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Abstract In this work we present a gauge-invariant three-
dimensional teleparallel supergravity theory using the Chern-
Simons formalism. The present construction is based on a
supersymmetric extension of a particular deformation of the
Poincaré algebra. At the bosonic level the theory describes
a non-Riemannian geometry with a non-vanishing torsion.
In presence of supersymmetry, the teleparallel supergravity
theory is characterized by a non-vanishing super-torsion in
which the cosmological constant can be seen as a source for
the torsion. We show that the teleparallel supergravity theory
presented here reproduces the Poincaré supergravity in the
vanishing cosmological limit. The extension of our results to
N = p + q supersymmetries is also explored.

1 Introduction

Teleparallel gravity is an alternative theory of gravity known
to be considered equivalent to General Relativity. How-
ever, they are conceptually quite different. In particular, the
teleparallel formulation of gravity is described by a vanish-
ing curvature and a non-vanishing torsion which character-
izes the parallel transport [1–5]. In such case, the geome-
try is no more Riemannian but corresponds to the so-called
Riemannian-Cartan (Weizenböck) geometry.

In three spacetime dimensions, there has been an interest
in exploring black hole solutions and boundary symmetries
of gravity theories with torsion [6–12]. In particular, three-
dimensional gravity with torsion possesses a BTZ-like black
hole solution [6–8] whose thermodynamic properties have
been analyzed in [13–15] using different approaches. A grav-
ity theory with both curvature and torsion can be formulated
through the Mielke-Baekler (MB) gravity action [16] which
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is described by the Einstein-Hilbert term, the cosmological
constant term, the exotic Lagrangian [17] and a torsional
term. Remarkably, for particular values of the MB parame-
ters, the theory reproduces the teleparallel gravity. As was
shown in [9], the teleparallel theory has the same asymptotic
structure as the Riemannian spacetime of General Relativity
showing that the asymptotic structure seems not to depend
on the underlying geometry, but only on the boundary condi-
tions. Then, teleparallel gravity can be seen as an interesting
toy model to explore the role of the torsion in the AdS/CFT
correspondence [18]. More recently, it has been revealed in
[19] a duality between Riemannian metric and teleparallel
gravity, and a new candidate theory for three-dimensional
massive gravity denoted as teleparallel topologically mas-
sive gravity. The extension to higher-spin and supersymmetry
have then been explored in [20] and [21–23], respectively.

On the other hand, three-dimensional supergravity mod-
els [24–30] are not only much simpler to handle but also
useful to approach richer and higher-dimensional supergrav-
ities. In particular, supergravity without cosmological con-
stant [31] can be expressed as a Chern-Simons (CS) action
invariant under the Poincaré superalgebra [26]. In presence of
N = p+q supercharges, a well-defined Poincaré CS super-
gravity action requires to introduce automorphism generators
which ensure the non-degeneracy of the bilinear invariant
tensor [28,32]. Although three-dimensional supersymmetric
gravity models with torsion have been explored in [22,23], a
N -extended supersymmetric CS formulation of the telepar-
allel gravity theory remains unexplored.

In this work, we present a teleparallel CS supergravity the-
ory constructed from a novel superalgebra which can be seen
as a supersymmetric extension of a deformed Poincaré alge-
bra. The new symmetry has been denoted as teleparallel alge-
bra since it allows us to construct a teleparallel gravity theory
using the CS formalism. Although the teleparallel superal-
gebra is isomorphic to the osp (2|1) ⊗ sp (2) superalgebra,
the supergravity theories based on them are quite different
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at the dynamics and geometric level. Indeed, the teleparallel
supergravity theory presented here is characterized by a non-
vanishing super-torsion in which the cosmological constant
can be seen as a source for the torsion. Interestingly, the van-
ishing cosmological constant limit � → ∞ leads us to the
super Poincaré CS theory. The generalization of our results
to N = p + q supersymmetries is also presented. Similarly
to the AdS case [28], the introduction of so (p)⊕so (q) gen-
erators are required in order to establish a well-defined flat
limit.

The paper is organized as follows: in Sect. 2, we briefly
discuss the teleparallel gravity and present its construction
using the CS formulation and a teleparallel algebra. In Sect. 3,
we construct the minimal supersymmetric extension of the
teleparallel CS gravity theory. Section 4 is devoted to the
N = p + q-extended generalization of our results. Section
5 concludes our work with discussions and comments about
future developments.

