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Abstract In this work, we study the computational com-
plexity of massive gravity theory via the “Complexity =
Action” conjecture. Our system contains a particle moving
on the boundary of the black hole spacetime. It is dual to
inserting a fundamental string in the bulk background. Then
this string would contribute a Nambu–Goto term, such that
the total action is composed of the Einstein–Hilbert term,
Nambu–Goto term and the boundary term. We shall investi-
gate the time development of this system, and mainly discuss
the features of the Nambu–Goto term affected by the graviton
mass and the horizon curvature in different dimensions. Our
study could contribute interesting properties of complexity.
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1 Introduction

Along with the development of fundamental physics and
information theory, some very remarkable tools were pro-
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posed to reveal the mystery of nature. One of them is in the
areas of general relativity and quantum field theory. In 1990s,
the AdS/CFT duality which connects the gravity theory and
its boundary conformal field theory was proposed [1–3] and
it has opened a new avenue for us to investigate the gravity
in the framework of holography.

Thanks to holography, the entanglement entropy (EE),
which measures the degrees of freedom in a strongly cou-
pled system originally, has a holographic description, stating
that the EE for a subregion on the dual boundary is propor-
tional to the minimal Hubeny–Rangamani–Takayanagi sur-
face in the bulk geometry [4,5]. The other significant concept
in theoretical physics is the computational complexity which
originally comes from the quantum information theory [6–
12]. The computational complexity measures the difficulty
of turning a quantum state into another state. However, from
the side of the field theory, it is extremely difficult to eval-
uate it when the degrees of freedom of the system becomes
large. It is also not clear on how to precisely define the initial
state and reference state. Though there are plenty of works
on this theme from quantum field theory [13–17] as well as
works on geometric way to define the complexity [18–24], a
well-defined theory of complexity is still unknown.

On the other hand, in gravity side, only considering the
outside properties of black hole is not enough for us to under-
stand the interior black hole. Susskind et al. suggested that the
computational complexity can measure the size of wormhole
which anchored at the two sides of boundary times of AdS
black hole [25–29]. Accordingly, there are two conjectures
have emerged. One is “Complexity=Volume”(CV) conjec-
ture. V denotes the volume of Einstein–Rosen (ER) bridge
that connects the two side of boundary times of AdS black
hole. The other reliable candidate proposal is the “Complex-
ity=Action” (CA) conjecture. A denotes the classical action
of a spacetime region which was enclosed by the bulk Cauchy
slice that anchored at the boundaries, and this domain was
also called “Wheeler–Dewitt patch” [30,31].
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Especially, the application of CA conjecture have been
extensively studied in [32–53] and therein. However, the
aforementioned work focused on the stationary system. An
important direction is to generalize the CA conjecture into a
time-dependent process such as a system moved by a drag
force, which was motivated by the work of jet-quenching phe-
nomena in ion collisions where the system is moved by a drag
force [54]. When a charged particle passes through a quark–
gluon plasma, it would lose energy because of the effect of
shear viscosity. Thus, the most useful method to analyze this
dissipative system is to use a probe. Many important work
were inspired by this clue. For instance, in [55] the growth of
complexity with the probe brane was studied. In [56] the non-
local operator was studied in BTZ black hole. More recently,
Nagasaki investigated the complexity of AdS5 black hole via
CA by inserting a probe string which moves on a circle in the
spacial part of the AdS spacetime [57]. This study was also
extended in rotating black holes [58,59] and the black holes
in Horndeski gravity [60,61].

In this work, we also use this method and investigate the
complexity growth in massive gravity with a probe string.
Massive gravity theory is a theory beyond Einstein theory of
gravity where the graviton is massless. Recently, significant
progress has been made towards constructing massive gravity
theories that avoid instability, see for example [62–68]. More
importantly, it was addressed in [69] that the massive terms in
the gravitational action break the diffeomorphism symmetry
in the bulk, which corresponds to momentum dissipation in
the dual boundary field theory. Moreover, the complexity
growth for the stationary massive black hole has been studied
in [32,33], in which the complexity growth stems from the
contribution from Einstein–Hilbert action and the boundary
term.

