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Abstract In this work we construct an ultracompact star
configuration in the framework of Gravitational Decoupling
by the Minimal Geometric Deformation approach. We use
the complexity factor as a complementary condition to close
the system of differential equations. It is shown that for a
polynomial complexity the resulting solution can be matched
with two different modified-vacuum geometries.

1 Introduction

Through the developments of general relativity, black holes
(BH) have been a subject of study, discussions and anal-
ysis. From being considered as simply mathematical con-
structions lacking of physical reality to be one of the central
topics in recent researches, BH’s are undoubtedly one of the
most known and intriguing objects in literature. Nowadays,
BH’s are accepted as astrophysical objects and are consid-
ered as the preferable laboratory to test strong gravitational
fields. Besides, recent observations of gravitational waves
[1–3] and black hole shadows [4,5] lead to the conclusion
that BH indeed do exist.

Although the existence of BH’s seems undeniable, there
are some aspects about this geometry which remains unclear.
One of the main issues is the prediction of a space-time sin-
gularity which is often taken as an indicator that general rel-
ativity is incomplete and should be generalized to a quantum
theory in order to overcome this feature [7]. In this direction,
some efforts have been made to provide a classical solu-
tion to this problem. All of these solutions are known as BH
mimickers and correspond to objects that, given their high
compactness, the motion of test particles around them seems
indistinguishable when compared with the physics around
a BH (see [6], for a recent review). Some examples of BH
mimickers found in literature encompasses regular BH [7–9],
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traversable wormholes [10–13] and ultracompact stars [14],
among others, and in this work we shall focus our attention
in the latter.

As it is well known, Buchdahl limit relies on the hypoth-
esis of isotropy and entails that the maximum compact-
ness of a self-gravitating, isotropic, spherically-symmetric
object of mass M and radius R has an upper bound given
by M/R = 4/9 (for modifications of the Buchdahl’s lim-
its induced by the presence of the cosmological constant
see [15–18], for example ). In this regard, anisotropic self-
gravitating fluids enter as possibility to surpass such a limit
and to provide well posed anisotropic ultracompact stars (for
recent works in this direction, see Refs. [14,19], for exam-
ple). An intriguing features of anisotropic ultracompact stars
is that such models contain the Mazur and Mottola (MM)
gravastar [20,21] modeled as the Schwarzschild interior in
the ultracompact limit as a special case [14,19].

Recently, in Ref. [19] the MM gravastar has been extended
to anisotropic domains by the well known gravitational
decoupling (GD) [22] by the minimal geometric deforma-
tion approach (MGD) (for implementation in 3+1 and 2+1
dimensional spacetimes see [23–60]. The resulting model
corresponds to an ultracompact anisotropic star surrounded
by a MGD-modified vacuum which fulfil the main require-
ments to describe a stable model: it is regular at the origin
and its density is positive and decrease monotonically from
the center outwards [19]. For these reasons, our main goal
here is twofold: to obtain an alternative MGD-like gravastar
model and to provide another MGD-modified vacuum as the
exterior geometry of the compact configuration.

A key point in the implementation of MGD is to pro-
vide an auxiliary condition to obtain the so-called decoupling
function. Some examples are the so called mimic constraint
for the pressure and the density, regularity condition of the
anisotropy function, barotropic equation of state, among oth-
ers. However, in this work we use the recently introduced
complexity factor for self-gravitating fluids [61]. In particu-
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lar, we propose a polynomial complexity factor which con-
tains the gravastar model reported in [19] as a special case.

This work is organized as follow. In the next section we
review the main aspects on GD. In Sect. 3 we introduce the
concept of complexity factor. Section 4 is devoted to revisit
the ultracompact Schwarzschild star and in Sect. 5 we obtain
the new anisotropic ultracompoact star by MGD. Finally,
some comments and conclusions are in the last section.

