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Abstract Using the gauge-gravity duality, we study the
holographic Schwinger effect by performing the potential
analysis on the confining D3- and D4-brane background with
D-instantons then evaluate the pair production/decay rate by
taking account into a fundamental string and a single fla-
vor brane respectively. The two confining backgrounds with
D-instantons are obtained from the black D(-1)–D3 and D0–
D4 solution with a double Wick rotation. The total potential
and pair production/decay rate in the Schwinger effect are
calculated numerically by examining the NG action of a fun-
damental string and the DBI action of a single flavor brane all
in the presence of an electric field. In both backgrounds our
numerical calculation agrees with the critical electric field
evaluated from the DBI action and shows the potential bar-
rier is increased by the presence of the D-instantons, thus the
production/decay rate is suppressed by the D-instantons. The
interpretation is that particles in the dual field theory could
acquire an effective mass through the Chern-Simons inter-
action or the theta term due to the presence of D-instantons
so that the pair production/decay rate in Schwinger effect is
suppressed since it behaves as e−m2

. This conclusion is in
agreement with the previous results obtained in the decon-
fined D(-1)–D3 background at zero temperature limit and
from the approach of the flavor brane in the D0–D4 back-
ground. In this sense, this work may be also remarkable to
study the phase transition in Maxwell–Chern–Simons theory
and observable effects by the theta angle in QCD.

1 Introduction

People have achieved many advances in the researches about
the phenomena with strong electromagnetic field in the
heavy-ion collision. The Schwinger effect as one of the most
famous phenomenon attracts great interests since it is sig-
nificantly related to the particle creation rate. Specifically
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the charged particles in the collisions at high speed can gen-
erate an extremely strong electromagnetic field so that the
virtual pairs of particles in the vacuum can become real par-
ticles [1,2]. Thus the Schwinger effect may be very helpful
to study particle creation and thermalization in the heavy-ion
collision. On the other hand, the P or CP violation in QCD
(Quantum Chromodynamics) is also an important topic [3].
Usually a theta term can be added to the gauge theory to
include the P or CP violation in the action,

S = − 1

2g2
YM

Tr
∫

F ∧∗ F + i
θ

8π2 Tr
∫

F ∧ F, (1.1)

where gYM refers to the Yang-Mills coupling constant.
Although the experimental value of the theta angle is very
small

(|θ | ≤ 10−10
)
, the theta-dependence in Yang-Mills

theory or QCD is very interesting both in the theoretical
and phenomenological researches, e.g. study of the phase
transition of confinement/deconfinement [4,5], the large N
behavior [6], the glueball spectrum [7] all in the presence
of a theta angle. Particularly whether a theta vacua can be
created in heavy-ion collision is still an open question which
therefore attracts many investigations [8–11] and moreover
there have been some observable effects proposed in order to
confirm the theta-dependence in the heavy-ion collision e.g.
the chiral magnet effect [12,13].

Accordingly the motivation of this work is to explore
the Schwinger effect with the theta angle in the QCD-like
or confining theory since the Schwinger effect would be
affected by the theta angle and it might be remarkable to con-
firm the existence of the theta vacuum. However, using QFT
(quantum field theory) frame work to analyze the Schwinger
effect in a QCD-like or confining theory would be very
challenging since the original Schwinger’s work shows that
this effect must be non-perturbative. Fortunately, the gauge-
gravity duality could provide an alternative way [14,15] to
investigate the Schwinger effect by analyzing the effective
potential [16] and discussing the pair production rate [17] via
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holography. In order to study the QCD-like theory, the confin-
ing background geometry is also necessary. Taking account
into the frame work of string theory, the most famous confin-
ing (soliton) background geometry is obtained by a double
Wick rotation on the black D3- or D4-brane solution [18,19],
so the holographic total potential of Schwinger effect can be
calculated by performing the potential analysis [16] in these
backgrounds as in [20,21]. To involve the theta angle or the
topological charge in the dual field theory, we additionally
need to introduce D-instantons into the D3- and D4-brane
solution. This can be achieved by considering the black D(-
1)–D3 [22–25] and D0–D4 brane solution [26,27] with a
double Wick rotation, following the discussion in [18,19].
Afterwards the D(-1) and D0-branes play the role of the D-
instantons and holographically correspond to the coupling
constant of the Chern-Simons term or the theta angle in the
dual theory [27–31].