2 Three-dimensional teleparallel Chern-Simons gravity

In this section, we present a brief review of the so-called
teleparallel gravity in three spacetime dimensions. As it is
well-known, this theory can be derived as a particular case
of the MB gravity model [16], and is characterized by a non-
vanishing torsion. The action for the MB gravity theory reads
[16,33]

IMB = aI1 + �I2 + β3 I3 + β4 I4 (2.1)

where a,�, β3 and β4 are constants and

I1 = 2
∫

ea R
a ,

I2 = −1

3

∫
εabce

aebec ,

I3 =
∫

ωadωa + 1

3
εabcωaωbωc ,

I4 =
∫

eaT
a , (2.2)

with

Ra = dωa + 1

2
εabcωbωc ,

T a = dea + εabcωbec , (2.3)

being the Lorentz curvature and the torsion two-forms,
respectively.Let us note that for β3β4 − a2 �= 0 the solu-
tion is characterized by a constant curvature and a constant
torsion. Interestingly, the parameters can be fixed in order to
recover diverse particular cases of the MB theory. In partic-
ular, setting β3 = β4 = 0 we recover the usual EH gravity
with cosmological constant. On the other hand, the exotic
Witten gravity is obtained by setting a = � = 0.

Three-dimensional teleparallel gravity [2,3,8,9] can be
obtained by fixing the parameters (a,�, β4) appearing in
the MB gravity as

a = 1

16πG
, � = − 1

4πG�2 , β4 = − 1

8πG�
. (2.4)

Let us note that the parameter β3 can be set to zero without
lost of generality. Nevertheless, along this work we will keep
it different from zero in order to maintain the exotic Lorentz
term [17]. With this choice, the MB action (2.1) takes the
form

ITG = 1

16πG

∫
β̃3

(
ωadωa + 1

3
εabcωaωbωc

)

+
(

2ea R
a + 4

3l2
εabce

aebec − 2eaT
a
)

, (2.5)

where we have defined β̃3 ≡ 16πGβ3.
In the following analysis, we will show that the teleparallel

gravity action can alternatively be obtained as a CS gravity
action invariant under a particular algebra, and whose varia-
tion leads to the equations of motion of the three-dimensional
teleparallel gravity. Because of this property, we will refer to
the mentioned symmetry as “teleparallel algebra”. This sym-
metry can be derived as a deformation of the Poincaré one
and it is isomorphic to the so(2, 1) ⊗ so(2, 1) algebra.

The teleparallel algebra is spanned by the set of generators
(Ja , Pa) which satisfy the following commutation relations:

[Ja, Jb] = εabc J
c ,

[Ja, Pb] = εabc P
c ,

[Pa, Pb] = −2

�
εabc P

c , (2.6)

where a, b = 0, 1, 2 are the Lorentz indices which are low-
ered and raised with the Minkowski metric ηab and εabc is
the three-dimensional Levi-Civita tensor. One can see that the
present algebra corresponds to the finite version of the defor-
mation of bms3 algebra presented in [34] for ε2 = −2/�. On
the other hand, the � parameter is related to the cosmological
constant through � ∝ − 1

�2 . In particular, the vanishing cos-
mological constant limit � → ∞ applied to the teleparallel
algebra reproduces the Poincaré algebra. Furthermore, let us
note that the teleparallel algebra (2.6), under the following
change of basis

La ≡ Ja + �

2
Pa , Sa ≡ −�

2
Pa , (2.7)

can be rewritten as two copies of the so(2, 1) algebra:

[La, Lb] = εabcL
c ,

[Sa, Sb] = εabcS
c . (2.8)
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The general expression for a three-dimensional CS gravity
action reads

ICS[A] = k

4π

∫
M

〈AdA + 2

3
A3〉 , (2.9)

where A is the gauge connection one-form, 〈 , 〉 denotes the
invariant trace and k = 1

4G is the CS level related to the
gravitational constant G. For the sake of simplicity, here and
in the sequel we will omit to write the wedge product. In
particular, the gauge field connection one-form A for the
teleparallel algebra reads

A = ωa Ja + ea Pa , (2.10)

where ωa is the spin connection and ea is the dreibein. The
corresponding curvature two-form F = d A + 1

2 [A, A] is
given by

F = Ra Ja + T̂ a Pa , (2.11)

with

Ra = dωa + 1

2
εabcωbωc ,

T̂ a = T a − 1

�
εabcebec , (2.12)

where T a is the usual torsion two-form defined in (2.3). Note
that the vanishing cosmological constant limit � → ∞ repro-
duces the Poincaré curvatures. On the other hand, the algebra
(2.6) admits a non-degenerate invariant bilinear form whose
only non-vanishing components are given by

〈Ja Jb〉 = α0 ηab , 〈Ja Pb〉 = α1 ηab ,

〈Pa Pb〉 = −2α1

�
ηab . (2.13)

Here α0 and α1 are arbitrary constants which are related to the
so (2, 1) constant through α0 = μ + μ̃ and α1 = − (2μ̃) /�.
The non-degeneracy of the invariant tensor (2.13) is pre-
served as long as α1 �= 0 and 2α0 + �α1 �= 0. Such non-
degeneracy is related to the requirement that the CS super-
gravity action involves a kinematical term for each gauge
field.

