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Abstract Theories with higher derivatives involve linear
instabilities in the Hamiltonian commonly known as Ostro-
gradski ghosts and can be viewed as a very serious prob-
lem during quantization. To cure this, we have considered
the properties of antilinearity that can be found inherently
in the non-Hermitian Hamiltonians. Owing to the existence
of antilinearity, we can construct an operator, called the V -
operator, which acts as an intertwining operator between the
Hamiltonian and its Hermitian conjugate. We have used this
V -operator to remove the linear momentum term from the
higher derivative Hamiltonian by making it non-Hermitian
in the first place via an isospectral similarity transformation.
The final form of the Hamiltonian is free from the Ostrograd-
ski ghosts under some restriction on the mass term.

1 Introduction

From the usual quantum mechanics, it is well known that the
Hamiltonian must be Hermitian, i.e. H = H†, in order to
obtain a real energy spectrum. Very recently Bender et al.
proposed that parity (P) and time (T ) symmetry can serve as
a better condition for obtaining the real energies of the sys-
tem as it includes non-Herimitian [1–4] Hamiltonians too.
PT -symmetry is actually a physical condition obeyed by
almost every phenomenon. In this regard, we may consider a
non-Hermitian system by employing the conditions of PT -
symmetry one can obtain real energy spectrum [5]. While
working along the same line of considerations of the physical
interpretations of the non-Hermitian Hamiltonians, one may
consider the obvious nature of these non-Hermitian Hamil-
tonians, i.e. the antilinear property. Evidently, the Hamil-
tonian that is non-Hermitian can be written in an antilin-
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ear form and the corresponding antilinearity operator can be
obtained [6,7]. The reality of the energy eigenvalues and the
unitarity of the system was found to be more subtle in this
case.

A common source of these non-Hermitian Hamiltonians
is the Higher Derivative (HD) theories. By higher derivative,
we refer here to the theories that have time derivatives of
the fields numbering more than two in the Lagrangian. The
higher derivative terms are added to the Lagrangian as a cor-
rection term and these may lead to avoid the ultraviolet diver-
gences appearing in the theory. Due to this nature, the HD
theories are actively under consideration in various branches
of physics, e.g. string theory [8,9], cosmology [10,11], and
general relativity [12–14]. In the HD theories, the Hamilto-
nian actually consists of the momenta of the higher derivative
fields multiplied by the momenta of other fields and not cor-
responding to its own momenta. These linear momenta, on
quantization, can lead to instabilities as the spectrum become
infinite. This is a very classic problem in physics and the cor-
responding field is known to be ‘ghost state’ or Ostrograd-
skian instability.

To remove these ghost states, there have been different
attempts made by many authors. In [15–17], the authors have
tried to remove the ghost states by incorporating new con-
straints in the phase space, which is applicable only if the
phase space is reduced. Very recently, the authors in [18]
considered the inclusion of velocity dependent constraints
to remove the Ostrogradskian instability. The Ostrogradski
ghosts can also be removed by the introduction of new vari-
ables which can be obtained by a combination of primary and
secondary constraints [19,20]. By considering a degenerate
Lagrangian which has a non-invertible kinetic matrix, the
theory can be made ghost-free as shown in [21]. In the case
of analytic mechanics, the ghosts appeared as usual [22] and
they were removed by different degeneracy conditions [23].
It is thus seen that there are multiple attempts to address the
issue of Ostrogradski instability with limited applicability.
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In this paper, we shall consider the properties of antilinear-
ity in order to remove the instabilities from the theory. Due to
antilinearity, the Hamiltonian of these kinds of models can be
put into a form so that they remain invariant under a suitable
choice of similarity transformation. It was later shown that
the similarity transformation mentioned here, in general, can
be found in any real Hamiltonian and the corresponding oper-
ator can be identified [6,24]. This, however, is not the case
when one has a non-Hermitian Hamiltonian H �= H†. As the
Ostrogradski ghosts are inherent in any HD theory, we can
look into the matter by transforming it into a complex form
and analyzing them using the properties due to antilinearity.
As an example, we have considered is the Galilean invariant
Chern–Simon model. This is a toy model which manifestly
involves the characteristics of Chern–Simon’s model with a
mass term. Lukiersky et al. have shown that the model can
be quantized in the noncommutative plane [25]. This is an
interesting model as one can see that the model has been used
in different fields like quantum gravity [26], Newton–Hooke
symmetry [27,28], and anyons [28].

