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Abstract We consider the possibility of having Dark Mat-
ter (DM) black holes motivated by the Einasto density pro-
file. This generalizes both the noncommutative mini black
hole model and allows DM to enter as the matter constituent
which makes up the black hole. We show that it is possible to
construct a black hole solution for each value of the Einasto
index and for different values of the mass parameter, pro-
vided that the we work with the energy–momentum tensor
of an anisotropic fluid. In particular, we achieve that by first
considering the equation of state (EOS) pr = −ρ. It turns out
that the corresponding black hole solution exhibits a horizon
structure similar to that of a Reissner–Nordström black hole
and the central singularity is replaced by a regular de Sitter
core. We also show that if the previous EOS is replaced by
a nonlocal one, it is possible to construct a self-gravitating
fuzzy DM droplet but also in this case, the radial pressure is
negative. Finally, we contemplate scenarios of different dark
matter black holes with moderate mass values which could
have formed in galaxies. In particular, we probe the possibil-
ity whether such black holes could also be the central galactic
objects.

1 Introduction

To examine the nature of Black Holes (BH) [1] more closely,
it would be desirable to infer more about their interior struc-
ture, be it from the geometric point of view [2–7] or probing
into the question what kind of matter has contributed to its
formation [8–10]. In view of the fact that baryonic and lep-
tonic matter constitutes only four percent of the content of the
universe and secondly recalling that the density profiles of the
major component, Dark Matter (DM), grows as we approach
the galactic center [11–13], the question whether the central
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galactic BH has a close connection to DM is a well-posed
problem. Of course, the no-hair theorem [14–16] prevents us
from inferring observationally the inside properties of a BH,
but modelling the interior structure of a BH (indeed, theoret-
ical models of the interior BH are quite common in literature
[21–28]) could reveal if a connection between DM and BH
is feasible and at the same time be possibly a harbinger of
new physics regarding both, the BH and the DM. An attempt
in this direction has recently been proposed in [17] where
the authors model the central galactic object assuming a
DM profile fitted to the outer galactic region. Other possible
inter-connections between the two important components in
the galactic bulge have been examined in [18,19] where the
authors consider the possibility of the growing of a BH by
the DM absorption. This again suggests the BH as a seed
for galactic structure. If so, it not unreasonable to think of a
BH as made purely from DM. Motivated by this scenario we
develop a new model of the galactic central object as a fuzzy
BH (or droplet) in close analogy to BH/droplets inspired by
non-commutative geometry [20] where the Gaussian matter
distribution and the de Sitter EOS play an important role. The
above mentioned approach to BH physics can be generalized
based on the fact that the Gaussian distribution is a special
case of what is known as the Einasto profile of DM. This
allows us to establish a possible connection between BH and
DM, i.e., in constructing a fuzzy BH we follow the steps of a
non-commutative BH with a new density profile, the Einasto
parameterization. In this paper, we test the possibility of a
connection between the galactic BH and DM at the current
stage of the Milky Way. However, in principle, we could also
entertain the possibility of a smaller primordial fuzzy BH
made out of DM and growing with time by absorbing matter
and DM. We will leave such a project to future undertakings.

Before the existence of a supermassive black hole at the
centre of the Milky Way [42–44], known as Sagittarius A∗,
was widely accepted, there have been several attempts to con-
struct theoretical models replacing the central black hole with
other gravitational objects such as: gravastars [45,46], boson-
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stars [47,48], naked singularities [49–51], burning disks [52],
quantum cores (Ruffini–Argüelles–Rueda model) [53,54]
and gravitationally bound clamps of dark matter relying on
the exponential-sphere density profile [17,55,56]. It is worth-
while noticing that our information on the central galactic
BH comes mainly from observing star orbits [42,43]. In any
model beyond the standard BH, it is obligatory to pay atten-
tion to the condition that the effective potential of the model,
be it a droplet or a BH, resembles the standard BH effec-
tive potential, at least in the region of the bound orbits, i.e.,
around the local minimum of the potential (see, e.g, [17]).
In this respect, we will look for suitable parameters of the
Einasto profile to model a fuzzy BH, a DM droplet or sim-
ply a BH made out of DM at the center of the galaxy in
such a way that the observational data are confirmed by our
model. Preferably, we will favour parameters already fitted to
observational data, but we will also entertain the possibility
that at the center of the galaxy the density profiles exhibits
a different behaviour. To reach our goals, we will couple
the aforementioned profile with an energy–momentum ten-
sor for an anisotropic fluid and an equation of state of the
form pr = −ρ. Such an equation of state is quite com-
mon in the physics of BH [21–28]. In the present work, it
leads to several regular BH models such that for each value
of the parameters ξ and h entering in the Einasto profile,
the mass parameter can be tuned so that a black hole will
be present at the centre of a galaxy. This black hole has a
horizon structure reminiscent of that we observe in the case
of a Reissner–Nordström geometry. Furthermore, the inner
region of the black hole does not exhibit a curvature sin-
gularity at r = 0 which is instead replaced by a regular de
Sitter core. We also compute the Hawking temperature for the
Einasto inspired black hole: we discover that the black hole
increases its temperature, as the horizon radius shrinks, until
the temperature reaches a maximum after which the temper-
ature decreases sharply and vanishes exactly at the radius of
the extremal black hole. But we will also demonstrate that a
DM droplet would eventually result in an effective potential
in accordance with observational data on the orbits. In the
second model, we consider a nonlocal equation of state for
an anisotropic fluid. We observe that also in this case a nega-
tive pressure cannot be avoided. In particular, we construct a
self-gravitating fuzzy DM droplet regular at the origin whose
effective potential allows bound states for massive particle.
Also in this case there is no central singularity at r = 0.

The paper is organized as follows: In Sect. 2, we introduce
the Einasto profile and some relevant formulae needed in
the sections to follow. In Sect. 3, we investigate DM objects
assuming a de Sitter-like EOS. In Sect. 4 we use a nonlocal
equation of state to show that a fuzzy DM droplet made of an
anisotropic fluid allows for stable orbits of massive particle.
Finally, we present our conclusions in Sect. 5.

