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Abstract Baryon inhomogeneities are generated early in
the universe. These inhomogeneities affect the phase tran-
sition dynamics of subsequent phase transitions, they also
affect the nucleosynthesis calculations. We study the decay
of the inhomogeneities in the early universe using the
diffusion equation in the Friedmann–Lemaître–Robertson–
Walker metric. We calculate the interaction cross section of
the quarks with the neutrinos, the electrons and the muons
and obtain the diffusion coefficients. The diffusion coeffi-
cients are temperature dependent. We find that the expan-
sion of the universe causes the inhomogeneities to decay at
a faster rate. We find that the baryon inhomogeneities gen-
erated at the electroweak epoch have low amplitudes at the
time of the quark hadron transition and hence will not affect
the phase transition dynamics unless they are generated with
a amplitude greater than 105 times the background density.
After the quark hadron transition, we include the interaction
of the muons with the hadrons till 100 MeV. We find that
large density inhomogeneities generated during the quark
hadron transition with sizes of the order of 1 km must have
amplitudes greater than 105 times the background density to
survive upto the nucleosynthesis epoch. This puts constraints
on any models that generate these inhomogeneities

1 Introduction

Primordial cosmological fluctuations are an important part
of modern cosmology as they link the current Cosmic
Microwave Background Radiation (CMBR) data to the early
universe. Initially the theory related to fluctuations was devel-
oped by Lifshitz [1]. Later on significant work has been done
by Hawkings [2] and Bardeen [3]. In this work, we are inter-
ested in the decay of baryon density fluctuations or inho-
mogeneities generated in the early universe. Baryon den-
sity fluctuations can be generated in the electroweak phase
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transition [4–6] as well as the QCD phase transition [7–9].
There are also various defect mediated mechanisms which
generate these inhomogeneities at the electroweak scales
[10–19]. Though baryon inhomogeneities have other roles
to play in the evolution of the early universe, the primary
method of constraining these inhomogeneities is by study-
ing their effects on the Big Bang Nucleosynthesis calcu-
lations. The inhomogeneities generated at the QCD scales
have a higher chance of surviving to the nucleosynthesis
epoch, hence they have been studied more extensively. The
baryon inhomogeneities generated in the electroweak epoch,
have less chance of surviving till the nucleosynthesis epoch,
hence they are often ignored. However it has been shown that
baryon over densities generated in the electroweak epoch can
definitely affect the quark hadron phase transition [20] and
may also survive till the nucleosynthesis epoch [21]. One of
the effect of these baryon over-densities is to delay the quark
hadron phase transition in regions of the inhomogeneities.
This, along with the fact that large scale inhomogeneities
from the electroweak epoch may survive till the nucleosyn-
thesis epoch and affect the abundances of the light elements
makes it important to study the diffusion of particles in an
inhomogeneity at the electroweak epoch.

The only detailed study of the evolution of non-linear
sub horizon entropy fluctuations between 100 GeV and 1
MeV was done in Ref. [21]. The entropy fluctuations that
had been considered in that particular study did not neces-
sarily come from baryon inhomogeneities only, the authors
were not interested in the source of the entropy fluctuations.
They had assumed certain amplitudes and length scales and
evolved them with time. The evolution of the inhomogene-
ity was performed as a succession of pressure equilibrium
states, that dissipate or expand due to neutrino heat trans-
port. The neutrino contribution to the heat transport equa-
tion was used and after the quark hadron phase transition the
neutron and proton diffusion were taken into account. They
concluded that large scale entropy fluctuations at 100 GeV
could survive until the nucleosynthesis epoch and affect the
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nucleosynthesis calculations. The main difference between
their study and our current study is that we look at baryon
inhomogeneities generated at the electroweak scale in the
diffusive limit taking into consideration both the quark and
the lepton diffusion. We will be studying sub horizon scale
baryon density fluctuations. Studies have already shown that
baryon inhomogeneities can be generated in the electroweak
scale. Generally, they have an amplitude of around 104 times
the background baryon density. Since, the baryon number is
carried by the quarks at these high temperatures, the baryon
inhomogeneities at these scales will primarily mean an excess
of the number density of quarks in a certain region. These
quarks diffuse out by colliding with the leptons, which are
the electrons, muons and the neutrinos. In this study we focus
on obtaining the diffusion coefficient of these quarks as they
move through the plasma. The diffusion coefficient is then
used in the particle diffusion equation to study the decay of
baryon inhomogeneities in an expanding universe.

The diffusion equation has been studied in the early uni-
verse for the case of baryon diffusion in the hadronic phase
[22–24] when the baryon number is carried by the neutrons
and the protons. Here, for the first time, we use it to study,
baryon diffusion in the quark gluon plasma phase. Since we
are using the diffusion equation pertaining to an expanding
universe, we also extend our study to the QCD scales. We
do find that the expansion term makes a significant differ-
ence in the decay of the inhomogeneities. We find that in a
static universe the decay rate is slow, while in an expanding
universe, the inhomogeneities decay much faster. In the elec-
troweak case, the particles that we consider are the quarks,
muon, electrons and the neutrinos. For the QCD epoch, we
have the hadrons which carry the baryon number. Generally,
the inhomogeneities which are generated at the QCD epoch
have higher amplitude and sizes than those generated in the
electroweak epoch [25]. Hence we consider these two cases
separately.

