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Abstract We show that the Kerr–Schild ansatz can be
extended from the metric to the tetrad, and then to telepar-
allel gravity where curvature vanishes but torsion does not.
We derive the equations of motion for the Kerr–Schild null
vector, and describe the solution for a rotating black hole
in this framework. It is shown that the solution depends on
the chosen tetrad in a non-trivial way if the spin connection
is fixed to be the one of the flat background spacetime. We
show furthermore that any Kerr–Schild solution with a flat
background is also a solution of f (T ) gravity.

1 Introduction

The Kerr–Schild ansatz [1–4], in which the full metric gμν =
ḡμν+2Fkμkν is expressed as the sum of a background metric
ḡμν and the tensor product of a null vector kμ (rescaled by a
scalar function F), has been very successful in determining
exact solutions of Einstein gravity. This follows from the fact
that linear perturbation theory with this ansatz is exact [5]:
the inverse metric is given by gμν = ḡμν − 2Fkμkν , and the
Ricci tensors of the full and background metric are related
by

Rμ
ν = R̄μ

ν − 2Fkμkρ R̄ρν

+∇̄ρ

[∇̄μ
(
Fkρkν

) + ∇̄ν

(
Fkρkμ

) − ∇̄ρ
(
Fkμkν

)]
(1)

with no higher-order terms, provided that kμ is geodesic:
kρ∇̄ρkμ = 0. Therefore, if the background metric satisfies
the Einstein equations in vacuum R̄μν = 0, one obtains a
new solution Rμν = 0 by solving the differential equation
for kμ. The Kerr–Schild ansatz can be generalized to met-
rics which solve the Einstein equations with a cosmological
constant, the coupled Einstein–Maxwell system or the Ein-
stein equations with a perfect fluid source [4,6], and exam-
ples include the charged, rotating black hole solution (and its
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uncharged and non-rotating limits) and pp-wave spacetimes
that describe gravitational radiation.

Since there has been a renewed interest in alternative
descriptions of gravity, namely in teleparallel form where
gravity is described by torsion instead of curvature [7–10],
it remains to see if the Kerr–Schild ansatz can be adopted to
these situations. In particular, while in Einstein gravity the
relevant connection is the Levi-Civita one, which is uniquely
determined by the metric such that the above ansatz is all that
is needed to determine the relation between the background
and full curvature tensors, the teleparallel equivalent employs
the tetrad as basic variable and an auxiliary curvature-free
(Weitzenböck) connection. We show in Sect. 2 that one can
generalise the Kerr–Schild ansatz to the tetrad, and derive the
analogue of relation (1) for the torsion. In Sect. 3, we give
the solution for a rotating black hole in this framework, and
conclude in Sect. 4.

2 The Kerr–Schild ansatz in teleparallel gravity

In teleparallel gravity, the basic field variable is the tetrad
(or vielbein or frame field) eμ

a , from which the metric is
constructed via gμν = ηabeμ

aeν
b with the frame metric ηab.

The inverse of the tetrad is written eμ
a , and fulfills the con-

sistency conditions eμ
a = gμνηabeν

b and gμν = ηabeμ
aeν

b

with the inverse of the frame metric ηab and the inverse
of the metric gμν . The second field is a spin connection
ωμab = ωμ[ab] with vanishing curvature Rμνab = ∂μωνab −
∂νωμab + ωμa

cωνcb − ωνa
cωμcb = 0, which therefore has

the general form [10,11]

ωμab = �−1
ac ∂μ�c

b = �ca ∂μ�c
b , �a

b = exp(λ)a
b (2)

for an antisymmetric matrix λab = λ[ab] (i.e, it is the Lorentz
transformation with parameter λa

b of the zero connection).
From this, one obtains the affine connection

Γ ρ
μν ≡ eρ

a

(
∂μeν

a + ωμ
a

b eν
b
)

, (3)
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which for the case of vanishing spin connection ωμab = 0
is known as the Weitzenböck connection. Lastly, one defines
torsion Tμν

a by

Tμν
a ≡ 2∂[μeν]a + 2ω[μabeν]b = 2eρ

aΓ
ρ
[μν] . (4)

The contortion is the linear combination

Kμρσ ≡ 1

2
Tρσμ − Tμ[ρσ ] , (5)

which is useful because the connection can be decomposed
as

Γ ρ
μν = ◦

Γ
ρ

μν − Kμν
ρ , ωμ

ab = ◦
ωμ

ab + Kμρσ eρaeσb , (6)

where
◦
Γ

ρ

μν is the Levi-Civita connection, the unique connec-
tion that is both metric-compatible and torsion-free.1

2.1 The Kerr–Schild ansatz

Consider now a background geometry, whose quantities are
denoted with an overbar, and a null vector kμ in that geometry,
fulfilling ḡμνkμkν = 0. Defining kμ ≡ ḡμνkν and ka ≡
ēμ

akμ, it is straightforward to check that the ansatz for the
full tetrad

eμ
a ≡ ēμ

a + Fkμka (7)

results in the usual Kerr–Schild form gμν = ḡμν + 2Fkμkν

for the metric (and also its inverse), that the inverse full tetrad
is given by eμ

a = ēμ
a − Fkμka , and that the consistency

conditions for the tetrad and the metric hold. Furthermore,
the indices of the vector kμ can be moved with either the
background or full metric and converted into frame indices
with either the background or full tetrad, and kμ is null also
with respect to the full geometry. As in the metric case, the
fact that kμ is null leads to the equality of the determinants:
e = det eμ

a = det ēμ
a = ē.

Since the spin connection in teleparallel gravity only rep-
resents inertial effects that are present in non-inertial frames
[10], we restrict to the case where it is equal to the back-
ground one: ωμab = ω̄μab. The physical interpretation is
that the Kerr–Schild term results from the addition of grav-
ity, and that the character of the given frame (inertial or not)
does not change in the process. For the change of the affine
connection, the torsion and the contortion one computes that

Γ ρ
μν = Γ̄ ρ

μν + ∇̄μ

(
Fkνkρ

)
, (8a)

1 We use the conventions of [12]. To convert into the conventions used
in many of the recent literature on teleparallel gravity, in particular the
review [10] whose teleparallel quantities are denoted with a black bullet,

use Γ
ρ
μν = •

Γ
ρ

νμ, ωμab = •
ωabμ, Tμν

ρ = •
T

ρ

μν , Kμν
ρ = − •

K ρ
νμ and

Sρ
μν = •

Sρ
μν .

