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Abstract Atmospheric neutrinos are one of the most rel-
evant natural neutrino sources that can be exploited to
infer properties about cosmic rays and neutrino oscillations.
The Jiangmen Underground Neutrino Observatory (JUNO)
experiment, a 20 kton liquid scintillator detector with excel-
lent energy resolution is currently under construction in
China. JUNO will be able to detect several atmospheric
neutrinos per day given the large volume. A study on the
JUNO detection and reconstruction capabilities of atmo-
spheric νe and νμ fluxes is presented in this paper. In this
study, a sample of atmospheric neutrino Monte Carlo events
has been generated, starting from theoretical models, and
then processed by the detector simulation. The excellent tim-
ing resolution of the 3” PMT light detection system of JUNO
detector and the much higher light yield for scintillation over
Cherenkov allow to measure the time structure of the scintil-
lation light with very high precision. Since νe and νμ inter-
actions produce a slightly different light pattern, the differ-
ent time evolution of light allows to discriminate the flavor
of primary neutrinos. A probabilistic unfolding method has
been used, in order to infer the primary neutrino energy spec-
trum from the detector experimental observables. The sim-
ulated spectrum has been reconstructed between 100 MeV
and 10 GeV, showing a great potential of the detector in the
atmospheric low energy region.

1 Introduction

Atmospheric neutrinos are a naturally occurring neutrino
source. They originate from the decays of π and K produced
in extensive air showers initiated by the interaction of cosmic
rays with the Earth’s atmosphere [1–4]. The energy spectrum
of primary cosmic rays above 100 MeV can be described
by a power law dN

dE ∝ E−γ , where the spectral index is
γ � 2.7 for E ≤ 106 GeV and γ � 3.0 above that value [5].
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At energies larger than 5 × 108 GeV, the spectrum becomes
steeper (γ � 3.2) [6] and it flattens again (γ � 2.7) when
E ≥ 3 × 109 GeV. In the interaction of a single high energy
Cosmic Ray with the nuclei of the Earth’s atmosphere, hun-
dreds or thousands mesons can be produced. The atmospheric
neutrino energy spectrum spans a wide range from the MeV
up to the PeV scale and can be roughly described by a power
law [7–11]. The spectral index is, in general, steeper than
that of primary cosmic rays, since the parent mesons lose a
large fraction of their energy before decaying. The spectrum
intensity is suppressed at sub-GeV energies reflecting the
rigidity cutoff, that describes the shielding provided by the
geomagnetic field against the arrival of cosmic rays particles
from outside the magnetosphere. Neutrinos originating from
muon decays contribute mainly up to a few GeV. The flavor
ratio (νμ+ν̄μ)/(νe+ν̄e) is around two at ∼1 GeV and increases
as the energy increases, since more muons are likely to reach
the Earth’s surface without decaying. At energies above hun-
dreds of GeV, the decay length of π and K becomes longer
than their path length in the atmosphere, leading to a neutrino
flux reduction. At the highest energies, the decay of heavy
charmed mesons is expected to dominate the atmospheric
neutrino production. Given the very short lifetime of these
particles, the associated neutrino flux is commonly referred
as “prompt” [12–14].

Since the Earth is mostly transparent to neutrinos below
the PeV energy scale, an atmospheric neutrino detector is
able to see neutrinos coming from all directions. The distance
from the production point to the detector varies from O(10) to
O(104)km, depending on the zenith angle [15]. The angular
distribution has a characteristic shape with an increased flux
towards the horizontal direction (with respect to the vertical
direction), due to the longer path length of parent particles
in the atmosphere. In the sub-GeV energy region there is
an asymmetry along the East–West axis, which reflects the
azimuthal dependence of the rigidity cutoff of the cosmic
rays.

Atmospheric neutrinos were detected for the first time in
the 1960s [16,17]. Further measurements led to the discovery
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Fig. 1 Present measurements of the atmospheric neutrino energy spec-
trum, compared with theoretical predictions. Data and models are
reported separately for νe and νμ. Figure from [7]

of neutrino flavor oscillations in 1998 [18]. Some of the miss-
ing pieces in the puzzle of neutrino physics are going to be
addressed also by means of atmospheric neutrinos. The field
of research is currently very active and several experiments
are scheduled in the coming years to answer the unsolved
questions. Next-generation detectors for atmospheric neu-
trino physics plan to significantly improve performances,
compared to present ones, by increasing their size and detec-
tion granularity. The efforts are mostly concentrated on flavor
oscillation physics, pushing the detectors sensitivity for the
neutrino mass ordering (MO) and the CP phase δ in the neu-
trino sector. The most prominent examples are DUNE [19],
Hyper-Kamiokande [20], INO [21], ORCA [22], and PINGU
[23].

In Fig. 1, present measurements of the energy spectrum
of atmospheric neutrinos are reported, including predictions
from theoretical models.