2 Gravitational decoupling

In this section we review some aspects of GD by MGD (for
more details, see [22]). Let us start with the Einstein field
equations (EFE)

Gμν = Rμν − 1

2
gμνR = κTμν (1)

where

Tμν = T (s)
μν + αθμν. (2)

In the above equation κ = 8π ,1 T (s)
μν represents the matter

content of a known solution of Einstein’s field equations,
namely the seed sector, and θμν describes an extra source
that is coupled by means of the parameter α. Such a coupling
is introduced in order to control the effect of θμν on T (s)

μν .
Since the Einstein tensor satisfies the Bianchi identities, the
total energy–momentum tensor satisfies

∇μT
μν = 0. (3)

It is important to point out that, whenever ∇μTμν(s) = 0, the
following condition necessarily must be satisfied

∇μθμν = 0, (4)

and as a consequence, there is no exchange of energy-
momentum tensor between the seed solution and the extra
source θμν (the interaction is purely gravitational).

From now on, let us consider a static, spherically symmet-
ric space-time sourced by

Tμ(s)
ν = diag

(
ρ(s),−p(s)

r ,−p(s)
⊥ ,−p(s)

⊥
)

(5)

θμ
ν = diag(θ0

0 , θ1
1 , θ2

2 , θ2
2 ) (6)

and a line element given by

ds2 = eνdt2 − eλdr2 − r2(θ2 + sin2 θdφ2). (7)

1 In this work we shall use c = G = 1.

Replacing (5), (6) and (7) in (1) and (2), the EFE read

κρ = 1

r2 + e−λ

(
λ′

r
− 1

r2

)
, (8)

κpr = − 1

r2 + e−λ

(
ν′

r
+ 1

r2

)
, (9)

κp⊥ = 1

4
e−λ

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
(10)

where we have defined

ρ = ρ(s) + αθ0
0 , (11)

pr = p(s)
r − αθ1

1 , (12)

p⊥ = p(s)
⊥ − αθ2

2 . (13)

Note that given the non-linearity of Einstein’s equations the
decomposition (2) does not lead to two set of equations,
one for each source involved. Nevertheless, contrary to the
broadly belief, such a decoupling is possible in the context
of MGD as we shall demonstrate in what follows.

Let us introduce a geometric deformation in the metric
functions given by

ν −→ ξ + αg, (14)

e−λ −→ e−μ + α f, (15)

where { f, g} are the so-called decoupling functions and α is
the same free parameter that “controls” the influence of θμν

on T (s)
μν . In this work we shall concentrate in the particular

case g = 0 and f �= 0. Now, replacing (14) and (15) in
the system (8–10), we are able to split the complete set of
differential equations into two subsets: one describing a seed
sector sourced by the conserved energy–momentum tensor,
T (s)

μν

κρ(s) = 1

r2 + e−μ

(
μ′

r
− 1

r2

)
, (16)

κp(s)
r = − 1

r2 + e−μ

(
ν′

r
+ 1

r2

)
, (17)

κp(s)
⊥ = 1

4
e−μ

(
2ν′′ + ν′2 − μ′ν′ + 2

ν′ − μ′

r

)
, (18)

and the other set corresponding to quasi-Einstein field equa-
tions sourced by θμν

κθ0
0 = − f

r2 − f ′

r
, (19)

κθ1
1 = − f

(
ν′

r
+ 1

r2

)
, (20)

κθ2
2 = − f

4

(
2ν′′ + ν′2 + 2

ν′

r

)
− f ′

4

(
ν′ + 2

r

)
. (21)

As we have seen, the components of θμν satisfy the conser-
vation equation ∇μθ

μ
ν = 0, namely

θ ′1
1 − ν′

2
(θ0

0 − θ1
1 ) − 2

r
(θ2

2 − θ1
1 ) = 0. (22)
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Hitherto, we have discussed the general aspects of GD by
MGD without any specification of the system under study.
However, if the system under consideration is the interior of
some stellar configuration, the solution obtained will be valid
only up to certain radius R which define the surface of the star.
In this regard, the matching between the interior solution with
some exterior geometry for r > R is mandatory and in most
of the cases, it is sufficient to take the Schwarzschild vacuum
solution as the exterior metric. However, as it was demon-
strated in [19], a suitable MGD-gravastar solution is possible
whenever the exterior geometry is also a MGD-modified vac-
uum, namely

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r
+ αg(r)

)−1

dr2

−r2dθ2 − r2 sin2θ dφ2, (23)

with g(r) is the decoupling function for the exterior solution.
A list of MGD-modified vacuum solutions can be found in
Ref. [29]. Now, in order to match smoothly the interior metric
with the outside one above on the boundary surface 
, we
require

eν
∣∣∣

− =

(
1 − 2M

r

) ∣∣∣∣

+

, (24)

eλ
∣∣∣

− =

(
1 − 2M

r
+ αg(r)

)−1 ∣∣∣∣

+

, (25)

pr (r)
∣∣∣

− = pr (r)

∣∣∣

+ , (26)

which corresponds to the continuity of the first and second
fundamental form across that surface.