The aim of this work is to study the effect of probe string
on the complexity growth in massive gravity. This means that
we shall consider a Wilson line operator in the theory, which
is dual to a dynamical system. The novelty of this work is that
the non-local operator could correspond to a particle moving
on the boundary gauge theory with momentum relaxation.
We shall focus on this effect of Wilson line operator on the
Nambu–Goto action. In details, we shall study the influence
of horizon curvatures, the graviton mass and the dimension
of spacetime on the velocity dependent complexity growth,
which is dual to Nambu–Goto action growth in massive black
hole with a probe string.

This paper is organized as follows. In Sect. 2 we briefly
review the massive gravity and then derive the Nambu–Goto
action in massive gravity with probe string. In Sects. 3 and
4, we investigate the Nambu–Goto action growth in the three
and higher dimensional gravity, respectively. We analyze the
effect of horizon curvature and graviton mass on the features
of the Nambu–Goto action growth. We summarize in Sect. 5.
We shall use natural units with G = h̄ = c = 1.

2 Massive gravity and the Nambu–Goto action

2.1 Review of massive black hole

We consider (n + 2)-dimensional action of massive gravity
[70,71],

S = 1

16πG

∫
dn+2x

√−g

[
R + n(n + 1)

l2

+m2
4∑
i

ciUi (g, f )

]
, (1)

where R is the scalar curvature, l is the AdS radius and f is
a fixed symmetric tensor. In addition, ci is constant and Ui

is the symmetric polynomial of the eigenvalue of the (n +
2) × (n + 2) matrix K μ

ν = √
gμα fαν which can be written

as follows

U1 = [K ] , U2 = [K ]2 −
[
K 2

]
,

U3 = [K ]3 − 3 [K ]
[
K 2

]
+ 2

[
K 3

]
,

U4 = [K ]4 − 6
[
K 2

]
[K ]2 + 8

[
K 3

]
[K ]

+3
[
K 2

]2 − 6
[
K 4

]
, (2)

where [K ] = K μ
μ and the square root in K can be inter-

preted as (
√
K )

μ
ν(

√
K )νλ = K μ

λ . As known that the pres-
ence of impurities in realistic materials leads that the momen-
tum is not conserved, so that the system gives finite DC
conductivity. Modeling systems via translationally invari-
ant quantum field theories always comes across problems
unless the effects of momentum dissipation is incorporated.
In holographic framework, several models have been pro-
posed to involve momentum dissipation, which brings in
finite DC conductivity. Massive gravity is a completive can-
didate in which the momentum dissipation is involved, and
it is an effective bulk theory that does not conserve momen-
tum without borrowing additional fields. In the action (1),
the last terms represent massive potentials associated with
the graviton mass which breaks the diffeomorphism invari-
ance in the bulk, which produces momentum relaxation in
the dual boundary theory.

Variating the action, we can obtain the equations of motion

Rμν − 1

2
Rgμν − n(n + 1)

2l2
gμν

− 1

2

(
Fμσ F

σ
ν − 1

4
gμνF

2
)

+ m2χμν = 0,

(3)
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where

χμν = − c1

2

(
U1gμν − Kμν

)

− c2

2

(
U2gμν − 2U1Kμν + 2K 2

μν

)

− c3

2

(
U3gμν − 3U2Kμν

+6U1K
2

μν − 6K 3
μν

)
− c4

2

(
U4gμν − 4U3Kμν

+12U2K
2

μν − 24U1K
3

μν + 24K 4
μν

)

(4)

The static black hole solution of the above action yields

ds2 = − f (r)dt2 + f −1(r)dr2 + r2hi j dx
i dx j , i,

j = 1, 2, 3, . . . , n, (5)

where hi j dxi dx j is a line element of Einstein space with
constant curvature n(n − 1)k and k = 1, 0,−1 corresponds
to a spherical, Ricci flat, and hyperbolic horizon for black
hole. We follow the ansatz in [71] and set the reference metric
fμν = diag(0, 0, c2

0hi j ). Then Ui can be computed as

U1 = nc0/r, U2 = n(n − 1)c2
0/r

2,

U3 = n(n − 1)(n − 2)c3
0/r

3,

U4 = n(n − 1)(n − 2)(n − 3)c4
0/r

4.