Measurements performed over the last decades, up to
present times, are able to cover a very wide range in the neu-
trino energy, from several hundreds of MeV to several hun-
dreds of TeV. This sector has been explored predominantly
by Cherenkov detectors, such as Super-Kamiokande [7] and
IceCube [8–10,24]. The Jiangmen Underground Neutrino
Observatory (JUNO), currently under construction in China,
will be able to detect several atmospheric neutrinos per day.
JUNO is going to become the largest liquid scintillator (LS)
based detector ever built, having a target LS mass more than
one order of magnitude larger than present ones. The large
detector mass is one of the key-points for atmospheric neu-
trino detection, since it is comparable to the largest present
water-based detector, Super-Kamiokande. Despite the lim-

ited ability of JUNO in tracking single particles after a neu-
trino interaction, with respect to large Cherenkov detectors,
and a slightly reduced accessible statistics, the LS nature
of the detector allows more precise measurements towards
the low energy region. This sector of the energy spectrum is
still not fully covered by present and past experiments. Fur-
thermore, it also corresponds to the region where theoretical
models have the largest uncertainties.

The atmospheric neutrino flux measurements by means of
the JUNO detector allow to investigate the neutrino MO and
the θ23 octant. It is possible to pursue also the CP phase δ

measurement. In our work, we investigate JUNO’s potential
for measuring the atmospheric νe and νμ fluxes in the energy
range 100 MeV–10 GeV.

2 JUNO experiment

The JUNO experiment [25,26] is a LS neutrino detector cur-
rently under construction in a dedicated underground labo-
ratory (about 700 m deep, 1800 m.w.e.) near Kaiping, Jiang-
men city, Guandong province (P. R. China). A sketch of the
detector is shown in Fig. 2. The central detector (CD) con-
sists of 20 kton of LS, contained in a 12 cm thick, highly
transparent, acrylic sphere with a diameter of 35.4 m. The
light produced in the LS is read out by 17,612 20” high
quantum efficiency (QE) photomultiplier tubes (PMTs) and
25,600 3” PMTs, providing a total photo-coverage of more
than 75%. About 13,000 of the 20” PMTs are Microchan-
nel Plate (MCP) PMTs, developed by the JUNO collabora-
tion and currently being produced by the North Night Vision
Technology company. The remaining 5000 20” PMTs con-
sist of the R12860 model produced by Hamamatsu. Both of
these PMTs have a photon detection efficiency greater than
27%. For the 20” PMTs, the full waveform will be acquired.
Their large photon collection area, however, has the conse-
quence of a large dark noise rate, on average of the order
of 30 kHz, and a time resolution on single photo-electrons
in the range from 1 to 10 ns. The additional 3” PMTs, built
by the HZC company, are deployed in the 20” PMTs’ lattice
structure, in order to reduce any possible systematics due to
the loss of linearity in charge reconstruction and to improve
the timing measurements [27]. Due to their small area, the 3”
PMTs will operate in digital mode, thus being an independent
readout system that can be exploited for cross-calibrating the
20” PMTs energy response. This feature becomes extremely
important for high-energy events, where millions of photons
are produced. Furthermore, due to the size difference, the
Transit Time Spread (TTS) of 3” PMTs is of the order of the
nanosecond, while the 20” PMTs one is larger, on average.

The acrylic sphere is surrounded by a stainless steel truss
structure, which has a diameter of about 40 m and constitutes
the mechanical support for both the acrylic sphere and the
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Fig. 2 Layout of the JUNO detector

PMTs. The central detector is submerged in a ∼44 m deep
water pool (WP) filled with ∼30 kton of ultrapure water and
instrumented with 2400 20” MCP-PMTs. It acts as an active
Cherenkov muon veto and shields the CD against external
radioactivity. The walls of the pool are covered with high-
reflectivity Tyvek film, in order to increase the photon col-
lection and allowing to veto Cosmic Ray muons with >95%
efficiency. A Top Tracker (TT) is placed on top of the water
pool, to improve the total veto efficiency and the reconstruc-
tion of atmospheric muons. The TT consists of three layers
of scintillator strip detectors, refurbished after the decom-
missioning of the OPERA experiment Target Tracker [28].
It has a granularity of 2.6 × 2.6 cm2 and a coverage of about
60% of the WP top surface.

The JUNO LS mixture consists of three components:
linear alkylbenzene (LAB) as solvent, 2.5 g/l of 2,5-
diphenyloxazole (PPO) as scintillation fluor and 3 mg/l of
1,4-Bis(2-methylsyryl) benzene (bis-MSB) as wavelength
shifter [29]. This mixture ensures an effective light yield of
∼ 104 photons per MeV of deposited energy and an atten-
uation length greater than 20 m for 430 nm photons. The
designed radio-purity levels of the JUNO LS are O(10−16)

g/g for the bulk 238U, 232Th, and 40K contaminants [30]. The
calibration of the JUNO CD will be performed by four dif-
ferent systems [31]. An automated calibration unit (ACU)
will deploy different radioactive sources along the detector
vertical axis. The ACU system is also designed to deploy a
laser source, with a photon intensity that can cover a range
from hundreds of keV up to O (TeV) equivalent energy. Two
Cable Loop Systems (CLS) will instead place sources across
two planes. A guide tube (GT) system, installed on the outer
circumference of the sphere, will provide information regard-
ing non-uniformity at the CD boundary. A Remote Operated
Vehicle (ROV) will finally deploy sources in the whole detec-

tor volume. Periodical calibration campaigns will ensure to
keep the overall energy resolution around 3%/

