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Abstract In this paper, we study the thick brane system
in the so-called f (Q) gravity, where the gravitational inter-
action was encoded by the nonmetricity Q like scalar cur-
vature R in general relativity. With a special choice of
f (Q) = Q − bQn , we find that the thick brane system can
be solved analytically with the first-order formalism, where
the complicated second-order differential equation is trans-
formed to several first-order differential equations. More-
over, the stability of the thick brane system under tensor per-
turbation is also investigated. It is shown that the tachyonic
states are absent and the graviton zero mode can be localized
on the brane. Thus, the four-dimensional Newtonian potential
can be recovered at low energy. Besides, the corrections of
the massive graviton Kaluza–Klein modes to the Newtonian
potential are also analyzed briefly.

1 Introduction

General relativity (GR) has been successfully tested for many
years. However, it breaks down at quantum level or galactic
scale for its nonrenormalization and disability of explain-
ing dark matter and dark energy. Thus, the theory of GR
needs to be revised at high energy and galactic scale. There
are many extended theories of gravity in literatures. Most
of them are based on the metric-compatible and torsionless
Levi-Civita connection. In this paper, we are interested in the
so-called symmetric teleparallel equivalent of general relativ-
ity (STEGR) [1], where the gravitational interaction is man-
ifested by the nonmetricity Q, and the curvature and torsion
of the spacetime are vanishing. A straightforward extension
of the original STEGR is f (Q) gravity introduced in Ref.
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[2], where the authors introduced a simpler geometrical for-
mulation of GR with vanishing affine connection, i.e., the
coincident gauge, and the spacetime described by this theory
is trivially connected.

As a novel modified gravitational theory, many investi-
gations on f (Q) gravity and its extensions have been done
in different contexts. For instance, a set of constraints on
f (Q) gravity by observational data were explored in Ref.
[3], where the f (Q) Lagrangian was transferred to a func-
tion of the redshift. In Ref. [4], the authors investigated the
energy conditions for some explicit f (Q) models, which can
be used to fix some free parameters and give some restric-
tions on the form of f (Q). In Ref. [5], the authors studied
the acceleration of the cosmic expansion in f (Q) gravity and
found that the density and pressure of the dark energy can be
expressed as a function of geometry, which indicates a geo-
metric dynamical dark energy model. The propagation of the
gravitational wave around Minkowski spacetime in a general
class of STEGR was studied in Refs. [6,7], where the authors
focused on its velocity and polarizations. Some extensions of
f (Q) gravity by coupling the nonmetricity Q to scalar field,
the trace of the energy–momentum tensor, and the matter
Lagrangian were considered in Refs. [8–11]. Besides, there
are other important investigations on f (Q) gravity and one
can see Refs. [12–17] for uncompleted lists.

On the other hand, the braneworld theory has been exten-
sively investigated for many years, which considers our
four-dimensional world just a brane embedded in a higher-
dimensional spacetime. According to the thickness of the
brane, the braneworld models can be mainly divided into two
kinds, i.e., the thin braneworld models and thick braneworld
models. The most investigated thin braneworld models are
the Randall–Sundrum braneworld models [18,19] and their
extensions [20–22]. In the thin braneworld models, the grav-
ity and different matter fields are localized at different loca-
tions along the extra dimension, which can be used to explain
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not only the gauge hierarchy problem but also the fermion
mass hierarchy problem. Besides, the thin braneworld mod-
els also provide us alternative approaches to address the cos-
mological constant problem, the nature of dark energy and
dark matter. However, because of the vanishing thickness of
the brane, the thin braneworld models only can be treated as
an effective theory of a more fundamental theory, where any
objects would have a minimal length scale. Thus, it is more
realistic to investigate the thick braneworld models, where the
brane is generated by one or more background scalar fields
and the energy density of the brane is a smooth function of the
extra dimension [23–40] instead of a Dirac delta function in
the thin braneworld models. In the thick braneworld models,
although the size of the extra dimension is infinity, the mat-
ter fields corresponding to the standard model are confined
on the brane [41–47] and the localized graviton zero mode
produces the four-dimensional Newtonian potential [48–54],
which are two key points reconstructing our effective four-
dimensional world. One can see Ref. [55] for a brief review.