(6)

Putting them back to the Einstein equation, we have the met-
ric function f (r)

f (r) = k + r2

l2
− m0

rn−1 + c0c1m2

n
r + c2

0c2m
2

+ (n − 1)c3
0c3m2

r
+ (n − 1)(n − 2)c4

0c4m2

r2 ,

(7)

where the integral constant m0 is the black hole mass param-
eter.

2.2 Nambu–Goto action

Following the approach in [57,58], we consider a Wilson line
operator in the spacetime by inserting a fundamental string in
the massive gravity. This corresponds to a test particle mov-
ing on the boundary gauge theory, which is described by a
non-local operator. Inserting the Wilson loop is described by
adding a Nambu–Goto (NG) term, so the total action consists
of the Einstein–Hilbert term, the Nambu–Goto term and the
boundary term. Since the contribution of Einstein–Hilbert
action and boundary term to the complexity growth in mas-
sive black hole has been studied in [32,33], here we shall
investigate the effect of the Nambu–Goto action.

Setup To this end, we assume that a probe string moves in a
subspace with different topologies. Then the induced metric
was hi j dxi dx j = dφ2. We take the worldsheet parameter as

t = τ , r = σ , φ = vτ + ξ(σ ). (8)

where v denotes the velocity of a string relative to the black
hole. For simplicity, we will set l=1, then the induced metric
is

ds2
n+2(ind) = (− f (σ ) + σ 2v2)dτ 2

+
(

1

f (σ )
+ σ 2ξ ′(σ )

)
dσ 2 + 2σ 2vξ ′dτdσ,

f (σ ) = k + σ 2 − m0

σ n−1 + c0c1m2

n
σ + c2

0c2m
2

+ (n − 1)c3
0c3m2

σ
+ (n − 1)(n − 2)c4

0c4m2

σ 2 .

(9)

The NG action is achieved by integrating over the WDW
patch,

dSNG

dt
= Ts

∫ rh

0
dσ

√−gind(σ )

= Ts

∫ rh

0
dσ

√
1 − v2σ 2

f (σ )
+ σ 2 f (σ )ξ ′(σ )2

≡
∫ rh

0
dσLn+2

(10)

where the horizon rh is determined by f (rh) = 0, and Ts is
the tension of fundamental string.

Varying the above ‘action’, we obtain the equation of
motion for ξ

d

dσ

(
σ 2 f (σ )ξ ′(σ )√

1 − v2σ 2/ f (σ ) + σ 2 f (σ )ξ ′(σ )2

)
= 0, (11)

from which we could define the constant cξ as

cξ ≡ σ 2 f (σ )ξ ′(σ )√
1 − v2σ 2/ f (σ ) + σ 2 f (σ )ξ ′(σ )2

. (12)

Subsequently, ξ ′ can be solved by

ξ ′(σ ) = cξ

σ f (σ )

√
f (σ ) − v2σ 2

σ 2 f (σ ) − c2
ξ

. (13)

This expression must give real values, so the denominator
and numerator in the square root should coincidentally be
positive,negative or zero. It is noted that we shall set c0 =
c1 = c2 = c3 = c4 = 1 without loss of generality. Then
regarding the numerator, f (σ ) − v2σ 2, as a function of σ ,
we find it is a monotonically increasing function and has
a negative value for σ = 0. Therefore, there is only one
solution σ = σH to f (σ ) − v2σ 2 = 0. Subsequently, the
constant cξ is determined by σ 2

H f (σH ) − c2
ξ = 0 as

cξ = vσ 2
H . (14)

Inserting the expressions (9), (13) and (14) into (10), we
could rewrite the NG action as
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Fig. 1 Left: action growth v.s.
string velocity in BTZ black
hole for different m0. Right:
action growth v.s. black hole
mass in BTZ black hole for
different string velocities

1

Ts

dSNG

dt
=

∫ rh

0
dσ

√
g(σ ) − σ 4v2

g(σ ) − σ 4
Hv2

with

g(σ ) = kσ 2 + σ 4 − m0σ
3−n + c0c1m2

n
σ 3 + c2

0c2m
2σ 2

+ (n − 1)c3
0c3m

2σ + (n − 1)(n − 2)c4
0c4m

2.

