LL
aK ∗

]

−V ∗
tbVts

[(
C5

3
+ C6 − C7

6
− C8

2

)
FSP
eK ∗

+
(
C3 + C4 − 1

2
(C9 + C10)

)
MLL

eK ∗ +
(
C5 − C7

2

)
MLR

eK ∗

+
(
C6 − C8

2

)
MSP

eK ∗ +
(
C3

3
+ C4 + C9

3
+ C10

)
FLL
aK ∗

+
(
C5

3
+ C6 + C7

3
+ C8

)
FSP
aK ∗ + (C3 + C9)M

LL
eK ∗

+(C5 + C7)M
LR
eK ∗

]}
, (A7)

A(B0 → ( f0(500) →)π+π−(K ∗0 →)K+π−)

= GF

2

{
V ∗
ubVus

[
C2M

LL
eK ∗

]

−V ∗
tbVts

[(
C3

3
+ C4 − C9

6
− C10

2

)(
FLL
ef0 + FLL

a f0

)

+
(
C3 − C9

2

)(
MLL

ef0 + MLL
a f0

)
+

(
C5 − C7

2

)

×
(
MLR

ef0 + MLR
a f0

)
+

(
C5

3
+ C6 − C7

6
− C8

2

)
FSP
a f0
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+
(

2C4 + C10

2

)
MLL

eK ∗ +
(

2C6 + C8

2

)
MSP

eK ∗

]}
, (A8)

A(B0
s → ( f0(500) →)π+π−(K̄ ∗0 →)K−π+)

= GF

2

{
V ∗
ubVud

[
C2M

LL
eK ∗

]

−V ∗
tbVtd

[(
C5

3
+ C6 − C7

6
− C8

2

)(
FSP
eK ∗ + FSP

aK ∗

)

+
(
C3 + 2C4 − 1

2

(
C9 − C10

))
MLL

eK ∗ +
(
C5 − C7

2

)
MLR

eK ∗

+
(

2C6 + C8

2

)
MSP

eK ∗ +
(
C3

3
+ C4 − C9

6
− C10

2

)
FLL
aK ∗

+
(
C3 − C9

2

)
MLL

eK ∗ +
(
C5 − C7

2

)
MLR

eK ∗

]}
, (A9)

A(B0 → ( f0(980) →)π+π−(K ∗0 →)K+π−)

−GF√
2
V ∗
tbVts

[(
C5

3
+ C6 − C7

6
− C8

2

)(
FSP
eK ∗ + FSP

aK ∗

)

+
(
C3 + C4 − 1

2

(
C9 + C10

))
MLL

eK ∗ +
(
C5 − C7

2

)
MLR

eK ∗

+
(
C6 − C8

2

)
MSP

eK ∗ +
(
C3

3
+ C4 − C9

6
− C10

2

)
FLL
aK ∗

+
(
C3 − C9

2

)
MLL

eK ∗ +
(
C5 − C7

2

)
MLR

eK ∗

]}
, (A10)

A(B0
s → ( f0(980) →)π+π−(K̄ ∗0 →)K−π+)

= −GF√
2
V ∗
tbVtd

[(
C3

3
+ C4 − C9

6
− C10

2

)(
FLL
ef0 + FLL

a f0

)

+
(
C3 − C9

2

)(
MLL

ef0 + MLL
a f0

)
+

(
C5 − C7

2

)(
MLR

ef0 + MLR
a f0

)

+
(
C5

3
+ C6 − C7

6
− C8

2

)
FSP
a f0 +

(
C4 − C10

2

)
MLL

eK ∗

+
(
C6 − C8

2

)
MSP

eK ∗

]}
, (A11)

A(B+ → ( f0(500) →)π+π−(K ∗+ →)K 0π+)

= GF

2

{
V ∗
ubVus

[(
C2 + C1

3

)(
FLL
ef0 + FLL

a f0

)
+ C1

(
MLL

ef0 + MLL
a f0

)

+C2M
LL
eK ∗

]
− V ∗

tbVts

[(
C3

3
+ C4 + C9

3
+ C10

)(
FLL
ef0 + FLL

a f0

)