2 The Einasto density profile

In his 1969 seminal paper [29,30], Einasto showed that any
realistic model aiming to give a faithful description of a galac-
tic system should be characterized by certain descriptive
functions such as the cumulative mass profile, the gravita-
tional potential, the surface mass density etc., all satisfying a
given set of constraints. Since such descriptive functions are
integrals of the density profile ρ = ρ(r) with r a radial vari-
able, it is natural to think that the most fundamental descrip-
tive function of a galactic model is represented by the density
profile itself which should exhibit the following properties

1. 0 < ρ(r) < ∞ for all r > 0;
2. ρ ∈ C∞(R+) with ρ(r) → 0 as r → ∞, i.e. it is a smooth

and decreasing function that vanishes asymptotically at
space-like infinity;

3. certain moments associated to ρ such as the central grav-
itational potential, the total mass, and the effective radius
of the system must be finite;

4. the aforementioned descriptive functions must not exhibit
jump discontinuities.

Since then, the DM Einasto profile has been used not only
to model several galaxies such as M31, M32, M87, Fornax
and Sculptor dwarfs, and the Milky Way [29,30] but also to
describe the density of dark matter haloes, see for instance
[31–40]. Regarding recent analytical studies of the Einasto
model we refer to [34,38,41].

We recall that the Einasto density profile [29,30], which is
generally adopted to describe cold DM halos [31,35–37,39,
57,58] as well as the surface brightness of early-type galaxies
and the bulges of spiral galaxies [59–68], is represented by
the function

ρ(r) = ρsexp

(
−dξ

[(
r

rs

)1/ξ

− 1

])
, (1)

where ξ is the Einasto index, rs the radius of the sphere
enclosing half of the total mass, ρs the mass density at r =
rs and dξ a numerical constant controlling that rs is indeed
the half-mass radius. In the context of DM halos, the above
density is also rewritten as [58]

ρ(r) = ρ−2exp

(
−2ξ

[(
r

r−2

)1/ξ

− 1

])
, (2)

where ρ−2 and r−2 are the density and the radius at which
the density profile behaves like r−2, i.e. d ln ρ/d ln r = −2.
If we introduce the central density

ρ0 = ρsedξ = ρ−2e2ξ (3)

123



Eur. Phys. J. C (2021) 81 :777 Page 3 of 15 777

and the scale length

h = rs

dξ
ξ

= r−2

(2ξ)ξ
(4)

as in [41], it is straightforward to verify that the density profile
becomes

ρ(r) = ρ0e−( r
h )

1/ξ

(5)

and by adjusting the triple of parameters {ρ0, h, ξ}, it is possi-
ble to model a variety of astrophysical objects. For instance,
we have 4.54 � ξ � 8.33 for DM haloes with masses in
the range of dwarfs to clusters [31], ξ ∼ 5.88 for galaxy-
sized haloes [36,37], ξ ∼ 4.35 for cluster-sized haloes in
the Millenium Run [32] and ξ ∼ 3.33 for the most massive
haloes for the Millenium Simulation [32,37]. Since formula
(5) is equivalent to (1) and (2), there is no loss in generality
if we work with the expression of the density profile given
by (5). Furthermore, the mass function m and the gravita-
tional potential � can be computed by solving the following
ODEs obtained from the Newtonian equations of hydrostatic
equilibrium, namely

dm

dr
= 4πr2ρ(r),

d�

dr
= G N m(r)

r2 , (6)

where G N denotes Newton’s gravitational constant. As in
[41], we immediately find that the total mass M associated
to the Einasto density profile is

M = 4π

∫ ∞

0
x2ρ(x) dx = 4πρ0h3ξ�(3ξ), (7)

where � denotes the Gamma function. The above relation
allows to express the central density ρ0 in terms of the total
mass, and hence, we can rewrite (5) as

ρ(r) = M

4πh3ξ�(3ξ)
e−( r

h )
1/ξ

. (8)

Furthermore, a straightforward integration of the first equa-
tion in (6) leads to the following cumulative mass distribution

m(r) = M

�(3ξ)
γ

(
3ξ,

( r

h

)1/ξ
)

, (9)

where γ denotes the lower incomplete Gamma function [69].
For a detailed analysis of the classical gravitational potential
we refer to [41].

3 Fuzzy black holes

In this section, we show that it is possible to construct black
hole solutions from the Einasto density profile. Let us sup-
pose that the mass density of a static, spherically symmetric,
smeared gravitational source of total mass M be modeled
by the density profile (8) which contains as a special case
(ξ = 1/2 and h = √

θ ) the Gaussian profile adopted by [71]

Fig. 1 Plot of h3 pr /M given by (16) for ξ = 1/2 (solid line), ξ = 1
(dotted line) and ξ = 1.5 (dashdot line). In the DM case (ξ = 7.072,
h = 2.121 × 10−9 kpc and M = 4.57 × 109 M� [29,30]) we have
|pr (0)| ≈ 5.8×10−41 m−2 (geometric units) or equivalently, |pr (0)| ≈
7 × 103 N/m2 (SI units)

Fig. 2 Plot of h3 p⊥/M defined in (17) for ξ = 1/2 (solid line), ξ = 1
(dotted line) and ξ = 1.5 (dashdot line). In the DM (ξ = 7.072, h =
2.121×10−9 kpc and M = 4.57×109 M� [29,30]) we have |p⊥(0)| ≈
5.8 × 10−41 m−2 (geometric units) or equivalently, |p⊥(0)| ≈ 7 ×
103 N/m2 (SI units). Note that p⊥ changes sign at r0 ≈ 0.3 kpc which
is situated well inside the Narrow Line Region of an Active Galactic
Nuclei (100 pc–4 kpc) [85]
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in the derivation of the noncommutative geometry inspired
Schwarzschild black hole. Furthermore, we consider the fol-
lowing ansatz

ds2 = g00(r)dt2 − dr2

g00(r)
− r2

(
dϑ2 + sin2 ϑdϕ2

)
,

0 ≤ ϑ ≤ π, 0 ≤ ϕ < 2π (10)

representing a static, spherically symmetric manifold. We
want to find the unknown function g00 appearing in (10)
so that the above line element is a solution of the Einstein
field equations coupled to the energy–momentum tensor of
a static, anisotropic fluid and in the limit r/h → ∞ such a
solution goes over into the usual Schwarzschild metric. As in
[71] we introduce the energy–momentum tensor of a static,
anisotropic fluid with density source (8) given by

