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Abstract We obtain the left-right entanglement entropy
(LREE) for a Dp-brane with tangential motion in the pres-
ence of a U (1) gauge potential, the Kalb–Ramond field
and an open string tachyon field. Thus, at first we extract
the Rényi entropy and then by taking a special limit of
it we acquire the entanglement entropy. We shall investi-
gate the behavior of the LREE under the tachyon conden-
sation phenomenon. We observe that the deformation of the
LREE, through this process, reveals the collapse of the brane.
Besides, we examine the second law of thermodynamics for
the LREE under tachyon condensation, and we extract the
imposed constraints. Note that our calculations will be in the
context of the type IIA/IIB superstring theories.

1 Introduction

Entanglement is one of the essential features of quantum
mechanics. It correlates subsystems of a composite quantum
system such that the quantum state of each subsystem cannot
be described independently of the quantum states of the other
subsystems. For a composite quantum system in a pure state,
an applicable tool for measuring the entanglement between
the subsystems is the entanglement entropy. This adequate
quantity has been extensively studied, for example, in the
context of the AdS/CFT there have been evidences for rela-
tions between the entanglement entropy and gravity [1,2].
In addition, a connection between the black hole entropy
and entanglement entropy has been shown [3,4]. Besides,
the entanglement entropy has been employed in condensed
matter and the many-body quantum systems [5–7].

Traditionally, the entangled subsystems are separated geo-
metrically which leads to a separation in the Hilbert space.
However, in this paper the division of the subsystems occurs
only in the Hilbert space. That is, the left- and right-moving
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modes of closed superstring form the subspaces. The entropy
of the entanglement between the left- and right-moving
modes is called the left-right entanglement entropy (LREE)
[8–12].

The crucial role of the D-branes in string theory has been
highly remarked in the literature. Various areas such as the
AdS/CFT, black holes and string phenomenology promi-
nently depend on the D-brane dynamics. Since the boundary
states accurately elaborate all properties of the associated D-
branes, they have been commonly used in the brane analysis
[13–35]. In this paper, we shall investigate the LREE of a
special Dp-brane via the associated boundary state to it.

The early works were done by Zayas and Quiroz. They
studied the LREE, associated with a one-dimensional bound-
ary state, in a 2D CFT [8]. Then, they developed their analysis
to a bare-static Dp-brane [9]. Their works motivated us to
extend the LREE calculations for a dressed-dynamical Dp-
brane [36], and, afterward, for an unstable dressed-dynamical
Dp-brane [37]. Our papers have been written in the context
of the bosonic string theory.

The current study will be in the context of the type IIA/IIB
superstring theories. Therefore, we shall derive the LREE of
a Dp-brane with the tangential rotation and tangential linear
motion, in the presence of an internal U (1) gauge potential,
the Kalb–Ramond field and an open string tachyon field. In
fact, there are some evidences for connection between the
entanglement entropy and black hole entropy [3,4]. Hence,
the LREE of our configuration may find a relation with the
Bekenstein–Hawking entropy of the rotating-charged black
holes.

Note that adding the open string tachyon to a D-brane
gives rise to instability. Consequently, after condensing the
tachyon, the brane looses its dimension, and one receives
a lower-dimensional unstable brane [38–46]. Accordingly,
presence of the open string tachyon on our brane enforces the
brane to collapse. We shall examine the behavior of the LREE
under this experience. We shall see that the LREE of the Dp-
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brane is decomposed to the LREE of a D(p−1)-brane and an
extra contribution which might be associated with the emitted
closed superstrings via the brane collapse. In comparison
with the bosonic case [37] a D-brane in the superstring theory
is more stable than its counterpart in the bosonic string theory.
Moreover, we shall see that the thermal entropy of the setup
exactly is equivalent to its LREE. Because of the resemblance
between the thermal and entanglement entropies [47–51],
we investigate the second law of thermodynamics for the
LREE through tachyon condensation process. We find that
the survival of the second law imposes some conditions on
the parameters of the configuration.