Although there are many investigations on f (Q) grav-
ity, the thick braneworld model in this theory has not been
considered yet. As a novel modified gravitational theory, it
is interesting to know whether one can construct the thick
braneworld model in this theory and what the effects are of
the nonmetricity on the thick brane system and its stability
under tensor perturbation.

This paper is organised as follows: in Sect. 2, we give a
brief review of f (Q) gravity and then the thick brane sys-
tem is solved analytically with the first-order formalism. In
Sect. 3, the stability of the thick brane system under tensor
perturbation and the localization of the graviton zero mode
are investigated. Section 4 comes with the conclusion.

2 Thick brane in f (Q) gravity

In metric-affine geometry, the metric and affine connection
are treated as two independent objects. In this framework, the
metric encodes distances and angles, while the affine connec-
tion defines the covariant derivatives and parallel transport.
As known from differential geometry, the general affine con-
nection can always be decomposed as

�H
MN = �̂H

MN + K H
MN + LH

MN , (1)

where Roman indices denote spacetime coordinates, i.e.,
H, I, M, N , . . . = 0, 1, 2, 3, 5, and the Levi-Civita connec-
tion is

�̂H
MN ≡ 1

2
gH I (∂MgI N + ∂N gIM − ∂I gMN ). (2)

The second term is the contortion:

K H
MN ≡ 1

2
gH I (TMI N + TN IM + TIMN ), (3)

with the torsion tensor denoted by T H
MN ≡ �H

MN − �H
NM .

The third term is the disformation tensor expressed as

LH
MN ≡ 1

2
gH I (−QMI N − QN IM + QIMN ), (4)

where the nonmetricity tensor is defined by

QHMN ≡ ∇HgMN = ∂HgMN − � I
HMgI N − � I

HN gMI ,

(5)

endowed with two independent traces

QM ≡ QN
M N , Q̃M ≡ QN

MN . (6)

Besides, it is useful to introduce the nonmetricity conjugate

PK
MN = −1

4

(
QK

MN − 2QK
(M N ) − QK gMN

+Q̃K gMN + δK(MQN )

)
. (7)

Taking the torsion and curvature to be vanishing, one
obtain the so-called symmetric teleparallel equivalent of gen-
eral relativity (STEGR) with the Lagrangian [1]

L = 1

2

√−gQ, (8)

where the nonmetricity scalar is defined by Q = QHMN PHMN .
Since the nonmetricity scalar differs from the scalar curva-
ture only by a boundary term, STEGR is equivalent to general
relativity. However, this equivalence is not preserved in their
extensions, i.e., f (Q) and f (R), which lead to two quite
different gravitational field equations. In this paper, we are
interested in the thick braneworld model in five-dimensional
f (Q) gravity. The action is read as [2]

S =
∫

d5x
√−g

[
1

2κ
f (Q) − 1

2
∂Mφ∂Mφ − V (φ)

]
, (9)

where κ = 8πG5 with G5 the five-dimensional Newtonian
gravitational constant.

Taking the variation of the action (9) with respect to the
metric gMN , the scalar field φ, and the connection �K

MN , one
can obtain the equations of motion

2√−g
∇K

(√−g fQ PK
MN

) − 1

2
gMN f

+ fQ
(
PMKL Q

KL
N − 2QL

KM PK
NL

) = κTMN , (10)

1√−g
∇M

(√−g∇Mφ
) − Vφ = 0, (11)

∇M∇N
(√−g fQ PMN

K

) = 0, (12)
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where fQ ≡ d f
dQ , Vφ ≡ dV

dφ
, and the energy–momentum

tensor is

TMN = ∂Mφ∂Nφ − 1

2
gMN∂Kφ∂Kφ − gMNV (φ). (13)