T μ
ν = diag(ρ,−pr ,−p⊥,−p⊥), pr �= p⊥, (11)

where pr and p⊥ are the radial and tangential pressures,
respectively, and we consider the Einstein field equations

Rμν = −8π

(
Tμν − T

2
gμν

)
, T = gμνTμν (12)

for the line element (10). If we proceed as in [84], we can
use the conservation equation T μν ;ν = 0 with μ = 1 in
the (μ, ν) = (2, 2) equation coming from (12) to obtain
the Tolman–Oppenheimer–Volkoff equation, i.e. the general
relativistic hydrostatic equilibrium equation given by

dpr

dr
+ (ρ + pr )

m(r) + 4πr3 pr

r [r − 2m(r)]
+ 2

3
(pr − p⊥) = 0, (13)

where the mass function is defined as

m(r) = 4π

∫ r

0
u2ρ(u) du = M

�(3ξ)
γ

(
3ξ,

( r

h

)1/ξ
)

,

(14)

in the case of the Einasto profile. On the other hand, from the
equation T 1ν ;ν = 0 we get

− dpr

dr
= 1

2
g00 dg00

dr
(pr + ρ) + 2

r
(pr − p⊥), (15)

and if we require that

pr = −ρ = − M

4πh3ξ�(3ξ)
e−( r

h )
1/ξ

, (16)

then (15) can be solved for p⊥ giving

p⊥ = −ρ − r

2

dρ

dr
= −

[
1 − 1

2ξ

( r

h

)1/ξ
]

ρ. (17)

For a plot of the radial and tangential pressures we refer to
Figs.1 and 2. This procedure ensures that the conservation
equation for the energy–momentum tensor is identically sat-
isfied. It is not difficult to verify that the tangential pressure

vanishes at

r0 = (2ξ)ξ h (18)

and takes its maximum value at

rm = (1 + 2ξ)ξ h, p⊥(rm) = Me−(2ξ+1)

8πh3ξ2�(3ξ)
. (19)

Moreover, we have pr (0) = p⊥(0). Finally, we observe that
Eq. (13) is trivially satisfied once pr and p⊥ have been chosen
as in (16) and (17), respectively. This approach shows that the
Einasto matter distribution ρ may describe a self-gravitating
droplet of anisotropic fluid.

If we consider the (μ, ν) = (0, 0) or equivalently, the
(μ, ν) = (1, 1) equations in (12) together with (16) and the
requirement that the metric goes over into the Minkowski
metric asymptotically at infinity, we end up with the line
element

ds2 =
(

1 − 2m(r)

r

)
dt2 −

(
1 − 2m(r)

r

)−1

dr2

−r2
(

dϑ2 + sin2 ϑdϕ2
)

, (20)

where the mass function is given by (14). By means of 6.5.3 in
[70] it is straightforward to verify that in the limit r/h → ∞
the metric (20) reproduces the classic Schwarzschild metric.
Furthermore, if we consider the g00 component of the metric
as a function of r/h and we introduce the scaled mass μ =
M/h, it is possible to show that there exists a value of μ,
say μ0, such that g00 has a double root at x0 = r0/h. The
numerical values of the extremal rescaled mass μ0 and the
degenerate horizon x0 for different values of ξ have been
displayed in Table 1. They have been obtained by expanding
the lower incomplete Gamma function in the expression for
g00 with the help of 6.5.29 in [70] where the first hundred
terms in the expansion have been considered. Moreover, if
μ > μ0 there exist two distinct horizons r1 and r2, and
no horizon if 0 < μ < μ0. Figure 3 displays the plot of
g00 which exhibits the behaviours described above, i.e. 2
horizons, 1 horizon and no horizon.

Moreover, in the extreme and non extreme regimes, that
is μ ≥ μ0, the behaviour of the metric coefficient g00 for
r → 0 can be obtained by means of 6.5.29 in [70] and we
find that

g00(r) ≈ 1 − 2μ

�(3ξ + 1)

( r

h

)2
. (21)

The result above signalizes that differently as in the
Schwarzschild black hole where there is a singularity at
r = 0, the central region is represented by a regular de Sit-
ter core. Hence, the Einasto density profile coupled with an
energy momentum tensor for an anisotropic fluid cures the
problem of the central singularity provided that an EOS for
the radial pressure is assumed to be of the form pr = −ρ.
Finally, in the case μ < μ0 there is no event horizon and
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Table 1 Numerical values for the degenerate horizon y0 = (r0/h)1/ξ

and the corresponding extremal mass μ0 for different values of the
Einasto parameter. The case ξ = 7.072 corresponds to the DM case
studied in [29,30]

ξ μ0 y0

1/2 0.95206 2.28378

1 2.57470 3.38364

1.5 8.48079 4.45141

2 32.1069 5.50210

3 623.869 7.57496

4 16411.5 9.62616

5 5.43917 × 105 11.6647

6 2.17332 × 107 13.6953

7.072 1.34763 × 109 15.8657

Fig. 3 Plot of g00 as a function of y = (r/h)1/ξ with ξ = 1/2 for
different values of μ. The intersections on the horizontal axis represent
the radii of the event horizons expressed in the variable y. If μ =
μ0 = 0.95206, there is one degenerate horizon at y0 = 2.28378 (solid
line). For μ = 1.1 > μ0 (dot line), there are two horizons and in the
case μ = 0.8 < μ0 (dash line), there is no horizon. The latter case
corresponds to a self-gravitating droplet consisting of an anisotropic
fluid

also no naked singularity because the central region around
the origin is described by a de Sitter geometry. We conclude
this section by considering the Hawking temperature for this
new class of black holes. The black hole temperature can be
computed from the formula [71]

TH = 1

4π

dg00

dr

∣∣∣∣
r=rH

= 1

4πrH

[
1 − r3

H e−(r/h)1/ξ

ξh3γ (3ξ, (r/h)1/ξ )

]
,

(22)