In this project, we will perform the potential analysis [16]
for the holographic Schwinger effect in the soliton D3- and
D4-brane background with D-instantons respectively, then
evaluate the production/decay rate by involving a fundamen-
tal string and a single flavor brane. Our analysis shows the
Schwinger effect occurs above a certain critical electric field.
The presence of the D-instantons increases the critical elec-
tric field and the potential barrier of the Schwinger effect,
thus suppresses the production/decay rate both in the D(-1)–
D3 and D0–D4 background. The numerical calculation of the
fundamental string and the flavor brane consistently supports
our analysis which might imply the universal features of the
Schwinger effect with instantons.

The outline of this paper is as follows. In Sect. 2, we give a
brief construction for the confining D3- and D4-brane back-
ground with D-instantons. In Sect. 3, we perform potential
analysis for the holographic Schwinger effect then calculate
the total potential numerically. In Sect. 4, the pair produc-
tion rate is evaluated with D-instantons. As a supplement to
this work, we analyze parallel the Schwinger effect by taking
account into a single flavor in Sects. 5 and 6, we give our
summary and discussion of this work. Basically our work is
an extension to [20,21], also a different approach to check
the results obtained in the deconfined D(-1)–D3 background
at zero temperature limit [32] and the flavor brane setup for
holographic Schwinger effect in [33].

2 The confining geometry with D-instanton

2.1 The confining D(-1)–D3 solution

The D(-1)–D3 brane system was proposed in [22] which
is represented by a deformed D3-brane solution with a
Ramond-Ramond (RR) nontrivial scalar field. And the
Ramond-Ramond (RR) scalar charge is balanced by the dila-

ton in order to preserve 1/2 of supersymmetry. This system
is recognized as a marginal “bound state” of D3-branes with
smeared D(-1)-branes , i.e. the D-instantons and its low-
energy dynamics is described by the type IIB supergravity
action. The non-extremal solution for the black D3-branes
with D(-1)-branes as D-instantons can be found in [23]. How-
ever, in this section we will focus on the confinement con-
struction of this solution.

The most simple way to obtain a confinement theory is
to follow the discussion in [18,19]. Specifically the first step
is to take one of the three spatial dimensions xi to be com-
pactified on a circle with period xi ∼ xi + δxi . So the dual
theory (N = 4 Super Yang-Mills theory) becomes effec-
tively 3-dimensional (3d) below the Kaluza-Klein energy
scale MKK = 1/δxi . Then the second step is to get rid
of all massless particles other than the gauge fields. The
most convenient way to achieve this is to require the fermion
fields to be anti-periodic on the circle while the bosons are
given periodic boundary conditions. Hence the supersym-
metric fermions acquire mass of order MKK and the scalars
of the SYM theory also get masses of order MKK induced by
radiative corrections. Therefore the supersymmetry and con-
formal symmetry are broken down and the resultant theory
would be three-dimensional YM theory below the energy
scale MKK . Next we have to identify the bulk supergrav-
ity geometry as its holographic correspondence. A trick for
obtaining the answer is to perform a double Wick rotation on
the D(-1)–D3 brane background i.e. t → −i xi , xi → −i t .
Without loss of generality, let us denote xi = x3, then the
confining solution for D3-branes with smeared D-instantons
reads,

ds2 = eφ/2

{
r2

R2

[
−dt2 +

(
dx1

)2 +
(
dx2

)2 + f (r)
(
dx3

)2
]

+ 1

f (r)

R2

r2 dr2 + R2d�2
5

}
,

eφ = 1 + Q

r4
KK

log
1

f (r)
, C = −e−φ + C0,

f (r) = 1 − r4
KK

r4 , F5 = Q3ε5 (2.1)

where C is the RR 0-form with F1 = dC , R4 = 4πgsl4s
and Q,Q3 relates to the charge of the D-instantons and D3-
branes. ε5 represents the volume form of a unit S5. The above
solution is defined for r > rK K only thus it does not have a
horizon. This means r = rK K is the end of the spacetime.
Since the warp factor eφ/2 r2

R2 never goes to zero, the asymp-
totics of the Wilson loop in this geometry would lead to an
area law which implies the holographically dual field theory
exhibits confinement below MKK . In order to avoid conical
singularities in the dual field theory, the following constraint
has to be additionally required,
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MKK = 2rK K

R2 . (2.2)

We note that if Q → 0 (i.e. no D-instantons) the supergravity
solution (2.1) consistently returns to the confining D3-brane
solution which is used in [19–21]. The dual field theory can
be examined by considering a probe D3-brane located at r →
∞ whose action is

SD3 =
[
−TD3

∫
d4xe− φ

2 Str
√− det (g + F)

+TD3

∫
C4 + 1

2
TD3Tr

∫
C0F ∧ F

] ∣∣∣∣
r→∞

� − 1

4g2
4,YM

∫
d4xFμνF

μν

+ κ

2
Tr

∫
F ∧ F + O

(
F3

)

= − 1

4g2
3,YM

∫
d3xFabF

ab + κ

2
Tr

∫
ω3. (2.3)

HereF = 2πα′F denotes the gauge field strength and TD3

denotes the tension of D3-brane. g4,3,YM refers to the 4d and
3d Yang-Mills coupling constant respectively and ω3 is the
Chern-Simons (CS) 3-form. κ corresponds to the boundary
value of C . Accordingly, we can conclude the dual field the-
ory to the background (2.1) is 3d confined YM plus CS theory
below MKK in holography.