In this work, we only look at sub horizon scale fluctua-
tions. We also assume that the size of the fluctuations are
larger than the mean free path of the relevant particles. The
diffusion equation, is re-written in the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric. We neglect baryon num-
ber violating processes at the temperatures around 200 GeV
and assume that the total baryon number density is conserved
throughout our calculations. All the baryon density fluctua-
tions we consider are assumed to be Gaussian fluctuations.

The chief motivation of understanding the decay of the
baryon inhomogeneities is the different signatures of Inho-
mogeneous Big Bang Nucleosynthesis (IBBN) that have
been predicted [26]. An inhomogeneous BBN will result
from patches of region where there is a baryon inhomogene-
ity [27,28]. However, all the study so far has concentrated
only on inhomogeneities generated in the quark hadron phase
transition. The only study for entropy fluctuations generated

in the electroweak epoch has indicated that there will be no
significant decay during the period prior to the quark hadron
phase transition. We were motivated to see whether this result
will hold for baryon inhomogeneities also. We however, find
that this result does not hold for baryon inhomogeneities. The
inhomogeneities decay rapidly during this period and they
decrease by about three orders of magnitude. Since some of
the inhomogeneities generated in the electroweak epoch have
an amplitude of only 104, these will decay and have no effect
on the quark hadron phase transition or the nucleosynthesis
epoch. We also study the decay of the inhomogeneities after
the quark hadron phase transition. Though these will undergo
significant decay, some of them might survive till the nucle-
osynthesis epoch. The BBN can then be used to constrain the
models that generate these fluctuations [29–32].

In Sect. 2, we discuss the amplitude and size of the baryon
inhomogeneities that are of interest to us. In Sect. 3 we dis-
cuss the diffusion equation in the FLRW metric, in Sect. 4,
we obtain the diffusion coefficient in the quark gluon plasma
phase. Since we take into account the scattering of the quarks
with electrons, muons and neutrinos, we have divided this
section into three subsections. In Sect. 5 we present the
numerical results of the decay of the baryon overdensities
between the temperature 200 GeV and 200 MeV. This is the
period after the electroweak phase transition and before the
quark hadron transition. In Sect. 6, we discuss the decay of
the inhomogeneities after the quark hadron transition. Inho-
mogeneities which survive upto the nucleosynthesis period
will affect the light element abundances. In Sect. 7, we sum-
marize our work and present our conclusions.

2 Baryon inhomogeneities in the early universe

There are several ways in which baryon over densities can be
generated in the early universe. Topological defects such as
electroweak strings are unstable and generate baryon num-
ber when they decay [33–38]. These give rise to local baryon
density fluctuations. The scale of these fluctuations will be
given approximately by the bubble nucleation distance at the
electroweak scale. Inhomogeneities may thus be generated
by these strings over small length scales ( 10−10 cms). These
inhomogeneities have a large amplitude and consequently
diffuse out. Other than the electroweak strings, supercon-
ducting strings are also capable of generating baryon inhomo-
geneities over small lengthscales [39,40]. The most detailed
study of baryon inhomogeneity generation, their amplitude
and size was done in Ref. [5]. The lengthscales of the inho-
mogeneities generated were about 10−3 cm and they had an
amplitude of 104 over the background baryon density. We
will not be considering any specific model during this epoch,
our focus would be to see if these baryon inhomogeneities can
survive at least upto the QCD epoch. We have taken Gaus-
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sian fluctuations to represent the baryon inhomogeneities.
These are characterised by the amplitude (A) and the full
width at half maxima (b). We have kept the A ∼ 103 as it is
expected that the baryon inhomogeneities at the electroweak
scale are not too high. The variance basically determines the
radius of the inhomogeneities. The amplitude of the baryon
inhomogeneities represent the ratio of the number density of
the baryons in the inhomogeneity (n′

b) over the background

number density (nb). So that we have A ∼ n′
b

nb
. The pressure

of the inhomogeneities can be related to the amplitude. The
pressure in the quark phase (pq ) is given by,

pq = 7

4
NqaT

4 + 9N−1
q

n2
b

T 2 (1)

Here, the second term on the right gives the contribution
to the pressure from the baryon number density. Nq is the

number of relativistic quarks at temperature T and a = π2

30 .
The inhomogeneities reach pressure equilibrium very fast
and a small temperature difference exists between the inho-
mogeneity and the background. The temperature difference
between the background and the inhomogeneity has been
calculated in [20] and is given by,

δT

T
= −3 × 10−19 × A2 (2)

So unless the amplitude of the inhomogeneity is quite large
it does not lead to significant temperature fluctuations. So we
see that the amplitudes of the inhomogeneities are an impor-
tant measure of the consequences of baryon inhomogeneities
in the early universe.