Tμν
a = T̄μν

a + 2∇̄[μ
(
Fkν]ka) + FT̄μν

bkakb , (8b)

Kμρσ = K̄μρσ + 2∇̄[ρ
(
Fkσ ]kμ

) + FT̄ρσ
akμka

− 2FT̄μ[ρakσ ]ka ,
(8c)

where ∇̄ is the covariant derivative of the background geome-
try involving the spin connection ωμab for frame indices and
the affine connection Γ̄

ρ
μν for spacetime indices. To derive

these results, one needs to be careful in that the spacetime
indices of quantities defined in the full geometry need to be
raised or lowered with the full metric gμν , while the ones of
background quantities are raised or lowered with the back-
ground metric ḡμν , and similarly for frame indices.

2.2 Equations of motion for teleparallel gravity

The Lagrangian of the teleparallel equivalent of Einstein
gravity is given by [10,11]

L = |e|
16πG

[
1

4
TμνρT μνρ + 1

2
TμνρT μρν − TμT μ

]

= |e|
32πG

T (9)

with the trace of the torsion Tμ ≡ T ρ
μρ , the torsion scalar

T and the superpotential Sρ
μν :

T ≡ SρμνT μνρ , Sρ
μν ≡ Kρ

μν − 2δ[μ
ρ T ν] . (10)

The variation of the action with respect to the spin connec-
tion (2), i.e., with respect to the antisymmetric matrix λab,
vanishes identically [10,11]. On the other hand, the variation
with respect to the tetrad results in

∇ν Sρ
μν − Tν Sρ

μν + Tνρ
σ Sσ

μν − 1
2 Tνσ

μSρ
σν

+ 1
4δ

μ
ρ Tαβ

ν Sν
αβ = 0 . (11)

Expressing the superpotential in terms of the contortion, this
gives

∇ν Kρ
μν + ∇ρT μ + Tνρ

σ Kσ
μν − 1

2 Tνσ
μKρ

σν − Tν Kρ
μν

−δ
μ
ρ

(∇νT ν − 1
4 Tαβ

ν Kν
αβ − 1

2 TνT ν
) = 0 , (12)

and upon taking the trace in ρμ, the terms in parentheses in
the second line are seen to vanish separately for all spacetime
dimensions n > 2, to which we restrict in the following. We
can thus take only the terms in the first line, and expressing
the contortion using the torsion it follows that

2∇νT ν
(μρ) + ∇νTρμ

ν − 2∇ρTμ + 2Tμνσ Tρ
(νσ)

− 1
2 TνσμT νσ

ρ − T νTρμν − 2T νTν(μρ) = 0 . (13)

The part of this equation that is antisymmetric in ρμ reads

∇νTρμ
ν − 2∇[ρTμ] − T νTρμν = 0 , (14)

which is exactly the contracted Bianchi identity for torsion
(since the curvature vanishes) [12]. We can thus consider
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only the symmetric part

∇ρT ρ
(μν) − ∇(μTν) + Tμρσ Tν

(ρσ)

− 1
4 TρσμT ρσ

ν − T ρTρ(μν) = 0 . (15)

Assume now that the Kerr–Schild null vector kμ fulfills the
geodesic equation of the background, which for a connection
which torsion reads

kρ∇̄ρkα − T̄ αρσ kρkσ = 0 . (16)

We assume furthermore that the background torsion T̄μνρ

fulfills the equation of motion (15). Raising the μ index of
equation (15) and inserting the Kerr–Schild form, this results
in the equation
(∇̄ρ − T̄ ρ

) [∇̄ρ

(
kμkν F

) − ∇̄μ
(
kνkρ F

) − ∇̄ν

(
kμkρ F

)]

+∇̄ρ

[(
T̄ μ

σνkρ + T̄νσ
μkρ − T̄ μρσ kν − T̄νρσ kμ

)
kσ F

]

+T̄ μρσ ∇̄ν

(
kρkσ F

) − T̄ ρσμ∇̄ρ (kνkσ F)

+T̄νρσ ∇̄μ
(
kρkσ F

) − T̄ρσν∇̄ρ
(
kμkσ F

)

−ḡμτ
[
δ
ρ

(τ T̄ αβ
ν)T̄αβσ − 2T̄ αδ

ρ

(τ T̄ν)ασ

−T̄ αρ
τ T̄ασν − 2T̄ ρ T̄σ(τν) + 4T̄(τ

(ρα)T̄ν)[σα]
]

×Fkρkσ = 0 , (17)

which as for Einstein gravity is linear in Fkμkν . In particular,
for a flat background with T̄μνρ = 0 we have the simple
second-order equation

∇̄ρ
[∇̄ρ

(
kμkν F

) − ∇̄μ
(
kνkρ F

) − ∇̄ν

(
kμkρ F

)] = 0 , (18)

together with the geodesic equation

kρ∇̄ρkα = 0 . (19)

Note that in this case the equation is the same as in Einstein
gravity with a flat background R̄μν = 0 (1).