(15)

In the following we shall study the effect of horizon cur-
vature and the graviton mass on the NG action in different
dimensions.

3 Three dimensional case

For n = 1, i.e., the 3-dimensional massive gravity, the terms
related with c2, c3, and c4 in (15) vanish, and the NG action
would reduce to

1

Ts

dSNG

dt
=

∫ rh

0
dσ

√
σ 4 − σ 2m0 + c0c1m2σ 3 − v2σ 4

σ 4 − σ 2m0 + c0c1m2σ 3 − v2σ 4
H

,

(16)

where rh = −c0c1m2+
√
c2

0c
2
1m

4+4m0

2 and σH =
−c0c1m2+

√
c2

0c
2
1m

4+4(1−v2)m0

2(1−v2)
. This integral for all parameter

ranges can be directly worked out by numeric. We first turn
off the graviton mass and consider the static BTZ black hole,
and then we move onto the massive BTZ case. The numerical
results and some analytical study are shown as follows.

3.1 BTZ black hole

First we set the graviton mass asm = 0 and study the effect of
BTZ black hole mass on the NG action. The explicit behav-
iors with different parameters are plotted in Fig. 1. In the left
plot we show the relation between action growth and string
velocity with different black hole masses. We see that the
complexity growth takes the maximum value when the string
is stationary, and as the string moves faster, the action growth
becomes smaller. Moreover, the peak value of action growth
is larger for larger black hole mass. These features are similar

as the observe for static black holes [57,58]. Additionally, the
action growth will vanish as the velocity approaches to light
speed, which was also observed in the rotating BTZ black
holes [58] even though the peak is shifted.

The right plot of Fig. 1 shows the relation between action
growth and black hole mass with different string velocities.
In this case, the faster string gives the smaller action growth,
which is consistent with that in the left plot. It behaves as
a monotonically increasing function of the black hole mass,
which is similar to the observes in rotating BTZ black hole
[57]. A possible interpretation is that a lager system may have
larger information and so it is more complex.

The above numerical results can be analytically con-
firmed. With tricks, the growth of NG action (16) could be
analytically integrated as

1

Ts

dSNG

dt
= √

m0 − |v|√m0, (17)

which depends on the black hole mass and string velocity in a
simple way. It indicates that with fixed m0, the action growth
is maximum when the string is stationary with v = 0 and
the maximal value is

√
m0. As |v| increases, it decreases and

could vanish when the speed approaches to the light speed
with |v| = 1. Moreover, the action growth could increase
monotonously as m0 when v is fixed.

3.2 Massive BTZ black hole

Then we turn on the graviton mass and study its effect on the
NG action growth. So we fix the black hole mass as m0 = 2.
The results are shown in Fig. 2.

In left plot of Fig. 2, we show the relation between action
growth and string velocity for massive black hole. As usual,
the maximal complexity growth appears when the string
velocity is equal to zero for different m. The interesting
point is that the maximal value in massive BTZ black hole
is smaller than that in BTZ black hole, and as the gravi-
ton mass increases, the maximal value becomes smaller. For
all chosen m, as the string moves faster, the action growth
becomes smaller. Moreover, comparing to the BTZ case, the
action growth will not vanish when the string moves with
light speed. In addition, It is also obvious that the effect of m
on the action growth depends on the velocity.
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Fig. 2 Left: action growth v.s.
string velocity in massive BTZ
black hole. Right: action growth
v.s. graviton mass in massive
BTZ black hole. Here we fix the
black hole mass m0 = 2

Fig. 3 Action growth v.s. graviton mass in massive BTZ black hole.
Here we fix the black hole mass m0 = 2 and v ∼ 1