+
(
C3 + C9

)(
MLL

ef0 + MLL
a f0

)
+

(
C5 + C7

)(
MLR

ef0 + MLR
a f0

)

+
(
C5

3
+ C6 + C7

3
+ C8

)
FSP
a f0 +

(
2C4 + C10

2

)
MLL

eK ∗

+
(

2C6 + C8

2

)
MSP

eK ∗

]}
, (A12)

• B → f0K ∗
0 (1430) → (ππ)(Kπ) decay modes

A(B+ → ( f0(500) →)π+π−(K ∗
0 (1430)+ →)K 0π+)

= GF

2

{
V ∗
ubVus

[(
C1

3
+ C2

)(
FLL
ef0 + FLL

a f0

)

+C1(M
LL
ef0 + MLL

a f0

)
+ C2M

LL
eK ∗

0

]

−V ∗
tbVts

[(
C3

3
+ C4 + C9

3
+ C10

)(
FLL
ef0 + FLL

a f0

)

+
(
C5

3
+ C6 + C7

3
+ C8

)(
FSP
ef0 + FSP

a f0

)

+
(
C3 + C9)(M

LL
ef0 + MLL

a f0 ) +
(
C5 + C7

)(
MLR

ef0 + MLR
a f0

)

+
(

2C4 + C10

2

)
MLL

eK ∗
0

+
(

2C6 + C8

2

)
MSP

eK ∗
0

]}
, (A13)

A(B0 → ( f0(500) →)π+π−(K ∗
0 (1430)0 →)K+π−)

= GF

2

{
V ∗
ubVus

[
C2M

LL
eK ∗

0

]

−V ∗
tbVts

[(
C3

3
+ C4 − C9

6
− C10

2

)(
FLL
ef0 + FLL

a f0

)

+
(
C5

3
+ C6 − C7

6
− C8

2

)(
FSP
ef0 + FSP

a f0

)

+
(
C3 − C9

2

)(
MLL

ef0 + MLL
a f0

)
+

(
C5 − C7

2

)(
MLR

ef0 + MLR
a f0

)

+
(

2C4 + C10

2

)
MLL

eK ∗
0

+
(

2C6 + C8

2

)
MSP

eK ∗
0

]}
, (A14)

A(B0
s → ( f0(500) →)π+π−(K̄ ∗

0 (1430)0 →)K−π+)

= GF

2

{
V ∗
ubVud

[
C2M

LL
eK ∗

0

]

−V ∗
tbVtd

[(
C5

3
+ C6 − C7

6
− C8

2

)(
FSP
eK ∗

0
+ FSP

aK ∗
0

)

+
(
C3 + 2C4 − 1

2

(
C9 − C10

))
MLL

eK ∗
0

+
(
C5 − C7

2

)
MLR

eK ∗
0

+
(

2C6 + C8

2

)
MSP

eK ∗
0

+
(
C3

3
+ C4 − C9

6
− C10

2

)
FLL
aK ∗

0

+
(
C3 − C9

2

)
MLL

eK ∗
0

+
(
C5 − C7

2

)
MLR

eK ∗
0

]}
, (A15)

A(B+ → ( f0(980) →)π+π−(K ∗
0 (1430)+ →)K 0π+)

= GF√
2

{
V ∗
ubVus

[(
C1

3
+ C2

)
FLL
aK ∗

0
+ C1M

LL
aK ∗

0

]

−V ∗
tbVts

[(
C5

3
+ C6 − C7

6
− C8

2

)
FSP
eK ∗

0

+
(
C3 + C4 − 1

2

(
C9 + C10

))
MLL

eK ∗
0

+
(
C5 − C7

2

)
MLR

eK ∗
0

+
(
C6 − C8

2

)
MSP

eK ∗
0

+
(
C3

3
+ C4 + C9

3
+ C10

)
FLL
aK ∗

0

+
(
C5

3
+ C6 + C7

3
+ C8

)
FSP
aK ∗

0
+

(
C3 + C9

)
MLL

eK ∗
0

+(C5 + C7)M
LR
eK ∗

0

]}
, (A16)