A CS action invariant under the algebra (2.6) can be writ-
ten considering the non-vanishing components of the invari-
ant tensor (2.13) and the gauge potential one-form (2.10) in
the general definition of the CS action (2.9),

ITG = 1

16πG

∫
M

{
α0

(
ωadωa + 1

3
εabcωaωbωc

)

+α1

(
2Rae

a + 4

3�2 εabceaebec − 2

�
T aea

) }
, (2.14)

up to a boundary term. The first term is the gravitational CS
term with coupling constant α0 [17]. The second term propor-
tional to the constant α1 contains the usual Einstein-Hilbert
Lagrangian, a cosmological constant term and a torsional CS
term. Comparing the previous action with (2.5), we realize

that both actions are equal when the identification α0 = β̃3

and α1 = 1 is considered. One can see that the teleparallel CS
action leads us to the Poincaré CS action in the vanishing cos-
mological constant limit � → ∞. Due to the non-degeneracy
of the invariant tensor, the corresponding equations of motion
are given by:

δea : 0 = α1

(
Ra − 2

�
T̂a

)
,

δωa : 0 = α0Ra + α1T̂a, (2.15)

Since α1 �= 0 and α0 �= − �
2α1, the above equations reduce

to the vanishing of the curvature two-forms,

Ra = 0 ,

T a − 1

�
εabcebec = 0 . (2.16)

Such equations of motion are geometrically dual to the AdS
ones characterized by a Riemannian spacetime [5]. Here, the
CS gravity action (2.14) describes a non-Riemannian geom-
etry with a vanishing curvature and non-vanishing torsion
T a �= 0. Thus, the CS action (2.14) invariant under the alge-
bra (2.6) describes a gauge-invariant teleparallel gravity CS
theory in three spacetime dimensions.

3 On the minimal supersymmetric extension of
teleparallel Chern-Simons gravity

In this section, we shall focus on a N = 1 supersymmet-
ric extension of the teleparallel algebra in three spacetime
dimensions. The construction of a CS supergravity action
based on this novel superalgebra is also presented. Inter-
estingly, we will show that the CS teleparallel supergravity
action is characterized by a non-vanishing super-torsion.

3.1 Teleparallel superalgebra

A supersymmetric extension of the teleparellel algebra (2.6)
is spanned by a Lorentz generator Ja , a translational gen-
erator Pa and a Majorana fermionic charge Qα . The super
teleparallel generators satisfy the following non-vanishing
(anti-)commutation relations:

[Ja, Jb] = εabc J
c ,

[Ja, Pb] = εabc P
c ,

[Pa, Pb] = −2

�
εabc P

c ,

[Ja, Qα] = −1

2
(γa)

β
α Qβ ,

{
Qα, Qβ

} = − (
γ aC

)
αβ

(
2

�
Ja + Pa

)
. (3.1)
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Here α = 1, 2 are spinorial indices, γ a are the Dirac matrices
in three spacetime dimensions and C is the charge conjuga-
tion matrix,

Cαβ = Cαβ =
(

0 −1
1 0

)
, (3.2)

which satisfies Cγ A = (Cγ A)T and CT = −C . Let us
note that the vanishing cosmological constant limit � → ∞
leads us to the Poincaré superalgebra. On the other hand, the
superalgebra (3.1) can be written as the osp (2|1) ⊗ sp (2)

superalgebra by considering the following identification of
the generators:

La ≡ Ja + �

2
Pa , Sa ≡ −�

2
Pa , Gα ≡

√
�

2
Qα, (3.3)

where {La,Gα} satisfy the osp (2|1) superalgebra, while Sa
are sp (2) generators,

[La, Lb] = εabcL
c ,

[Sa, Sb] = εabcS
c ,

[La,Gα] = −1

2
(γa)

β
α Gα ,

{
Gα,Gβ

} = − (
γ aC

)
αβ

La . (3.4)

Although the teleparallel algebra is isomorphic to the
osp (2|1) ⊗ sp (2) superalgebra, the first one given by (3.1)
is quite different from the AdS superalgebra (A.3) which, as
we shall see, implies noticeable differences at the dynamics
and geometric level. In particular, unlike the super AdS case,
one can see that [P, Q] = 0 and [P, P] ∼ P . The latter
implies, at the bosonic level, the presence of a non-vanishing
torsion in which the cosmological constant can be seen as a
source for the torsion.