2.3 f (T ) teleparallel gravities

For the case of a flat background with vanishing torsion, the
geodesic equation (19) furthermore implies that the torsion
scalar (10) of the full geometry vanishes:

T = KρμνT μνρ − 2TνT ν

= −4F2 (
kμ∇̄μkρ

) (
kν∇̄νkρ

) = 0 . (20)

This observation is important for so-called f (T ) gravities
[13], where with a given function f the Lagrangian (9) is
generalised to

L = |e|
32πG

f (T ) . (21)

A general variation of this Lagrangian reads

δL = |e|
32πG

f (T ) eμ
aδeμ

a

+ |e|
32πG

f ′(T )
[

− 4Sa
μν∂νδeμ

a

+4Sbμνωνabδeμ
a + 4Saμbδωμab

]

+ |e|
32πG

f ′(T )δeμ
a

×
[

− 4T μρσ Ta(ρσ) + 4TaT μ

+4T ρTaρ
μ + 2T ρνμTaρν

]
, (22)

and following [14] we decompose the variation of the vier-
bein into symmetric and antisymmetric parts:

δeμ
a = 1

2
gνρeν

aδgμρ − eμ
bδλa

b (23)

with

δλa
b ≡ 1

2
ηbcgμν

(
eμ

aδeν
c − eμ

cδeν
a)

. (24)

Integrating by parts, the metric variation then gives directly
the symmetric generalisation of the equation of motion (11)

0 = ∇ρ

[
f ′(T )S(μν)ρ

]
+ 1

4
f (T )gμν

− f ′(T )

[
Tρ S(μν)ρ − T ρ(μ|σ |Sσ

ν)ρ + 1

2
Tρσ

(μSν)σρ

]
.

(25)

On the other hand, using the result (2) the variation of the
spin connection reads

δωμab = ∂μδλab − ωμb
cδλca + ωμa

cδλcb = ∇μδλab , (26)

and the λ variation of the Lagrangian results in

0 = S[ab]μ f ′′(T )∇μT + f ′(T )

[
∇μS[ab]μ

−Tμ

(
S[ab]μ + 1

2
T μ[ab]

)
− 1

4
Tμν

[a (
Sb]μν + T b]μν

) ]
.

(27)

Expressing the superpotential in terms of the torsion, the
terms in brackets read

− 1

2
eμ

aeν
b
[
∇ρT μνρ − 2∇[μT ν] − TρT μνρ

]
, (28)

which is again exactly the contracted Bianchi identity for
torsion (14) and vanishes. We see that we obtain a second
equation of motion only when the second derivative of f is
non-vanishing, which is well known [10,13,15]. Expressing
the superpotential in terms of the torsion also in the first term,
we thus have the equation
(

T abμ − 2eμ[a T b]) f ′′(T )∇μT = 0 . (29)

For the Kerr–Schild ansatz (with a flat background), the
second equation of motion (29) is automatically fulfilled
since the torsion scalar vanishes according to (20). More-
over, we have to impose f (0) = 0, i.e., no cosmological
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constant, in order to have the flat background ḡμν = ημν as
solution of the first equation of motion (25). However, then
this equation reduces to the one for the teleparallel equiva-
lent of Einstein gravity (15) since the torsion scalar and thus
f ′(T ) is constant. It follows that any solution to the equa-
tions (18) and (19) in the teleparallel equivalent of Einstein
gravity with a flat background is also a solution in f (T )

gravity with f (0) = 0.

3 The rotating black hole solution

In Einstein gravity, the rotating black hole metric was found
by Kerr [2], in fact in Kerr–Schild form. The background
metric is the flat Minkowski metric ḡμν = ημν in Cartesian
coordinates x , y, z, t , the function F is given by

F = Mr3

r4 + a2z2 (30)

with the mass parameter M = Gm, and the null vector kμ is
given as the one-form

kμ dxμ = r

r2 + a2 (x dx + y dy) + a

r2 + a2 (x dy − y dx)

+ z

r
dz + dt , (31)

where r > 0 is defined as that solution of

r4 −
(

x2 + y2 + z2 − a2
)

r2 − a2z2 = 0 (32)

which asymptotically behaves like the Cartesian radius: r ∼√
x2 + y2 + z2.
For a flat background the equation determining the null

vector kμ is the same in Einstein gravity (1) as in teleparallel
gravity (18), and also the condition that kμ be geodesic on the
flat background results in the same equation (19). It follows
immediately that the rotating black hole solution in telepar-
allel gravity is given in Kerr–Schild form with the same func-
tion F (30) and the same null vector kμ (31), in Cartesian
coordinates with the trivial background tetrad ēμ

a = δa
μ and

vanishing spin connection ωμab = 0. It thus only remains
to compute the torsion explicitly. However, the computation
is more meaningful in a frame adapted to the symmetries of
the solution. We thus choose as coordinates the time t , the
radius r defined by (32) and two angles θ and φ such that

x =
√

r2 + a2 sin θ cos φ ,

y =
√

r2 + a2 sin θ sin φ , z = r cos θ . (33)

These coordinates are known as oblate spheroidal coordi-
nates, where the deviation from spherical form is measured
by the parameter a, and the background metric reads

ḡμν dxμ dxν = − dt2 + Σ

r2 + a2 dr2

+Σ dθ2 + (r2 + a2) sin2 θ dφ2 , (34)

where we set Σ ≡ r2 + a2 cos2 θ . The null vector kμ and
function F are given by

kμ dxμ = dt + Σ

r2 + a2 dr + a sin2 θ dφ , (35a)

F = Mr

Σ
, (35b)

and the full metric reads

gμν dxμ dxν = −
(

1 − 2Mr

Σ

)
dt2 + 4Mr

r2 + a2 dt dr

+4Mar sin2 θ

Σ
dt dφ + Σ

r2 + a2

(
1 + 2Mr

r2 + a2

)
dr2

+4Mar sin2 θ

r2 + a2 dr dφ + Σ dθ2

+
(

r2 + a2 + 2Ma2r sin2 θ

Σ

)
sin2 θ dφ2 . (36)

3.1 The background geometry

Since the background geometry should stay flat (and thus
have vanishing torsion), the change of coordinates (33) also
induces a change in the spin connection, which shows explic-
itly that we have passed from the Cartesian inertial frame to
a non-inertial one. Let us choose the background tetrad one-
form ēa ≡ ēμ

a dxμ as

ē0 = dt , ē1 =
√

Σ

r2 + a2 dr , ē2 = √
Σ dθ ,

ē3 =
√

r2 + a2 sin θ dφ , (37)

such that the background frame metric has the usual constant
form η̄ab = diag(−1, 1, 1, 1)ab. Imposing vanishing torsion
0 = T̄μν