The plan of the paper is as follows. In Sect. 2 we consider
a very brief discussion on higher derivative models and how
one can construct the non-Hermitian Hamiltonian as a nec-
essary transformation. Section 3 deals with the properties of
antilinear Hamiltonians. Here, we also show how HD theories
have an inherent property of antilinearity. In Sect. 4 we have
considered an example, the Galilean invariant Chern–Simon
model, to illustrate the above discussion of the removal of
the ghosts. Finally, we conclude in Sect. 5.

2 Higher derivative models

We may write a general HD lagrangian in the form of
L(q, q̇, q̈ . . . q(n)) which represents a theory with nth order
derivatives in time. Now we can write the Lagrangian with
respect to some new variable Q defined as

Q0 = q, Q1 = q̇, Q2 = q̈, . . . Qn = dn

dtn
q. (1)

This redefinition of the space variables has expanded the con-
figuration space, thereby increasing the number of degrees
of freedom. In the newly defined configuration space, we can
see the new constraints which are given by �n = Qn− Q̇n−1.
Hence the Lagrangian can be redefined by incorporating
these constraints in the Lagrangian via Lagrange’s undeter-
mined multipliers as

L′ = L(Q, Q1, Q2 . . . Qn) +
n∑

i=1

λi�i . (2)

The above Lagrangian is in the first order form and appar-
ently free from the higher order derivatives. Thus, when writ-
ten in this form we can easily find the appropriate phase

space (Qi , Pi ). Unlike the Ostrogradski way [29] of defining
the momenta, in the first order formalism, the momenta are
defined in the usual way as Pi = ∂L′

∂ Q̇i
. Immediately we write

the canonical Hamiltonian, which is given by

Hcan =
n∑

i=0

Pi Q̇i − L′. (3)

The definition of the canonical momenta contains variables
from the phase space which, in this case, may contain the
non-invertible momenta. Usually, the higher derivative the-
ories contain at least one constraint resulting due to the def-
inition of momenta of higher derivative fields irrespective
of the Ostrogradskian or the first order formalism. These, in
the final form of the canonical Hamiltonian, always appear in
terms involving the product of fields in first order and linearly
coupled canonical momenta. Interestingly, this momenta is
not the one corresponding to the field which it is linearly cou-
pled with. In the corresponding quantum picture, the linear
momentum terms give rise to infinities, and hence a series
of unstable states, known as ghost states, are being created.
Next, we write the canonical momenta (3) in a generic form
showing the involvement of the linear momentum term:

Hcan =
n∑

i=1

Pi Qi−1 + H̄. (4)

Here, H̄ contains terms that do not include any linear momen-
tum. One should remember that the term H̄ here is not gen-
eral, as one can always find the remaining part in the canoni-
cal Hamiltonian as a term arising due to the higher derivative
nature of the theory. Collecting all the primary constraints,
the total Hamiltonian of this system can be written as

HT = Hcan +
m∑

i=1

�i�i . (5)

Here, m represents the number of primary constraints arising
in the theory. Till now our discussions were purely based on
the classical picture. In the next section, we shall consider
the corresponding quantum version of the system. For the
transition from classical to quantum, we shall replace the
variables with their quantum counterpart and also replace all
the Poisson brackets with corresponding commutators.

3 Antilinearity in general quantum theories

The wave function |�(r, t)〉 when acted upon by the total
Hamiltonian gives the energy of the system as

ĤT |�(r, t)〉 = E |�(r, t)〉. (6)
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If we replace t by −t and consider an antilinear operator
A we can rewrite the above expression as

AĤT A
−1A|�(r,−t)〉 = E∗A|�(r,−t)〉. (7)

Thus, for the state |�(r,−t)〉 = A|�(r, t)〉, we can consider
under the action of operator A the Hamiltonian to be

ˆ̃H = AĤT A
−1. (8)

Evidently, this similarity transformed Hamiltonian also has
the energy eigen value E∗ corresponding to the eigen state
|�(r,−t)〉:
ˆ̃H |�(r,−t)〉 = E∗|�(r,−t)〉. (9)

Energy eigenvalues can be real or imaginary if the Hamilto-
nian ĤT of the system shows antilinear symmetry as shown
in [6,24]. On the other hand, the reality of energy eigenval-
ues was also considered by Wigner in [30], which deals with
the necessity of the time reversal symmetry of the system.
Thus, for the non-Hermitian Hamiltonians, it is possible to
possess real energy spectra in the presence of a time reversal
symmetry.