2.2 The confining D0–D4 solution

Basically the confining D0–D4 solution where the D0-brane
plays the role of D-instanton can be achieved by following
the same discussion in the last section. Its confining solution
reads [27,28],

ds2 =
( r

R

)3/2
[
H1/2

0 ημνdx
μdxν + H−1/2

0 f (r)
(
dx4

)2
]

+ H1/2
0

(
R

r

)3/2 [
1

f (r)
dr2 + r2d�2

4

]
,

eφ =
( r

R

)3/4
H3/4

0 , f (r) = 1 − r3
KK

r3 , H0 = 1 + Q

r3 ,

F2 = dC1 = Q0

r4

1

H2
0

dr ∧ dx4, F4 = dC3 = Q4ε4, (2.4)

where Q,Q0 are two constants related to the number density
of D0-branes andQ4 is the charge of D4-branes. We note that
the D0-brane is the D-instanton in this system which extends
along the direction x4 and x4 is periodic x4 ∼ x4 + δx4. To
avoid conical singularities in the dual field theory, it leads to
the constraint

MKK = 3

2

r1/2
KK

R3/2

1√
1 + Q/r3

KK

. (2.5)

Below MKK the dual field theory is confined theory which
can be investigated by introducing a probe D4-brane in the
background (2.4) at r → ∞. Then its low-energy action is

SD4 =
[
−TD4

∫
d5xe−φStr

√− det (g + F) + T4

∫
C5

+1

2
TD4Tr

∫
C1 ∧ F ∧ F

] ∣∣∣∣
r→∞

� − 1

4g2
4,YM

∫
d4xFμνF

μν

+ θ

16π2 Tr
∫

F ∧ F + O
(
F3

)
. (2.6)

We note that the theta angle corresponds to θ ∼ ∫
Sx4

C1.

Therefore the dual theory in the D0–D4 system is theta-
dependent confined Yang-Mills theory [27,29,30].

3 Potential analysis

In this section, let us perform the analysis by following [16,
20,21] for the confining background with D-instantons to
evaluate the effective potential in Schwinger effect.

3.1 The D(-1)–D3 background

In order to study the Schwinger effect, we need to evaluate
the effective potential and find the critical value of the electric
field first. So let us start with a probe D3-brane located at r =
r0 on which an external electric field F01 = E is switched.
The DBI (Dirac–Born-Infeld) action of the probe brane is
given as,

S = −TD3

∫
d4xe− φ

2
√− det (g + F)

= −TD3V4
r4

0

R4 e
φ(r0)

2 f (r0)
1/2

√
1 − (2πα′)2 R4

eφ(r0)r4
0

E2.

(3.1)

It is easy to understand that the classical solution would not
exist if E > Ec where Ec is a critical value of the electric
field. Thus the critical electric field can be obtained as,

Ec = 1

2πα′
r2

0

R2 e
φ(r0)

2 . (3.2)
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Then we need to calculate the total energy of a pair of the
fundamental particles which can be computed by evaluating
the expectation of its rectangular Wilson loop. In holography
it corresponds to the world-sheet area or equivalently the on-
shell Nambu-Goto (NG) action of a fundamental string [34].
Accordingly we consider a Fermion-anti Fermion pair placed
at fixed positions on the probe brane with separation x in
direction x1. Choosing the static gauge, the induced metric
on the world sheet with τ = t, x1 = σ, r = r (σ ) is,

ds2 = gαβdx
αdxβ = r2

R2 e
φ/2

×
{
dτ 2 +

[
1 + 1

f (r)

R4

r4

(
dr

dσ

)2
]

(dσ)2

}
, α, β = 0, 1

(3.3)

where we have worked in the Euclidean signature. Therefore
the NG action is calculated as,

SNG = T f

∫
dτdσ

√
det

(
gαβ

)

= T f

∫
dτdσ

√√√√eφ(r)

[
1

f (r)

(
dr

dσ

)2

+ r4

R4

]
. (3.4)

Since the Lagrangian in (3.4) does not depend on σ explicitly,
its associated Hamiltonian is conserved i.e. a constant,

H = (∂σ r)
∂L
∂σ r

− L = const, (3.5)

which means

e
φ(r)