The paper is organized as follows. In Sect. 2, we introduce
the boundary state, corresponding to the dressed-dynamical
Dp-brane, and subsequently the interaction amplitude
between two such Dp-branes will be written. This amplitude
will be required for computing the left-right Rényi entropy.
In Sect. 3, we obtain the LREE of our setup. In addition,
we derive the thermodynamic entropy, which is equivalent
to our LREE. In Sect. 4, the evolution of the LREE under the
tachyon condensation phenomenon will be investigated. The
second law of thermodynamics on the change of the LREE
will be examined. Section 5 will be devoted to the results and
conclusions.

2 The interaction amplitudes via the boundary states

2.1 The bosonic part of the boundary state

At first, we obtain the bosonic part of the boundary state,
associated with a dynamical Dp-brane in the presence of the
Kalb–Ramond field Bμν , the U (1) gauge potential Aα(X)

and the open string tachyon field T (X). Therefore, we start
with the following string action

S = − 1

4πα′

∫
�

d2σ

(√−ggabGμν∂a X
μ∂bX

ν

+εabBμν∂a X
μ∂bX

ν

)
+ 1

2πα′

∫
∂�

dσ

(
Aα∂σ X

α

+ωαβ J
αβ
τ + T (Xα)

)
, (2.1)

where the sets {σ a |a = 0, 1} and {xα|α = 0, 1, . . . , p}
represent the worldsheet coordinates and the parallel direc-
tions to the brane worldvolume, respectively. The set {xi |i =
p + 1, . . . , 9} will be used for the perpendicular directions
to the brane worldvolume. We shall take the flat world-
sheet and spacetime with the signature Gμν = ημν =
diag(−1, 1, . . . , 1). Besides, we apply a constant antisym-
metric tensor Bμν . The spacetime angular velocity ωαβ

includes the tangential rotation and tangential linear motion
of the brane, and the angular momentum density is denoted

by Jαβ
τ = Xα∂τ Xβ − Xβ∂τ Xα . For the gauge potential we

use the profitable gauge Aα = − 1
2 FαβXβ with the con-

stant field strength Fαβ , and the tachyon profile is adopted
as T = 1

2UαβXαXβ , with Uαβ as a constant and symmetric
matrix. We should mention that due to the presence of the
various fields on the brane worldvolume the Lorentz symme-
try has been manifestly lost. This clarifies that the tangential
dynamics along the brane worldvolume is meaningful.

By varying the action with respect to Xμ we find the equa-
tion of motion and the flowing equations for the boundary
state
(
αβ∂τ X

β + Fαβ∂σ X
β + Bαi ∂σ X

i +Uαβ X
β
)
τ=0

|Bx 〉 = 0,

(
Xi − yi

)
τ=0

|Bx 〉 = 0, (2.2)

where Fαβ ≡ Bαβ − Fαβ and αβ ≡ ηαβ + 4ωαβ . The
parameters {yi } exhibit the position of the brane. Applying
the mode expansion of Xμ, we can conveniently express the
above equations in terms of the closed string oscillators[(

αβ − Fαβ + i

2m
Uαβ

)
αβ
m

+
(

αβ + Fαβ − i

2m
Uαβ

)
α̃

β
−m

]
|B(osc)

x 〉 = 0,

(
2α′αβ pβ +Uαβ xβ

) |B(0)
x 〉 = 0, (2.3)

for the parallel directions to the brane worldvolume, and

(αi
m − α̃i−m)|B(osc)

x 〉 = 0,

(xi − yi )|B(0)
x 〉 = 0, (2.4)

for the normal directions. Note that we applied the decom-
position |Bx 〉 = |B(osc)

x 〉 ⊗ |B(0)
x 〉.

By employing the coherent state method and quantum
mechanical techniques, specially the commutation relations
among the string oscillators, we receive

|B(0)
x 〉 = Tp

2
√

det(U/4πα′)

∫ ∞

−∞

p∏
α=0

exp

×
[
iα′ ∑

β �=α

(U−1 + T U−1)αβ p
α pβ

+ iα′

2
(U−1 + T U−1)αα(pα)2

]
|pα〉dpα

×
9∏

i=p+1

[
δ(xi − yi )|pi = 0〉

]
, (2.5)

|B(osc)
x 〉 =

∞∏
n=1

[− det M(n)]−1 exp

×
[
−

∞∑
m=1

(
1

m
α

μ
−mS(m)μνα̃

ν−m

)]
|0〉α|0〉α̃,

(2.6)
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where the brane tension is Tp, and we defined S(m)μν =
(Q(m)αβ,−δi j ), in which