In order to find an appropriate form of the Â opera-
tor discussed here, we can look into the theories having
PT symmetries. In PT symmetries, the theory may not
be invariant under individual transformations of P (which
works as x̂ → −x̂, p̂ → − p̂ ) and T (which works as
x̂ → x̂, p̂ → − p̂, i → −i), but, under the collective effect
of PT , the theory should remain invariant. Apart from the
PT operator, Bender et al. also pointed out another opera-
tor, called the C operator [31], which can be used to remove
the ghost states as shown in [32,33]. The existence and com-
pleteness of the theory demand that the C-operator should be
governed by the three conditions

C2 = I, [C, Ĥ ] = 0, [C,PT ] = 0. (10)

The existence of the C operator also guarantees that the uni-
tarity of the theory will be preserved.

In the case the Hamiltonian is not Hermtian, it should obey
the following relation:

V̂ Ĥ V̂−1 = Ĥ†, (11)

which is obtained by defining the new operator [24]

V̂ = Â† Â. (12)

These two properties in (11,12) also confirm that the trans-
formation under these operators is unitarily equivalent. Equa-
tions (8) and (11) both refer to connecting two different trans-
formations of the Hamiltonian, and for this reason they are
called intertwining operators. In the present case of higher
derivative systems, the canonical Hamiltonian Ĥcan has a
non-Hermitian form and the above equation will serve a very

important role in eliminating the ghost states. For that pur-
pose, we will consider the similarity transformations of the
fields i.e. V̂ QV̂−1 and a proper choice of the V̂ will give us
the Hamiltonian which is free from the Ostrogradski insta-
bility appearing in (4).

We note the properties arising due to the antilinearity
present in the theory:

• If the Hamiltonian has antilinear symmetry then the ener-
gies may be real or complex. The complex energy eigen
values must appear in conjugate pairs,

• If the parity operator obeys P ĤP−1 = Ĥ† then we can
write [P V̂ , Ĥ ] = 0.

• One can write the C-operator as C = P V̂ which should
obey the relations of C mentioned in (10).

• The unitary evolution of the system is governed by the
condition 〈�i |V̂ |� j 〉 = δi j and we may treat this as the
new definition of the inner product. This will arise only
if the Hamiltonian is not Hermitian and consequently the
basis states will not be orthonormal in the Dirac sense
[34].

• The completeness relation in this case becomes �|�i 〉
〈� j |V̂ = �V̂ †|� j 〉〈�i | = I.

3.1 Ghost states and antilinearity

The Ostrogradski ghost problem appears due to the reason
that there is nolower bound to the potential and consequently
we cannot define a true minimum which we call the vacuum.
This concept of vacuum is totally a quantum concept and does
not exist at the classical level. As soon as one puts h̄ → 0, the
quantum phenomena no longer exist. Therefore, the quantum
concepts are very much required to discuss the Ostrogradski
ghost problem.

The phase space of HD theories is spanned by the
momenta of the usual and the HD fields. In this subsec-
tion, we show the connection between HD theories and
antilinearity. The existence of the higher derivative linear
momentum terms makes the Schrodinger equation complex
and therefore, to solve them, one requires complex planes.
However, while quantizing, as the HD momenta span the
entire imaginary plane, it is seen that the solution does
not give a well behaved wave function [5]. For the well
behaved wave function, one of the conditions says that it
must vanish at infinity. In the complex plane, the wavefunc-
tions must also vanish asymptotically along lines that are
centered about the positive-real and negative-real axes. In
complex geometry, these lines are known as Stokes wedges.
The angular opening of the Stokes wedges depends upon
the type of eigenfunctions. To disallow the solutions span-
ning the whole phase space, we can restrict them within
Stoke wedges of 90◦. For avoiding the imaginary axis, we
can write the Hamiltonian (4) after an isospectral similar-
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ity transformation, of the usual field (not the HD one’s),

defined as Q̂0 = e−π P̂0 Ẑ0/2 Ẑ0eπ P̂0 Ẑ0/2 = i Ẑ0, P̂0 =
e−π P̂0 Ẑ0/2 P̂0eπ P̂0 Ẑ0/2 = −i
̂0. Hence the transformed
Hamiltonian is given by

Ĥcan = i
̂1 Ẑ0 +
n∑

i=2


̂i Ẑi−1 + ˆ̄H. (13)

The above equation shows that all HD theories can be brought
to this general form where antilinearity emerges once the
canonical Hamiltonian is defined in terms of the newly
transformed Hamiltonian. This transformation has become
a requirement for the HD theories due to the existence of
momenta corresponding to the HD fields [32].