In general, the metric for a static flat thick brane can be
assumed as

ds2 = e2A(y)ημνdx
μdxν + dy2, (14)

with e2A(y) the so-called warp factor and y the extra-
dimensional coordinate. The Greek indices μ, ν, . . . run from
0 to 3. In the coincident gauge with �H

MN = 0, the covariant
derivative reduces to ordinary derivative. Then, Eqs. (10) and
(11) for the thick brane system reduce to

− 6A′ f ′
Q − 6 fQ

(
A′′ + 4A′2) + f − 2κV − κφ′2 = 0,

(15)

12 fQ A′2 − f

2
+ κV − 1

2
κφ′2 = 0,

(16)

φ′′ + 4A′φ′ − Vφ = 0,

(17)

where the prime denotes the derivative with respect to y.
Besides, it can be easily shown that Eq. (12) can always be
satisfied with the metric ansatz (14). Focusing on an explicit
choice f (Q) = Q − b2Qn with Q = 12A′2, and from
Eqs. (15) and (16), we get

6A′′ (1 − 12n−1nb2(2n − 1)A′2n−2
)

+ 2κφ′2 = 0. (18)

Compared with the higher-order equation of f (R) gravity
[30], the equation of motion of f (Q) gravity is of second
order. Besides, it should be noted that Eq. (18) is formally
similar with the equation of motion of the thick brane in f (T )

gravity, and both of them are second order [31,33].
In the following, we will show that the above second-order

differential equation can be solved analytically with the first-
order formalism. By plugging the assumption

A′ = −κW (φ), (19)

into Eq. (18), we immediately obtain

φ′ = 3Wφ

(
1 − 12n−1b2n(2n − 1)(κW )2n−2

)
. (20)

Then, from Eq. (15), the potential for the background scalar
field can be solved as

V = −6κW 2 + 12nb2(2n − 1)(κW )2n−2

8

(
4κW 2

−3nW 2
φ

(
12n−1b2n(1 − 2n)(κW )2n−2 + 1

) )

+9

2
W 2

φ

(
12n−1b2n(1 − 2n)(κW )2n−2 + 1

)
. (21)

Now, the solutions of the thick brane system are com-
pletely determined by the so-called superpotential function
W (φ) required to be specified. We will take two explicit
W (φ) for examples and present the corresponding thick

brane solutions. The first example is W (φ) = kφ2
0

3 sin(φ/φ0)

and n = 1
2 . It is obvious that the second term in parentheses

on the right-hand side of Eq. (20) vanishes with this special
n, and the thick brane system can be easily solved as

A(y) = 1

3
κφ2

0 ln[sech(ky)], (22)

φ(y) = φ0 arcsin[tanh(ky)], (23)

V (φ) = 1

12
k2φ2

0

[(
4κφ2

0 + 3
)

cos(2φ/φ0) − 4κφ2
0 + 3

]
.

(24)

The second example is a linear function W (φ) = kφ and
n = 2. The solutions for this brane system are solved as

A(y) = 3κ

c2k2 ln
[
sech

(
ck2y

)]
, (25)

φ(y) = 3

ck
tanh

(
ck2y

)
, (26)

V (φ) = 1

18
k2

(
φ2

(
c2k2 + 6κ

) (
c2k2φ2 − 18

)
+ 81

)
,

(27)

where we have introduced a new parameter c ≡ 18
√

2bκ .
The energy density of the thick brane is defined as ρ ≡

TMNuMuN − V0, where uM denotes the velocity of a static
observer and V0 stands for the scalar vacuum energy density.
Then, the energy density for the above two brane systems
can be expressed as

ρ = 1

3
k2φ2

0

(
κφ2

0 + 3
)

sech2(ky), (n = 1/2) (28)

and

ρ = 9

(
k2 + 3κ

c2

)
sech4

(
ck2y

)
. (n = 2) (29)