√
E/MeV in

the MeV energy region, where the analysis for the neutrino
MO will focus. Atmospheric neutrinos interacting inside
JUNO can produce different final states, depending on the
nature of the interaction they undergo. A first distinction can
be done between charged-current (CC) and neutral-current
(NC) interactions. In the first case, the lepton of the same
flavor of the interacting neutrino is produced and therefore
the original neutrino information is preserved. In NC inter-
actions, on the contrary, only a hadronic state is visible and
the flavor of the interacting neutrino cannot be inferred. In
the energy of interest for atmospheric neutrinos, the domi-
nant interaction is the neutrino-nucleon scattering. The most
prominent channels are the elastic and quasi-elastic scatter-
ing, the resonant production, and the deep inelastic scatter-
ing [32]. This last classification concerns only about the final
hadronic products, which give information about the original
energy of the neutrino, but are not sensitive to the interac-
tion flavor. Instead, the CC or the NC nature of the neutrino
interaction implies a fundamental difference in the visible
products. Apart from the flavor information, the absence of
the flavor-corresponding lepton in the final state for NC inter-
actions means also that the neutrino carries away part of its
initial energy, which is not released inside the detector. NC
events are therefore expected to be concentrated at lower val-
ues of the visible energy, while CC ones dominate at higher
energy.

3 Monte Carlo dataset

The study of the atmospheric neutrino flux is usually based
on the predictions of the expected flux made by Monte Carlo
simulations. In this work, we consider the predictions from
the latest version of the HKKM model [33], which we refer
to as HKKM14 hereafter. The model assumes a Cosmic Ray
spectrum based on BESS [34,35] and AMS-01 [36] measure-
ments. The DPMJET-III [37] and the JAM [38] hadronic
interaction models are used for the simulation of the inter-
action with the Earth’s atmosphere. The HKKM model pro-
vides the calculation of the expected atmospheric neutrino
flux at different locations, taking into account the latitude
and longitude of the detector. The energy range spans from
100 MeV up to 10 TeV. Solar modulation and the asymme-
try in the azimuthal distribution are also considered. In the
HKKM parametrization, the neutrino flux is calculated at the
source and therefore no oscillation effects are included. The
HKKM14 atmospheric neutrino flux prediction, calculated
at the JUNO experimental site, is shown in Fig. 3. Hereafter,
νe and νμ will be used to label both neutrinos and antineu-
trinos of electron and muon flavor, respectively.
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Fig. 3 Expected atmospheric (neutrino + antineutrino) flux at the
JUNO site, for νe (red) and νμ (blue), according to the HKKM14 model
[33]. The flux is reported with (full line) and without (dashed line) con-
sidering neutrino oscillations

In order to get a realistic prediction, neutrino oscilla-
tions have been applied to the original flux, including matter
effects. The impact of the oscillation effects has been eval-
uated according to the standard 3-neutrinos mixing scheme
[39].

The interaction of atmospheric neutrinos with the JUNO
detector has been simulated by means of theGENIENeutrino
Monte Carlo Generator [40,41] inside an energy range up to
20 GeV. The elemental composition of the neutrino target has
been set as the one of the JUNO LS (mainly 12C and 1H, with
relative composition of 0.88 and 0.12, respectively). The out-
put of the simulation contains information about the type of
interaction that neutrinos undergo, either a CC or a NC one,
and the full list of secondary particles and their associated
properties (Particle ID, momentum, direction, . . . ). The con-
tribution of ντ CC interactions has been found not to affect
the analysis results by independent evaluations and have been
therefore not considered in the present work. Secondary par-
ticles produced in the interaction between neutrinos and the
JUNO target material have been propagated in the detec-
tor by using a GEANT4-based Monte Carlo simulation. The
JUNO detector simulation code has been developed within
the SNiPER framework [42]. In the detector simulation, sev-
eral physical processes are included: electromagnetic interac-
tion, decay, hadronic elastic and inelastic interactions, scin-
tillation (including re-emission), Cherenkov emission, and
optical absorption. A detailed optical model, including the
optical properties of all the detector materials, is also imple-
mented. The output relevant for the analysis includes the

timestamp, the number of photoelectrons, and the position
of each PMT hit. A data sample of about 5 × 105 νμ + νe
events have been generated, hereafter called large data sam-
ple, in order to set up the procedure used to reconstruct the
atmospheric neutrino spectrum and to understand the detec-
tor response over a large statistics of events. A sample of
6500 events have been injected in the simulation as a sep-
arate Monte Carlo data sample, corresponding to a detector
live time of about 5 years. This smaller data sample is here-
after identified as small data sample.