To conclude this section, we would like to emphasize the
importance of GD by MGD as a useful tool to find solutions
of EFE. As it is well known, in static and spherically symmet-
ric spacetimes sourced by anisotropic fluids, EFE reduce to
three equations given by (8), (9) and (10) and five unknowns,
namely {ν, λ, ρ, pr , p⊥}. In this sense, two auxiliary con-
ditions must be provided: metric conditions, equations of
state, etc. However, given that in the context of MGD a seed
solution should be given, the number of degrees of freedom
reduces to four and, as a consequence, only one extra con-
dition is required. In general, this condition is implemented
in the decoupling sector given by Eqs. (19), (20) and (21)
as some equation of state which leads to a differential equa-
tion for the decoupling function f . In this work, we take an
alternative route to find the decoupling function; namely, the
complexity factor that we shall introduce in the next section.

3 Complexity of compact sources

Recently, a new definition for complexity for self-gravitating
fluid distributions has been introduced in Ref. [61]. This def-

inition is based on the intuitive idea that the least complex
gravitational system should be characterized by a homo-
geneous energy density distribution and isotropic pressure.
Now, as demonstrated in [61], there is a scalar associated to
the orthogonal splitting of the Riemann tensor [62] in spher-
ically symmetric space-times which capture the essence of
what we mean by complexity, namely

YT F = 8π� − 4π

r3

∫ r

0
r̃3ρ′dr̃ , (27)

with � ≡ pr − p⊥. Also, it can be shown that (27) allows to
write the Tolman mass as,

mT = (mT )


(
r

r


)3

+ r3
∫ r


r

e(ν+λ)/2

r̃
YT Fdr̃ , (28)

which can be considered as a solid argument to define the
complexity factor by means of this scalar given that this
function, encompasses all the modifications produced by the
energy density inhomogeneity and the anisotropy of the pres-
sure on the active gravitational mass.

Note that the vanishing complexity condition (YT F = 0)
can be satisfied not only in the simplest case of isotropic and
homogeneous system but in all the cases where

� = 1

2r3

r∫

0

r̃3ρ′dr̃ . (29)

In this respect, the vanishing complexity condition leads to
a non-local equation of state that can be used as a comple-
mentary condition to close the system of EFE (for a recent
implementation, see [41], for example). Similarly, we can
provide a particular values of YT F and use this information
to find a family of solutions with the same complexity factor.
An example of how this can be achieved can be found in
[41]. In this work, we shall propose a suitable value for the
complexity factor to find a new solution for an ultracompact
star.

4 Ultracompact Schwarzschild star

In this section we briefly review the Schwarschild interior in
the ultracompact regime. As it is well known, the metric for
this configuration reads

ds2 = eνdt2 − eλdr2 − r2
(
dθ2 + sin θ2dφ2

)
, (30)

where

eν = 1

4

(
3
√

1 − H2R2 −
√

1 − H2r2
)2

(31)

e−λ = 1 − H2r2, (32)
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with M the mass, R the radius of the star and

H2 = 2M

R3 . (33)

The Schwarzschild interior is sourced by a perfect fluid with
uniform density ρ = ρ0 and a pressure given by

p = ρ0

(
1 − H2r2 − √

1 − H2R2

3
√

1 − H2R2 − √
1 − H2r2

)
. (34)

At this point a couple of comments are in order. First, the
Buchdahl limit set an upper bound of the compactness param-
eter, M/R, which entails a condition on the radius of the star,
namely

R >
9

4
M > 2M. (35)

The Buchdahl limit ensure that the pressure is finite and pos-
itive everywhere inside the star, as required for stable config-
urations. Second, note that the pressure (34) is regular except
at some radius R0 given by