2 r4/R4√
r4

R4 + 1
f (r)

( dr
dσ

)2
= const. = e

φ(rc)
2

r2
c

R2 , (3.6)

if the boundary condition

dr

dσ

∣∣∣∣
r=rc

= 0, σ = σ0 (3.7)

is imposed where rc refers to the top point of the string in the
bulk as illustrated in Fig. 1.
So (3.6) leads to

dr

dσ
= 1

R2

√[
eφ(r)−φ(rc)

r4

r4
c

− 1

] (
r4 − r4

KK

)
, (3.8)

and the separation x is therefore obtained as

x = 2R2

r0a
eφ(1)/2

∫ 1/a

1

dy√(
y4 − b4/a4

) [
eφ(y)−φ(1)y4 − 1

] ,

(3.9)

where we have used the dimensionless quantities defined as,

y = r

rc
, a = rc

r0
, b = rK K

r0
,
Q

r4
0

= q. (3.10)

Afterwards the potential energy (PE) including static energy
(SE) is computed as

VPE+SE = 2T f

∫ x/2

0
dσL

= 2T f r0a
∫ 1/a

1

eφ(y)y4√(
y4 − b4/a4

) [
eφ(y)−φ(1)y4 − 1

] .

(3.11)

However we have to add the contribution from the interaction
of the Fermion-anti Fermion pair with an external electric
field E to this energy. So the total potential is,

Vtot (x) = VPE+SE − Ex

= 2T f r0a
∫ 1/a

1

eφ(y)y4√(
y4 − b4/a4

) [
eφ(y)−φ(1)y4 − 1

]

− 2T f r0α

a
eφ(1)

∫ 1/a

1

dy√(
y4 − b4/a4

) [
eφ(y)−φ(1)y4 − 1

] ,

(3.12)

where

α = E

Ec (q)
, Ec (q) = T f

r2
0

R2 e
φ(1)/2, (3.13)

and Ec is the critical electric field given in (3.2). The relation
of Vtot and x can be evaluated numerically which has been
illustrated as in Fig. 2 with various q, α.

In Fig. 2 we have set b = 0.5 (fixing energy scale MKK )
, α = 0.4, 0.6, 0.8, 1, 1.2 and the instanton density has been
chosen as q = 0, 0.2, 0.5, 1 respectively in the four panels
for comparison. These graphs imply that the potential barrier
vanishes for α > 1, so the critical electric field obtained from
the potential analysis agrees with (3.2) which is evaluated
by using the DBI action as expected in [20,35]. Besides we
notice that the presence of instantons increases the potential
barrier and thus suppresses the pair creation. This conclusion
would be further confirmed by analyzing the formula (3.4) of
the NG action and the expectation of a circular Wilson loop
in the following sections. Nonetheless, to see this quickly, let
us introduce another dimensionless parameter α̃ = E

Ec(q=0)

so that E = Ec (q = 0) corresponds to α̃ = 1, then the
numerical result of Vtot (x) and q is shown in Fig. 3.
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Fig. 1 Configuration of the
string and probe brane

We find there is not any limitation to pair creation at zero
instanton density since there is no potential barrier in the pres-
ence of electric field for q = 0. As we can see the presence of
the instantons develops a potential barrier, so the Schwinger
effect occurs through a tunneling process only if q > 0 and
the instanton density increases the potential barrier whereas
suppresses the pair creation. It therefore implies that the crit-
ical electric field is also increased by the instanton density
which is in agreement with (3.2). And all these conclusions
agree with the results evaluated in the deconfined D(-1)–D3
background at zero temperature limit in [32].

3.2 The D0–D4 background

In this section, let us turn to the D0–D4 case. The discussion
would be basically parallel to those in Sect. 3.2. First we
consider the DBI action of a probe D4-brane in the D0–D4
background with an electric field located at r = r0. The
action takes the form,

S = −TD4

∫
d5xe−φ

√− det (g + F)

= −TD4V5
r3

R3 f (r0)
1/2

√
1 − (2πα′)2 R3

H0 (r0) r3
0

E2. (3.14)

Hence the critical electric field is evaluated as,

Ec = 1

2πα′
r3/2

0

R3/2 H
1/2
0 (r0) . (3.15)

Then the Euclidean induced metric on the world sheet of
a fundamental string with the choice of static gauge τ =
t, x1 = σ, r = r (σ ) is given as,

ds2 =
( r

R

)3/2
H1/2

0

×
{
dτ 2 +

[
1 + 1

f (r)

(
R

r

)3 (
dr

dσ

)2
]
dσ 2

}
.