4 Analysis strategy

As a large LS detector, JUNO achieves its best performance
on events which are fully-contained within the volume, where
a calorimetric measurement can be performed. Partially-
contained events, having some secondaries escaping from
the CD active volume, are reconstructed with a worse energy
resolution. This analysis therefore targets fully-contained
events, to be accounted for reconstruction. This sets an intrin-
sic upper limit of ∼10 GeV on the νμ flux, since the high-
energy muons produced in a CC interaction always escape
the CD volume. For νe (νμ), the “golden” events consist of
νe (νμ) fully-contained and CC events and the components
to reduce are partially-contained and NC events of all flavor
neutrinos. Through-going muons, that may be produced in
νμ interactions with materials surrounding the CD, are not
considered in this study.

4.1 Fiducial cuts

Before applying the analysis selection to isolate νe and
νμ populations, some preliminary cuts are applied to the
large neutrino sample, with the aim of removing low-quality
events. A first cut on the interaction vertex position is applied,
in order to remove events which release their energy near the
edge of the acrylic sphere. These events typically exhibit
a loss of linearity between the deposited and the collected
energy, because part of the energy is released in the acrylic
and water and not in the LS and because the closest PMTs
collect a great amount of light and can undergo saturation.
A Gaussian smearing with σ = 1 m has been applied to the
MC interaction point (hereafter called vertex), in order to
reproduce the uncertainty on the reconstructed position. We
require that Rvertex (i.e. the distance between the vertex and
the center of the detector) is less than 16 m to ensure a linear
detector response. The precision in the reconstruction ver-
tex at lower energy (in the MeV range) is in general much
better than 1 m; on the contrary, at the GeV energy scale,
secondary particles can deposit their energy on a long track
and the events can no longer be considered as point-like. It
has been checked that even an error of few meters on the ver-
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tex position does not affect the performance of the selection
procedure.

As described in Sect. 2, the CD is surrounded by a
water Cherenkov detector acting as veto for atmospheric
muons. Both muons and secondaries coming from partially-
contained neutrino events can release a certain amount of
energy in the WP and produce a large amount of Cherenkov
photons. Therefore, in order to remove partially-contained
neutrino events and suppress the atmospheric muon back-
ground, we require the total number of hits seen by the water
pool veto PMTs (NWP

hits ) to be less than 50, including the con-
tribution from PMT dark noise. This latter term can become
important for WP PMTs, because the single-count rate due to
WP PMTs dark noise is high (up to several tens of kHz) and
the total number of prompt hits from muons Cherenkov light
can be small. Hits on WP PMTs are considered in a 200 ns
time window, which is approximately the time needed by
a muon to cross the entire detector. The dark hits contribu-
tion is simulated on a statistical basis, assuming a binomial
distribution. After applying the fiducial cuts described pre-
viously, the simulated large neutrino sample is composed
at 97% of fully-contained event. The remaining partially-
contained events are composed at 96% of νμ CC interactions.
The total efficiency for all νe events is 68%, for νμ events is
63%.

4.2 Atmospheric muon background

The atmospheric muon background consists of the secondary
muon flux produced after the interaction of cosmic rays with
the atmosphere, in the same way as for neutrinos. The JUNO
detector location is about 700 m underground, therefore part
of the muon radiation is able to penetrate the rock over-
burden and release energy inside the detector. The energy
released by atmospheric muons inside JUNO is compara-
ble with that of particles coming from atmospheric neutrino
interactions (hundreds of MeV – several GeV). Muons can
mimic the topology of atmospheric neutrino events and can
therefore be a source of background. Although the external
water Cherenkov veto is designed to reject these events with
high efficiency, the atmospheric muon event rate is several
orders of magnitude higher than that from atmospheric neu-
trino interactions. From preliminary calculations, their event
rate inside the JUNO CD is around 3–4 Hz, corresponding
to roughly 105 times the atmospheric neutrino event rate,
considering that the average energy of atmospheric muons
reaching JUNO is 207 GeV. The desired acceptance rate for
the atmospheric muon background must be therefore at least
of the order of 10−5. In order to get a comprehensive picture
of the atmospheric muon flux within the framework of this
study, a full MC simulation is necessary. Atmospheric muons
produce several millions of photons in the JUNO LS and the
full detector simulation requires high CPU power and stor-

age. For this purpose, a sample of only 105 muon events has
been generated, according to the energy and angular distri-
butions evaluated at the JUNO site. The expected muon flux
in the detector is calculated within the JUNO Collaboration
according to a parametrized model at Earth surface [4] and
simulating muons propagation through matter [43]. A detec-
tor simulation has been performed. Atmospheric muons in
JUNO appear as high-energy tracks which release a large
amount of energy both in the WP and in the CD. The fiducial
cuts described in Sect. 4.1 require instead a low collected
light inside the WP.