ρ = 2Γ̄
ρ
[μν], we obtain from equation (3) that

ω̄[μabēν]b = −∂[μēν]a , (38)

from which we can determine the background spin connec-
tion. Since both sides are antisymmetric in μν, we multiply
by dxμ ∧ dxν to obtain a two-form, whence equation (38)
reduces to the first Cartan structure equation (for vanishing
torsion)

ω̄ab ∧ ēb = − dēa , (39)

where dēa ≡ ∂μēν
a dxμ ∧ dxν , and ω̄ab ≡ ω̄μ

ab dxμ is the
background spin connection one-form. For the right-hand
side, we compute that

dē0 = 0 , dē1 = a2 cos θ sin θ
√

(r2 + a2)Σ
dr ∧ dθ ,

dē2 = r√
Σ

dr ∧ dθ ,

123



Eur. Phys. J. C (2021) 81 :766 Page 5 of 11 766

dē3 = r sin θ√
r2 + a2

dr ∧ dφ +
√

r2 + a2 cos θ dθ ∧ dφ . (40)

Imposing the antisymmetry ω̄ab = ω̄[ab], equation (39)
then results in

0 =
√

Σ

r2 + a2 ω̄01 ∧ dr + √
Σ ω̄02 ∧ dθ

+
√

r2 + a2 sin θ ω̄03 ∧ dφ , (41a)

0 = ω̄01 ∧ dt +
√

r2 + a2 sin θ ω̄13 ∧ dφ

+√
Σ ω̄12 ∧ dθ + a2 cos θ sin θ

√
(r2 + a2)Σ

dr ∧ dθ , (41b)

0 = ω̄02 ∧ dt −
√

Σ

r2 + a2 ω̄12 ∧ dr

+
√

r2 + a2 sin θ ω̄23 ∧ dφ + r√
Σ

dr ∧ dθ , (41c)

0 = ω̄03 ∧ dt −
√

Σ

r2 + a2 ω̄13 ∧ dr − √
Σ ω̄23 ∧ dθ

+ r sin θ√
r2 + a2

dr ∧ dφ +
√

r2 + a2 cos θ dθ ∧ dφ ,

(41d)

which after some algebra gives the unique result for the back-
ground spin connection

ω̄0b = 0 , ω̄12 = −a2 cos θ sin θ

Σ
√

r2 + a2
dr − r

√
r2 + a2

Σ
dθ ,

ω̄13 = −r sin θ√
Σ

dφ , ω̄23 = −
√

r2 + a2

Σ
cos θ dφ . (42)

Since the background torsion vanishes, this is actually equal
to the Levi-Civita connection, and in fact the connection nat-
urally associated to the given background tetrad [16].

It is important to note that the background geometry given
by the tetrad (37) and the spin connection (42) is flat (i.e., has
vanishing torsion T̄μν

a = 0) for all values of the parameter
a, which at this point does not yet have a physical inter-
pretation. Moreover, even as a → 0 where one recovers
spherical coordinates we have a non-inertial frame where the
spin connection does not vanish. (In this limit, it corresponds
to the reference tetrad of [16, eq. (5.8)] or the orthogonal
tetrad of [15, eq. (78)] with C1 = C4 = 1, Cs = r and
C2 = C3 = Cα = 0.)

3.2 The Kerr–Schild geometry

It is now a long but straightforward computation to check
that the null vector kμ fulfills the geodesic equation (19) and
the equation of motion (18), which is somewhat simplified
by the fact that in the adopted frame everything only depends
on r and θ . The geodesic equation can be rewritten as

kρ∂ρka + kρ ω̄ρ
abkb = 0 , (43)

where the inverse and frame components of the null vector
are given by

kt = −1 , kr = 1 , kθ = 0 , kφ = a

r2 + a2 , (44a)

k0 = 1 = −k0 , k1 =
√

Σ

r2 + a2 = k1 ,

k2 = 0 = k2 , k3 = a sin θ√
r2 + a2

= k3 , (44b)

and is easy to verify. On the other hand, the second-order
equation (18) is more difficult to check, and we have verified
it using the xCoba package of the xAct tensor algebra suite for
Mathematica [17], which was also used for the computation
of the torsion.

For the torsion two-form T a ≡ 1
2 Tμν

a dxμ ∧ dxν , equa-
tion (8b) reduces to

T a = ∂μ

(
Fkνka)

dxμ ∧ dxν + ω̄μ
ab Fkνkb dxμ ∧ dxν ,(45)

which for the individual components is

T 0 = −∂μ (kν F) dxμ ∧ dxν , (46a)

T 1 = ∂μ (kνk1 F) dxμ ∧ dxν + kνk3 Fω̄13 ∧ dxν , (46b)

T 2 = −kνk1 Fω̄12 ∧ dxν + kνk3 Fω̄23 ∧ dxν , (46c)

T 3 = ∂μ (kνk3 F) dxμ ∧ dxν − kνk1 Fω̄13 ∧ dxν . (46d)

We compute

T 0 = − M(2r2 − Σ)

Σ2

(
dt + a sin2 θ dφ

) ∧ dr

+2Mar sin θ cos θ

Σ2

[
a dt + (r2 + a2) dφ

] ∧ dθ , (47a)

T 1 = M(r4 − a4 cos2 θ)

Σ
3
2 (r2 + a2)

3
2

(
dt + a sin2 θ dφ

) ∧ dr

+ Mar sin θ

(r2 + a2)
3
2
√

Σ
dr ∧ (r sin θ dφ + a cos θ dθ)

+ Mr sin θ

Σ
3
2
√

r2 + a2

[
a dt + (r2 + a2 + Σ) dφ

]

∧ (r sin θ dφ − a cos θ dθ) , (47b)

T 2 = − Ma2r cos θ sin θ

(r2 + a2)Σ
3
2

(
dt + a sin2 θ dφ

) ∧ dr

− Mr

(r2 + a2)
√

Σ
dr ∧ (r dθ − a sin θ cos θ dφ)

− Mr

Σ
3
2

(
dt + a sin2 θ dφ

) ∧ (r dθ − a sin θ cos θ dφ) , (47c)

T 3 = Ma sin θ(2r4 + a2r2 − a4 cos2 θ)