Fig. 4 Plot of TH versus yH = (rH /h)1/ξ in h units for ξ = 3. We
have TH = 0 for yH = y0 = 7.57496, which coincides with the
event horizon of the corresponding extremal black hole. The maximum
temperature is TH,max = 3.5 × 10−5 and it corresponds to a mass
parameter μ = 787.66

where rH represents the position of the event horizon and
the total mass M has been expressed in terms of rH by using
the horizon equation rH = 2m(rH ). Note that in the case
rH /h � 1 the expression above reproduces the usual result
TH = (4πrH )−1. The scenario emerging from Fig. 4, where
we plotted the temperature TH as a function of rH , is that
an Einasto inspired black hole increases its temperature, as
the horizon radius shrinks, until TH reaches a maximum after
which TH decreases sharply and vanishes exactly at the radius
of the extremal black hole, that is at rH = r0. Furthermore, in
the case of an extreme black hole the Hawking temperature
must be identically zero because the metric component g00

has a double root at r = r0. Hence, instead of observing
a blow-up behaviour of the BH temperature, we find that
the evaporation process leads to a zero temperature extremal
black hole whose final configuration is entirely controlled by
the Einasto parameter ξ , the scale factor h and the black hole
mass. As already pointed out in [72], a final configuration
characterized by a finite temperature inhibits any relevant
back reaction, i.e a self-interaction of the radiated energy with
its source. This implies that our solution is stable versus back
reaction and can describe the entire black hole life until the
final configuration. The presence of an inner Cauchy horizon
may be a source of concern, in the sense that the inner region
of our black holes is unstable, however one may proceed as
in [72] to show the stability of the Einasto inspired black hole
interior. At this point, a remark on nomenclature is in order.

123



777 Page 6 of 15 Eur. Phys. J. C (2021) 81 :777

If there is no horizon, we call the object a fuzzy droplet. If at
least, one horizon develops, we name it a fuzzy BH.

We end this section with a remark on negative pressure,
singularity theorems and the involved scales. For instance,
it is tempting to attribute the negativity of pressure to some
quantum effects which would limit the applicability of the
scales one is using in a model. First, we should notice that
with this subject we touch the forefront of science and dif-
ferent interpretations exist in literature. For instance in [73]
the possibility of a phase transition to a negative pressure
p = −ρ EOS is considered as existing already in Einstein
gravity. The inclusion of quantum theory would only would
complete the picture, but is not a necessary ingredient. In such
a picture the question of scales does not really arise. In [74] a
quantum “Macro-Quantumness” is advocated with the claim
that the quantum effects for the macroscopic black holes are
more important than suggested by means of a semi-classical
reasoning. It seems that one should treat the black hole as
macroscopic quantum phenomenon and again no scales lim-
itations arise. In short, the result is that the assumption that
a black hole of macroscopic size can always be described
classically leads to a contradiction and the classical descrip-
tion must break down on macroscopic scales. This was ini-
tially suggested in the seminal work of [74] by means of the
so-called quantum N -portrait, which has been further devel-
oped in [75–79]. Moreover, in [80,81] a long distance origin
for Hawking radiation is considered and a “quantum atmo-
sphere” assumed. This again would hint towards macroscopic
quantum phenomena for any size black hole.

Inter alia, we would like to add one more possible inter-
pretation. Our precise EOS, pr = −ρ is coined according to
the physics with a cosmological constant. In such a case, it is
interesting to notice that the cosmological constant can vio-
late the singularity theorems or the assumptions underlying
them. By this token, the regular black hole which we con-
structed in this section is not limited by scales due to the pos-
sible quantum origin of the EOS. To substantiate our claim,
we give another example which has to do with violation of
singularity theorems in cosmology due to the cosmological
constant �. We refer to [82] where the authors show that for
� > �cri t there is no initial singularity. This violates the
global cosmological singularity theorems. In particular, no
quantum mechanics is involved. It is rather an effect of the
cosmological constant. We think a similar mechanism hap-
pens in the construction of regular black hole solutions under
the de Sitter EOS coined after the physics with the cosmolog-
ical constant. If so, the physics is again not really restricted
by scales dictated by quantum mechanics. We can look at it
from yet another point of view. In general, negative pressure
is a concept taken seriously in physics [83]. As pointed out
in [83] a negative pressure is not forbidden by the laws of
thermodynamics. It is considered mostly in liquids and has
an underlying mechanism, which is not necessarily attributed

to quantum mechanics. Again we can argue that as such it
is not a local phenomenon limited to quantum mechanical
scales. A quick comparison with regular black hole physics
where a negative pressure is used, tells us that we can start
with a de Sitter EOS as done here and in [21–28] or it emerges
naturally like in [73] where the effect is attributed to General
Relativity. In the next section with will construct yet another
model where a self-gravitating droplet emerges with a nega-
tive pressure.

3.1 The effective potential

If we insist that the black hole solution derived in Sect. 3
sits at the centre of our galaxy, all observations should be
the same. To this purpose, we study the problem whether
our model of a diffuse dark matter black hole is able to
fit the central galactic black hole in the Milky Way whose
mass and Schwarzschild radius are MB H = 4.1 × 106 M�
and RB H = 2G N MB H /c2 = 17.4 R� = 3.92 × 10−7 pc,
respectively [42,43]. In order to do that, we need to find esti-
mates for the Einasto parameter ξ and the scaling factor h.
This is done in two steps. First of all, we impose that the
total mass M entering in the line element (10) through the
metric coefficient g00 coincides with MB H . Secondly, we
require that the mass function m provides a good approxi-
mation for MB H when it is evaluated at the minimum rmin of
the Schwarzschild effective potential for a massive particle.
More precisely, we exploit the freedom to force that

1 − m(rmin)

MB H
≤ 10−2. (23)

In the analysis to follow, it is convenient to rewrite the above
condition in the equivalent form

γ := 1

�(3ξ)
γ

(
3ξ,

(rmin

h

)1/ξ
)

− 0.99 ≥ 0, (24)

where we made use of (14). As we will soon realize, it will
turn out that the above condition not only ensures that the
Schwarzschild effective potential and the effective potential
of our diffused gravitational object share the same minimum
but they both also agree in a large neighbourhood of it and
asymptotically away (see for instance Fig. 5).