For the inhomogeneities at the QCD scale we have taken
a higher amplitude. This is because there is a greater prob-
ability of generating large over densities at the QCD scale
[41]. Inhomogeneities can be generated by moving cosmic
strings [25], collapsing Z(3) domain walls [42,43] and inho-
mogeneous nucleation of bubbles in a first order phase tran-
sition [44]. Inhomogeneities can be spread over an area of
one meter and can have amplitudes of the order of 1012–1013

through these various mechanisms. Larger inhomogeneities
may also be generated but they will have lower amplitudes.
Again we do not focus on the mechanism that will lead to the
generation of these baryon inhomogeneities, we only study
the inhomogeneities over different ranges for an approxi-
mate amplitude of 104 times the background baryon density.
Diffusion and decay of baryon inhomogeneities in the QCD
epoch has been studied before. In a previous work [24] we
have worked out the decay of baryon inhomogeneities using
the diffusion equation but ignoring the expansion of the uni-
verse. In this work, we redo the multiparticle diffusion that
we had done previously in [24] for the case of an expanding
universe. We find that the expanding universe has a significant
contribution to the decay of the large scale inhomogeneities.
Whereas in the previous work we had considered inhomo-

geneities whose sizes are much smaller than the horizon size,
in this work we consider large scale baryon inhomogeneities
and see how they decay in the expanding universe.

3 The diffusion equation in the FLRW metric

In this section, we briefly describe the diffusion equation in
the FLRW metric, in terms of baryon diffusion in the early
universe. The FLRW metric for the flat universe is defined
by,

ds2 = c2dt2 − a2(t)dr2 (3)

Here a(t) is the scale factor of the expanding universe and
r is the spatial coordinate. This is the comoving distance
in an expanding universe. Consider a region of the universe
with an inhomogeneity given by n(r, t). As time evolves,
the particles in the over dense region tend to move towards
the lesser dense region to restore equilibrium and a particle
flux is generated. In this case, we consider the diffusion to be
isotropic. The local observer then sees the particle flux as,

jk = −D(t)
∂

∂xk
n(r, t) (4)

The diffusion coefficient D(t) depends on the scattering cross
section and the velocity of the particles. Since there are dif-
ferent kinds of particles in this plasma, we are dealing with
multi-particle diffusion here. The conservation of current
gives us,

∂

∂xμ
(
√
g jμ) = 0 (5)

Here
√
g = a3(t) and using the definition of the Hubble

parameter as H(t) = ȧ(t)
a(t) , the diffusion equation can be

written as,

∂

∂t
n(r, t) + 3H(t)n(r, t) − D(t)

a2 ∇2n(r, t) = 0 (6)

This is the diffusion equation that we will solve numerically
for a time dependent diffusion coefficient. As mentioned
before, the diffusion coefficient depends on the scattering
cross section of the particles. Hence it is different at different
temperatures. Since the scattering cross sections are obtained
in terms of temperatures, we use the time–temperature rela-
tion in the radiation dominated universe to convert our time
to temperature.

t = (0.95 × 1010)2

T 2 (7)

Here t is in secs andT is in Kelvin. We then solve the diffusion
equation in the FLRW metric numerically over the entire
range of temperature from 200 GeV to 200 MeV. In the next
section, we first present the details of calculating the diffusion
coefficient in the quark phase.
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4 Diffusion in the electroweak scale

We start by studying particle diffusion in the electroweak
scale. The inhomogeneities are formed at 200 GeV during
the electroweak phase transition. So the diffusion of particle
will start around the same time. During this epoch the most
abundant particles are the quarks, electrons, muons and the
neutrinos. Out of all these, it is the quarks which carry the
baryon number. So the baryon over-densities would predom-
inantly have a larger density of quarks as compared to the
background number density. As the quarks diffuse out of the
inhomogeneities trying to reach an equilibrium state they will
collide with the electrons, muons and the neutrinos. Here we
take two cases depending on the mass of the particles. This
is because the quarks are lighter than the muons but heavier
than the electrons. So as the quarks move through the muons,
we have a lighter gas diffusing into a gas of heavier particles
but as the quarks diffuse through the electrons and neutri-
nos, we have a heavier particle diffusing through a lighter
gas [45]. Since we are not going into the detailed transport
equation of the particles, we choose a distribution function
for the particles of the light gas.

In the first case, for the quarks moving through the muons,
the diffusion coefficient is given by,

D = 1

3N

〈
v

σt

〉
=

(
T

πm

)1/2 23/2

3σt
(8)

In the second case, for a heavier particle moving through a
lighter fluid, to obtain the diffusion coefficient, we have to
first compute the mobility of the particle in the background
fluid. If the velocity of the particle is v, then the mobility b is
related to the external force (f) by, v = bf and the diffusion
coefficient is given by,

D = bT (9)

We assume the distribution of particles to be Maxwellian,
then the mobility of the particles is given by,

b−1 = 16π

T

∫
p2dp

3h
vp2σt e

−E/T = 16σtm2t2

3π2 . (10)

Here σt is the scattering cross-section, m is the mass of the
particle. Once the scattering cross section is known, substitut-
ing it in the expression for b would enable us to obtain the dif-
fusion coefficient D. Since the scattering cross-sections are
temperature dependent, the diffusion coefficient too would
be temperature dependent. To find the diffusion coefficient
at these temperatures we therefore, obtain the scattering cross
section of the quarks with the leptons. In the next subsections,
we will calculate the different scattering cross section for the
different interactions.