Figures 1 and 2 show the shapes of the above two explicit
solutions of the thick brane system in f (Q) gravity. For the
first example, the parameter b does not affect the brane sys-
tem since the vanishing of the second term in parentheses
on the right-hand side of Eq. (20). For the second example,
the parameter b affects the warp factor, the scalar field and
the energy density through the parameter c. To be explicit,
the warp factor becomes wider while the energy density
becomes narrower and smaller with increasing c, and the
amplitude of the scalar field at y → ±∞ decreases with
c. Besides, the energy density for the thick brane always
peaks at y = 0 for both models, which means a single brane
with no inner structure. From the asymptotic behaviors of the
warp factor A(y → ±∞) → − 1

3κkφ2
0 |y| for n = 1/2 and

A(y → ±∞) → − 3κ
c |y| for n = 2, one can conclude that
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(c) (d)

(a) (b)

Fig. 1 The shapes of the warp factor e2A, background scalar field φ(y),
scalar potential V (φ), and energy density ρ(y) for the first brane solu-
tions. The parameters are set to κ = φ0 = 1, k = 1 for blue short
dashed lines, k = 2 for black lines, and k = 3 for red long dashed lines

(a) (b)

(c) (d)

Fig. 2 The shapes of the warp factor e2A, background scalar field φ(y),
scalar potential V (φ), and energy density ρ(y) for the second brane
solutions. The parameters are set to k = κ = 1, c = 6 for blue short
dashed lines, c = 7 for black lines, and c = 8 for red long dashed lines

the spacetimes for both brane systems are asymptotic anti-de
Sitter along the fifth dimension.

3 Tensor perturbation

In this section, we will investigate the tensor perturbation of
the thick brane system described in the last section. In gen-
eral, the tensor, vector and scalar perturbations are decoupled
from each other. Thus, we can investigate them individually.

The metric of the thick brane system under the tensor pertur-
bation is given by

ds2 = e2A(y)(ημν + hμν)dx
μdxν + dy2. (30)

It should be stressed that we still take the coincident gauge,
i.e., �K

MN = 0, even at the perturbation level, and the
tensor perturbation is gauge-invariant satisfying ∂μhμν =
ημνhμν = 0. The nonvanishing components of the perturbed
nonmetricity tensor are

δQρ
μν = ∂ρhμν,

δQ5
μν = 2A′e2Ahμν + e2A∂5hμν, (31)

and the perturbed traces are

δQμ = ∂μh, δQ5 = ∂5h,

δ Q̃μ = ∂νhμν, δ Q̃5 = 0, (32)

where h ≡ ημνhμν . Besides, the perturbed nonmetricity
scalar is δQ = 3A′∂5h.

Inserting the perturbed nonmetricity tensor (31) and their
perturbed traces (32) into Eq. (7), the perturbed nonmetricity
conjugate can be derived as

δPρ
μν = −1

4

[
∂ρhμν − (∂μh

ρ
ν + ∂νh

ρ
μ) + ημν(∂σ h

σρ

−∂ρh) + 1

2
(δρ

μ∂νh + δρ
ν ∂μh)

]
, (33)

δP5
μν = 1

4
(6A′e2Ahμν − e2A∂5hμν + e2Aημν∂5h), (34)

δPρ
5ν = δPρ

ν5 = 1

4

(
∂5h

ρ
ν − 1

2
δρ
ν ∂5h

)
, (35)

δP5
5ν = δP5

ν5 = −1

8
∂νh, (36)

δPρ
55 = 1

4
(e−2A∂ρh + e−2A∂σ h

σρ), (37)

δP5
55 = 0. (38)

With the expression of the perturbed scalar field φ = φ̄ +
δφ, one can get the perturbation of the energy–momentum
tensor:

δTμν = −e2A
(

1

2
φ̄′2hμν + φ̄′δφ′ημν + Vhμν + Vφδφημν

)
,

(39)

δT5μ = φ̄′∂μδφ, (40)