The effective potential Vef f for the problem at hand is
obtained from the geodesic equation. More precisely, fol-
lowing the same procedure as in [84], we can bring the radial
equation into a form of an energy conservation equation,
namely

ṙ2

2
+ Vef f (r) = const, (25)

where the dot means differentiation with respect to the proper
time or an affine parameter, depending whether we consider
the case of a massive or a massless particle. By means of
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Fig. 5 Plot of the effective potentials (28) (asterisk symbol)
(Schwarzschild case) and (30) (solid line) (fuzzy droplet) in the mas-
sive case for L = 3, H = 10 and ξ = 0.2. The free parameter H is
chosen so that it produces a scaling factor h of the same order as the one
predicted by [29,30], i.e. hE = 2.121 × 10−9 kpc. The minimum of
Vef f,S is at r∗

min = 9 + 3
√

6 ≈ 16.35 where Vef f,S(r∗
min) = −0.01477

and Vef f (r∗
min) = −0.01477. Both potentials share the same minimum

and Vef f is a good approximation of Vef f,S in a neighbourhood of r∗
min

and asymptotically away

equation (25.27) in [84] we immediately find that the effec-
tive potential associated to the geometry described by the line
element (10) is

Vef f (r) = �2

2r2 − MB H

�(3ξ)

(
ε

r
+ �2

r3

)
γ

(
3ξ,

( r

h

)1/ξ
)

,

ε =
{

1 if m p �= 0,

0 if m p = 0,
(26)

where m p denotes the mass of a test particle and � is its total
angular momentum per unit mass. At this point, it is also
useful to recall that the effective potential in the case of the
Schwarzschild metric is

Vef f,S(r) = �2

2r2 − MB H

(
ε

r
+ �2

r3

)
. (27)

Let rs = 2MB H . If we rescale the radial variable and the
angular momentum per unit mass as r∗ = r/rs and L =
�/rs , the Schwarzschild effective potential in the massive
case becomes

Vef f,S(r∗) = − 1

2r∗ + L2

2r∗2 − L2

2r∗3 (28)

and the event horizon is now located at r∗ = 1. Plots of the
effective potential in the massless case for different values of
the parameters can be found in Figs. 6 and 7. Furthermore,
it exhibits a minimum and a maximum at

r∗
min = L2

2

(
1 +

√
1 − 3

L2

)
,

r∗
max = L2

2

(
1 −

√
1 − 3

L2

)
(29)

provided that L >
√

3. Introducing the same rescaling for
(24) and for the effective potential (26) in the massive case
yields

Vef f (r
∗) = L2

2r∗2 − 1

�(3ξ)

(
1

2r∗ + L2

2r∗3

)
γ

(
3ξ,

(
r∗

H

)1/ξ
)

,

H = h

rs
(30)

and

γ := 1

�(3ξ)
γ

(
3ξ,

(
r∗

min

H

)1/ξ
)

− 0.99 ≥ 0. (31)

The above condition is an inequality in the free parameters
H and ξ . To show that its solution set is non empty, we will
first consider different choices of H so that the correspond-
ing scale factors h = rs H have the same orders of magni-
tude of the scaling factors appearing in [29,30,58]. For each
choice of H we solve the inequality (31) with respect to the
parameter ξ . Since the particular value of r∗

min depends on the
rescaled total angular momentum L , the procedure outlined
above requires that we also fix L . For instance, in [29,30]
the scaling factor for a DM halo is hE = 2.121 × 10−9 kpc.
Hence, if we choose H = 10 the corresponding scaling fac-
tor in our model is h = 3.92 × 10−9 kpc. To find out which
values of ξ will satisfy (31), we consider different values
of L and r∗

min . In the case L = 2 and r∗
min = 6, we find

numerically that γ < 0 in the range 10−6 ≤ ξ ≤ 13
signalizing that the inequality (31) cannot be satisfied. The
situation changes if we increase the value of L . If L = 3
with r∗

min = 9+3
√

6, it turns out that γ < 0 for ξ < 0.32.
If L = 5 with r∗

min = 25 + 5
√

22, any ξ < 0.80 will do
the job while for L = 100 with r∗

min = 104 + 102
√

9997 it
is necessary that ξ < 2.73. Does our model predict a fuzzy
BH or a fuzzy droplet when H = 10 and ξ is chosen so that
(31) is satisfied? To answer this question, we observe that
in geometric units rs = 2MB H so that MB H = rs/2 and
the rescaled mass parameter μ entering in our model will be
fixed according to

μ = MB H

h
= rs

2h
= 1

2H
, (32)

where in the last step we used the relation h = rs H . More-
over, by means of the rescaling r∗ = r/rs together with the
expansion 6.5.29 in [70] we can rewrite the metric coefficient
g00 according to

g00(r
∗) = 1 − 2μ

(
r∗

H

)2

e−(r∗/H)1/ξ
∞∑

k=0

(r∗/H)k/ξ

�(3ξ + k + 1)
.

(33)
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Fig. 6 Plot of the effective potentials (28) (long-dash line)
(Schwarzschild case) and (30) (solid line) in the massless case when
L = 3, H = 10 and ξ = 0.2. This choice of H gives rise to a scal-
ing factor h of the same order as hE = 2.121 × 10−9 kpc in [29,30]
and central object is modelled in terms of a droplet (see also Fig. 6).
The maximum of Vef f,S is located at the radius of the photon sphere
r∗
γ = 3/2 while the event horizon of the Schwarzschild black hole is

r∗
s = 1. Note that the effective potential given by (30) does not exhibit

a maximum and therefore, the droplet does not possess a photon sphere

As we can see from Fig. 8, the equation g00(r∗) = 0 does
not admit any real root and therefore, this model predicts
a fuzzy droplet. More recent estimates of the DM density
using the rotation curve of the Milky Way using different
Galactic mass models together with certain DM and baryonic
density distributions has been obtained by [58]. In particu-
lar, [58] studied two baryonic models: the model B1 where
a combination of Plummer’s and Miyamoto–Nagai’s poten-
tials has been assumed and the model B2 which relies on
the assumption of two different double exponential profiles
and the Hernquist profile. Three different DM spherical halos
were tested where one is described by the Einasto profile. In
the B1 model coupled to the Einasto profile, the scaling fac-
tor is hB1 = 3.89 × 10−11 kpc while the B2 model predicts
hB2 = 1.426×10−5 kpc. Let us first consider the B1 model.
In this case, we need to fix H = 0.1 so that the scaling
factor predicted by our model is of the same order as hB1.
More precisely, we have h = 3.92 × 10−11 kpc. Proceed-
ing as before, we find that, in order for (31) to be satisfied,
ξ < 1.67 for L = 2, ξ < 1.98 for L = 3, ξ < 2.31 for L = 5
and ξ < 3.98 for L = 100. As it can be seen in Fig. 9, we
observe that (30) is well approximated by the Schwarzschild
effective potential in a large neighbourhood of the minimum
also in the case H = 0.1. To the value H = 0.01 there
corresponds a rescaled mass parameter μ = 5. A close
inspection of Fig. 10 shows that differently as in the case
H = 10 we have a more complex scenario. If ξ < 1.2865,
we have a dark matter black hole with two distinct horizons