(3.16)

Therefore the NG action can be computed as,

SNG = T f

∫
dτdσH1/2

0 (r)

√
r3

R3 + 1

f (r)

(
dr

dσ

)2

.

(3.17)

The conserved Hamiltonian is

H1/2
0 (r) r3/R3√

r3

R3 + 1
f (r)

( dr
dσ

)2
= const. = r3/2

c

R3/2 H
1/2
0 (rc) , (3.18)

where we have used the boundary condition

dr

dσ

∣∣∣∣
r=rc

= 0, σ = σ0. (3.19)

So we have,

dr

dσ
= 1

R3/2H1/2
0 (rc)

√(
r3 − r3

KK

) (
r3

r3
c

− 1

)
, (3.20)

which leads to the formula of the separation x as,

x = 2
∫ r0

rc
dr = 2R3/2

r1/2
0 a1/2

H1/2
0 (1)

∫ 1/a

1

× dy√(
y3 − 1

) (
y3 − b3/a3

) , (3.21)

with the dimensionless quantities introduced as,
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Fig. 2 The dependence on x of the total potential Vtot (x) with various instanton densities and electric fields (determined by α) in the confining
D(-1)–D3 background. In all graphs we have set b = 0.5 and 2L2/r0 = 2T f r0 = 1

Fig. 3 The relation of Vtot (x) and q in the D(-1)–D3 background with
b = 0.5, α̃ = 1

y = r

rc
, a = rc

r0
, b = rK K

r0
,
Q

r3
0

= q. (3.22)

Afterwards the potential energy (PE) including static energy
(SE) in D0–D4 background is computed as,

VPE+SE = 2T f

∫ x/2

0
dσL = 2T f r0a

∫ 1/a

1
dy

× y3H0 (y)√(
y3 − 1

) (
y3 − b3/a3

) . (3.23)

By taking into account the contribution of the electric field,
the total potential can be obtained as,

Vtot = VPE+SE − Ex

= 2T f r0a
∫ 1/a

1
dy

y3H0 (y)√(
y3 − 1

) (
y3 − b3/a3

)

− 2T f r0α

a1/2 H0 (1)

∫ 1/a

1

dy√(
y3 − 1

) (
y3 − b3/a3

) ,

(3.24)

where

α = E

Ec
, Ec = 1

2πα′
r3/2

0

R3/2 H
1/2
0 (r0) . (3.25)

The relation of Vtot and x in the D4-D0 background can
be evaluated numerically and the results are illustrated as
in Fig. 4. These graphs also show that the potential barrier
vanishes for α > 1 which agrees with our (3.15) and again
the potential analysis as expected in [20,35]. By introducing
α̃ = E

Ec(q=0)
, we find the presence of the instantons develops

a potential barrier and increases it as illustrated in Fig. 5. So
the Schwinger effect can occur without any any limitation at
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Fig. 4 The dependence on x of the total potential Vtot (x) with various instanton densities and electric fields (determined by α) in the confining
D0–D4 background. In all graphs we have set b = 0.5 and 2L3/2/r1/2

0 = 2T f r0 = 1

Fig. 5 The relation of Vtot (x) and q in the D(-1)–D3 background with
b = 0.53/2, α̃ = 1

q = 0 while it happens only through a tunneling process for
q > 0. Since the instantons increase the potential barrier, it
suppresses the pair creation. And this conclusion is in agree-
ment with the analysis from the flavor brane approach for the
Schwinger effect in the D0–D4 background in [33].

4 Pair production rate

To exactly analyze the Schwinger effect, we are going to
compute the pair production rate in this section. As men-

tioned before, this quantity can be obtained by evaluating
the expectation of a circular Wilson loop living in the t − x
plane in the presence of an external electric field. Following
the discussion in [21], the expectation of the Wilson loop cor-
responds to the Euclidean version of the string onshell action
in holography. So let us work in the Euclidean signature and
choose the polar coordinates in the t − x plane as,

t = ρ cos η, σ = ρ sin η, (4.1)

with all constant other coordinates. Since the D(-1)–D3 and
D0–D4 background are the concerns, we will analyze the
string action respectively in the two backgrounds.