Σ2(r2 + a2)
3
2

× (
dt + a sin2 θ dφ

) ∧ dr

− Mra cos θ(Σ + 2a2 sin2 θ)

Σ2
√

r2 + a2

(
dt + a sin2 θ dφ

) ∧ dθ

− Mr sin θ

Σ
√

r2 + a2

(
r dt − 2a2 sin θ cos θ dθ

) ∧ dφ

− Mr

(r2 + a2)
3
2

dr ∧ (a cos θ dθ + r sin θ dφ) , (47d)
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which is unfortunately not very enlightening.
Because the spacetime is algebraically special, the totally

antisymmetric part of the torsion has to vanish, as can be
seen from the relation (8b). This also serves as a check of the
above computation, and we verify that

Tμνρ dxμ ∧ dxν ∧ dxρ

= 2ηabT a ∧ ēb + 2FkakνT a ∧ dxν = 0 . (48)

Lastly, for the trace of the torsion T ≡ Tμν
aeμ

a dxν =
∇̄μ (Fkνkμ) dxν , we obtain

T = M

r2 + a2 dr + M

Σ

(
dt + a sin2 θ dφ

)
= F

r
kμ dxμ .

(49)

That the trace is proportional to the null vector might seem
surprising at first, but actually holds as a consequence of the
geodesic equation satisfied by the null vector. Namely, the
general result (8b) (with non-vanishing background torsion)
gives

Tν = T̄ν + 2∇̄[μ
(
Fkν]kμ

)

= T̄ν + FT̄νρσ kρkσ + kν∇̄μ

(
Fkμ

)
, (50)

where for the second equality we used the geodesic equation
with torsion (16). If the background torsion vanishes, as in
our case, we obtain the observed proportionality, and can
moreover derive that

∇̄μ

(
Fkμ

) = kμ∂μF + Fēμ
a∂μka

+Fēμ
a ω̄μ

a
b kb = F

r
, (51)

which can be checked to hold.

3.3 Non-rotating limit

In the non-rotating limit a → 0, the background tetrad (37)
becomes the standard orthogonal tetrad for spherical sym-
metry,

ē0 → dt , ē1 → dr , ē2 → r dθ , ē3 → r sin θ dφ ,

(52)

while the spin connection (42) reduces to

ω̄0b → 0 , ω̄12 → − dθ ,

ω̄13 → − sin θ dφ , ω̄23 → − cos θ dφ , (53)

both agreeing with the reference tetrad of [16, eq. (5.8)] and
the orthogonal tetrad of [15, eq. (78)] with C1 = C4 = 1,
Cs = r and C2 = C3 = Cα = 0 and the corresponding spin
connection. The solution for the torsion (47) reduces to

T 0 = − M

r2 dt ∧ dr , (54a)

T 1 = M

r2 dt ∧ dr , (54b)

T 2 = − M

r
(dt + dr) ∧ dθ , (54c)

T 3 = − M sin θ

r
(dt + dr) ∧ dφ , (54d)

which however does not agree with the Schwarzschild solu-
tion of [18]. The reason is the same as for the metric case,
namely that the Kerr–Schild form leads to the Schwarzschild
solution in coordinates related to the Eddington–Finkelstein
ones:

gμν dxμ dxν = −
(

1 − 2M

r

)
dt2 +

(
1 + 2M

r

)
dr2

+4M

r
dt dr + r2

(
dθ2 + sin2 θ dφ2

)
, (55)

which in particular contains a mixed term dt dr .
To recover the solution in Schwarzschild coordinates, we

perform the shift

t → t + 2M ln (r − 2M) , (56)

which results in

dt → dt + 2M

r − 2M
dr (57)

and the well-known metric

gμν dxμ dxν = − (
1 − 2M

r

)
dt2 + (

1 − 2M
r

)−1
dr2

+r2 dθ2 + r2 sin2 θ dφ2 . (58)

The shift only affects the 0 and 1 components of the full tetrad
ea = ēa + Fkakμ dxμ, for which we obtain

e0 = dt− M

r
(dt+dr)→

(
1− M

r

)
dt+ M

r −2M
dr , (59a)

e1 = dr + M

r
(dt + dr) → M

r
dt + r − M

r − 2M
dr , (59b)

where we used the limit a → 0 of the null vector frame
components (44b). To be able to compare with the result
of [18], we need to bring this into diagonal form, which is
achieved with the local Lorentz transformation ea → ẽa =
�a

beb = exp(λ)a
beb with

�a
b =

⎛

⎜
⎜⎜
⎝

r−M√
r(r−2M)

− M√
r(r−2M)

0 0

− M√
r(r−2M)

r−M√
r(r−2M)

0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟⎟
⎠

, (60a)

λab =

⎛

⎜⎜⎜
⎜
⎝

0 − ln
√

1 − 2M
r 0 0

ln
√

1 − 2M
r 0 0 0

0 0 0 0
0 0 0 0

⎞

⎟⎟⎟
⎟
⎠

. (60b)

This results in the diagonal tetrad

ẽ0 =
√

1 − 2M

r
dt , ẽ1 =

(
1 − 2M

r

)− 1
2

dr ,

ẽ2 = r dθ , ẽ3 = r sin θ dφ , (61)
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which agrees with [18], while the background spin connec-
tion (53) is unaffected (and agrees with [18]) since for M = 0
the transformation (60) is the identity.

Under a general Lorentz transformation, we have

T̃ a = �a
bT b +

[
−�a

b ωbdηdc + d�a
c + ω̃ab�bc

]
∧ ec .

(62)

If the connection transforms in the well-known inhomoge-
neous fashion such that the term in brackets vanishes, the
torsion transforms as a true tensor. However, in our case the
connection is determined by the background and kept fixed,
and consequently the torsion receives an additional piece. We
compute

T̃ 0 = − M

r
√

r(r − 2M)
dt ∧ dr , (63a)

T̃ 1 = 0 , (63b)

T̃ 2 =
[

1 −
(

1 − 2M

r

)− 1
2
]

dr ∧ dθ , (63c)

T̃ 3 = sin θ

[

1 −
(

1 − 2M

r

)− 1
2
]

dr ∧ dφ , (63d)

which then agrees with the Schwarzschild solution of [18]
after expressing their spacetime components in terms of
tetrad ones.