Fig. 7 Plot of the effective potentials (28) (asterisk symbol)
(Schwarzschild case) and (30) (solid line) in the massless case when
L = 3, H = 0.1 and ξ = 1.0. Both potentials share the same pho-
ton sphere at r∗

γ = 3/2. Both black hole models have the same event
horizon at r∗

s = 1

while for ξ = 1.2865 an extreme black hole with radius
re = 2.33 × 10−7 pc < RB H = 3.92 × 10−7 pc. Finally, if
ξ > 1.2865, there is a diffused dark matter droplet without
horizon. The same scenario occurs if we further reduce the
value of H . For instance, if H = 0.02, the extreme value of
the Einasto parameter discriminating between a fuzzy black
hole and a fuzzy droplet is found to be ξ = 1.9093. Regard-
ing the B2 model in [58], it is necessary to fix H = 105. It
turns out that it is not possible to find any value of the param-
eter ξ such that the inequality (31) is satisfied. This means
that the matching procedure at the minimum of the effective
potential which ensures at r = rmin that the mass function
approximates MB H according to the condition (23) cannot
be applied.

4 Diffused self-gravitating dark matter droplets from a
nonlocal equation of state

In the previous section, we assumed an equation of state for
the radial pressure of the form, pr = −ρ, and an anisotropic
fluid with an additional tangential pressure because, if we
would have insisted on a hydrostatical equilibrium, expressed
through the Tolman–Oppenheimer–Volkoff (TOV) equation,
and an energy–momentum tensor of a perfect fluid, this
approach would have led to an over-determined system of
equations as the density ρ is already assigned a priori and
the pressure is fixed by the EOS. This allowed to show that
starting with the Einasto density profile, it is possible to con-
struct a fuzzy black hole or a diffused self gravitating droplet
depending on the particular value of the rescaled mass param-
eter μ. In the present section, we offer a further example
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Fig. 8 Plot of the metric coefficient g00 given by (33) in the case H
= 10 and μ = 0.05 for ξ = 0.2 (solid line), ξ = 0.7 (dotted line) and ξ =
1.0 (longdashed line)

Fig. 9 Plot of the effective potentials (28) (asterisk symbol)
(Schwarzschild case) and (30) (solid line) in the massive case when
L = 3, H = 0.1 and ξ = 1.0. This choice of H gives rise to a
scaling factor h of the same order as hB1 = 3.89 × 10−11 kpc in
[58]. The minimum is located at r∗

min = 9 + 3
√

6 ≈ 16.35 where
Vef f,S(r∗

min) = −0.0147 and Vef f (r∗
min) = −0.0147. Both potentials

share the same minimum and Vef f,S is a good approximation of Vef f
in a neighbourhood of the minimum and asymptotically away

through a different EOS signalizing that the regularity of a
fuzzy black hole or a fuzzy self-gravitating droplet seems
to require as a main feature that the radial pressure has to
be negative at least on a subset of the positive real line. To
this purpose, we need to fix a certain EOS and an energy–
momentum tensor. Since the Einasto energy density has a dif-

Fig. 10 Plot of the metric coefficient g00 given by (33) in the case
H = 0.1 and μ = 5 for ξ = 1 (solid line), ξ = 1.2865 (dot line) and
ξ = 1.4 (longdashed line). Note that for ξ = 1 the event horizon is
at r∗ = 1 and coincides with that of a Schwarzschild black hole. The
extreme black hole corresponds to ξ = 1.2865 and its event horizon is
located at r∗

e = 0.5947 or equivalently at re = 2.33 × 10−7 pc

fused profile, we would expect that any change in the radial
pressure should take into account the effects of the varia-
tions of the energy density within the entire volume. Hence,
it seems reasonable to think that nonlocal effects may play
a certain role when we work with such a distribution. For
instance, in order to take into account nonlocality, we could
imagine as in [87–89] that the components of the energy–
momentum tensor besides displaying a dependence on the
spacetime event it also exhibits a functional dependence by
averaging the energy density over the enclosed configura-
tion . Without further ado, let us derive the complete solution
of the gravitational field equations for an Einasto inspired
anisotropic fluid described by a nonlocal equation of state of
the form [87–89]

pr (r) = ρ(r) − 2

r3

∫ r

0
u2ρ(u) du

= M

4π�(3ξ)

[
e−( r

h )
1/ξ

ξh3 − 2

r3 γ

(
3ξ,

( r

h

)1/ξ
)]

.

(34)

Since we are interested in matter configurations at hydrostatic
equilibrium, we can introduce an effective size R of the object
by the condition pr (R) = 0. The numerical value of R can be
found by plotting h2 pr versus y = (r/h)1/ξ . To this purpose,
it is convenient to introduce the mass parameter μ = M/h
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Table 2 For different choices of the parameter ξ we present some
typical values of the radial distance R∗ = R/h at which the radial
pressure vanishes. The case ξ = 7.072 corresponds to the Dark Matter
case studied in [29,30]. The numerical values has been obtained by
setting equal to zero the expression in the brackets appearing in (35)
and choosing k = 100. Note that R∗ grows linearly in the parameter ξ

ξ R∗ = R/h

1/2 0.93675

1 1.45123

1.5 1.95996

3 3.47355

4 4.47832

5 5.48161

6 6.48401

7.072 7.55797

so that (34) becomes

h2 pr

μ
= 1

4π�(3ξ)

[
e−y

ξ
− 2

y3ξ
γ (3ξ, y)

]

= e−y

4π

[
1

ξ�(3ξ)
− 2

∞∑
k=0

yk

�(k + 3ξ + 1)

]
, (35)

where in the last step we made use of 6.5.29 in [70]. For a
list of numerical values of R∗ = R/h we refer to Table 2.
Moreover, in Fig. 11 we plot the radial pressure to explicitly
demonstrate that it is indeed positive in a region of finite size
R but negative outside. This however does not mean that
the gravitational object will have a finite radius because the
energy density does not vanish in the region r > R.