4 The Galilean invariant Chern–Simons model

In this section we consider a specific model to show the effi-
cacy of the discussions of the earlier sections. We consider
the Galilean invariant Chern–Simon model which is given by

L = 1

2
mẋ2

i − kεi j ẋi ẍ j . (14)

This is a nonrelativistic model in two spatial dimensions and k
has the physical dimension of [M][T ]. Being a higher deriva-
tive model, we convert this into a first order Lagrangian owing
to the transformations

q1i = xi , (15)

q2i = ẋi . (16)

With these new variables the first order Lagrangian takes the
form

L = 1

2
mq2

1i − kεi j q2i q̇2 j + λi (q̇1i − q2i ). (17)

Here the λi are the Lagrange multipliers incorporated to
account for the constraints q̇1i − q2i arising due to the redef-
inition of the fields. If {p1i , p2i , pλi } are the momenta cor-
responding to the fields {q1i , q2i , λi } then we get a set of
primary constraints given by

�i = p1i − λi ≈ 0, (18)

ψi = p2i − kεi j q2 j ≈ 0, (19)


i = pλi ≈ 0. (20)

All these three primary constraints are of second class in
nature due to their non-zero Poisson brackets, which are given
by

{ψi , ψ j } = −2kεi j , (21)

{�i , 
 j } = −δi j . (22)

The second class constraints are removed by setting them
zero. This also replaces all the Poisson brackets in the theory

by Dirac brackets defined as

{ξi , ξ j }D = {ξi , ξ j } − {ξi , ψm}�−1
mn{ψn, ξ j }. (23)

In the present case, the set of phase space variables ξi is
{q1i , q2i , p1i , p2i } and the Poission brackets between the sec-
ond class constraints are defined by �mn = {ψm, ψn}. The
non-zero Dirac brackets are given by

{q1i , p1 j }D = δi j ,

{q2i , q2 j }D = 1

2k
εi j ,

{q2i , p2 j }D = 3

2
δi j ,

{p2i , p2 j }D = −k

2
εi j . (24)

Using the usual definition of the canonical Hamiltonian we
can write for the present model

Hcan = −m

2
q2

2i + λi q2i . (25)

Since the system has constraints we should consider the total
Hamiltonian instead, which is obtained by adding the primary
constraints linearly to the canonical Hamiltonian as

HT = Hcan + �1i�i + �2iψi + �3i
i . (26)

The Hamiltonian written thus involves the undetermined
Lagrange multipliers {�1i ,�2i ,�3i } and it can be deter-
mined by considering the time evolution of the constraints.
The time evolution of the constraints may give rise to sec-
ondary and tertiary constraints. We consider the brackets
between the constraints and the total Hamiltonian and after
equating them to zero, the following values of Lagrange’s
multipliers are obtained:

�3i = 0, (27)

�2i = 1

2k
(mq2 j + λ j )ε j i , (28)

�1i = −q2i . (29)

We can remove the second class constraints by setting
them zero and considering the Dirac brackets in place of
Poisson brackets. Consequently, in this case, the total Hamil-
tonian becomes equal to the canonical Hamiltonian,

HT = Hcan. (30)

So far, we have discussed the classical views of this Galilean
invariant Chern–Simon’s model. In the corresponding quan-
tum version, we want to see the antilinear symmetry is present
in the system. For that purpose, we should analyze the PT -
symmetries of this Hamiltonian under the changes of the
space-time coordinates. The model is truely PT symmetric,
which can be seen from

P ĤTP−1 = Ĥ†
T , (31)

(PT )ĤT (PT )−1 = ĤT . (32)
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As discussed in Sect. 2 this Hamiltonian contains linear
momentum terms and hence the transition to the quantum
picture is not possible as the states will be unstable. Due to
the higher derivative nature, for removal of these linear fields,
we may consider a similarity transformation in the form of
the change of variables q̂1i = i ẑi , p̂1i = −i p̂zi as suggested
in [5] and obtain the Hamiltonian:

ˆ̃HT = −m

2
q̂2

2i − i p̂zi q̂2i . (33)

The total Hamiltonian in (33) is clearly non-Hermitian in
nature and PT symmetric. Being a non-Hermitian Hamilto-
nian, it does not necessarily has complex energy eigenvalues
. As discussed in (33), owing to thePT symmetric nature, the
model has real energy eigenvalues. The existence of antilin-
earity in the model is confirmed since the Hamiltonian obeys
P ĤTP−1 = Ĥ†

T . Hence, as a requirement of (11,12), for the
present model, we can find the corresponding intertwining
operators which can be written as

V̂ = e−Q̂, (34)

Â = eQ̂/2. (35)

These two operators are unitarily equivalent. To check the
antilinearity of the Hamiltonian, we have considered

Q̂ = α p̂zi p̂2i + β ẑi q̂2i . (36)

Now, we calculate the similarity transformation of the total
Hamiltonian. This is done by calculating the transformation
of the individual fields and replacing their values. After some
algebraic calculations, we obtain

ÂĤT Â
−1 = eQ̂/2 ĤT e

−Q̂/2 = ˆ̃HT , (37)

where ˆ̃HT is given by

ˆ̃HT = −m

2

(
q̂2

2i cosh 2
√

αβ − p̂2
zi

2
D2(cosh 2

√
αβ − 1)

)

+
(
q̂2

2i

D
sinh 2

√
αβ − p̂2

zi

2
D sinh 2

√
αβ

)

−i p̂zi q̂2i

(m
2
D sinh 2

√
αβ + cosh 2

√
αβ

)
. (38)

Here we have taken D = √
α/β. We can make this Hamil-

tonian free from the linear momentum terms, so that the states
will be free from the Ostrogradski instability, owing to the
condition
m

2
D sinh 2

√
αβ + cosh 2

√
αβ = 0. (39)

The relation between α and β can be found from the above
equation. However, there remains arbitrariness in one of the
variables, either α or β. The solutions will differ from model
to model depending on the mass termm. The states |ψ〉 which

correspond to the Hamiltonian HT are related to |ψ̃〉 as

|�̃〉 = e−Q/2|�〉. (40)

Here |ψ̃〉 are the states for the systems free from the ghosts.
Thus being a higher derivative model and possessing antilin-
earity, we have successfully removed the Ostrogradski ghost
from the system.

5 Conclusion

The higher derivative theories have been very useful in grav-
ity [35], cosmology [36,37], and fractals [38] and have been
used by many authors despite the existence of the Ostrograd-
ski instability. To remove this instability, various attempts
were made but none of them were a complete success due
to the inherent conditions while developing the theory. In
the present paper, we have considered another aspect of this
problem of Ostrogradski ghosts using the antilinearity prop-
erty of the HD theories. Due to this, we can employ the ideas
developed earlier usingPT -symmetries and see if the Ostro-
gradski instability is curable or not.

We have seen that, in the HD theories, the presence of
the antilinear symmetry in the Hamiltonian was not clear
until a proper similarity transformation was made. After this
transformation, the HD Hamiltonian became non-Hermitian
and the antilinear symmetry also emerged. The operator con-
necting the antilinear symmetry of the Hamiltonian, in this
case, was identified by comparing the form of the C-operator
of the PT -symmetric theories. To illustrate the efficacy of
this approach, we have considered the Galilean invariant
Chern–Simon model in 2+1 dimensions. The model contains
a higher derivative Chern–Simon term which, upon quanti-
zation, shows a connection with the noncommutative the-
ory [25]. The Ostrogradski instability was still prevailing in
the Hamiltonian. On the contrary, in the present case, the
higher derivative Lagrangian was transformed into a first
order Lagrangian and thus the canonical Hamiltonian was
obtained. After a similarity transformation, using the newly
defined operator, of the non-Hermitian Hamiltonian all the
linear momentum terms vanished under a suitable condition
that must be obeyed. This condition put some restriction on
the mass term m of the particle.

Thus we have successfully removed the linear momen-
tum (Ostrogradski ghost) term from the HD theory employ-
ing properties due to antilinearity. However, since this was a
constrained system, the Hamiltonian was considered in the
reduced phase space. This approach should be applicable to
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other higher derivative theories also where the Ostrogradski
ghost will plague the Hamiltonian.
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