A(B0 → ( f0(980) →)π+π−(K ∗
0 (1430)0 →)K+π−)

= −GF√
2
V ∗
tbVts

[(
C5

3
+ C6 − C7

6
− C8

2

)(
FSP
eK ∗

0
+ FSP

aK ∗
0

)

+
(
C3 + C4 − 1

2

(
C9 + C10

))
MLL

eK ∗
0

+
(
C5 − C7

2

)
MLR

eK ∗
0

+
(
C6 − C8

2

)
MSP

eK ∗
0

+
(
C3

3
+ C4 − C9

6
− C10

2

)
FLL
aK ∗

0

+
(
C3 − C9

2

)
MLL

eK ∗
0

+
(
C5 − C7

2

)
MLR

eK ∗
0

]}
, (A17)

A(B0
s → ( f0(980) →)π+π−(K̄ ∗

0 (1430)0 →)K−π+)

= −GF√
2
V ∗
tbVtd

[(
C3

3
+ C4 − C9

6
− C10

2

)(
FLL
ef0 + FLL

a f0

)

+
(
C3 − C9

2

)(
MLL

ef0 + MLL
a f0

)
+

(
C5 − C7

2

)(
MLR

ef0 + MLR
a f0

)
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+
(
C5

3
+ C6 − C7

6
− C8

2

)(
FSP
ef0 + FSP

a f0

)
+

(
C4 − C10

2

)
MLL

eK ∗
0

+
(
C6 − C8

2

)
MSP

eK ∗
0

]}
, (A18)

• B → ρK ∗
0 (1430) → (ππ)(Kπ) decay modes

A(B0 → (ρ0 →)π+π−(K ∗
0 (1430)0 →)K+π−)

= GF

2

{
V ∗
ubVus

[(
C1 + C2

3

)
FLL
eK ∗

0
+ C2M

LL
eK ∗

0

]

−V ∗
tbVts

[
3

2

(
C7 + C8

3
+ C9 + C10

3

)
FLL
eK ∗

0

+3C10

2
MLL

eK ∗
0

+ 3C8

2
MSP

eK ∗
0

−
(
C3

3
+ C4 − C9

6
− C10

2

)(
FLL
eρ + FLL

aρ

)

−
(
C3 − C9

2

)(
MLL

eρ + MLL
aρ

)

−
(
C5

3
+ C6 − C7

6
− C8

2

)(
FSP
eρ + FSP

aρ

)

−
(
C5 − C7

2

)(
MLR

eρ + MLR
aρ

)]}
,

(A19)
A(B+ → (ρ+ →)π+π0(K ∗

0 (1430)0 →)K+π−)

= GF√
2

{
V ∗
ubVus

[(
C1

3
+ C2

)
FLL
aρ + C1M

LL
aρ

]

−V ∗
tbVts

[(
C3

3
+ C4 − C9

6
− C10

2

)
FLL
eρ

+
(
C5

3
+ C6 − C7

6
− C8

2
)FSP

eρ

+
(
C3 − C9

2
)MLL

eρ +
(
C5 − C7

2

)
MLR

eρ

+
(
C3

3
+ C4 + C9

3
+ C10

)
FLL
aρ

+
(
C5

3
+ C6 + C7

3
+ C8

)
FSP
aρ

+(C3 + C9)M
LL
aρ + (C5 + C7)M

LR
aρ

]}
, (A20)

A(B+ → (ρ0 →)π+π−(K ∗
0 (1430)+ →)K 0π+)

= GF

2

{
V ∗
ubVus

[(
C1

3
+ C2

)(
FLL
eρ + FLL

aρ

)

+C1

(
MLL

eρ + MLL
aρ

)
+ C2M

LL
eK ∗

0
+

(
C1 + C2

3

)
FLL
eK ∗

0

]

−V ∗
tbVts

[(
C3

3
+ C4 + C9

3
+ C10

)(
FLL
eρ + FLL

aρ

)