In order to proceed further, we consider also in this case a
spherically symmetric static matter distribution represented
by the Einasto density profile ρ but differently as in the pre-
vious section we now assume the following ansatz for the
line element

ds2 = A2(r)dt2 − dr2

B(r)
− r2

(
dϑ2 + sin2 ϑdϕ2

)
. (36)

If we suppose that the energy–momentum tensor in the region
occupied by the matter distribution is again given by (11), the
Einstein field equations Gμν = −8πTμν together with the
conservation equation T μν ;ν = 0 with μ = r give rise to the
following coupled system of ODEs

1

r

d B

dr
− 1 − B(r)

r2 = −8πρ(r), (37)

2B(r)

r A(r)

d A

dr
− 1 − B(r)

r2 = 8πpr (r), (38)

1

2r A(r)

[
2B(r)

d A

dr
+ 2r B(r)

d2 A

dr2

+A(r)
d B

dr
+ r

d A

dr

d B

dr

]
= 8πp⊥(r), (39)

Fig. 11 Plot of the rescaled radial pressure h2 pr /μ given by (35) with
k = 100 versus y = (r/h)1/ξ in the case ξ = 1/2 (dotted line) and
ξ = 0.8 (solid line). The radial pressure is positive in the inner region
and it vanishes at some typical value of y which depends on the particular
choice of the Einasto parameter ξ . Outside such a value of y, the pressure
becomes negative and it exhibits a minimum. The same behaviour can
be observed for all other values of ξ considered in Table 2

dpr

dr
+ pr (r) + ρ(r)

A(r)

d A

dr
= 2

r
[p⊥(r) − pr (r)] . (40)

With the help of Eqs. (37) and (38) it is straightforward to
check that Eqs. (39) and(40) represent the same equation.
Hence, we will restrict our attention to the differential system
given by (37), (38) and (40) and in order to avoid to work
with an under-determined system (there are three equations
for the four unknown functions A, B, pr and p⊥), we also
assume an equation of state for matter represented by (34).
Integrating equations (37), (38) yields

B(r) = 1 − 2m(r)

r
, (41)

A2(r) = eφ(r), φ(r) =
∫

ψ(r) dr,

ψ(r) = 1

B(r)

[
8πr pr (r) + 2m(r)

r2

]
. (42)

where the mass function m is given by (14), while the tan-
gential pressure p⊥ is obtained directly from (40) together
with (42), that is

p⊥(r) = pr (r) + r

2

[
dpr

dr
+ pr (r) + ρ(r)

B(r)

(
4πrpr (r) + m(r)

r2

)]
.

(43)
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Fig. 12 Plot of the tangential pressure h2 p⊥/μ given in (45) versus
y = (r/h)1/ξ in the case ξ = 1/2 and for different values of the rescaled
mass μ < μ0 = 0.95206. The solid and dotted lines correspond to the
cases μ = 0.7 and μ = 0.94, respectively. The plot has been obtained
by applying 6.5.29 in [70] to expand the lower incomplete Gamma
function in (45) where the first hundred terms in the expansion have
been considered. The same behaviour can be observed for all other
values of ξ considered in Table 2

At this point a remark is in order. First of all, we observe that
the metric coefficient B is the same as the metric coefficient
grr appearing in the line element (20). This implies that the
same analysis of the zeroes of grr performed in Sect. 3 applies
to the present case as well. Moreover, B appears in (43) in
the denominator and this will cause the tangential pressure
to become singular at the zeroes of B. On the other hand, the
line element (36) can be cast into the form

ds2 = eφ(r)dt2 −
(

1 − 2m(r)

r

)−1

dr2

−r2
(

dϑ2 + sin2 ϑdϕ2
)

, (44)

which is reminiscent of a wormhole metric provided it satis-
fies the wormhole conditions formulated in [90]. Under the
assumption of an anisotropic energy–momentum tensor one
of them is that p⊥ remains finite. The other one requires B
to have two zeros. We will leave the examination if such
a wormhole is viable at all to future projects and circum-
vent the latter condition by requiring μ < μ0 . Note that
such a condition also guarantees that the function φ is every-
where regular because it prevents the function B entering in
(42) from having real roots. Hence, we conclude that the line
element (44) describes a fuzzy self-gravitating dark matter
droplet. In Fig. 12 we plot the tangential pressure to show

Fig. 13 Plot of the radial and tangential pressures h2 pr (solid line) and
h2 p⊥ (dotted line) versus y = (r/h)1/ξ in the case ξ = 1/2 and μ =
0.7. 6.5.29 in [70] has been used to expand the lower incomplete Gamma
function in (45) where the first hundred terms in the expansion have been
considered. The minima of the radial and tangential pressures denoted
by yr and y⊥ do not coincide and they are located at yr = 2.6038 and
y⊥ = 2.2335, respectively

that it is indeed well-behaved for any value of r provided
that μ < μ0. To accomplish that, it is convenient to intro-
duce the variable y = (r/h)1/ξ which allows to rewrite (43)
as

h2 p⊥
μ

= 1

4π�(3ξ)

[
γ (3ξ, y)

y3ξ
− ye−y

2ξ2

]

+ μy2ξ

�2(3ξ)
[
1 − 2μ

yξ �(3ξ)
γ (3ξ, y)

] [
e−y

ξ
− γ (3ξ, y)

y3ξ

]2

.

(45)

In Fig. 13 we plot the radial and tangential pressures for
the same choice of the Einasto parameter and the rescaled
mass. Also in the case of a nonlocal equation of state, it
turns out that the self-gravitating droplet does not exhibit
any singularity at r = 0. To verify that, we first observe that

Table 3 Typical values of ρ(0) and pr (0) at the centre of the droplet.
The scaling factors hE , hB1 and hB2 are chosen as in [29,30,58]

M = 10M� ρ(0) kg/m3 pr (0) Pa

hE = 2.121 × 10−9 kpc ≤ 2.17 × 109 ≤ 8.01 × 1023

hB1 = 3.89 × 10−11 kpc ≤ 4.36 × 1012 ≤ 1.30 × 1029

hB2 = 1.43 × 10−5 kpc ≤ 8.85 × 10−5 ≤ 2.64 × 1012
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Fig. 14 Plot of the effective potential (49) for = 0, ξ = 0.2, H = 10 with
L = 1 (solid line), L = 2 (dotted line) and L = 5 (long dashed line)

Fig. 15 Plot of the effective potential (49) for = 1, ξ = 0.2, H = 10 with
L = 1 (solid line), L = 2 (dotted line) and L = 5 (long dashed line)

the Kretschmann scalar associated to the line element (44) is
given by

Rαβγ δ Rαβγ δ = 2

r2

[(
d B

dr

)2
+ B2(r)ψ2(r)

]

+1

4

[
B(r)ψ2(r) + 2B(r)

dψ

dr
+ ψ(r)

d B

dr

]2
.