3.2 Chern-Simons supergravity action based on the
teleparallel superalgebra

Let A = AATA be the gauge connection one-form for the
teleparellel superalgebra (3.1),

A = ωa Ja + ea Pa + ψ̄ Q , (3.5)

where ωa corresponds to the spin connection one-form, ea is
the dreibein and ψ is a Majorana fermionic one-form describ-
ing the gravitino. The curvature two-form reads

F = Ra Ja + T a Pa + ∇ψ̄ Q , (3.6)

where

Ra = Ra + 1

�
ψ̄γ aψ ,

T a = T̂ a + 1

2
ψ̄γ aψ ,

∇ψ = dψ + 1

2
ωaγaψ . (3.7)

Here Ra describes the super-Lorentz curvature, T a is a
super-torsion and ∇ψ defines the covariant derivative of the
gravitino. Furthermore, the bosonic curvatures Ra and T̂ a

were defined in (2.12). Let us note that the super Poincaré
curvatures are recovered in the flat limit.

The teleparallel superalgebra (3.1) admits the following
non-degenerate invariant tensor,

〈Ja Jb〉 = α0 ηab ,

〈Ja Pb〉 = α1 ηab ,

〈Pa Pb〉 = −2α1

�
ηab ,

〈Qα, Qβ〉 = 2

(
2α0

�
+ α1

)
Cαβ , (3.8)

where α0 and α1 are arbitrary constants which are related to
the osp (2|1) ⊗ sp (2) constants through

α0 = μ + μ̃ , α1 = −2μ̃

�
, (3.9)

with μ and μ̃ being the coupling constants of the osp (2|1)

and sp (2) algebras, respectively. In the flat limit we recover
the non-vanishing components of the invariant tensor for the
Poincaré superalgebra. In particular, there is no fermionic
contributions to the exotic sector α0 [17] in the Poincaré
limit.

Then, by considering the gauge connection one-form (3.5)
and the non-vanishing components of the invariant tensor
(3.8) in the general expression of the CS action (2.9), we find

ITSG = 1

16πG

∫
M

{
α0

(
ωadωa+1

3
εabcωaωbωc−4

�
ψ̄∇ψ

)

+α1

(
2Rae

a+ 4

3�2 εabceaebec−2

�
T aea−2ψ̄∇ψ

) }
.

(3.10)

The CS action IT SG can be seen as a teleparallel supegrav-
ity action invariant under the teleparallel superalgebra (3.1).
The CS supergravity action (3.10), contains two indepen-
dent sectors. The first term proportional to α0 describes a
supersymmetric exotic action diverse to the one appearing
in AdS supergravity [22] (see (A.1)). In particular, unlike
super AdS, the exotic term does not contain torsional term.
Indeed, the torsion appears explicitly in the α1 sector along
the Einstein-Hilbert term, the cosmological constant term and
the fermionic kinetic term. Furthermore, the dreibein does
not contribute to the covariant derivative of the fermionic
gauge field as in the super AdS case (A.2). On the other
hand, one can see that the vanishing cosmological constant
limit � → ∞ leads us to the Poincaré supergravity action
whose exotic sector is no more supersymmetric. It is impor-
tant to mention that the CS supergravity action (3.10) coin-
cides with the most general supersymmetric gravity action
presented in [22] for particular values of the parameters.

123



Eur. Phys. J. C (2021) 81 :762 Page 5 of 10 762

Let us note that the corresponding field equations reads

δea : 0 = α1

(
Ra − 2

�
Ta

)
,

δωa : 0 = α0Ra + α1Ta,

δψ̄ : 0 = 2α0

�
∇ψ + α1∇ψ (3.11)

In particular, the non-degeneracy of the invariant tensor (3.8)
requires α1 �= 0 and α0 �= − �

2α1 which implies that the equa-
tions of motion are given by the vanishing of the curvature
two-forms (3.7). One can see that such supergravity theory
corresponds to a supersymmetric extension of the teleparallel
gravity and is characterized by a non-vanishing super-torsion,

T a + 1

2
ψ̄γ aψ = 1

�
εabcebec . (3.12)

It is interesting to note that, similarly to the bosonic case,
the teleparallel formulation of supergravity differs from the
AdS supergravity at the level of the equations of motion (see
(A.4)). In particular, the cosmological constant can be seen
here as a source for the super-torsion. Naturally, in the flat
limit � → ∞ the super-torsion vanishes and we recover the
super Poincaré field equations.

4 N -extended teleparallel Chern-Simons supergravity
theory

In this section, we extend our construction to N = p + q
supersymmetries. In particular, we show that the proper con-
struction of an N -extended teleparallel supergravity theory
with a well-defined flat limit � → ∞ requires the introduc-
tion of so (p)⊕ so (q) automorphism generators as in (p, q)

AdS superalgebra [28]. Furthermore, the extra bosonic gen-
erators assures the non-degeneracy of the invariant tensor.