+
(
C5

3
+ C6 + C7

3
+ C8

)(
FSP
eρ + FSP

aρ

)

+(C3 + C9)

(
MLL

eρ + MLL
aρ

)

+(C5 + C7)

(
MLR

eρ + MLR
aρ

)

+3

2

(
C7 + C8

3
+ C9 + C10

3

)
FLL
eK ∗

0

+3C10

2
MLL

eK ∗
0

+ 3C8

2
MSP

eK ∗
0

]}
, (A21)

A(B0 → (ρ− →)π−π0(K ∗
0 (1430)+ →)K 0π+)

= GF√
2

{
V ∗
ubVus

[(
C1

3
+ C2

)
FLL
eρ + C1M

LL
eρ

]

−V ∗
tbVts

[(
C3

3
+ C4 + C9

3
+ C10

)
FLL
eρ

+
(
C5

3
+ C6 + C7

3
+ C8

)
FSP
eρ

+(C3 + C9)M
LL
eρ + (C5 + C7)M

LR
eρ

+
(
C3

3
+ C4 − C9

6
− C10

2

)
FLL
aρ

+
(
C5

3
+ C6 − C7

6
− C8

2

)
FSP
aρ

+
(
C3 − C9

2

)
MLL

aρ +
(
C5 − C7

2

)
MLR

aρ

]}
, (A22)

A(B0
s → (ρ+ →)π+π0(K ∗

0 (1430)− →)K̄ 0π−)

= GF√
2

{
V ∗
ubVud

[(
C1

3
+ C2

)
FLL
eK ∗

0
+ C1M

LL
eK ∗

0

]

−V ∗
tbVtd

[(
C3

3
+ C4 + C9

3
+ C10

)
FLL
eK ∗

0

+
(
C5

3
+ C6 + C7

3
+ C8

)
FSP
eK ∗

0

+(C3 + C9)M
LL
eK ∗

0
+ (C5 + C7)M

LR
eK ∗

0

+
(
C3

3
+ C4 − C9

6
− C10

2

)
FLL
aK ∗

0

+(
C5

3
+ C6 − C7

6
− C8

2

)
FSP
aK ∗

0

+
(
C3 − C9

2

)
MLL

aK ∗
0

+
(
C5 − C7

2

)
MLR

aK ∗
0

]}
, (A23)

A(B0
s → (ρ0 →)π+π−(K̄ ∗

0 (1430)0 →)K−π+)

= GF

2

{
V ∗
ubVud

[(
C1 + C2

3

)
FLL
eK ∗

0
+ C2M

LL
eK ∗

0

]

−V ∗
tbVtd

[(
− C3

3
− C4 + 3C7

2
+ C8

2
+ 5C9

3
+ C10

)
FLL
eK ∗

0

−
(
C5

3
+ C6 − C7

6
− C8

2

)
FSP
eK ∗

0

+
(

− C3 + C9

2
+ 3C10

2

)
MLL

eK ∗
0

−
(
C5 − C7

2

)
MLR

eK ∗ + 3C8

2
MSP

eK ∗
0

−
(
C3

3
+ C4 − C9

6
− C10

2

)
FLL
aK ∗

0
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−
(
C5

3
+ C6 − C7

6
− C8

2

)
FSP
aK ∗

0

−
(
C3 − C9

2

)
MLL

aK ∗
0

−
(
C5 − C7

2

)
MLR

aK ∗
0

]}
, (A24)

where GF = 1.16639 × 10−5 GeV−2 is the Fermi coupling
constant and the Vi j ’s are the Cabibbo-Kobayashi-Maskawa
matrix elements. The superscripts LL , LR, and SP refer to
the contributions from (V−A)⊗(V−A), (V−A)⊗(V+A),
and (S − P) ⊗ (S + P) operators, respectively. The explicit
formulas for the factorizable emission (annihilation) contri-
butions Fe(a) and the nonfactorizable emission (annihilation)
contributions Me(a) from Fig. 2 can be obtained easily in Ref.
[149].
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