(46)

Due to the presence of the term 1/r2 in the above expression,
it is not clear if the Kretschmann scalar is singularity free.
However, if we expand the lower incomplete Gamma func-
tion entering in the metric coefficients by means of 6.5.29 in
[70] and we let r → 0, we find that

lim
r→0

Rαβγ δ Rαβγ δ = 32M2

9h6ξ2�2(3ξ)

+12M2[(1 + 2ξ)�2(3ξ) + ξ2]
9h6ξ4�4(3ξ)

(47)

showing that there is no curvature singularity at r = 0.
Regarding the asymptotic behaviour of the line element (44)
we clearly have B → 1 at space-like infinity while by means
of 6.5.3 and 6.5.32 in [70] it is possible to show that the
function φ exhibits the asymptotic behaviour

φ(r) = 2Mξ

(ξ + 1)r
+ · · · , (48)

where exponentially decaying terms have been neglected.
This shows that eφ(r) → 1 as r → ∞ and therefore, the
manifold described by (44) is Minkowski flat asymptotically
away. We conclude this section by showing that our droplet
allows for bound states of massive particles. By means of
(25.16) in [84] we immediately find that the effective poten-
tial for the droplet is given by

Uef f (r) = eφ(r)

2

(
ε + �2

r2

)
, (49)

where ε and � have been already defined in the previous
section. Plots of (49) for different values of the parameters are
displayed in Fig. 14. Since Uef f is nonnegative, a matching
procedure with the effective potential for a Schwarzschild
BH cannot be achieved in this case. However, if we insist
that the total mass M of the droplet coincides with the mass
MB H of the black hole at the galactic centre and we introduce
the rescalings r∗ = r/rs , L = �/rs and H = h/rs with
rs = 2MB H , we can rewrite φ and B as follows

φ(r∗) = 1

H3

∫
r∗e

−
(

r∗
H

)1/ξ

B(r∗)

[
2

ξ�(3ξ)
− 3 f (r∗)

]
dr∗,

(50)

B(r∗) = 1 − r∗2

H3 e
−

(
r∗
H

)1/ξ

f (r∗),

f (r∗) =
∞∑

k=0

(r∗/H)k/ξ

�(k + 3ξ + 1)
, (51)

where we made use of 6.5.29 in [70]. From Fig. 15 we see
that in the regime of low L the effective potential exhibits a
minimum for which bound states for massive particles can
form and a maximum corresponding to an unstable orbit. The
situation is very different in the case of a massless particle
where no bound states are allowed. We conclude with the
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observation that this model is not appropriate to reproduce
the galactic motion of S-stars but it is nevertheless interesting
because it indicates the possibility that a mass of dark mat-
ter modelled in terms of an anisotropic fluid with an Einasto
energy density profile permits stable trajectories for massive
particle over a large region as it can be seen in Fig. 15. Such a
droplet albeit not suitable to model the central galactic object
could possibly be formed in other parts of the galaxy. We con-
clude this section by estimating the value of the density and
pressures at the centre of the droplet and comparing them with
that for degenerate matter. More specifically, we consider the
case of a neutron star with typical density 1017 kg/m3 and
degenerate pressure of the order 1031−1034 Pa while in our
model we take M = 10M�. By means of (8) and (34), we
find that

ρ(0) = M

4πh3ξ�(3ξ)
≤ 3.387M

4πh3 , pr (0) = c2

3
ρ(0), (52)

where in the expression for ρ(0) we used the fact that the
function 1/(ξ�(3ξ)) has a global maximum for ξ = 0.1538.
We summarized the values of the density and radial pressure
at the centre of the droplet in Table 3.

5 Conclusions

Motivated by the DM dominance of the galaxy we established
a connection between DM and the BH physics by considering
the Einasto density profile. We showed that starting with this
profile and coupling it to an anisotropic energy–momentum
tensor, it is possible to derive different black hole solutions by
making certain choices for the underlying EOS. In the case of
an EOS of the form pr = −ρ, we show that it is possible to
construct a self-gravitating droplet or a BH depending on the
values of the mass parameter μ. If there is a horizon we could
call such an object a fuzzy BH [72]. These objects made of
DM are in nature different from the DM clumps constructed
in [17] albeit the idea to connect the central galactic object to
DM is similar. We also discovered that the Einasto inspired
black holes increases its Hawking temperature, as the hori-
zon radius shrinks, until the temperature reaches a maximum
after which the temperature decreases sharply and vanishes
exactly at the radius of the extremal black hole. In both cases,
a fuzzy droplet or a fuzzy BH, it is possible to obtain an effec-
tive potential which governs the equation of motion in such
way that the orbits will be as in the case of a standard galac-
tic BH. If, instead of the previous EOS, we adopt a nonlocal
EOS, it is possible to construct a self-gravitating droplet but
it seems that a negative radial pressure cannot be avoided.
Moreover, an analysis of the effective potential shows the
occurrence of bound states as well as the presence of an
unstable orbit in the case of massive particle and low values
of their angular momenta.

We also notice that the Einasto profile is a generalization
of a Gaussian. Black Holes based on such density profile have
been considered before. As a result, issues regarding the per-
turbation [91] or exotic spacetime structure by considering a
more general atlas [92] would proceed along similar lines.

Finally, while finishing this manuscript, we found a paper
[93] which is relevant to our work because it shares conclu-
sions similar to those obtained here but by a different method.
More precisely, [93] showed by a numerical simulation that if
we replace the central supermassive BH by an object made of
darkinos, this mass of DM would not only produce the same
kinematics for S-stars but can also explain the G2 anomaly
[94].
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