4.1 Quark–electron scattering

We start with the motion of quarks through the electron gas.
For this we need to find the scattering cross section for the
e−e+ −→ qq̄ interaction. The differential cross section is
given by,

dσ

d�
= Q2

f α
2

2s

(
u2 + t2

s2

)
(11)

Here α ∼ 10−2 is the fine structure constant and Q f is the
momentum transfer in this interaction. The variables u, t and
s are the Mandelstam variables. This gives,

σt = Q2
f α

2

2s

∫ (
u2 + t2

s2

)
(1 − cosθ)d� (12)

The total scattering cross section can be obtained after inte-
grating over the solid angle. The numerical value can be
obtained once the energy scale of the colliding particles is
known. Since we are working around the electroweak scale,
the colliding energy of the particles are also in the GeV range.
The mobility factor is thus given by,

b−1 = 2σtm2

3π2 [8T 2(1 − e−E/T ) − 2E(2E + 4T )e−E/T ]
(13)

The diffusion coefficient can be calculated numerically after
obtaining the mobility at various temperatures.

4.2 Quark–neutrino scattering

Neutrinos do not have any charges, they have weak interac-
tions. Though there are different flavors of quarks as well
as neutrinos, since we only need order of magnitude estima-
tions, we just consider,

σt = G2
F ŝ

π
(14)

Here GF is the Fermi constant given by, GF = 1.166 ×
10−5GeV−2. Numerically, the cross section turns out to be
σt = 17.2 × 10−42cm2 × Eν

GeV [46]. Though we are working
at very high temperatures in the GeV scale, the value of the
diffusion coefficient is difficult to handle numerically with
this value of σt . For the numerical calculation we therefore
rescale the variables suitably to obtain a stable numerical
solution.

4.3 Quark–muon scattering

In both the previous cases we had a heavier particle mov-
ing through a lighter gas of particles, however the scenario
changes considerably when we consider the quarks moving
through a gas of muons. For the μ−μ+ −→ qq̄ , though the
expression for the interaction cross sections are similar to the
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electrons, but here the quark is the lighter particle which is
moving through a heavier gas of particles (the muons). This
means that, the diffusion coefficient is given by Eq. (8),

D =
(

1

2π

) 3
2
(

s
1
2

Q f α

)2 (
1

mT

) 1
2

×[2T (1 − e−E/T ) − 2Ee−E/T ] (15)

We have the total cross section given by,

σt = 4πQ2
f α

2

3s
(16)

In all these cases, we determine the diffusion coefficient at
different temperatures numerically. Similar to the quark neu-
trino cross section, even at such high temperatures, the diffu-
sion coefficient are numerically very large quantities hence
for all the different cases we need to do some scaling to
obtain numerically stable solutions. This we have done by
scaling the energy appropriately so that the value of the dif-
fusion coefficient is of reasonable orders of magnitude. While
plotting we have plotted only the amplitude at the different
length scales depending on the temperature. The amplitude is
dimensionless as it is the ratio of the enhanced density to the

background density (
n′
B

nB
). Here n′

B = ΔnB+nB and nB is the
average baryon density at that temperature and ΔnB is the
increase in the baryon density in the inhomogeneity. Thus
the rescaling does not affect the change in the overdensity
that we are interested in. Only, the length scales are changed
appropriately to reflect the decrease in the temperature.

5 Decay of inhomogeneities in the quark gluon plasma
phase

For the numerical study, we have used the finite differ-
ence method for the second order space derivative and an
explicit forward Euler approximation for the first derivative
in time. The Courant–Friedrichs–Loewy coefficient changes
with temperature but care is taken so that it never exceeds 0.5
for maintaining the stability of the program. Here we have
considered the solution of Eq. (6) to be spherically symmet-
ric and the solution will thus depend upon the radius r which
we consider to be the length scale of the inhomogeneity. The
origin is taken to be at the centre and the particles diffuse
out causing the radius of the inhomogeneity to increase. The
maximum value of the radial lattice is the horizon size. As we
are working in the FLRW metric, the universe size will also
increase with decrease in temperature. This feature is incor-
porated in our program by increasing the maximum size of
the radius as time increases and temperature decreases. We
have kept the minimum step size fixed at dr = 0.01. Time
is represented by temperature and the maximum lattice size
is therefore calculated at each temperature before the r loop.

The relationship is given by, rmax = 314.01155
T . For both the

electroweak and the QCD case, we start with a Gaussian fluc-

tuation given by f (r) = Ae
(− r2

2b2 ). The amplitude A and the
variance b are different in the two epochs. The amplitudes
are different as the generation of baryon inhomogeneities in
the two epochs are different and the variance are different as
length scales in the two epochs are different.