Q(m)αβ ≡ (M−1
(m)N(m))αβ,

M(m)αβ = αβ − Fαβ + i

2m
Uαβ,

N(m)αβ = αβ + Fαβ − i

2m
Uαβ. (2.7)

The prefactors of both parts of |Bx 〉 originate from the nor-
malization of the disk partition function. For more details see
Refs. [36,37]. In fact, the boundary state |Bx 〉 is not normal-
izable, i.e., the inner product 〈Bx |Bx 〉 is divergent. In Sect. 3,
we will introduce the regularization factor e−εH/

√NB , with
a finite correlation length ε and a suitable normalization fac-
tor NB , to fix this problem.

The first equation in Eq. (2.3) tells us that applying the
coherent state method on the set {αα

m, α̃α−m |m ∈ N} gives
a boundary state with the matrix Q(m)αβ , while employing
that method on the set {α̃α

m, αα−m |m ∈ N} yields a boundary

state which includes the matrix

([
Q−1

(−m)

]†
)

αβ

. Equality of

the resultant states imposes the following conditions on the
parameters of the setup

 U = U T,

 F = F T. (2.8)

The conformal ghosts also contribute to the bosonic part
of the boundary state as in the following

|Bgh〉 = exp

[ ∞∑
n=1

(c−nb̃−n − b−nc̃−n)

]

c0 + c̃0

2
|q = 1〉 |q̃ = 1〉. (2.9)

2.2 The fermionic part of the boundary state

The unstable Dp-brane in our setup carries an open string
tachyonic mode. In fact, survival of the open string tachyon
after the GSO projection requires our D-brane to be a non-
BPS D-brane with the wrong dimension, i.e., odd (even)
dimension in the type IIA (IIB) theories. Therefore, the brane
worldvolume does not couple to the R-R form fields of the
type II theories, and hence it cannot carry any R-R charges.
The corresponding boundary state to a non-BPS brane merely
possesses the NS–NS sector |B〉 = |B〉NS−NS [46,52,53],
also see Ref. [9]. Thus, in this paper we apply only the NS–
NS sector of the type II theories.

Due to the worldsheet supersymmetry, we can perform
the following replacements on the bosonic boundary state
equations (2.2) to obtain their fermionic counterparts

∂+Xμ(σ, τ ) → −iηψ
μ
+(τ + σ),

∂−Xμ(σ, τ ) → −ψ
μ
−(τ − σ), (2.10)

in which ∂± = (∂τ ± ∂σ )/2. The factor η = ±1 originates
from the boundary conditions on the fermionic coordinates
and will be used in the GSO projection on the boundary state.
Because of the presence of the tachyonic field, a replacement
for Xμ is also needed. Employing the above replacements
and the mode expansions for ψ

μ
±, we acquire

Xμ(σ, τ ) →
∑
t

1

2t

(
iψμ

t e
−2i t (σ−τ) + ηψ̃

μ
t e

−2i t (σ+τ)
)

,

(2.11)

where the index “t” is half-integer for the NS–NS sector.
Applying the replacements (2.10) and (2.11) into Eq. (2.2),

and also using the mode expansion of ψ
μ
±, we obtain

[(
αβ − Fαβ + i

2t
Uαβ

)
ψ

β
t − iη

(
αβ + Fαβ

− i

2t
Uαβ

)
ψ̃

β
−t

]
|Bψ, η〉 = 0,

(ψ i
t + iηψ̃ i−t )|Bψ, η〉 = 0. (2.12)

Eqs. (2.12) can be combined as

(ψ
μ
t − iη Sμ

(t)ν ψ̃ν−t )|Bψ, η〉 = 0. (2.13)

Again by making use of the coherent state method, the
fermionic boundary state takes the feature

|Bψ, η〉 =
∏
t

[detM(t)] exp

[
iη
∑
t

(ψ
μ
−t S(t)μν ψ̃ν−t )

]
|0〉.
(2.14)

The total boundary state is given by

|B, η〉NS = |Bx 〉 ⊗ |Bψ, η〉NS ⊗ |Bgh〉 ⊗ |Bsgh, η〉NS,

(2.15)

where the contribution of the superconformal ghosts is given
by

|Bsgh, η〉NS = exp

⎡
⎣iη

∞∑
t=1/2

(
γ−t β̃−t − β−t γ̃−t

)⎤⎦

×|P = −1〉|P̃ = −1〉. (2.16)