3.4 Asymptotic form

To have a better understanding of the parameters M and a in
the solution, we determine the form of all geometric objects
as we approach spatial infinity r → ∞. For the background
tetrad and the spin connection, this limit is equal to the spher-
ically symmetric one (52) and (53), up to terms that are
supressed at least by r−2 relative to the terms shown. For
the components of the torsion (47) and its trace (49), we first
express the coordinate differentials in terms of the tetrad, and
obtain to leading order

T 0 → M

r2

[
−ē0 ∧ ē1 + a sin θ

r
ē1 ∧ ē3 − 2a cos θ

r
ē2 ∧ ē3

]
,

(64a)

T 1 → M

r2

[
ē0 ∧ ē1 + a sin θ

r
ē0 ∧ ē3 + 2a cos θ

r
ē2 ∧ ē3

]
,

(64b)

T 2 → M

r2

[
− ē0 ∧ ē2 − ē1 ∧ ē2 + a cos θ

r

(
ē0 + ē1) ∧ ē3

+a sin θ

r
ē2 ∧ ē3

]
, (64c)

T 3 → M

r2

[
2a sin θ

r
ē0 ∧ ē1 − a cos θ

r

(
ē0 + ē1) ∧ ē2

− (
ē0 + ē1) ∧ ē3

]
, (64d)

T → M

r2

[
ē0 + ē1 + a sin θ

r
ē3

]
, (64e)

where the terms that are not shown are at least of order r−4.
We see that the leading behaviour at spatial infinity is deter-
mined by the parameter M , while the next-to-leading one is
linear in a. In a putative multipole expansion of the torsion
similar to the one established for Einstein gravity [19–22],
the leading term should correspond to the monopole, which
can be interpreted as the total mass of the spacetime, while
the next-to-leading one corresponds to the dipole and can be
interpreted as the total angular momentum.

While it is possible to compute conserved charges that
directly give the total mass and angular momentum [10,
16,18,23–25], these again depend quite sensitively on the
choice of tetrad and background spin connection. In par-
ticular, we can perform a change of coordinates to pass to
Boyer–Lindquist ones, which is given by

dt → dt + 2Mr

Δ
dr , dφ → dφ − 2Mr

Δ

a

r2 + a2 dr (65)

with

Δ ≡ r2 + a2 − 2Mr , (66)

and changes the metric (36) to

gμν dxμ dxν → − dt2 + Σ

Δ
dr2 + (r2 + a2) sin2 θ dφ2

+Σ dθ2 + 2Mr

Σ

(
dt + a sin2 θ dφ

)2
. (67)

This time, all components of the full tetrad are affected, and
we compute

e0 →
(

1 − Mr

Σ

)
dt + Mr

Δ
dr − Mra sin2 θ

Σ
dφ , (68a)

e1 → Mr
√

Σ(r2 + a2)

(
dt + a sin2 θ dφ

)

+
√

Σ

r2 + a2

Δ + Mr

Δ
dr ,

(68b)

e2 → √
Σ dθ , (68c)

e3 → Mra sin θ

Σ
√

r2 + a2
dt − Mra sin θ

Δ
√

r2 + a2
dr

+ (r2 + a2)Σ + Mra2 sin2 θ

Σ
√

r2 + a2
sin θ dφ .

(68d)

To bring this tetrad into the form used in [16,26], we set

A2 = ΔΣ + 2Mr(r2 + a2) and B =
√

r2+a2

Σ
and perform

a Lorentz transformation with

�a
b =

⎛

⎜⎜⎜
⎜
⎝

ΔΣ+Mr(r2+a2)

A
√

ΔΣ
− Mr

√
r2+a2

A
√

Δ
0 B Mar sin θ

A
√

Δ

− Mr√
ΔΣ

Δ+Mr√
Δ(r2+a2)

0 − Mar sin θ√
ΔΣ(r2+a2)

0 0 1 0
Mar sin θ

A
√

Σ

Mar sin θ

A
√

r2+a2 0 Δ+Mr
AB + B Mr

A

⎞

⎟⎟⎟
⎟
⎠

, (69)
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which leads to the tetrad ẽa = �a
beb with

ẽ0 =
√

ΔΣ

A
dt , ẽ1 =

√
Σ

Δ
dr ,

ẽ2 = √
Σ dθ , ẽ3 = 2Mar

A
√

Σ
sin θ dt + A√

Σ
sin θ dφ (70)

and the inverse tetrad

ẽμ
0 = A√

ΔΣ
δ
μ
t − 2Mar

A
√

ΔΣ
δ
μ
φ , ẽμ

1 =
√

Δ

Σ
δμ

r ,

ẽμ
2 = 1√

Σ
δ
μ
θ , ẽμ

3 =
√

Σ

A sin θ
δ
μ
φ . (71)

Since the shift (65) vanishes for M = 0 the background spin
connection is unaffected and we keep it again fixed, which
leads to an inhomogeneous transformation of the torsion (62).
We content ourselves with the next-to-leading order for large
r , where

�a
b =

⎛

⎜⎜⎜
⎝

1 + M2

2r2 − M(r+M)

r2 0 Ma sin θ
r2

− M(r+M)

r2 1 + M2

2r2 0 − Ma sin θ
r2

0 0 1 0
Ma sin θ

r2
Ma sin θ

r2 0 1

⎞

⎟⎟⎟
⎠

+ O
(

r−3
)

,

(72)

and it follows that

T̃ 0 = − M

r2

(
1 + M

r

)
ē0 ∧ ē1 , (73a)

T̃ 1 = 2Ma sin θ

r3 ē0 ∧ ē3 , (73b)

T̃ 2 = M

r2

[
−ē1 ∧ ē2 − 3M

2r
ē1 ∧ ē2 + 2a cos θ

r
ē0 ∧ ē3

]
, (73c)