We now look at baryon inhomogeneities generated during
the electroweak phase transition. In Refs. [5,6], it is shown
that a strong first order phase transition generates a radially
symmetric baryon inhomogeneity whose amplitude depends
upon the ratio of the minimum and maximum bubble wall
velocity. They have shown that baryon inhomogeneities hav-
ing amplitudes of the order of 102 are generated. Though
we are not emphasizing that these are the inhomogeneities
we are interested in, they do provide a measure of the pos-
sible magnitude of baryon inhomogeneities generated at the
electroweak scale. So we consider the amplitude of the inho-
mogeneities generated in the electroweak epoch to be of the
order of 103. We are also considering inhomogeneities whose
decay will be affected by the expanding universe. The hori-
zon at these temperatures is of the order of 1 cm [47]. The size
of the inhomogeneities we have considered are always less
than the horizon size. However we do not want them to be so
small that their lengthscale is negligible in comparison to the
radius of the universe. So basically we have looked at inho-
mogeneities which have a radius of less than a millimeter. We
have presented results for inhomogeneities having a radius
of 0.03 cm. Larger inhomogeneities (with radius closer to 1
cm) will also decay in a similar way but it is rather difficult to
present the graphs in the same plot due to the vast change in
the radius. Hence for presenting our results we have chosen
the radius of the initial inhomogeneity to be about 0.03 cm.
The diffusion coefficients can be obtained numerically, but
the problem is that they vary considerably in their numerical
values. This indicates that the particle content in the inho-
mogeneity would ultimate define how they decay. Though
there are multi particles present in the plasma, we do not go
for multi particle diffusion as it becomes numerically quite
challenging. We look at each of these interactions separately
and see how much each of them contributes to the decay
of the baryon inhomogeneity. We believe this will give us
some idea of how the baryon inhomogeneity decays in this
temperature range.

There are several challenges in the electroweak epoch.
The biggest challenge is the large change in the horizon size
between 200 GeV and 200 MeV. At 200 GeV, the horizon is
of the order of 1 cm while at 200 MeV the horizon is of the
order of 10 kms. We divide this into two parts. We evolve
the inhomogeneity from 200 GeV to about 1 GeV and then
again from 1 GeV to 200 MeV. Interestingly, we find that
the inhomogeneity decays considerably during this period
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Fig. 1 The initial fluctuation at 200 GeV in the linear scale

depending on the particle interactions being considered. We
find that on the log scale, the amplitude decays quite rapidly
irrespective of the interactions considered. This means that
low amplitude inhomogeneities will be completely wiped out
before the quark hadron phase transition.

Let us first look at the decay of the inhomogeneities
between 200 GeV and 1 GeV. We give the figure of the initial
fluctuation in Fig. 1. The graph is plotted in the linear scale,
however in the rest of the paper, the results are plotted in the
log-log scale instead of the linear scale. In the logarithmic
scale, the function appears to end abruptly as the zero is not
defined on this scale. Since the lattice size of the simulation
also changes with temperature, the data for the higher tem-
peratures are for a smaller radius (horizon) size, while the
data for lower temperatures reflects the larger radius of the
horizon. In the graphs, we have focussed on the decrease in
the amplitude of the inhomogeneity rather than the increase
in it’s size. Even with the increase in size, the fluctuations
always remain within the horizon.

In the electroweak epoch, the diffusion coefficients dif-
fer considerably as they are dependent on the temperature
and this is quite a large temperature range. So we look at
the decay of the inhomogeneities for different interactions
separately. For all the different figures, we have the baryon

inhomogeneity (
n′
B

nB
), on the y axis and the radial length scale

(denoted by distance) on the x-axis. In Fig. 2, we see the
decay due to the quarks moving through the electrons. The
initial fluctuation is taken at 200 GeV and the final is taken
at 17 GeV.

As we see the peak of the inhomogeneities goes down by
more than three orders of magnitude. The inhomogeneity also
spreads out. If we plot the solution upto the maximum radial
distance, then for the initial curve we observe an abrupt cut
off. The abrupt cut off is an artefact of plotting the solution in
the log-log scale. The same plot in the linear scale resembles
Fig. 1 but with a reduced peak and larger variance. However,
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Fig. 2 The decay of the fluctuation is shown in logscale between 200
and 17 GeV as the quarks moves through a sea of electrons. The fluc-
tuation is smaller at higher temperatures and spreads out further as
temperature decreases
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Fig. 3 The decay of the fluctuation is shown in logscale between 200
and 17 GeV as the quarks are predominantly surrounded by neutrinos.
The fluctuation is smaller at higher temperatures and spreads out further
as temperature decreases

since there is a considerable decrease in the amplitude, it is
not possible to show both the graphs in a linear plot. The
decay is similar in the case when the surrounding particles
are muons and neutrinos. We have used a different scaling
for the neutrinos but as mentioned before the scaling will not
affect the relative decay of the amplitude. Though the final
amplitude is lower in the case of the neutrinos, the order of
magnitude is similar. Since all the graphs have similar decay
in orders of magnitude, we have only shown selected graphs.
Figure 2, shows the decay due to the motion of the quarks
through the electrons while Fig. 3 shows the decay due to the
motion of the quarks through the neutrinos. Since the plasma
at those high temperatures is predominantly dominated by
electrons, our results clearly show that the baryon inhomo-
geneities decay by about three orders of magnitude in the