4.1 N -extended teleparallel superalgebra

A (p, q) teleparallel superalgebra is spanned by a set of p
fermionic charges Qi

α , i = 1, . . . , p, and a complemen-
tary set of q fermionic charges QI

α , I = 1, . . . , q, in addi-
tion to the bosonic generators {Ja, Pa} and p (p − 1) /2 +
q (q − 1) /2 internal symmetry generators Zi j = −Z ji and
Z I J = −Z J I . The (p, q) teleparallel superalgebra satisfies
the following non-vanishing (anti-)commutation relations

[
Ja , Jb

] = εabc J
c ,[

Ja , Pb
] = εabc P

c ,

[
Pa , Pb

] = − 2

�
εabc P

c ,

[
Zi j , Zkl

]
= δ jk Zil − δik Z jl − δ jl Z ik + δil Z jk ,

[
Z I J , ZK L

]
= δ J K Z I L − δ I K Z J L − δ J L Z I K + δ I L Z J K ,

[
Ja , Qi

α

]
= − 1

2
(γa)

β
α Qi

β ,

[
Ja , QI

α

]
= − 1

2
(γa)

β
α QI

β ,

[
Pa , QI

α

]
= 1

�
(γa)

β
α QI

β ,

[
Zi j , Qk

α

]
= δ jk Qi

α − δik Q j
α ,

[
Z I J , QK

α

]
= δ J K QI

α − δ I K QJ
α ,

{
Qi

α, Q j
β

}
= −δi j

(
γ aC

)
αβ

(
Pa + 2

�
Ja

)
+ 2

�
Cαβ Z

i j ,

{
QI

α, QJ
β

}
= −δ I J

(
γ aC

)
αβ

Pa − 2

�
Cαβ Z

I J . (4.1)

Nevertheless, we require to introduce additional bosonic gen-
erators in order to recover, in the vanishing cosmological
constant limit � → ∞, the (p, q) Poincaré algebra extended
with the so (p) ⊕ so (q) automorphism algebra [28]. To this
end, we extend the (p, q) teleparallel superalgebra (A.3) by
so (p) ⊕ so (q) automorphism generators Si j = −S ji and
SI J = −SJ I which satisfy

[
Si j , Skl

]
= − 2

�

(
δ jk Sil − δik S jl − δ jl Sik + δil S jk

)
,

[
SI J , SK L

]
= − 2

�

(
δ J K SI L−δ I K SJ L−δ J L SI K+δ I L S J K

)
.

(4.2)

Then, we perform the following redefinition:

T i j = Zi j − �

2
Si j , T I J = Z I J − �

2
SI J , (4.3)

to eliminate Zi j and Z I J and provide with a well-defined
vanishing cosmological constant limit � → ∞. With the
redefinition (4.3), the direct sum of the (p, q) teleparallel
superalgebra and so (p) ⊕ so (q) automorphism algebra sat-
isfies the teleparallel algebra (2.6) along with (4.2) and

[
T i j , T kl

]
= δ jk T il − δik T jl − δ jl T ik + δil T jk ,

[
T I J , T K L

]
= δ J K T I L − δ I K T J L − δ J L T I K + δ I L T J K ,

[
T i j , Skl

]
= δ jk Sil − δik S jl − δ jl Sik + δil S jk ,

[
T I J , SK L

]
= δ J K SI L − δ I K SJ L − δ J L SI K + δ I L S J K ,

[
Ja , Qi

α

]
= − 1

2
(γa)

β
α Qi

β ,

[
Ja , QI

α

]
= − 1

2
(γa)

β
α QI

β ,

[
Pa , QI

α

]
= 1

�
(γa)

β
α QI

β ,

[
T i j , Qk

α

]
= δ jk Qi

α − δik Q j
α ,

[
T I J , QK

α

]
= δ J K QI

α − δ I K QJ
α ,

{
Qi

α, Q j
β

}
= −δi j

(
γ aC

)
αβ

(
Pa + 2

�
Ja

)

+Cαβ

(
2

�
T i j + Si j

)
,

{
QI

α, QJ
β

}
= −δ I J

(
γ aC

)
αβ

Pa − Cαβ

(
2

�
T I J + SI J

)
.
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(4.4)

The superalgebra given by (2.6), (4.2) and (4.4) shall
be denoted as N -extended teleparallel superalgebra and
reproduces the (p, q) Poincaré superalgebra extended with
so (p) ⊕ so (q) automorphism algebra after considering the
flat limit � → ∞. The presence of automorphism genera-
tors in the Poincaré case are required in order to define non-
degenerate invariant tensor [28]. As in the (p, q) Poincaré
superalgebra, the Si j and SI J generators become central
charges in the flat limit. However, although the N -extended
teleparellel superalgebra presents a well-defined Poincaré
limit, the (anti-)commutation relations are quite different
from the AdS superalgebra. As we shall see, the N -extended
supergravity theory based on the N -extended teleparallel
superalgebra (2.6), (4.2) and (4.4) will imply rather different
field equations.