Hereafter, the readout charge of the event, in terms of
the number of PEs collected by CD 20” PMTs, is called
NPE. NPE represents the observable used to reconstruct the
neutrino energy. The same fiducial cuts have been applied to
the muon sample, with the additional request of more than
105 NPE, which is the region of interest for the analysis.
An acceptance of < 2.3 × 10−5 at 90% confidence level is
achieved. The accuracy in the estimation of the acceptance
will be improved by increasing the Monte Carlo statistics.

4.3 Neutrino flavor identification

As mentioned above, νe (νμ) CC interactions are the pre-
ferred detection channels, since the corresponding charged
leptons have very different behaviours. Electrons lose energy
quickly via bremsstrahlung and ionization and even at GeV
energies their track length is no more than 1–2 m. On the
contrary, muons with energy greater than 1 GeV have longer
tracks inside the detector volume. Low-energy muons, more-
over, may decay inside the scintillator volume and give a
delayed energy release from the Michel electron. The above
differences make νμ CC events more extended in time and
space, with respect to νe CC events. The latter component has
indeed a much shorter evolution. Hadronic particles are com-
mon to all classes of events and make up the visible part of
NC events. Hadrons, in general, have a long energy release,
because of their interactions and decays.

The event time profile can be therefore exploited to dis-
criminate between different classes of events [44]. A high-
precision measurement of the photon arrival time is an impor-
tant requirement. For this reason, the timing information is
taken from the data of the 3” PMT system of the JUNO detec-
tor, which have a low TTS value. A Gaussian smearing with
a typical width σ = 1.6 ns (taken from preliminary mea-
surements) has been applied to the true Monte Carlo hit time
over each 3” PMT. In order to be aligned to a realistic DAQ
window, only events inside a 1.2μs time window have been
considered. A time residual tres is then defined for each hit
on the i-th 3” PMT as:
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Fig. 4 Distribution of σ(tres) for νμ CC (blue), νe CC (red) and NC events (green), for different ranges of NPE

t ires = t ihi t −
(n · Ri

V

c

)
, (1)

where t ihi t is the hit time on the i-th 3” PMT, n is the refraction
index of the JUNO liquid scintillator and Ri

V is the distance
between the reconstructed vertex position and the i-th 3”
PMT. The time profile of the scintillation light emitted by
νe and νμ CC events is different and the latter has a more
prominent tail; therefore, the RMS of the tres distribution –
hereafter called σ(tres) - over the fired 3” PMTs can be used
as discrimination parameter. In Fig. 4, the σ(tres) distribution
is reported for the three populations: νμ CC, νe CC, and NC
events. The variable is also reported separately in 4 different
intervals of NPE, selected such as to have equal statistics in
each of them.

The plots in Fig. 4 show a good separation between the
νe CC and the νμ CC component, over the whole energy
range. The NC component appears to be overlapped mainly
to νμ CC events, with a tail also in the νe CC region. The
reason is that a large fraction of the hadronic component of
the secondaries is made of pions, that either decay to νμ +
μ (π+/π−) or to two gammas (π0). The first category is

almost indistinguishable from νμ CC events, while the sec-
ond one results in electromagnetic showers and resembles
the νe CC component. The relative weight of charged and
neutral pions in the final state changes across the energy, as
well as that of nucleons. This feature is at the origin of the
different shape of the σ(tres) distribution for NC events in
Fig. 4, since each of the four bins of NPE corresponds to a dif-
ferent energy interval. Protons and neutrons, moreover, have
a time profile similar to the one of muons, because they result
in a long-lasting energy release inside the LS. The contribu-
tion of NC component, however, becomes less significant at
high energy, due to its steeper spectral shape. In NC events,
indeed, part of the initial energy of the interacting neutrino
is carried away by the neutrino itself and is not deposited
inside the detector. Given the different features, two separate
selection criteria are used to maximize CC events. In order
to separate νe events, a value of σ(tres) < 75 ns is required.
The cut results in an efficiency for νe events �42%, with
respect to the large sample after fiducial cuts, and a resid-
ual contamination from νμ less than 6%. A requirement of
σ(tres) > 95 ns is required to isolate νμ events. In order to
reduce the contribution from NC events at low energy, an
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Fig. 5 Distribution of the observable log10(NPE) in the analysis bins,
after the νe selection (top) and the νμ selection (bottom). The black dots
represent the number of selected events in every bin j , with associated
statistical error. The filled histograms reproduce the bin composition,
in terms of the correct flavor (light blue) and wrong flavor (green)

additional requirement of NPE ≥ 5 × 105 has been set for
νμ selection, thus limiting the analysis to events with a neu-
trino energy � 400 MeV. The efficiency for νμ events is 85%
with respect to the large sample after fiducial cuts and the
residual νe contamination is less than 20%. The residual NC
events are populated both by νe and νμ.

The flavor identification procedure has been extensively
checked by means of an independent analysis. A variation of
the σ(tres) cut has been applied and the resulting efficiency
and contamination are in a very good agreement within the
statistical and systematic errors reported in this work.