δT55 = φ̄′δφ′ − Vφδφ, (41)

where φ̄ = φ̄(xμ) and δφ = δφ(xμ, y) stands for the back-
ground scalar field and its perturbation, respectively. Then,
inserting the above perturbed quantities into Eq. (10), one can
obtain the equations of motion for the tensor perturbation:

h′′
μν +

(
4A′ + f ′

Q

fQ

)
h′

μν + e−2A�(4)hμν = 0, (42)
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where �(4) ≡ ημν∂μ∂ν . Obviously, the perturbed equa-
tion is second order, which is similar with the perturbed
equation of the thick brane in f (R) gravity formally [30].
However, this equation is different from the perturbed equa-
tion in f (T ) gravity although their background equations of
motion are similar [33]. Under the coordinate transformation
dy = eAdz, Eq. (42) can be rewritten as

∂2
z hμν +

(
3∂z A + ∂z fQ

fQ

)
∂zhμν + �(4)hμν = 0. (43)

Considering the KK decomposition hμν(x, z) = (e−3A/2

f −1/2
Q )εμν(x)e−i pxψ(z) with p2 = −m2, we can get two

equations

�(4)εμν(x) = m2εμν(x), (44)

(−∂2
z +U (z))ψ(z) = m2ψ(z), (45)

with the effective potential U (z) given by

U (z) = 9

4
(∂z A)2 + 3

2
∂2
z A + 3∂z A∂z fQ

2 fQ

−1

4

(
∂z fQ
fQ

)2

+ ∂2
z fQ
2 fQ

. (46)

Equation (44) stands for the Klein–Gordon equation for the
four-dimensional massless (m = 0) or massive (m �= 0)
graviton and Eq. (45) is the equation of motion for the KK
modes, which is a Schrödinger-like equation.

Equation (45) can be easily factorized as
(

∂z + �

2

)(
−∂z + �

2

)
ψ(z) = m2ψ(z), (47)

with � ≡
(

3∂z A + ∂z fQ
fQ

)
, which indicates that there is no

tachyonic KK states with m2 ≤ 0, i.e., the brane is stable
under the tensor perturbation.

The general solution for the graviton zero mode m = 0
can be solved as [38]

ψ0 = e3A/2 f 1/2
Q

(
C1 + C2

∫
1

e3A fQ
dz

)
, (48)

with C1 and C2 the integration constants. For simplicity, we
take the Neumann boundary condition, i.e.,
∂z

(
e−3A/2 f −1/2

Q ψ0
)∣∣
z→±∞ = 0. Then, the graviton zero

mode reduces to ψ0 = C1e3A/2 f 1/2
Q , where the integration

constant C1 is determined by the normalization of hμν :
∫

d5x
√−g f (Q) ∼ −1

4

∫
d5xe3A fQ∂αhμν∂

αhμν

= −1

4

∫
dzψ2

0

∫
dx4∂αεμν∂

αεμν

= −1

4

∫
dx4∂αεμν∂

αεμν, (49)

where we have inserted the decomposition of hμν and the
second equal sign in the last equation holds if the normal-
ization condition

∫
ψ2

0dz = 1 is satisfied.
For the first thick brane solution with n = 1

2 , the graviton
zero mode is

ψ0(y) = C1sech(ky)
κφ2

0
2

√√√√1 −
√

3b2

4kκφ2
0

√
tanh2(ky)

. (50)

Obviously, since the second term under the square root in
the above equation is divergent in the limit y → 0, the wave
function ψ0(y) becomes divergent and imaginary near the
origin of the extra dimension. Thus, the wave function is
nonphysical near y = 0 and does not satisfy the normal-
ization condition, which indicates that we can not obtain a
localized four-dimensional massless graviton in this brane
system, seeing Eq. (49).