T̃ 3 = M

r2

[
− ē1 ∧ ē3 − 3M

2r
ē1 ∧ ē3 + 4a sin θ

r
ē0 ∧ ē1

−2a cos θ

r
ē0 ∧ ē2

]
, (73d)

T̃ = M

r2

(
1 + M

r

)
ē1 , (73e)

where the first neglected terms are of order r−4.
With the given symmetry, the conserved charges are

obtained from the tr components of the superpotential (10)
[16,18,24,26]. For the original tetrad and torsion (64), we
compute

|e|Sρ
tr dxρ = −2M sin θ dt − 2M sin θ dr

−2Ma sin3 θ dφ + O
(

r−1
)

, (74)

while for the transformed tetrad and torsion (73) we obtain

|ẽ|S̃ρ
tr dxρ = −2M sin θ dt

−3Ma sin3 θ dφ + O
(

r−1
)

, (75)

which coincides with [16] taking into account their con-
ventions. The corresponding conserved charges are obtained

from

Pρ = 1

8πG
lim

r→∞

∫
|e|Sρ

tr dθ dφ , (76)

and we compute Pρ = (−m,−m, 0, 2
3 ma) (using that

M = Gm) and P̃ρ = (−m, 0, 0,−ma), where the latter
again agrees with [16] taking into account the different con-
ventions, as well as the result in Einstein gravity [27].

3.5 Pure tetrad approach

A different way to fix the ambiguity in the choice of spin
connection is to work in a pure tetrad approach with vanish-
ing spin connection, i.e., taking the Weitzenböck connection
Γ

ρ
μν = eρ

a∂μeν
a as affine connection. Rotating black holes

in the pure tetrad approach in f (T ) gravity have been studied
in Refs. [28–30] and more recently, including electromag-
netism, in [31–33], to which we can compare our results.

To obtain a solution with vanishing spin connection, we
have to determine a Lorentz transformation �a

b such that
the transformed spin connection vanishes,

ω̃ab�bc = �a
b ωbdηdc − d�a

c = 0 , (77)

which then also leads to a covariant transformation of the
torsion T̃ a (62). Since the spin connection is fixed to be the
background one (42), this is not too difficult, and the required
Lorentz transformation reads

�a
b =

⎛

⎜⎜⎜
⎝

1 0 0 0
0 B cos θ − r sin θ√

Σ
0

0 r sin θ√
Σ

cos φ B cos θ cos φ − sin φ

0 r sin θ√
Σ

sin φ B cos θ sin φ cos φ

⎞

⎟⎟⎟
⎠

. (78)

Using the tetrad in Boyer–Lindquist coordinates (68), the
transformed tetrad ẽa = �a

beb is given by

ẽ0 = dt − U , (79a)

ẽ1 = (r2 + a2) cos θ

Δ
dr − r sin θ dθ + cos θ U , (79b)

ẽ2 =
√

r2 + a2 sin θ cos φ
[ r

Δ
dr + cot θ dθ − tan φ dφ

]

+ sin θ√
r2 + a2

(r cos φ − a sin φ) U , (79c)

ẽ3 =
√

r2 + a2 sin θ sin φ
[ r

Δ
dr + cot θ dθ + cot φ dφ

]

+ sin θ√
r2 + a2

(r sin φ + a cos φ) U , (79d)

where we defined

U ≡ Mr

Σ
dt − Mr

Δ
dr + Mr

Σ
a sin2 θ dφ . (80)
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The tetrad used by Refs. [28], also in Boyer–Lindquist
coordinates, has the form (in our notation)

h0 =
√

1 − 2Mr

Σ
dt + 2Mra sin2 θ√

Σ(Σ − 2Mr)
dφ , (81a)

h1 =
√

Σ

Δ
cos θ dr − √

Σ sin θ dθ , (81b)

h2 =
√

Σ

Δ
sin θ cos φ dr + √

Σ cos θ cos φ dθ

−S sin θ sin φ dφ , (81c)

h3 =
√

Σ

Δ
sin θ sin φ dr + √

Σ cos θ sin φ dθ

+S sin θ cos φ dφ (81d)

with

S2 ≡ r2 + a2 + 2Mr

Σ − 2Mr
a2 sin2 θ . (82)

Comparing with Eqs. (79), we see that on one hand, the
expressions are more complicated because of the square
roots, but on the other hand, only the h0 tetrad has a time
component dt . Therefore, both tetrads are comparable in their
complexity for M > 0. However, for the flat background
which is obtained for M → 0, the tetrad (79) is simpler
than (81); they agree only asymptotically for r → ∞ or in
the static case a = 0. Similar comments apply to the tetrads
used by Refs. [29,30], which are of a similar but more com-
plicated form than (81).

Nevertheless, since both tetrads give the same metric (67),
there exists another Lorentz transformation that connects
them: ha = �̂a

b ẽb. Since the full expression is very long, we
content ourselves again with next-to-leading order for large
r , where

�̂a
b = δa

b − M
r

⎛

⎜⎜
⎝

0 cos θ sin θ cos φ sin θ sin φ

cos θ 0 0 0
sin θ cos φ 0 0 0
sin θ sin φ 0 0 0

⎞

⎟⎟
⎠ ,

(83)

up to terms of order O
(
r−2

)
.

Since in the first transformation with parameter �a
b

the spin connection was taken to transform inhomoge-
neously (77), the torsion transforms homogeneously accord-
ing to T̃ a = �a

bT b. In the second transformation with
parameter �̂a

b, we keep the (now vanishing) spin connection
fixed, and hence have again an inhomogeneous transforma-
tion (62) of the torsion: T̂ a = �̂a

b T̃ b + d�̂a
b ∧ ẽb. Since

the expression for the transformed torsion T̂ a is even longer
than the one for the Lorentz transformation (83), we also only
give the leading-order terms:

T̂ 0 = − M

r2 ē0 ∧ ē1 + O
(
r−3) , (84a)

T̂ 1 = M

r2 sin θ ē1 ∧ ē2 + O
(
r−3) , (84b)

T̂ 2 = − M

r2 ē1 ∧ (
cos θ cos φ ē2 − sin φ ē3) + O

(
r−3) , (84c)