123



Eur. Phys. J. C (2021) 81 :816 Page 7 of 11 816

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

 0.05  0.1  0.15  0.2  0.25

B
ar

yo
n 

In
ho

m
og

en
ei

ty

Distance (m)

Initial fluctuation- 1 GeV
Expanding Universe- 236 MeV

Fig. 4 The decay of the fluctuation is shown in log scale between 1
GeV and 236 MeV for a plasma where a quark is moving through a sea
of electrons

high temperature GeV range. This is true, even if there are a
large number of muons and neutrinos in the plasma.

We now look at the decay of the inhomogeneities between
the temperatures 1 GeV to 200 MeV. We find that the order of
magnitude decay is again quite large for the three diffusion
coefficients. The individual numbers vary but we plot only
the order of magnitude estimates as before. In Fig. 4, we find
that the inhomogeneity has decreased by three orders of mag-
nitude. In the case of Fig. 4, the initial fluctuation is at 1 GeV
while the final is plotted at 236 MeV. We find that the curve
flattens out considerably. The radial distance upto which the
inhomogeneity persists is actually more than what is shown in
the plot. Again we find that the initial inhomogeneity appears
to have a sudden cut off around 0.05 cm. This is again due to
the log log nature of the plot. The size of the inhomogeneity
is also much smaller initially. Since the maximum radius of
the lattice is smaller at higher temperatures, the initial fluc-
tuation looks very narrow and sharp when plotted at a later
time. This makes the shape of the fluctuation different at dif-
ferent times. Not only are the particles diffusing away from
the centre of the inhomogeneity, the maximum size of the
one dimensional lattice is also increasing with time.

For the case of the quarks moving through a large num-
ber of muons, the amplitude decay is less than the decay in
the case when the particles surrounding the quarks are the
electrons. However, the decay is still quite significant. For
the neutrinos, again we have the inhomogeneity decaying by
three orders of magnitude. So independent of the particle dis-
tribution in the plasma, the amplitude of the inhomogeneities
goes down significantly. In Fig. 5, we have the quarks mov-
ing in a region of muons while in Fig. 6, the quarks move
through the neutrinos. As is seen from the plot, the inhomo-
geneity decays much faster in the presence of neutrinos and
quickly reaches an amplitude of 10−2. Compared to the ini-
tial amplitude, this is negligible and can be considered to be
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Fig. 5 The decay of the fluctuation is shown in log scale between 1
GeV and 236 MeV for a plasma where a quark is moving through muons
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Fig. 6 The decay of the fluctuation is shown in log scale between 1
GeV and 236 MeV for a plasma where a quark is moving through
neutrinos. Since the inhomogeneity decays faster here, as the magnitude
goes down, the radial distance increases. The full curve at 236 MeV is
not given, it is cut off at some point where baryon inhomogeneity is close
to 0.01. Compared to the initial fluctuation which had an amplitude of
103, this can be taken to be zero

zero. That is why in Fig. 6 the plot is cut off at a distance
25 cm. Beyond this point, the inhomogeneity gradually goes
down to zero.

We thus find that the inhomogeneity decays by three orders
of magnitude between 200 and 1 GeV, and again decays
by at least two orders of magnitude between 1 GeV to 200
MeV. This means that any inhomogeneity generated at the
electroweak epoch needs to have an amplitude greater than
105 times the background density to survive till the quark
hadron transition. Thus if we had an inhomogeneity at the
electroweak scale with an amplitude less than 105, it would
be completely wiped out before the quark hadron transition.
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6 Decay of inhomogeneities in the hadronic phase

We have studied the decay of inhomogeneities in the hadronic
phase previously [24], however in that case we were inter-
ested in specific inhomogeneities generated by Z(3) domain
walls whose size was much smaller compared to the hori-
zon size. The expansion of the universe was ignored in those
cases. We are now interested to see the decay of larger inho-
mogeneities in the hadronic phase. As mentioned before,
inhomogeneities generated during or after the quark hadron
phase transition are not only larger in amplitude but they may
also be larger in size. Consequently, the decay of these inho-
mogeneities would be affected by the expanding universe.
The plasma during this period consists of the muons, neu-
trons, protons. electrons and neutrinos. In our previous work,
we had shown that the presence of muons enhances the dif-
fusion coefficient of the neutrons/protons, however we had
not factored in the expansion of the universe in the previ-
ous work. This time we use the diffusion equation for the
expanding universe and find that the expansion of the uni-
verse causes the inhomogeneities to decay much faster. In
the current section, we briefly describe the diffusion coeffi-
cient in the hadronic phase and then proceed to present the
results of the decay of the inhomogeneities in the hadronic
plasma. In this case, the size of the inhomogeneities is taken
to be of the of the order of kilometers as the horizon size is
around 10 Kms after the quark hadron transition.