Then in the right plot of Fig. 2, we present the relation
between action growth and the graviton mass. We focus on
the vicinity of the light speed. In all cases, as m increases, the
action growth increases into a peak and then decreases, i.e.,
it is not a monotonically increasing function. Moreover, the
velocity dependence is significant for small graviton mass,
but it seems to be slight for large m, which is also explicit
in the inserted plot. Thus, on the vicinity of the light speed,
the graviton mass suppresses the velocity dependence of the
action growth, which is very different from the effect of black
hole mass that enhances it in all cases as studied in [57,58].

It is noted that in this case, it is difficult to integrate
the action (16) analytically. However, we could estimate the
behavior in some limit regimes to further check the numerical
analysis. In the limit v → 0, we can integrate (16) as

1

Ts

dSNG

dt

∣∣∣∣
v=0

=
√
m4 + 4m0 − m2

2
, (18)

which is a monotone decreasing function of positive m. So
the value of the action growth at v = 0 is smaller as the
graviton mass increases, which is consistent with that shown
in the left plot of Fig. 2.

In the speed light limit with v → 1, a semi-analytic inte-
gration is obtained as

1

Ts

dSNG

dt

∣∣∣∣
v=1

∼ m
∫ rh

0

σdσ√
(σ + m0

m2 )(σ 2 + (m0
m2 )2) + m2σ 2

,

(19)

which is shown in Fig. 3. It shows that in this limit, as m
increases, the action growth increases into a peak and then
decreases, i.e., it is not a monotonic function, which matches
the numerical study shown in the right plot of Fig. 2.

4 Higher dimensional case

When the dimension is higher than three, the black hole
horizon could have hyperbolic, plane and spherical topolo-
gies corresponding to the horizon curvatures k = −1, 0 and
1, respectively. In higher dimensions, the exact integration
results of (15) is difficult, so we shall numerically integrate
it in different dimensions and study the effect the horizon
curvature and graviton mass on the NG action growth.

4.1 AdS black hole

We first study the effect of horizon curvature. So we focus on
the AdS black hole by setting the graviton mass as m = 0.

The velocity dependence and black hole mass dependence
in four dimensional case are shown in Fig. 4. In the left plot
with the black hole mass m0 = 2, the action growth for
k = 1 reproduces the curve with black hole mass M = 1 in
Fig. 1 of [58]. In all cases, the maximal value appears when
the string does not move, and as the velocity increases, the
action growth decreases. It is obvious that the maximal values
in the case with k = −1 is the largest while it is larger in
k = 0 than in k = 1 case. This phenomena can be understood
in an analytical way. In the limit v → 0, the integration (15)
with four dimension (n = 2) is

1

Ts

dSNG

dt
= rh . (20)

Then recalling the event horizon satisfying f (rh) = 0, which
gives us

k = m0

rh
− r2

h − m2
(rh

2
+ 1

)
. (21)
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Fig. 4 Left: action growth v.s.
string velocity for AdS4 black
hole. Here we have fixed
m0 = 2 and m = 0. Right:
action growth v.s. black hole
mass for AdS4 black hole. Here
we fixed v = 0.99

Fig. 5 Action growth v.s. string velocity for AdS black hole. From left to right, the dimension is 5, 6 and 10. In all cases, we have set the black
hole mass m0 = 2

Fig. 6 Action growth v.s. black hole mass from left to right, the dimension is 5, 6 and 10. In all cases, we have set the m = 0, v = 0.99

It is obvious that for AdS case with m = 0 and m0 = 2,
k decreases as rh increases, which indicates that k = −1
corresponds to largest rh , so does the largest action growth
while k = 1 corresponds to the smallest action growth. It is
easy to see that the conclusion is also hold in massive gravity
with m �= 0, which will match the numerical results as we
will see soon. Noted that similar analysis could also be done
in higher dimension cases.