T̂ 3 = − M

r2 ē1 ∧ (
cos θ sin φ ē2 + cos φ ē3) + O

(
r−3) , (84d)

which agree with [28] (after converting to our conventions).
However, we note the following issue (which happens also
in [28–30]): even for M = 0, the torsion does not vanish,
and instead we have

T̂ 0 = O (M) , (85a)

T̂ 1 = a2 sin(3θ)

2r3 ē1 ∧ ē2 + O (M) + O
(
r−4) , (85b)

T̂ 2 = − a2

2r3

[
cos(3θ) cos φ ē1 ∧ ē2

− cos2 θ sin φ
(
ē1 − tan θ ē2) ∧ ē3

]
+ O (M) + O

(
r−4) ,

(85c)

T̂ 3 = − a2

2r3

[
cos(3θ) sin φ ē1 ∧ ē2

+ cos2 θ cos φ
(
ē1 − tan θ ē2) ∧ ē3

]
+ O (M) + O

(
r−4) .

(85d)

That is, the limit M → 0 does not actually yield flat space in
the pure tetrad approach with the above tetrad, and one has
to take in addition a = 0 to obtain a vanishing torsion and
thus flat space. In contrast, the background tetrad (37) in the
covariant approach including the background spin connec-
tion (42) gives a vanishing background torsion T̄μν

a for all
a by construction.

Lastly, we consider the rotating black hole with a coupling
to electromagnetism as studied in Refs. [31–33]. Unfortu-
nately, in this case it seems that in the pure tetrad approach it
is not possible to obtain a black hole with spherical horizon
topology, even a static one [31, Sec. 4.4], and only flat trans-
verse sections are possible. Since the Kerr–Schild solution
presented here has spherical topology, it is thus essentially
different from the solutions studied in Refs. [31–33].

4 Conclusions

We have shown that the famous Kerr–Schild ansatz for the
metric in Einstein gravity that effectively linearises the Ein-
stein equations is also useful in teleparallel gravity, and in
the same way linearises the equations of motion for the tor-
sion. In this way, given a background geometry that solves
the equations of motion, one finds a new solution by solv-
ing a second-order differential equation for a geodesic null
vector. While this equation is quite complicated in general, it
becomes relatively simple if the background geometry is flat.
An important ingredient in teleparallel gravity is the spin con-
nection, which in contrast to Einstein gravity only describes
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inertial effects coming from a non-inertial frame. Assuming
that the character of the frame does not change in the Kerr–
Schild construction, the spin connection is thus fixed by the
background geometry, and for a flat background can be deter-
mined from the background tetrad solving the zero-torsion
condition. Since the torsion scalar T vanishes in that case,
we have furthermore shown that for a flat background geom-
etry any Kerr–Schild solution that is determined in this way
is also a solution of f (T ) gravity with the same tetrad and
spin connection.

We have then exemplified the result by deriving the full
torsion for the rotating black hole solution, based on the Kerr–
Schild form of the Kerr solution in Einstein gravity. However,
the tetrad that appears naturally in the Kerr–Schild form dif-
fers from the one used in previous treatments of the Kerr black
hole in teleparallel gravity [16,26,34], and thus the solution
for the torsion also differs. Nevertheless, we have shown that
one can transform it into the form given previously by a
suitable Lorentz transformation, which then also results in
the same conserved charges. Since the spin connection was
fixed from the beginning, the Lorentz transformation results
in an inhomogeneous transformation of the torsion, which is
an example of the difficulties pointed out in [35] if the spin
connection is determined from the background. On the other
hand, the fixed spin connection allows us to obtain solutions
of f (T ) gravity “for free”, which are almost certainly not
anymore solutions for the Lorentz-transformed tetrad and
torsion. Our result coincides with the analysis of [36], who
found a rotating black hole solution of f (T ) gravity with
T = 0 by using the null tetrad associated to the Kerr–Schild
form of the Kerr metric; we have shown that this remains
true for any Kerr–Schild metric. We have also shown how to
transform the solution in the pure-tetrad approach where the
spin connection vanishes.

In continuation, it would interesting to see how the general
rotating black hole in higher dimensions, and with a de Sit-
ter or anti-de Sitter background [37] looks like in teleparallel
gravity and its f (T )generalisation. For a flat background, the
equation for the null vector as well as the geodesic equation
are the same as in Einstein gravity, such that one immediately
obtains the corresponding solutions in teleparallel gravity
and only needs to compute the torsion. However, for a non-
trivial background it first needs to be checked if the Kerr–
Schild null vector can be taken over identically, or if it needs
to be modified. This is particularly important because it has
been shown that even the (anti-)de Sitter background which
is a maximally symmetric solution of Einstein gravity, is not
maximally symmetric in teleparallel gravity [38], and one
needs to find a background tetrad and spin connection such
that null vector is geodesic. While in the teleparallel equiva-
lent of Einstein gravity, the field equations do not determine
the spin connection (and one can thus use the approach of
[10] to fix it by demanding that in the absence of gravity flat

space is a solution), this is no longer true for f (T ) gravity
and other generalisations. It appears that solving for a suit-
able spin connection is a non-trivial problem in that case in
general, even if one assumes a highly symmetric geometry
[15,39,40]. In the Kerr–Schild ansatz we have presented, this
difficulty is fortunately absent for a flat background space-
time, but it needs to be checked whether that remains true in
the case where also the background is curved.

Furthermore, it would be interesting to also generalise the
Kerr–Schild ansatz to symmetric teleparallel gravity [41,42],
where both curvature and torsion vanish and gravitation is
described by non-metricity, and to find mappings between
those different descriptions. Another venue of generalisation
would include more general actions that not only involve the
torsion scalar, but also matter fields such as in [40] where
a scalar field with quite arbitrary kinetic term and potential
was studied. It should be possible to find solutions at least in
simple cases, for example including electromagnetic fields
where the solution is known in Einstein gravity [4]; in the
general case, the results of [43] might be helpful. Once the
solutions are obtained, one could then study physical impli-
cations, for example accretion flows of fluid matter as done
in Refs. [32,33].
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