As we have mentioned, the calculation of the diffusion
coefficient will depend on which particle is moving through
the plasma. The baryon number is carried by the neutrons and
the protons, hence here we will be considering the motion of
a heavier particle through a lighter gas. The heavier parti-
cle is the neutron or the proton, while the lighter gas is a
gas of electrons and neutrinos. The muons only play a role
till 100 MeV. We thus have to use Eq. (9) and the scatter-
ing cross-section of the neutrons with the electron–positron
gas to obtain the diffusion coefficient of the neutrons in the
electron positron gas. The scattering cross section is given
by,

dσ

d�
= α2κ2q2

16M2E2sin4(θ/2)

E ′

E
×

[
1 + sin2(θ/2)

]
(17)

Here θ is the scattering angle, while E is the electron energy
before the scattering and E ′ is the electron energy after the
scattering. The values of E and E ′ depend on the temperature
of the surrounding plasma. The transport cross section σt , is
given by

σt =
∫

dσ

d�
(1 − cosθ)d� (18)

We can then substitute the scattering cross-section in the
transport cross section to obtain,

σt = 3π

[
ακ

M

]2

(19)

The diffusion coefficient is obtained by substituting the
expression for the transport cross-section and we get,

Dne = M2

32m3

1

ακ2

e1/T

T f (T )
. (20)

Here M , is neutron mass, m is electron mass and κ = −1.91
is the anomalous magnetic moment. The temperature in this
case is dimensionless as it is scaled by a factor of mec2.
Finally, the function f (T ) is given by, f (T ) = 1+3T+3T 2.

Similar to the neutron–electron cross section, we can
obtain the nucleon–muon scattering cross-section too. We
have assumed that the heavy neutron particle is moving
through a muon–antimuon gas. The mobility of the neutron
is then given by the force on the neutron due to the gas. This
force is given by the interaction cross section. The differential
scattering cross-section is given by,

dσ

d�
= α2κ2q2

8M2E2sin4(θ/2)

1

1 + 2Esin2(θ/2)/M

×
[

cos2(θ/2)

1 − q2/4M2

(
q2

4M2 − 1

)
− 2sin2(θ/2)

]
(21)

Here we have assumed that the muon energy and mass
are less than the neutron mass. The cross-section calculation
is simplified by this assumption and we can write the cross-
section as,

dσ

d�
≈ K

α2κ2

4M2 [1 + cosec2(θ/2)] (22)

All the constants are replaced by a single constant K = 1
2 .

We then substitute the cross section in the diffusion constant.
Finally, the diffusion coefficient is given by,

Dnμ = M2

32m3
μ

1

ακ2

e1/T ′

T ′ f (T ′)
(23)

Here T ′ = T
mμc2 . After obtaining both Dne and Dnμ, we

calculate the total diffusion coefficient of the neutron moving
through the plasma.

Apart from the neutron, we need to find the diffusion coef-
ficient of the proton moving through the electron positron gas
too. For proton–electron scattering, the Coulomb force has
to be taken into consideration. The scattering cross section
for the proton and electron is then given by,

dσ

d�
= α2m2

e

4k4sin4(θ/2)

[
1 + k2

m2
e
cos2(θ/2)

]
(24)
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We can obtain the transport cross section from these equa-
tions,

σt = 4πα2
[
Eeh

2πk2

]2

ln

(
2

θ0

)
(25)

where θ0 is the minimum scattering angle. Substituting all
the previous equations, we get the diffusion coefficient as,

Dpe = 3π

8α2ln( 2
θ0

)

[
h

2πme

]
T e1/T

f (T )
. (26)

Since the muons also constitute a significant part of the
plasma till 100 MeV, we calculate the proton muon cross
section too. The differential cross section is given by,

dσ

d�
= α2

4E2sin4(θ/2)

1

1 + 2Esin2(θ/2)/M

×
[(

1 − κ2q2

4M2

)
cos2(θ/2) − q2

2M2 (1 + κ)2sin2(θ/2)

]

(27)

We obtain the numerical value of this diffusion coefficient by
substituting the constants in the transport cross section. Once
we have the diffusion coefficients, we numerically solve the
diffusion equation in the FLRW metric. In this case, we use
the same program but double the stepsize to accommodate
the larger radius of the horizon.

As mentioned before we are considering inhomogeneities
whose sizes are in the range of 1 km. Since the horizon size is
around 10 kms in the hadronic phase, these are large inhomo-
geneities. We have considered high amplitudes of the order
of 1014 as well as smaller amplitudes, we find that the decay
rate does not depend significantly on the amplitudes. How-
ever, we find that in an expanding universe the overdensity
falls far more rapidly than in an non-expanding universe. We
have shown both the cases in Fig. 7. for comparison. We have
checked for the decay separately in the range 200–100 MeV
as the muon is still present in the plasma at these tempera-
tures. At lower temperatures the muon density in the plasma
becomes negligible.