In order to test the JUNO performance in reconstructing
the atmospheric neutrino flux, we used the small Monte Carlo
sample corresponding to ∼5 years of data-taking described
in Sect. 3. The energy range considered for the atmospheric
νe flux is [−1.00, 1.05], expressed in log10(Eν/GeV) units
and is divided in seven bins. The corresponding log10(NPE)
range is [5.0, 7.2], divided in seven bins as well. Similarly, the
energy range for νμ is [−0.30, 1.05], divided in seven bins,
and the corresponding log10(NPE) range is [5.7, 7.2], divided

Table 1 Summary of selections flow for νe and νμ fluxes, in terms of
number of events in the analysis region, applied to the small data sample
corresponding to ∼5 years of data taking. The values are reported before
the selections, after the fiducial cuts and after the σ(tres) selection. The
residual background is also reported

νe νμ

Events injected in the simulation 6500

Charge region 1725 1241

Fiducial cuts 1167 773

σ(tres) cut 495 661

Residual background 30 163

in eight bins. The distribution of log10(NPE) is reported in
Fig. 5, in the bins used in the analysis. A summary of the
small sample population is in Table 1, as a function of the
flavor and of the cuts applied, in the NPE regions considered.

4.4 Unfolding

The determination of the atmospheric neutrino energy spec-
trum, starting from the detector experimental observables,
is a classical unfolding problem. In this case, the true spec-
trum is deconvolved from the distribution of the experimental
observables, knowing the detector response. In the classi-
cal fitting method, on the other hand, the true distribution
is extracted from the observables by directly comparing the
experimental distribution with the results of a model predic-
tion. The main benefit of the unfolding is that it does not
require a particular choice of the spectrum parametrization.
In a liquid scintillator detector like JUNO, the main observ-
able for the energy reconstruction is the total number of pho-
toelectrons NPE detected by the 20” PMTs. This value is
related to the total energy deposit in the LS and therefore to
the neutrino energy. The neutrino energy spectrum Eν is then
unfolded from the NPE spectrum. In general, the observable
NPE spectrum N can be expressed in terms of the primary
neutrino spectrum E as

N j =
∑
i

A ji Ei , (2)

where A ji is the likelihood matrix, which can be estimated
by means of a full detector simulation. The relationship in
Eq. 2 can be inverted by using the unfolding matrix Ui j :

Ei =
∑
j

Ui j N j . (3)

The unfolding matrix Ui j can be evaluated by means of an
iterative Bayesian procedure [45]. In this case, the likelihood
matrix A ji can be expressed as the probability P(N j |Ei ) of
detecting an event in the j-th bin of the NPE spectrum N j

produced by the interaction of a neutrino in the i-th bin of the
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energy spectrum Ei . The values of P(N j |Ei ) are evaluated
by means of a Monte Carlo detector simulation and normal-
ized as

∑
j A ji = 1 − εi , where εi takes into account the

inefficiency in measuring the energy Ei . The wrong-flavor
events are also included in A ji . Using Bayes’ theorem, the
unfolding matrix Ui j can be written as:

Ui j = P(Ei |N j ) = P(N j |Ei )P0(Ei )∑
i P(N j |Ei )P0(Ei )

. (4)

The prior P0(Ei ) is the probability for a single event to fall
into the i–th energy bin. Once the unfolding matrix is known,
a first estimation of the spectrum can be produced:

Êi =
∑
j

P(Ei |N j )N j . (5)

The normalized values of Êi are used iteratively as the new
set of probabilities P(Ei ), in order to obtain an updated value
of P(Ei |N j ) and therefore of Êi . The particular choice of the
prior and the number of iterations may cause a small bias on
the shape of the unfolded spectrum. A small number of itera-
tion may not reflect the information given by the data, while
a high number of iteration may amplify statistical fluctua-
tions and distort the spectrum. Since the Bayesian method
is strongly data driven, the effect of the particular choice of
the prior is in general small, but is still taken into account as
a source of systematic uncertainty. The prior should reflect,
in principle, the best knowledge of the primary spectrum.
The minimum bias is then achieved by adopting the true MC
distribution. The strong data–driven nature of the iterative
Bayesian method ensures very good results after few itera-
tions. In this work, two iterations have been performed. A
soft smoothing is applied to the first value of the probability
P1(Ei ). As prior distribution, the HKKM14 model has been
used. Further details are given in Sect. 4.5.

Figure 6 shows the likelihood matrix for both νe and
νμ events, evaluated according to the binning described in
Sect. 4.3 and including the contribution of the background.