R0 = 3M

√
1 − 8

9

R

M
< R. (36)

Now, as noted by Mazur and Mottola, in the ultracom-
pact limit, namely, when both R and R0 approach to the
Schwarzschild radius 2M , the interior solution corresponds
to a patch of the de Sitter solution. More precisely, the solu-
tion reads,

eν = 1

4
(1 − H2r2) (37)

e−λ = 1 − H2r2 (38)

p = −ρ = constant, (39)

for r < 2M . It can be shown that the above solution join with
the Schwarzschild vacuum in a way that the Israel second
junction condition is violated. This implies that the presence
of a δ-distribution of stresses is necessary to give a correct
interpretation of the Schwarzschild star beyond the Buchdahl
limit. However, as we shall demonstrate in what follows, the
ultracompact solutions obtained by MGD does not require
the existence of such a distribution of matter given that the
metric functions join smoothly through the surface 
.

5 Ultracompact star by gravitational decoupling

The MM gravastar given by (37), (38) and (39) was recently
extended by MGD in [19]. In this case, the metric reads

eν = 1

4
(1 − H2r2) (40)

e−λ = 1 − H2r2 + α f (r), (41)

with

f (r) = (1 − H2r2)Hnrn, (42)

and α ≥ −1 to ensure that grr is positive definite as
r → 2M . As demonstrated in [19], the above solution is ill-
matched with the Schwarzschild vacuum because it requires
α = −3/2 < −1 which violates the previous requirement
for α to ensure the correct behaviour of grr . To overcome
this difficulty, the proposed exterior solution was the modi-
fied vacuum

eν = = 1 − 2M

r
(43)

e−λ =
(

1 − 2M

r

) (
1 + 

2r − 3M

)
, (44)

with  a constant with units of a length. The reader is referred
to Ref. [29] where the MGD-modified vacuum (43) and (44)
was obtained and discussed in detail. It is worth mention-
ing that the decoupling function (42) leads to stable interior
solutions only for n = 2.

In order to provide an alternative MGD-gravastar solu-
tion, in this work we use the complexity factor previously
introduced in Sect. 3, as an auxiliary condition to close the
system and find the decoupling function f . It can checked
that, imposing the broadly used vanishing complexity con-
dition, it does not lead to well behaved interiors so in this
work we shall provide another value for the complexity and
we shall use the solution given by (40), (41) and (42) as a
guide.

A straightforward computation reveals that for n = 2, the
MGD gravastar model of Ref. [19] has a complexity given
by

YT F = αH4r2. (45)

Based on the above result, in this work we propose a poly-
nomial complexity, namely

YT F =
N∑
i=0

air
i , (46)

which contains (45) as a particular case. Indeed, (45) is recov-
ered for N = 2, a0 = a1 = 0 and a2 = αH4. Now, replacing
(40) and (41) in (46) we obtain

αH2r
(
H2r

(
2 f − r f ′) + f ′)

2
(
H2r2 − 1

)2 =
N∑
i=0

air
i , (47)

which depending on the values of N , provides a differential
equation for the decoupling function.

It can be shown that if either a0 or a1 are not vanish-
ing factors, the solution of (47) leads to divergent interior
solutions so these possibilities must be discarded and, as a
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consequence, (47) now reads

αH2r
(
H2r

(
2 f − r f ′) + f ′)

2
(
H2r2 − 1

)2 =
N∑
i≥2

air
i , (48)

which can be easily integrated to obtain

f = − 2

αH2 (1 − H2r2)

N∑
i≥2

air i

i
(49)

For example, for N = 3 we obtain

f = 2

αH2

(
1 − H2r2

)(
a2r2

2
+ a3r3

3

)
, (50)

from where

eν = 1

4

(
1 − H2r2

)
(51)

e−λ =
(

1 − H2r2
) (

1 − 2

H2

(a2

2
r2 + a3

3
r3

))
(52)

ρ = −9a2 + 8a3r

24πH2 + 15a2r2 + 12a3r3

24π
+ 3H2

8π
(53)

pr = 3a2 + 2a3r

24πH2 − 9a2r2 + 6a3r3

24π
− 3H2

8π
(54)

p⊥ = a2 + a3r

8πH2 − 5a2r2 + 4a3r3

8π
− 3H2

8π
. (55)

It is worth mentioning that in Eq. (50) we have discarded
the term with the integration constant because it leads to
divergence in the interior of the configuration.