It seems that large inhomogeneities do decay significantly
in an expanding universe but as long as they have very large
amplitude, they may still survive upto the nucleosynthesis
epoch. So an inhomogeneity whose amplitude is of the order
of 108 will be decreased to an amplitude of the order of 107.
Hence inhomogeneities with low amplitudes of the order of
10 will be wiped out. Finally, we look at the temperature
range from 100 to 1 MeV. The muons will be negligible in this
epoch but the diffusion coefficients will not change. Figure 8
shows the decay of the inhomogeneities in this epoch.

We find that the amplitude of the inhomogeneity decreases
by an order of 104 in this period. This means that any inho-
mogeneity with an amplitude less that 104 will be wiped out
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Fig. 7 The decay of the initial fluctuation is shown in logscale between
200 and 100 MeV
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Fig. 8 The decay of the initial fluctuation is shown in logscale between
100 and 1 MeV

before the nucleosynthesis epoch. So large baryon inhomo-
geneities generated during the quark hadron transition must
have amplitudes greater than 105 times the background den-
sity to survive till the nucleosynthesis epoch.

7 Summary

In summary, we have done a detailed study of the decay of the
baryon inhomogeneities generated at the electroweak scale.
Baryon inhomogeneities have important consequences in the
early universe. If they survive till the quark hadron phase
transition they will affect the phase transition dynamics. The
quark hadron phase transition is very important in the thermal
history of the universe. Moreover, baryon inhomogeneities
can also be generated during the quark hadron phase transi-
tion. These will have an effect on the Big Bang Nucleosynthe-
sis calculations. Thus the decay of baryon inhomogeneities
are important in the early universe. There has been no pre-
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vious studies of the decay of baryon inhomogeneities in the
early universe during the electroweak scale. We have studied
the decay of these inhomogeneities in the presence of elec-
trons, muons and neutrinos. The baryon number is carried by
the quarks at these high temperatures, so as the inhomogene-
ity decays, the quarks diffuse through the electrons, muons
and neutrinos. The diffusion coefficients for the different par-
ticle interactions are calculated. We then use these diffusion
coefficients to study the diffusion of the baryon inhomogene-
ity using the diffusion equation in the FLRW metric.

We have found that baryon inhomogeneities generated in
the electroweak epoch should have an amplitude greater than
105 for them to survive till the quark hadron phase transi-
tion. This makes it difficult for the baryon inhomogeneities
generated in a first order electroweak phase transition to
have any effect on the quark hadron epoch. In Refs. [5,6],
spherical inhomogeneities with a radial profile are formed
at the electroweak phase transition. However, the amplitude
of these inhomogeneities are bounded by the ratio of the
highest and lowest wall velocities reached during the bubble
expansion phase. In most cases, this is of the order of 102.
This is an order of magnitude lower than the amplitude of
the baryon inhomogeneities we have considered in our sim-
ulations. Thus the baryon inhomogeneities generated due to
a strong first order electroweak phase transition would be
completely wiped out before the QCD phase transition. To
survive upto the QCD phase transition, the baryon inhomo-
geneities have to have a very high amplitude as they decay
substantially during the period between 200 GeV and 200
MeV. This is because the diffusion coefficient is tempera-
ture dependent. The quark hadron transition occurs around
200 MeV. We have found that the amplitude of the baryon
inhomogeneity decreases to about five orders of magnitude
during this period. This means any inhomogeneity with an
amplitude of 105 (or less) will be wiped away before the
quark hadron phase transition. We therefore conclude that
any model which generates inhomogeneities with less than
105 amplitude in the electroweak epoch cannot affect the
quark hadron phase transition. They will therefore not con-
tribute to inhomogeneous BBN either.

In this work, due to the vast differences in the values of
the diffusion coefficients of the different particles in the elec-
troweak epoch, we have not considered multi particle diffu-
sion. We have studied the diffusion of the quarks through a
gas of similar particles only. However, for all the different
particles we find that the inhomogeneities will decay. This
indicates that even for a multi particle diffusion our results
will hold. However, in any region which has a predominance
of neutrinos and electrons, the inhomogeneities will proba-
bly decay faster, than in regions which have a predominance
of muons.

Finally in a previous work, we had looked at the decay
of baryon inhomogeneities in the QCD epoch for a station-

ary universe. This would work only for small scale inhomo-
geneities for which the expansion of the horizon does not
matter. We have extended that work for an expanding uni-
verse where we can work with large baryon inhomogeneities.
So we look at the decay of large baryon inhomogeneities in
the QCD epoch. We find that the baryon inhomogeneities
decrease by 5–6 orders of magnitude. This means that if large
baryon inhomogeneities are generated by collapsing domain
walls and other topological defects during the quark hadron
transition they will survive till the nucleosynthesis epoch. We
conclude that the big bang nucleosynthesis, can thus be used
to constrain models which generate large amplitude inhomo-
geneities in the QCD epoch only.
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