The D(-1)–D3 case

Using (3.4) and (4.1), the string action can be written as,

S = SNG + SB2 , (4.2)

where

SNG = 2πT f R
2
∫

dρeφ/2 ρ

z2

√
1 + z′2

f
, f = 1 − z4

z4
KK

,
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Fig. 6 The classical string action and its exponential behavior versus α in the D(-1)–D3 background

SB2 = −2πT f B01

∫ x

0
dρρ = −πEx2. (4.3)

Here we have defined the z coordinate as z (ρ) = R2/r and
the derivatives are with respect to ρ. Therefore the classical
equation of motion can be obtained by varying action (4.3)
which is,

z′ + 2ρ f (z)

z
+ ρz′′ − ρz′2

2 f (z)

d

dz
f (z) + 2ρz′2

z
+ z′3

f (z)

−1

2
ρ

[
f (z) + z′2

] d

dz
φ (z) = 0. (4.4)

In order to obtain the onshell action, we need to solve the
above differential equation numerically which would how-
ever be very difficult. Fortunately this step can be a little
simplified by imposing an additional constraint as pointed
out in [21] which in our setup is,

z′ (ρ)
∣∣
ρ=x = −

√
f (z)

(
eφ

α2 − 1

)∣∣∣∣
z=z0

. (4.5)

Altogether, we solve (4.4) numerically with the boundary
condition z′ (0) = 0, z (0) = zc and the constraint (4.5).
Then the numerical result for the onshell action S as a func-
tion of α and q is illustrated in Fig. 6 where its exponential
behavior e−S is also plotted. The numerical calculation shows
the pair production rate is indeed suppressed by the presence
of the D-instantons which agrees with the potential analy-
sis. And the the exponential behavior of the classical action
approaches to zero Ec obtained by the potential analysis.

The D0–D4 case

Let us evaluate the pair production rate in the D0–D4 back-
ground. Following the similar steps as the D(-1)–D3 case,
the string action in the D0–D4 background reads,

S = SNG + SB2 ,

SNG = 16πT f R
3
∫

dρ
H1/2

0 (z) ρ

z3

√
1 + z′2

f (z)
,

f (z) = 1 − z6

z6
KK

,

SB2 = −2πT f B01

∫ x

0
dρρ = −πEx2, (4.6)

where we have imposed the following coordinate transfor-
mation,

z (ρ) = 2R3/2

r1/2 . (4.7)

Varying action (4.6), the associated equation of motion is
obtained as,

z′′ − f (z) + z′2

2H0 (z)

d

dz
H0 (z) + 3 f (z) + 3z′2

z

− z′2

2 f (z)

d

dz
f (z) + z′3

ρ f (z)
+ z′

ρ
= 0. (4.8)

Again we solve the above differential equation with the
boundary condition z′ (0) = 0, z (0) = zc and an additional
constraint,

z′ (ρ)
∣∣
ρ=x = −

√
f (z)

(
H0 (z)

α2 − 1

)∣∣∣∣
z=z0

, (4.9)

to obtain the onshell action. Afterwards the classical string
action S and its exponent are numerically evaluated in Fig. 7.

So we see again the pair production rate is suppressed by
the presence of the D-instantons which is in agreement with
the potential analysis in the D0–D4 background.
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Fig. 7 The classical string action and its exponential behavior versus α in the D0–D4 background

5 The electric instability with a single flavor

The analysis of the Schwinger effect in holography can also
be extended by including flavor [33,37–39], since it would
also be significant to consider the vacuum instability and
creation rate with the fundamental matters in the Schwinger
effect, which can be introduced when the flavor brane is
embedded into the background geometry. As a supplement
to this project, in this section let us briefly take into account
a single flavor brane and investigate the vacuum instability
with an external electric field in the D(-1)–D3 and D0–D4
system respectively.

The D(-1)–D3 case

To involve the flavors in the dual theory, it is necessary to
introduce the D7-branes as flavors as most approaches in the
D3-brane system [40]. The configuration of various D-branes
in the D(-1)–D3 system is given in Table 1.

Without loss of generality, we can turn on the components
F01 = E, F0z, F1z of the gauge field strength. Since the
electric instability will be focused, we only need to consider
a single D7-brane whose action is given as,

SD7 = −TD7

∫
d8xe−φ

√− det (gD7 + 2πα′F) − μ7

∫
C8.

(5.1)

We note that the supersymmetry is broken down below the
energy scale MKK in our setup. By imposing the background
geometry (2.1) into (5.1), the action becomes,

S = −2π2TD7V4

∫
dzeφ R8

z5

√
ξ,

ξ = 1 − (
2πα′)2 z4

R4 e
−φ

[
F2

01 +
(
F2

0z − F2
1z

)
f (z)

]
,

(5.2)

Table 1 The configuration of the D-branes in the D(-1)–D3 system

(-1) 0 1 2 3 4 5 6 7 8 9

D(-1) –

D3-brane – – – –

D7-brane – – – – – – – –

which leads to the following equations of motion for the
U (1) gauge field strength,

∂z

(
f

z
√

ξ
F0z

)
= 0, ∂0

(
f

z
√

ξ
F0z

)
= 0,

∂0

(
1

z
√

ξ
F01

)
+ ∂z

[
f

z
√

ξ
F1z

]
= 0. (5.3)