4.5 Uncertainties

The total uncertainty on the atmospheric neutrino spectrum
reconstruction is evaluated in each energy bin, including both
contributions from statistics and systematic effects.
Statistics The statistical uncertainty is due to the stochastic
fluctuations that occur in the data bins. The amount of this
fluctuations is visible in Fig. 5, for each observable bin. In
order to evaluate their impact in the final unfolded spectrum,
1000 toy data sets have been generated, each time varying
the bin content according to a Poisson distribution. The final
distribution in each bin of the unfolded spectrum is then fit
with a Gaussian function, whose σ is quoted as the statistical
uncertainty. The statistical contribution ranges from 5% in

Fig. 6 Likelihood matrix for νe (top) and νμ events (bottom)

the bins with highest statistics up to ∼15% in the highest-
energy bins.
Selection criteria The selection procedure is in general
not intended to produce any bias on the final sample. As
explained in Sect. 4.1, fiducial cuts have been used in the
unfolding procedure in order to improve the accuracy of the
probability evaluations. The energy range of the final recon-
structed spectrum is well contained inside the energy range
of the Monte Carlo generated events, guaranteeing that the
fiducial cuts do not introduce any bias. The neutrino flavor
identification based on the time residual selection, on the
other hand, could bring some uncertainty in the data bins
where the statistics is low: an even small variation in the
chosen cut value of σ(tres) could result in a substantially
different value of the unfolded flux, due to the wide stochas-
tic fluctuations. The whole analysis has been therefore per-
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Table 2 Best-fit neutrino oscillation parameters with associated 3σ

experimental uncertainty. Results are given both assuming normal
ordering and inverted ordering. Table is taken from [39]

Parameter NH IH

sin2 θ12 0.297+0.057
−0.047

sin2 θ23 0.425+0.19
−0.044 0.589+0.047

−0.205

sin2 θ13 0.0215+0.0025
−0.0025 0.0216+0.0026

−0.0026

δ /π 1.38+0.52
−0.38 (2σ) 1.31+0.57

−0.39 (2σ)


m2
21 /10−5 eV2 7.37+0.59

−0.44


m2
32 / 10−3eV2 2.56+0.13

−0.12 2.54+0.12
−0.12

formed by varying the nominal cut value of σ(tres) by 1 ns
steps in a [ -5 ns, +5 ns ] time window. The differences in the
unfolded flux are relevant in the bins with less statistics, for
the reasons explained above. The total contribution to the bin
uncertainty is evaluated as the standard deviation of the flux
values distribution in each bin.
Flavor oscillation The current uncertainties on the global
fit oscillation parameters are reported in Table 2, which are
assumed to be Gaussian. A toy MC has been used to gener-
ate 1000 data sets, randomly varying the oscillation parame-
ters within the experimental uncertainties, including the mass
ordering and assuming no correlation. The final distribution
in the unfolded flux is fit in each bin with a Gaussian func-
tion. Since the resulting dispersion is rather small in every
bin, the total per-bin uncertainty contribution is quoted as the
displacement of the distribution fit peak with respect to the
nominal flux value. The total contribution from oscillation
parameters uncertainty is estimated to be below 1% on the
entire spectrum. The only exception is the first bin of the νμ

spectrum, where oscillation effects are not negligible, which
results into an uncertainty corresponding to a σ of 1.2%.
Cross-section The uncertainties on neutrino cross-section
impact directly on the number of observed events. In the MC
simulation process, as described in Sect. 3, neutrino inter-
actions are managed by the GENIE software. The full list
of uncertainty sources considered by GENIE is provided in
[41]. A comprehensive handling of the whole list is not triv-
ial, since it requires the simultaneous calculation of modi-
fied interaction probabilities in a wide parameter space. In
this study, the evaluation of the cross-section uncertainty is
based on experimental measurements provided by the T2K
Collaboration [46–48], extrapolated from the associated data
releases. Assuming the uncertainty on the measured cross
section values to be Gaussian, the related visible spectrum
is modified accordingly, within 1σ interval. The propagated
uncertainty on the unfolded flux is evaluated by unfolding
1000 toy MC data sets, with NPE bin contents altered accord-
ing to random variations of the cross section parameters. The
unfolded spectra distributions are then fit in each bin with a

Gaussian function, whose σ is quoted as the related uncer-
tainty contribution. The uncertainty in the neutrino cross-
section values has a large impact in the final reconstructed
flux, up to 20%.
Unfolding procedure Although the iterative Bayesian
unfolding method is data-driven, the particular MC sample
may have an influence on the final result. This means that
the initial estimation of the likelihood matrix may have an
intrinsic bias, as well as the choice of the prior. The rela-
tive impact should be small, but it can have an impact in the
unfolding bins with low statistics. The net effect cannot be
exactly computed, but a reliable estimation can be achieved
by unfolding modified data sets, generated by assuming a
primary MC distribution reasonably far from the one used to
evaluate the probabilities.