By employing the GSO projection the applicable boundary
state is written as a combination of the total boundary states
with η = ±1,

|B〉NS = 1

2
(|B,+〉NS − |B,−〉NS) . (2.17)

2.3 The interaction in the NS–NS sector

For computing the LREE we need the partition function.
Hence, we first introduce the interaction amplitude between
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two identical and parallel Dp-branes. The branes have been
dressed by the fields, and they have tangential dynamics.
One can obtain this amplitude from the overlap of the GSO-
projected boundary states, associated with the two Dp-
branes, via the propagator “D” of the exchanged closed string

A = 〈B1|D|B2〉,
D = 2α′

∫ ∞

0
dt e−t H , (2.18)

in which “H” stands for the total Hamiltonian of the propa-
gating closed superstring. It consists of the matter and ghost
parts. Therefore, one receives

ANS−NS = T 2
p Vp+1α

′

4(2π)9−p

1√
det(U1/4πα′)det(U2/4πα′)

×
∞∏

m=1

det[M†
(m−1/2)1M(m−1/2)2]

det[M†
(m)1M(m)2]

×
∫ ∞

0
dt

⎧⎨
⎩
(√

1

α′t

)9−p

× exp

⎛
⎝− 1

4πα′t

9∑
i=p+1

(yi2 − yi1)
2

⎞
⎠

× 1

q

( ∞∏
m=1

[(
1 + q2m−1

1 − q2m

)7−p

×det(1 + Q†
(m−1/2)1Q(m−1/2)2 q2m−1)

det(1 − Q†
(m)1Q(m)2 q2m)

]

−
∞∏

m=1

[(
1 − q2m−1

1 − q2m

)7−p

×det(1 − Q†
(m−1/2)1Q(m−1/2)2 q2m−1)

det(1 − Q†
(m)1Q(m)2 q2m)

])}
,

(2.19)

where q = e−2π t , and Vp+1 indicates the Dp-brane world-
volume. The first two factors in the integral originate from
the zero-modes and the factor q−1 is related to the zero-point
energy. For the first factors inside the infinite products we
have the power 7− p = [10−(p+1)]−2, where 10−(p+1)

and −2 correspond to the contributions by the Dirichlet oscil-
lators and ghosts-superghosts, respectively. The numerators
determinants represent the contributions of the fermions Neu-
mann oscillators, and that in the denominators is associated
with the Neumann oscillators of the bosons.

The integer (half-integer) modes exhibit the bosons
(fermions) contribution. The tension of a non-BPS brane
includes an extra

√
2 factor, which in the above amplitude it

has been considered.

3 The LREE corresponding to the unstable
dressed-dynamical D p-brane

Imagine a bipartite system which comprises only two sub-
systems A and B. Let the pure state of the composite system
be |ψ〉. Thus, the density operator, associated with this state,
is defined by ρ = |ψ〉〈ψ |. The conservation of probability
requires that Trρ = 1. The reduced density operator due to
the subsystem A is defined as ρA = TrBρ, where the TrB

represents the partial trace with respect to the subsystem B.
The entanglement and Rényi entropies are the most desir-

able tools among the other quantities for measuring entangle-
ment. The first quantity can be obtained by the von Neumann
formula S = −Tr(ρA ln ρA) [54], while the second one is
derived from Sn = 1

1−n ln Trρn
A, where n ≥ 0 and n �= 1. By

taking the special limit, i.e. n → 1, the Rényi entropy tends
to the entanglement entropy [55].

3.1 The density operator of the system

The Hilbert space of closed superstring theory has the factor-
ized form H = HL ⊗HR. The left- and right-moving oscil-
lating modes of closed superstring form the bases of the sub-
systems “L” and “R”. For receiving the physical Hilbert space
we should exert the Virasoro constraints. Precisely, a general
state of closed superstring is given by |ψ〉 = |ψ〉L ⊗ |ψ〉R,
where

|ψ〉L =
∞∏
k=1

∏
t

1√
nk !

(
α

μk
−k√
k

)nk (
ψ

μt−t

)nt |0〉,

|ψ〉R =
∞∏
k=1

∏
t

1√
mk !