Let us note that the N -extended teleparallel superalgebra
can be written as the direct sum of the osp (2|p) ⊗ osp (2|q)

and the so (p)⊕so (q) automorphism algebra by considering
the following identification of the generators:

La ≡ Ja + �

2
Pa , Sa ≡ −�

2
Pa , Gi

α ≡
√

�

2
Qi

α ,

Mi j ≡ T i j + �

2
Si j ,

Bi j ≡ −�

2
Si j , G I

α ≡
√

�

2
QI

α ,

MI J ≡ T I J + �

2
SI J , BI J ≡ −�

2
SI J , (4.5)

where {La, Mi j ,Gi
α} and {Sa, MI J ,G I

α} satisfy the osp (2|p)
and the osp (2|q) superalgebra, respectively. On the other
hand, Bi j and BI J are the respective so (p) and so (q) auto-
morphism generators.

4.2 Chern-Simons supergravity action and the N -extended
teleparallel superalgebra

Let us consider the gauge connection one-form A for the
N -extended teleparellel superalgebra (4.4),

A = ωa Ja + ea Pa + 1

2
Ai j Ti j + 1

2
AI J TI J + 1

2
Ci j Si j

+1

2
C I J SI J + ψ̄ i Qi + ψ̄ I QI , (4.6)

where the coefficients in front of the generators are the gauge
field one-forms. The corresponding curvature two-form is
given by

F = R̃a Ja + T̃ a Pa + 1

2
F̃ i j Ti j + 1

2
F̃ I J TI J

+1

2
G̃i j Si j + 1

2
G̃ I J SI J + ∇ψ̄ i Qi + ∇ψ̄ I QI , (4.7)

where

R̃a = Ra + 1

�
ψ̄ iγ aψ i ,

T̃ a = T̂ a + 1

2
ψ̄ iγ aψ i + 1

2
ψ̄ Iγ aψ I ,

F̃ i j = d Ai j + Aik Ak j − 2

�
ψ̄ iψ j ,

F̃ I J = d AI J + AI K AK J + 2

�
ψ̄ Iψ J ,

G̃i j = dCi j + AikCkj + Cik Akj − 2

�
CikCkj − ψ̄ iψ j ,

G̃ I J = dC I J + AI KCK J + C I K AK J − 2

�
C I KCK J

+ψ̄ Iψ J ,

∇ψ i = dψ i + 1

2
ωaγaψ

i + Ai jψ j ,

∇ψ I = dψ I + 1

2
ωaγaψ

I − 1

�
eaγaψ

I + AI Jψ J , (4.8)

and Ra , T̂ a are defined in (2.12). Analogously to the minimal
case, the flat limit � → ∞ reproduces the curvatures for the
N -extended Poincaré superalgebra.

One can show that the N -extended teleparellel superalge-
bra (4.4) admits the following non-vanishing components of
the invariant tensor:

〈Ja Jb〉 = α0 ηab ,

〈Ja Pb〉 = α1 ηab ,

〈Pa Pb〉 = −2α1

�
ηab ,

〈T i j T kl〉 = 2α0

(
δilδk j − δikδ jl

)
,

〈T I J T K L 〉 = 2α0

(
δ I LδK J − δ I K δ J L

)
,

〈T i j Skl〉 = 2α1

(
δilδk j − δikδ jl

)
,

〈T I J SK L 〉 = −2

(
2α0

�
+ α1

) (
δ I LδK J − δ I K δ J L

)
,

〈Si j Skl〉 = −4α1

�

(
δilδk j − δikδ jl

)
,

〈SI J SK L 〉 = 2

(
4α0

�2 + 2α1

�

) (
δ I LδK J − δ I K δ J L

)
,

〈Qi
α, Q j

β〉 = 2

(
2α0

�
+ α1

)
Cαβδi j ,

〈QI
α, QJ

β 〉 = 2α1Cαβδ I J , (4.9)

where α0 and α1 are related to the osp (2|p) ⊗ osp (2|q)

constants as in (3.9) and to the so (p) ⊕ so (q) constants
through

α0 = ρ + ρ̃ , α1 = −2ρ

�
, (4.10)

with ρ and ρ̃ being the respective coupling constants of the
so (p) and so (q) algebras. Let us note that the flat limit � →

123
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∞ leads us to the invariant tensor for the (p, q) Poincaré
superalgebra extended with so (p) ⊕ so (q) algebra [28].