In particular, when the electric field is static i.e. time-
independent, we can put ∂0 = 0, the above equations of
motion reduces to two constants j, d as,

j ≡ 2πα′ f

z
√

ξ
F1z, d = 2πα′ f

z
√

ξ
F0z, (5.4)

which can be interpreted as the electric current and charge
in holography [33,37,39]. Plugging (5.4) into (5.2), we can
obtain the effective action as,
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Fig. 8 The imaginary part of the effective action as a function of α̃ = E/Ec (0) in the D(-1)–D3 background. We have set b = 1

S = −2π2TD7V4

∫
dzeφ R8

z5

√
ξ,

ξ = 1 − (
2πα′E

)2 z4

R4 e
−φ

1 + e−φ z6

R4 f

(
d2 − j2

) . (5.5)

Notice that ξ must be positive since the action of stable D-
brane should not admit an imaginary part. Therefore there
must be a certain position z p which changes the sign of the
denominator and the numerator concurrently in ξ , otherwise
the value of ξ would becomes negative i.e. the D-brane would
be unstable. In this sense the stable current j can be obtained
by solving the following constraints,

1 − (
2πα′E

)2 z4
p

R4 e
−φ(z p) = 0,

1 + e−φ(z p)
z6
p

R4 f
(
z p

) (
d2 − j2

)
= 0. (5.6)

Keeping this in mind, it means in order to study the vacuum
instability, we can consider the situation that the electric field
is suddenly turned on, the vacuum given by j = 0 would
thus become unstable in the presence of an electric field. In
this sense, the above constraints would not be satisfied as
the effective action (5.5) will now admit an imaginary part.
Since the flavor decay rate � must be proportional to the
imaginary part of the effective action, we can evaluate the
vacuum instability by putting j = 0 in the effective action
which is,

� = ImS = −2π2TD7V4

∫ z∗

zK K

dzeφ R8

z5

Table 2 The configuration of the D-branes in the D0–D4 system

0 1 2 3 4 5(z) 6 7 8 9

D0-brane –

D4-brane – – – – –

D8-brane – – – – – – – – –

×
√√√√(

1 + e−φ
z6

R4 f
d2

)−1
[

(2πα′)2 z4

R4 E2e−φ − 1

]
,

(5.7)

where z∗ refers to the position that
(
2πα′)2

z4

R4 E2e−φ − 1 =
{

> 0, z ∈ [z∗, zK K ] ,

< 0, z ∈ (0, z∗] .
(5.8)

Then the imaginary part of the effective action can be numer-
ically evaluated and the result is illustrated in Fig. 8.

We can see that the decay rate becomes nonzero above
the critical electric field Ec and nearly independent on q at
sufficiently large electric field. We also note that the decay
rate is suppressed in the presence of D-instantons which is
in agreement with the analysis in the previous sections.

The D0–D4 case

In the D0–D4 background, the vacuum instability with an
external electric field can be analyzed by following the dis-
cussion in the D(-1)–D3 background while the configuration
of the D-branes is distinct as illustrated in Table 2.

The flavor brane is identified as a stack of D8- and anti
D8-brane pair which is vertical to the D4-brane in the x4 − z
plane. In this configuration of the D-branes, the DBI action
of a single pair of the flavor brane with nonzero components
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F01 = E, F0z, F1z of the gauge field strength can be written
as,

SD8 = −TD8

∫
d9xe−φ

√− det (gD8 + 2πα′F)

= −211π2

3
TD8R

12V4

∫
dz

H3/2
0

z8
√

f

√
ξ, (5.9)

where

ξ = 1 −
(
2πα′)2

z6

64H0R6

[
F2

01 + f
(
F2

0z − F2
1z

)]
. (5.10)

Then putting ∂0 = 0 for the static electric field, we obtain
the equations of motion as,

∂z

(√
f H0

z2
√

ξ
F0z

)
= 0, ∂z

(√
f H0

z2
√

ξ
F1z

)
= 0, (5.11)

which leads to two constants j, d as current and charge,
defined as,

j = 2πα′
√

f H0

z2
√

ξ
F1z, d = 2πα′

√
f H0

z2
√

ξ
F0z . (5.12)

Imposing (5.12) into (5.9), the effective action becomes,

SD8 = −211π2

3
TD8R

12V4

∫
dz

H3/2
0

z8
√

f

×
√√√√

[
1 + (

d2 − j2
) z10

64H2
0 R

6

]−1 [
1 − (2πα′E)2 z6

64H0R6

]
,

(5.13)

and the stable current j must be obtained by solving the
constraints,

1 +
(
d2 − j2

) z10
p

64H2
0

(
z p

)
R6

= 0, 1 −
(
2πα′E

)2
z6
p

64H0
(
z p

)
R6

= 0.