To proceed with the analysis, we need to provide an exte-
rior geometry and we shall explore two different MGD-
modified vacuum.

5.1 Exterior 1

Let us consider

eν = 1 − 2M

r
(56)

e−λ =
(

1 − 2M

r

)(
1 + 

2r − 3M

)
(57)

ρ = − M

8πr2(3M − 2r)2 (58)

pr = − 

24πMr2 − 16πr3 (59)

p⊥ = (M − r)

8πr2(3M − 2r)2 (60)

The continuity of the radial pressure requires

a2 = −128a3M6 + 3l + 9M

96M5
, (61)

while the continuity of the first fundamental form is auto-
matically fulfilled.

Fig. 1 e−λ for M = 1 a3 = 0.01 and l = −1

Fig. 2 ρ (black line), pr (blue dashed line) and p⊥ (red dotted line)
for M = 1 a3 = 0.01 and l = −1

In Fig. 1 we show how the radial metric e−λ as a function
of r for the specific values in the legend.

Note that, as in Ref. [19], the metric function e−λ is
smoothly continuous though the stellar surface. In Fig. 2 we
show the matter sector for the specific values in the legend
where we note that not only the radial pressure but the den-
sity are continuous though the surface 
 in accordance with
the results previously reported in [19]. In addition, note that
the cusp-like matching of the tangential defines the surface
of the star.

5.2 Exterior 2

In this case we consider the MGD-deformed vacuum (see
Ref. [29] for details)

eν = 1 − 2M

r
(62)

e−λ =
(

1 − 2M

r

) (
1 + β

(r + M)2(a−1)

)
(63)

ρ = β(M + r)1−2a((3 − 4a)M + (2a − 3)r)

8πr2 (64)

pr = β(M + r)2−2a

8πr2 (65)

p⊥ = β
(a − 1)(M − r)(M + r)1−2a

8πr2 , (66)
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Fig. 3 e−λ for M = 1 a3 = 0.01, β = −9 and a = 2

Fig. 4 ρ (black line), pr (blue dashed line) and p⊥ (red dotted line)
for M = 1 a3 = 0.01, β = −9 and a = 2

where a > 1 to ensure asymptotic flatness and β is the decou-
pling parameter of the exterior geometry. The continuity of
the radial pressure leads to

a2 = − 1

32
3−2a−1M−2a−4

(128 32aa3M
2a+5 + 32a+2M2a + 27βM2), (67)

and, as in the previous case the continuity of the first funda-
mental form is satisfied by construction.

In Fig. 3 we show how the radial metric e−λ as a function
of r for the specific values in the legend. Again, it is noticeable
the smooth behaviour of the metric function.

In Fig. 4 we show the matter sector as a function of r
for the specific values in the legend and again, we note the
continuity in both the radial pressure and the density. How-
ever, in contrast to the previous case, the tangential pressure
is discontinuous at the surface.

6 Conclusions

In this work we constructed a new ultracompact aniso-tropic
star solution in the framework of the Gravitational Decou-
pling by the Minimal Geometric Deformation approach. As
the auxiliary condition to close the system of differential

equations we used the complexity factor of self-gravitating
fluids. Inspired by the results found in [19], we proposed a
polynomial complexity and obtained that the interior solu-
tion obtain can be well-matched to two different modified
vacuum. The solution obtained here, contains the reported
in Ref. [19] as an special case. Ore findings here indicate
that the solution fulfill the requirements of a stable configu-
ration, namely, (i) the solution is regular at the origin, (ii) the
mass and the radius are well defined, (iii) the density is pos-
itive everywhere and decreases monotonically to the surface
and (iv) the radial pressure is non-uniform and monotonic as
expected.

Although we only analysed the case N = 3 here, it can
be easily shown that higher orders can also provide suitable
gravastar models for particular values of the free parameters
involved. However, it should be interesting to consider higher
orders in the polynomial complexity matched to different
modified vacuum to explore to what extend the model leads
to well behaved solutions.
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