The modified spectra are produced from the original MC
by means of a re-weighting procedure. The new spectrum
can be expressed in the i-th unfolding bin as:

ΦMOD
νi

= (1 + α)

(
Eνi

1 GeV

)γ

ΦMC
νi

, (6)

where α acts on the absolute normalization and γ on the
shape of the primary spectrum. These two parameters are
considered to range in the following intervals: ±0.05 for α

and ±0.2 for γ .
The size of variation corresponds approximately to a 1σ

uncertainty interval in the predicted spectra. In Fig. 7 the
comparison between each toy data sample and the corre-
sponding unfolding result is reported, together with the frac-
tional deviation between the input and the unfolded result.
The deviation is below 1% and turns out to be slightly higher
in the case of maximum variation of α and γ in the bins
with lower statistics. The conditional probabilities used in
the unfolding procedure have been carefully evaluated by
using different methods for both νe and νμ samples. The
relative deviations obtained for different energy bins and dif-
ferent NPE bins are reported in Table 3, as an example, for
the νe sample. The effect on the obtained spectra turns out to
be negligible.

The contributions of each uncertainty source are reported
in Fig. 8, for each unfolding bin. The total uncertainty
reported is calculated as the sum in quadrature of all con-
tributions. The neutrino cross-section uncertainty represents
the dominant contribution over the whole unfolded spectrum.
The statistical uncertainty has also an important weight in
high-energy bins. The total flux uncertainty ranges from a
minimum value of 10–15% in the O(1 GeV) energy region,
up to a 20–25% in the edge bins.
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Fig. 7 Top panels: modified unfolded spectra (markers), together with
the corresponding input (dashed lines). Bottom panels: relative devia-
tion. Top: νe spectra; bottom: νμ spectra. ΦMC represents the nominal
flux model [33], which is reported as the black dashed line. Four sets of
modified spectra are plotted, whose α and γ values are reported in the
figures

Table 3 Relative deviations of the conditional probabilities evaluated
by using the νe sample

log10(NPE)
log10(Eν / GeV) −1 to −0.5 −0.5 to 0.36 0.36 to 1.1

5–5.5 0.030 0.055 0.040

5.5–6.3 – 0.005 0.075

6.3–7.2 – – 0.005

Fig. 8 Summary of estimated relative uncertainty on the unfolded flux,
reported separately for each source. The total relative uncertainty is also
reported. Top: νe spectrum; bottom: νμ spectrum

5 Results and discussion

The unfolded νe and νμ energy spectra are shown In
Fig. 9. The binning is described in Sect. 4.4. The predicted
HKKM14 flux [33] is also reported, both at the source
and including oscillation effects along the baseline. The
oscillation-induced flux deficit in the νμ flux below 10 GeV
is clearly visible.
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Fig. 9 Reconstructed energy spectra for the νe (top) and the νμ flux
(bottom). The fluxes are plotted multiplied by E2, to give a better pic-
ture. The error bars on the flux values include all statistical and system-
atic contributions evaluated in Sect. 4.5. The HKKM14 flux prediction
[33] is also reported, at the source (dashed line) and including the oscil-
lation effects (full line)

JUNO is able to reconstruct the energy spectrum of atmo-
spheric neutrinos in the energy range [100 MeV–10 GeV],
usually referred to as the “low-energy” region. This work,

although based on simulated data only, shows the good capa-
bilities of a large LS based detector like JUNO to measure the
atmospheric neutrino flux. The energy region considered is
already populated by other measurements, however some dis-
crepancies still remain. JUNO can provide additional infor-
mation about this interesting energy region, helping models
in constraining their predictions. The quoted uncertainty is
competitive with present experimental results and shows a
margin of improvement by the increase of exposure time.
Although JUNO’s design is not optimized for atmospheric
neutrino physics,

the extremely good performances in the atmospheric neu-
trino energy reconstruction can be fully exploited for the
measurement of the energy spectrum. Moreover, atmospheric
neutrinos are a natural source which will be fully accessible
from the beginning of data taking.

6 Conclusions

The JUNO detector has been designed from the beginning
as a state-of-the-art detector for neutrino physics. The large
dimensions of the detector, as well as its dense instrumenta-
tion, pave the way to an entire series of measurements, in a
multi-purpose approach. The atmospheric neutrino flux is a
natural source that can be observed, from the very beginning
of data-taking. Although the detector design is not optimized
for this class of events, the large active volume and the fine
energy resolution allow to reconstruct the energy spectrum
with a competitive precision, especially in the low-energy
region.

In this work, a large set of MC events has been gener-
ated to evaluate the detector performances. A smaller set has
been used to simulate the real data. Thanks to the timing
performances of JUNO, the flavor of primary neutrinos can
be separated with a limited residual contamination. A rejec-
tion power of the order of 105 has been applied to reduce
atmospheric muon background. The atmospheric neutrino
energy spectrum has been reconstructed in the energy range
[100 MeV–10 GeV], separately for νe and νμ, assuming a ∼5
years detector livetime. The reconstructed spectra lie inside
an interesting energy region, where previous measurements
show some discrepancies. The results obtained show the good
performance of JUNO in detecting the atmospheric neutrino
flux in the low energy region, where theoretical models have
large uncertainties. The inferred information can provide a
fruitful input to constrain flux predictions, which are essen-
tial to evaluate the impact of atmospheric neutrinos in the
search of rare events.
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