We now turn our attention to the localization of the gravi-
ton zero mode of the second brane solution with n = 2. From
Eq. (25), the integrand of z = ∫

e−A(y)dy can be calculated
as

z = c

3κ

√
tanh2

(
ck2y

)
csch

(
ck2y

)
sech− 3κ

c2k2 −1
(
ck2y

)

× 2F1

(
1

2
,− 3κ

2c2k2 ; 1 − 3κ

2c2k2 ; sech2
(
ck2y

))
,

(51)

where 2F1 stands for the hypergeometric function. The above
complicated relation between the coordinates z and y makes
getting the inverse solution y(z) hopeless. However, if the

free parameter k is set to
√

3κ
c2 , Eq. (51) reduces to z =

c
3κ

sinh
(

3κy
c

)
. The inverse solution can be easily obtained

as y = c
3κ

arcsinh
( 3κz

c

)
. Then, the effective potential in the

z coordinate is expressed as

U (z) = 1

4
(
c4 + 15c2κ2z2 + 54κ4z4

)2 (−66c6κ2

+1107c4κ4z2 + 16524c2κ6z4 + 43740κ8z6), (52)

which is the standard volcano potential (see Fig. 3a). This
potential contains a normalizable graviton zero mode (see
Fig. 3b):

ψ0(z) =
3c

√
c2κ + 2κ

(
c2 + 9κ2z2

)

4
(
c2 + 9κ2z2

)5/4
, (53)

where we have inserted the integration constantC1 = 3
4

√
3κ
c .

Except for the localized graviton zero mode, there are a lot of
continuous massive Kaluza–Klein (KK) modes, which will
lead a correction to the Newtonian potential. As shown in
Fig. 3c, U (z) ∼ 15

4z2 as |z| � 1, which takes the particular

expression α(α + 1)/z2. Then, the graviton KK modes on
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(a) (b)

(c)

Fig. 3 The shapes of the effective potentialU (z) and the wave function
of the graviton zero mode ψ0(z) for the second brane solution with
n = 2. The parameters are set to κ = 1, c = 2 for blue short dashed
lines, c = 3 for black lines, and c = 5 for red long dashed lines

the brane obey the form ψm(0) ∼ mα−1 and the correction
for the Newtonian potential between two massive objects at a
distance r is �V (r) ∝ 1/r2α (see Ref. [24] for more details).
For our case α = 3/2, |ψm(0)|2 ∼ m for small masses and
the correction to the Newtonian potential is �V (r) ∝ 1/r3.

4 Conclusions and discussions

In this paper, we investigated the thick brane model with
a single extra dimension in five-dimensional f (Q) gravity.
By adopting the static flat brane metirc and focusing on the
particular case with f (Q) = Q − bQn , we found that the
brane system can be solved analytically with the first-order
formalism. Then, we investigated two explicit cases with n =
1
2 and n = 2, and presented the corresponding thick brane
solutions with the first-order formalism. We found that the
scalar field for both cases are kink solutions and the energy
density always peaks at the origin, which suggest the brane
system with no inner structure.

Besides, we investigated the tensor perturbation of the
thick brane system. The equation of motion of the tensor per-
turbation was obtained for a general f (Q). After the Kaluza–
Klein (KK) decomposition, this equation can be converted to
a Schrödinger-like equation, and the corresponding Hamil-
tonian can be factorized as a supersymmetric form, which
ensures that there are no tachyonic states. Then, we inves-
tigated the localization of the graviton zero modes for both
brane systems. Since the wave function of the graviton zero
mode is imaginary and divergent near the origin of the extra
dimension for the first brane with n = 1

2 , one can not obtain

a localized graviton zero mode in this brane system. For the
second brane solution with n = 2, it was shown that the
graviton zero mode can be localized on the brane, which
suggests that the four-dimensional Newtonian potential can
be recovered on the brane. What’s more, there are a lot of
continuous massive KK modes, which may lead corrections
to the Newtonian potential. After a brief analysis, we found
that the correction is �V (r) ∝ 1/r3. In addition, the stability
of the thick brane system under scalar perturbation and the
effects of the nonmetricity on the scalar perturbation are also
interesting problems. These are left for our future works.
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