The CS action INTSG for theN -extended teleparellel super-
algebra (4.4) is obtained by considering the gauge connection
one-form (4.6) and the non-degenerate invariant tensor (4.9)
in the general CS expression (2.9),

INTSG = 1

16πG

∫
M

{
α0

(
ωadωa+1

3
εabcωaωbωc+G

(
Ai j

)

+G
(
AI J

)
+ 4

�
C I JF I J + 4

�2 G
(
C I J

)

−4

�
ψ̄ i∇ψ i

)
+ α1

(
2Rae

a + 4

3�2 εabceaebec

−2

�
T aea − 2Ci jF i j + 2C I JF I J − 2

�
G

(
Ci j

)

+2

�
G

(
C I J

)
− 2ψ̄ i∇ψ i − 2ψ̄ I∇ψ I

) }
. (4.11)

where

G
(
Ai j

)
= Ai j d A ji + 2

3
Aik Akm Ami ,

G
(
AI J

)
= AI J d AJ I + 2

3
AI K AKM AMI ,

G
(
Ci j

)
= Ci j dC ji − 4

3�
CikCkmCmi ,

G
(
C I J

)
= C I J dC J I − 4

3�
C I KCKMCMI ,

F i j = d Ai j + Aik Ak j − 1

�
Cik Akj − 1

�
AikCkj ,

F I J = d AI J + AI K AK J − 1

�
C I K AK J − 1

�
AI KCK J .

(4.12)

The N -extended teleparallel CS supergravity action (4.11)
contains two independent sectors proportional to α0 and α1.
The term proportional to α0 contains the exotic Lagrangian
plus contribution of the gravitini and internal symmetry
gauge fields. On the other hand, the term proportional to α1

contains the teleparallel gravity terms present in (2.14) plus
contribution of the automorphism gauge fields and gravitini.
In the vanishing cosmological constant limit � → ∞ the CS
action reproduces the (p, q) Poincaré supergravity extended
with SO (p) × SO (q) automorphism gauge fields [28]. In
such limit, the gravitini and automorphism gauge fields do
not contribute anymore to the exotic sector.

The equation of motions derived from the CS supergravity
action (4.11) are given by

δea : 0 = α1

(
R̃a − 2

�
T̃a

)
,

δωa : 0 = α0R̃a + α1T̃a ,

δψ̄ i : 0 = 2α0

�
∇ψ i + α1∇ψ i ,

δψ̄ I : 0 = α1∇ψ I ,

δAi j : 0 = α0 F̃
i j + α1G̃

i j ,

δAI J : 0 = α0

(
F̃ I J − 2

�
G̃ I J

)
− α1G̃

I J ,

δCi j : 0 = α1

(
F̃ i j − 2

�
G̃i j

)
,

δC I J : 0=2α0

�

(
F̃ I J − 2

�
G̃ I J

)
+α1

(
F̃ I J−2

�
G̃ I J

)
.

(4.13)

Let us note that for N = (1, 1), the second equation repro-
duces the field equations for the supersymmetric extension
of gravity with torsion [23]. On the other hand, the non-
degeneracy of the invariant tensor (4.9), which requires
α1 �= 0 and α0 �= − �

2α1, implies that the equations of motion
reduce to the vanishing of the curvature two-forms (4.8). As
in the minimal case, theN -extended teleparallel supergravity
theory is characterized by a non-vanishing super-torsion,

T a + 1

2
ψ̄ iγ aψ i + 1

2
ψ̄ Iγ aψ I = 1

�
εabcebec . (4.14)

5 Conclusions

In this work we have presented a teleparallel supergravity
theory in three spacetime dimensions considering the CS
formalism. To this end we have first shown that a telepar-
allel CS gravity action can be constructed using the gauge
connection one-form for a particular deformation of the
Poincaré algebra, which we have denoted as teleparallel alge-
bra. The supersymmetric extension of the teleparallel algebra
has then been considered to obtain a teleparallel supergrav-
ity action characterized by a non-vanishing super-torsion. In
presence of N = p + q supersymmetry charges, the consis-
tent construction of a teleparallel supergravity action with a
well-defined flat limit requires to consider the direct sum of
the (p, q) teleparallel superalgebra and the so (p) ⊕ so (q)

automorphism algebra. The latter ensures having a non-
degenerate invariant tensor which is related to the physical
requirement that the CS action involves a kinematical term
for each field. Remarkably, both teleparallel and AdS descrip-
tion of (super)gravity reproduces the Poincaré (super)gravity
theory in the vanishing cosmological limit. However, in the
teleparallel formulation of (super)gravity, the flat limit is
responsible of the vanishing (super)-torsion.