(
α̃

νk−k√
k

)mk (
ψ̃

νt−t

)mt |0〉,

where for the NS–NS sector the mode numbers “t” are posi-
tive half integers. Since ψ

μ
−t and ψ̃ν−t are Grassmannian vari-

ables we have mt , nt ∈ {0, 1}. The sets {nt , nk |k ∈ N} and
{mt ,mk |k ∈ N} are independent up to the condition

∞∑
k=1

knk +
∑
t

tnt =
∞∑
k=1

kmk +
∑
t

tmt .

The quantity in the left-hand side (right-hand side) represents
the total mode number, i.e., the summation of all mode num-
bers in the state |ψ〉L (|ψ〉R). Thus, the Virasoro conditions
at most impose only the equality of the total mode numbers
of the states |ψ〉L and |ψ〉R. This condition weakly relates
the left- and right-moving string modes. Hence, the left- and
right-sectors essentially remain independent. Therefore, the
physical Hilbert space possesses the factorized form.

The boundary state, which is a coherent state of closed
superstring, is also decomposed to the left- and right-moving
modes by the Schmidt decomposition method [56,57]. In
other words, the expansion of the exponential parts of Eqs.
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(2.6) and (2.14) gives a series which manifestly illustrates
entanglement between the two parts of the Hilbert space.
Hence, similar to the non-geometric prescription of Refs.
[8,9], we take the GSO-projected boundary state as the com-
posite system and the left- and right-moving modes of closed
superstring as its subsystems.

The density operator, corresponding to a given bound-
ary state, might be considered as ρ = |B〉〈B|. In fact, the
inner product 〈B|B〉 is divergent. To see this, according to
Eq. (2.18), in the amplitude (2.19) remove the integral over
“t” and apply t → 0. A consequence of this divergence is
violation of the condition Trρ = 1. Thus, we consider the
regularized state |B〉 = (e−εH/

√NB)|B〉NS−NS, where ε

is a finite correlation length. Hence, the density operator is
defined as

ρ = 1

NB

(
e−εH |B〉NS−NS

) (
NS−NS〈B|e−εH

)
, (3.1)

where the normalization factorNB is fixed by the probability
conservation condition Trρ = 1. After taking the trace of
the density operator over the closed superstring states and
applying Trρ = 1, we obtain the normalization factor equal
to the partition function NB = ZNS−NS(2ε).

In the paper [5] there are two regularization approaches,
which are corresponding to the boundary state and Ishibashi
states. Each approach possesses its own normalization fac-
tor. As it has been shown in [5] the regularization of the
Ishibashi states can correctly recover the spatial topological
entanglement entropy for Chern-Simons theories while the
first approach of regularization cannot recover it. However,
unlike the topological theories, e.g. the Chern-Simons theo-
ries, our action does not represent a topological theory. That
is, we don’t have a topological sector, and hence, there is no
any topological entanglement entropy. Thus, we don’t nor-
malize the Ishibashi states individually. Therefore, for the
regularization we applied only the first approach.

An interpretation of the numerator of ρ is that a closed
superstring propagates for the time t = ε, then it is absorbed
by a D-brane. It is immediately emitted by an identical D-
brane and again propagates for the duration t = ε. However,
the interpretation of the partition function in the denomina-
tor of (3.1), i.e. ZNS−NS(2ε), is that a closed superstring is
emitted by a D-brane, then it propagates for the time t = 2ε

and then it is absorbed by an identical D-brane.
The partition function can be conveniently extracted from

the amplitude (2.19) as in the following

ZNS−NS(2ε) = NS−NS〈B|e−2εH |B〉NS−NS

= T 2
p Vp+1

2(2π)9−p

1

det(U/8π)

∞∏
m=1

|detM(m−1/2)|2
|detM(m)|2

×
(√

1

4ε

)9−p
1

q

( ∞∏
m=1

[(
1 + q2m−1

1 − q2m

)7−p

×det(1 + Q†
(m−1/2)Q(m−1/2) q2m−1)

det(1 − Q†
(m)Q(m) q2m)

]

−
∞∏

m=1

[(
1 − q2m−1

1 − q2m

)7−p

×det(1 − Q†
(m−1/2)Q(m−1/2) q2m−1)

det(1 − Q†
(m)Q(m) q2m)

])
. (3.2)

Since we have identical branes in the same position, the
indices 1 and 2 and also the y-dependence have been omitted.
Similar to the stringy literature, in which for simplification
various numeric values are chosen for the slope α′ [8,9,58–
61], we have selected the choice α′ = 2.