But the action growth decays fastest when k = −1. As the
string velocity increases, there exists a intersection and the
effect of k becomes opposite to that in small velocity. Another
notable feature is that for k = 0 and k = −1, the action
growth with light speed goes to zero, namely the contribution
from NG action disappears such that the effect of string is zero
in these cases. This phenomena is in contrast to the nonzero
value for k = 1. As we increase the dimension (see Fig. 5 for
5D, 6D and 10D cases), the action growth from left to right
becomes gentler and gentler as usual, and the intersection
occurs at larger velocity. Moreover, similar as k = 1, the
action growth near light speed for k = 0 also increases to be

nonzero for higher dimensions, while for k = −1, it keeps
zero.

In the right plot of Fig. 4, we show how the action growth
depends on the black hole mass near the light speed. Again
the blue curve for k = 1 reproduces the curve with the same
velocity in Fig. 1 of [58], and there exists a peak at small
black hole mass. In a contrast, it behaves as a monotonically
increasing function of the black hole mass for k = −1 and
k = 0. Moreover, it shows that in the vicinity of light speed,
the action growth for k = 1 is the largest, which is consistent
with that in the left plot.

As the dimension increases (see Fig. 6 for 5D, 6D and
10D cases), the peak for k = 1 could disappear and the
black hole mass dependence becomes monotonically increas-
ing function, which reproduces the outcome of [58]. More-
over, it also shows that as the dimension increases, the gap
between k = 0 and k = −1 is wider while the gap between
k = 0 and k = −1 is narrower. Unfortunately, it is difficult
to find analytical insight of the features in the limit v → 1
even in four dimensional case.
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Fig. 7 Action growth v.s. string velocity for massive AdS4 black hole with m0 = 2. From left to right, the horizon curvature is k = −1, k = 0
and k = 1, respectively

Fig. 8 Action growth v.s. graviton mass for massive AdS4 black hole with m0 = 2. From left to right, the horizon curvature is k = −1, k = 0 and
k = 1, respectively

Fig. 9 Action growth for massive AdS4 black hole. Left: action growth v.s. string velocity with m = 0.5. Right: action growth v.s. graviton mass
with v = 0.96. Here we have set black hole mass m0 = 2

4.2 Massive AdS black hole

Then, we turn on m to study the effect of the graviton mass
and horizon curvature.

We first study in detail the effect of graviton mass on the
string velocity dependence as well as graviton mass depen-
dence in the vicinity of light speed. We show the results
for four dimensional case in Figs. 7 and 8, respectively.
In all plots of Fig. 7, larger m gives the lower maximal
values of action growth. This feature could be expected
from (20) in v → 0 limit if we reform (21) as m2 =
(m0/rh −r2

h −k)/(rh/2+1), which indicates that with fixed
m0 and k, larger m corresponds to smaller rh . There exists
a intersection where the effect of m on the string velocity
dependence will change. This observe is consistent with that

in three dimensional case (see Fig. 2), even though here the
curves are more gentler.

Figure 8 shows the m dependence of action growth in the
vicinity of light speed. In all cases, the smaller string velocity
corresponds to larger action growth when the graviton mass is
small. As the increase of m, it approaches to a maximal value
and then decreases. The m dependence is slightly affected by
the string velocity for large enough m. Though the behavior
is similar to that for 3D case studied in previous section, we
see that the location of peak tends to smaller m.

Then we fix m = 0.5 and study the effect of horizon
curvature. The results in four dimensional massive gravity
are shown in Fig. 9. Comparing the left plots in Figs. 4 and 9,
we see that in massive gravity, the effect of horizon curvature
on the velocity dependent action growth is similar to that in
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Fig. 10 Action growth v.s. string velocity in massive AdS black hole with m = 0.5. From left to right, the dimension is 5, 6 and 10. In all cases,
we have set the black hole mass m0 = 2

Fig. 11 Action growth v.s. graviton mass for massive AdS black hole From left to right, the dimension is 5, 6 and 10. In all cases, we have set the
black hole mass m0 = 2 and the string speed is v = 0.96

Einstein gravity. As in the AdS case, the maximal value for
stationary string with k = −1 is the largest, the reason of
which has been stated below Eq. (21). There also exists a
intersection. As the dimension increases (see Fig. 10), the
velocity dependent action growth is more gentler. One new
feature in massive gravity is that in all cases, the action growth
in light speed limit becomes non-vanished. Comparing with
that in AdS case, the intersection in massive case for different
curvatures could separate in lower dimension.