The results presented here could serve as a starting point
for diverse further studies. In particular, the N = 2 super
teleparallel gravity theory could be useful to elucidate a non-
relativistic counterpart of the present theory. Non-relativistic
supergravity theories have just been explored this last decade
with a growing interest [35–43]. In particular a teleparallel
version of the extended Newton-Hooke supergravity [40] is
unknown and could bring valuable information about the role
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of the torsion in a non-relativistic environment and its relation
to Newtonian supergravity (work in progress).

On the other hand, the CS formulation of (super)gravity
is useful to study asymptotic symmetry and obtain a canoni-
cal realization of infinite-dimensional symmetry. It would be
then interesting to study appropriate boundary conditions to
our teleparallel (super)gravity theory and analyze its bound-
ary dynamics. One could expect to recover the same asymp-
totic structure than the one obtained in the supersymmetric
extension of gravity with torsion [23].

The extension of our results to higher spacetimes dimen-
sions could be worth it to analyze. Nevertheless, in even
spacetime dimensions, a different formalism seems a pri-
ori to be required. In particular, in the bosonic case, one
could study the construction of a teleparallelel gravity theory
in even spacetime dimensions considering the MacDowell-
Mansouri (MM) formalism [44]. However, unlike the AdS
case, the MM action based on the teleparallel algebra would
be only written in terms of the Lorentz curvatures similarly to
the Poincaré case. One way to overcome such difficulty could
be considering the Chern-Simons-Antoniadis-Savvidy for-
malism in even spacetime dimensions following the approach
presented in [45]. A particular advantage of such formalism
is that the extension to supersymmetry is more affordable.

Another aspect that deserves further investigation is
the Maxwellian version of the teleparallel supergravity. A
Maxwell generalization of three-dimensional gravity with
torsion has been presented in [12]. Such construction has
been obtained from a deformation of the so-called Maxwell
algebra [46,47] which has proved to have several applica-
tions in the gravity context [48–57]. A supersymmetric ver-
sion of the deformed Maxwell algebra could be considered
to construct a Maxwellian teleparallel supergravity theory
in three spacetime dimensions. At the bosonic level, the
study of the black hole solution and thermodynamics of the
Maxwellian teleparallel gravity could bring valuable infor-
mation about the physical implications of a non-vanishing
torsion in Maxwell gravity theory.
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A Three-dimensional AdS Chern-Simons supergravity
with cosmological constant

In this appendix we briefly review the three-dimensional
standard supergravity with vanishing super-torsion in order
to manifest the differences with the teleparallel version. A
gauge theory of the AdS supergroup can be formulated
through a CS action where the fermionic generators Q are
gauged by the superpartner of the graviton, which corre-
sponds to a spin-3/2 gauge field being the gravitino. The
most general three-dimensional CS supergravity action with
cosmological constant reads

IAdS = 1

16πG

∫
M

{
β0

(
ωadωa + 1

3
εabcωaωbωc

+ 1

�2 T
aea − 2

�
ψ̄�

)

+β1

(
2Rae

a + 4

3�2 εabceaebec − 2ψ̄�

) }
, (A.1)

where Ra and T a are the respective Lorentz curvature and
torsion two-forms given by (2.3) and

� = dψ + 1

2
ωaγaψ + 1

�
eaγaψ , (A.2)

represents the covariant derivative of the gravitino. The CS
action (A.1) contains two independent sectors proportional
to β0 and β1. The first term corresponds to the Pontryagin
CS form [58] plus a contribution from the gravitino, while
the second one is the usual CS supergravity term with cos-
mological constant. In the vanishing cosmological constant
limit � → ∞ the theory reduces to the Poincaré supergravity
[27]. Let us note that each term is invariant under the AdS
superalgebra:

[Ja, Jb] = εabc J
c , [Ja, Pb] = εabc P

c ,

[Pa, Pb] = 1

�2 εabc J
c ,

[Ja, Qα] = −1

2
(γa)

β
α Qβ ,

[Pa, Qα] = − 1

2�
(γa)

β
α Qβ ,
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{
Qα, Qβ

} = − (
γ aC

)
αβ

(
1

�
Ja + Pa

)
. (A.3)

The field equations of the CS supergravity theory based on
the AdS superalgebra are given by the vanishing of the super-
AdS curvature two-forms, namely

R̃a = Ra + 1

2�2 εabcebec + 1

2�
ψ̄γ aψ = 0 ,

T̃ a = T a + 1

2
ψ̄γ aψ = 0 ,

� = dψ + 1

2
ωaγaψ + 1

�
eaγaψ = 0 . (A.4)

Let us note that, as in the Poincaré supergravity theory, the
equations of motion are characterized by a vanishing super-
torsion T̃ a . Unlike the teleparallel supergravity theory pre-
sented along this work, the flat limit does not modify the
nature of the super-torsion.
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