(5.14)

Afterwards we set j = 0 to investigate the vacuum instability,
the imaginary part of the effective action is therefore obtained
as,

ImS = −211π2

3
TD8R

12V4

∫ z∗

zK K

dz
H3/2

0

z8
√

f

×
√√√√

(
1 + d2 z10

64H2
0 R

6

)−1 [
(2πα′E)2 z6

64H0R6 − 1

]
,

(5.15)

where z∗ is given as,

(
2πα′E

)2
z6

64H0R6 − 1 =
{

> 0, z ∈ [z∗, zK K ] ,

< 0, z ∈ (0, z∗] .
(5.16)

We numerically evaluate (5.15) as a function of α̃ as illus-
trated in Fig. 9.

While the exact behavior of the decay rate is a little differ-
ent from the D(-1)–D3 case, our numerical calculation shows
again that the decay rate is nonzero above the critical elec-
tric field Ec and suppressed by the D-instantons. Obviously
the behavior that the presence of D-instantons suppresses the
decay rate is seemingly universal in the D-brane background
with D-instantons.

6 Summary and discussion

In this work we have studied the Schwinger effect both in
the confining D3- and D4-brane system with D-instantons.
By using the DBI action of a probe brane, we find the critical
electric field Ec depends on the instanton density. Then we
perform the potential analysis for the holographic Schwinger
effect, calculate the total potential and the pair production rate
for a pair of particle-antiparticle by taking into account an
electric field. Afterwards we further investigate the electric
instability with a single flavor and evaluate the associate fla-
vor decay rate. According to our numerical calculation, we
find the critical electric field is in agreement with the anal-
ysis of the DBI action. The presence of instantons increases
the potential barrier and therefore suppresses the pair cre-
ation both in the D(-1)–D3 and D0–D4 approach. Our results
agrees well with the evaluation obtained in the black D(-1)–
D3 background at zero temperature limit [32] and the analysis
for the flavor brane action in the D0–D4 background [33].

Finally let us give some physical interpretation of our
results to close this work. The D(-1)–D3 case: Since the con-
fining D(-1)–D3 system holographically corresponds to 3d
Yang-Mills plus Chern-Simons theory below MKK , in the
dual field the particle may acquire effective topological mass
through the Chern-Simons interaction due to the presence
of the D(-1) branes (D-instantons) which means the particle
mass is increased by the presence of the D-instantons. This
would be more clear if we compute the propagator in the
dual theory with a Chern-Simons term by using the method
of quantum field theory, (2.3) which is,

�μν = p2ημν − pμ pν − iκg2
YMεμνρ pρ

p2
(
p2 − κ2g4

YM

) + gauge term,

(6.1)

leading to a topological mass �m = κg2
YM . Therefore the

particle creation in Schwinger effect would be suppressed by

the D-instantons since it is proportional to the factor e−m2
E .
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Fig. 9 The imaginary part of the effective action as a function of α̃ = E/Ec (0) in the D0–D4 background. The behavior of ImS is almost not
affected by the value of d. We have set b = 1

Or namely, the barrier of total potential for a pair of particle-
antiparticle is increased by the presence of the D-instantons
which is consistent with what we have obtained in this work.
The Schwinger effect with D-instantons might be very help-
ful to investigate some phenomena in 3d Maxwell-Chern-
Simons theory with electric field e.g. the phase transition
from insulator to conductor in some material.

The D0–D4 case: According to the previous study in this
system [27,29–31,36,41,42], the dual field theory is confin-
ing Yang-Mills theory with a theta term (D-instanton den-
sity) and the particle mass spectrum is increased by the pres-
ence of the D-instantons (D0-branes). Hence the particle
creation in Schwinger effect should also be suppressed or
namely the total potential barrier is increased by the instan-
tons which is consistent with the holographic analysis in this
work. The total potential with D-instantons in Schwinger
effect would be also remarkable to study the P or CP vio-
lation in QCD, especially in the heavy-ion collision, since
an extremely strong electromagnetic field would be gener-
ated. On the other hand, in the collision, there might be a
metastable state with nonzero vacuum theta angle produced
in the hot and dense condition when the deconfinement phase
transition happens [8,9]. Therefore the metastable state may
be excited by the strong electric field through the Schwinger
effect and the particle pair creation in the heavy-ion collision
would be affected by the theta angle (D-instantons), reflect-
ing the behaviors of the total potential. So Schwinger effect
with D-instantons might be an observable phenomenon to
confirm whether P or CP violation in QCD exists.
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