In the right plot of Fig. 9, we show the effect of k on
the graviton mass dependence, which is more significant for
small m than for large m. It also shows a peak at certain
critical mc as in three dimensional case. Here the location
value ofm for the peak decreases as k increases. Furthermore,
in Fig. 11 we show the graviton mass dependence for higher
dimensions. As the dimension increases, m for the location
of peak decreases. Then for k = 1, the peak shows at m =
0, meaning the action grow monotonically decreases as m
increases(see the middle plot for six dimension), which is also
explicit in the ten dimensional case. Further increasing the
dimension, the action grow could also become monotonically
decreasing function of m for the massive black hole with
k = −1 and k = 0. This is a new phenomena.

5 Summary

We studied the complexity growth in the dynamical system
with a Wilson line operator, which is holographically dual to

the massive black holes with a probe string. We focused on the
Nambu–Goto action growth and employed the CA conjec-
ture to explore the effect of string on the complexity growth
in a boundary gauge theory with momentum relaxation. We
mainly analyzed the effect of horizon curvatures, the graviton
mass and the dimension on the velocity dependent complex-
ity growth. Our study is mainly presented in numerical way
accompanying with some analytic estimation. The results are
summarized as follows.

In three dimension, the maximal complexity growth
appears when the string is motionless, and as the graviton
mass increases, the maximal value becomes smaller. As the
string moves faster, the action growth becomes smaller. When
the string moves with light speed, the action growth in mas-
sive BTZ black hole will not vanish which is different from
that in BTZ black hole. In the vicinity of the light speed, as
the graviton mass increases, the action growth first increases
and then decreases. Moreover, the velocity dependence is
significant for small graviton mass, while it is slight for large
m. It means that in the vicinity of light speed, the gravi-
ton mass suppresses the velocity dependence of the action
growth, which is very different from the effect of BTZ black
hole mass that enhances it.

In higher dimensions, we could study the effect of horizon
curvatures k. We first studied the effect of k on the velocity
dependent action growth. Our results shows that the maximal
value for the stationary string for k = −1 is the largest, then
for k = 0, the value for k = 1 is the smallest. There is a
intersection in the velocity dependence curves for different
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k. As the dimension increases, the velocity dependent action
growth is more gentler. Comparing with AdS black hole, in
massive black hole, the action growth in light speed limit
becomes non-vanishing with different k, and the intersection
for different curvatures could separate in lower dimensions.

We then studied the effect of k on the graviton mass depen-
dence. It is more significant for small m than for large m. It
also shows a peak at certain graviton mass as in three dimen-
sional case, and the location value of the peak decreases as
k increases. As the dimension increases, the critical gravi-
ton mass for the peak decreases. The peak for k = 1 in
high enough dimension could first appears at m = 0, mean-
ing the action growth turns to monotonically decrease as m
increases. Then further increasing the dimension, the action
growth could also become monotonically decreasing func-
tion of m for the massive black hole with k = −1 and k = 0.

Inspired by Lloyd’s state on the quantum complexity
growth rate [72], the authors of [30] addressed an analogous
“Lloyd bound” via CA conjecture as

dS

dt
≤ 2M

π
, (22)

where S is the total action and M is the total mass or energy
of the system. In the previous literatures [32,33] where the
action consists of Einstein–Hilbert term and boundary term
in massive gravity, it was shown that the bound was saturated.
In our work with a probe string, the total action consists of
Einstein–Hilbert term, boundary term and the NG term, while
M contain the contributions of the black hole mass and the
mass of string. Then the bound could be satisfied because
the length of string is infinity stretching to the infinity of the
space. It is noticed that in CA conjecture, the bound (22) may
not be always satisfied, see [43,73–77] as examples for the
violated cases.
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