3.2 The associated LREE to the setup

The first step for computing the LREE of our setup is the
calculation of the Rényi entropy. Accordingly, we need to
find Trρn

L, where the reduced density operator ρL is derived
via the trace over the right-moving oscillators. We utilize the
replica trick, which for the real “n” gives

Trρn
L ∼ ZNS−NS(2nε)

Zn
NS−NS(2ε)

≡ Zn NS−NS(L)

Zn
NS−NS

. (3.3)

The quantity Zn NS−NS is called the “replicated partition
function”.

Since there are various approaches to sum over the spin
structure (η) and momentum, there are different ways to
acquire the replicated partition function and replicated nor-
malization constant [9]. Explicitly, if we first sum over η and
then we do the replication, the spin structure of each copy
will be disconnected from the other copies. This case is called
the uncorrelated spin structure. Another possibility is that:
at first replicate each spin structure separately and then com-
pute sum over them. This case is called the correlated spin
structure. In the same way, the uncorrelated and correlated
momentum are constructed by integrating over the momenta
before and after the replication, respectively. Besides, if the
normalization constant K 1/2

p (see Eq. (3.5)) is raised to the
power n, through the replication process, we call it repli-
cated normalization constant. Otherwise, it will be called
the unreplicated normalization constant.

In fact, all of the above possibilities can be studied. How-
ever, here we choose only one of them which is invariant
under the open-closed string duality. This reliable case pos-
sesses the unreplicated normalization constant, the correlated
momentum and the correlated spin structure. For an NS–NS
brane we have

∫ ∞

0
dl NS−NS〈B, η|e−lHc |B, η〉NS−NS
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= N 2
∫ ∞

0
dl

(
1

l

) 9−p
2 f 8

3 (q)

f 8
1 (q)

= N 2 32(2π)p+1

Vp+1

∫ ∞

0

dt

2t
TrNS

[
e−t Ho

]
,

∫ ∞

0
dl NS−NS〈B, η|e−lHc |B,−η〉NS−NS

= N 2
∫ ∞

0
dl

(
1

l

) 9−p
2 f 8

4 (q)

f 8
1 (q)

= N 2 32(2π)p+1

Vp+1

∫ ∞

0

dt

2t
TrR

[
e−t Ho

]
,

where the integral variables l and t exhibit the length of the
cylinder in closed string channel and the circumference of
the cylinder in the open string channel, respectively. For a
non-BPS brane the normalization constant is

N 2
non−BPS = Vp+1

64(2π)p+1 .

The replicated partition function with the correlated momen-
tum gives rise to the factor (1/nl)(9−p)/2, while Zn with
uncorrelated momentum leads to the factor (1/ l)n(9−p)/2,
which is not invariant under the modular transformation.
Besides, the correlated spin structure leads to a factor 2,
while the uncorrelated spin structure introduces the factor
22n−1. In addition, the unreplicated normalizationN 2 is cho-
sen instead of the replicated normalizationN 2n . These imply
that to satisfy the open-closed duality we have to apply the
replicated partition function with the correlated momentum,
unreplicated normalization constant, and the correlated spin
structure.

As ε tends to zero the quantity q = e−4πε does not vanish.
Therefore, we apply the transformation 4ε → 1/4ε to go to
the open string channel. Here, we work with the quantity
q̃ = exp (− π

4ε
) which in the limit ε → 0 tends to zero. Thus,

we can expand Eq. (3.3) for small q̃ as in the following

Zn NS−NS

Zn
NS−NS

≈ 21−n K 1−n
p

((
2
√

ε
)1−n √

n
)9−p

× exp

[
π

4ε

(
1

n
− n

)] ∞∏
m=1

21−n C1−n
(m−1/2)

×
{
q̃

2m−1
n −n(2m−1) + C(m) q̃

4m−1
n −n(2m−1)

−n C(m) q̃
2m−1

n −n(2m−1)+2m

−n C2
(m) × q̃

4m−1
n −n(2m−1)+2m

+n(n + 1)

2
× C2

(m) q̃
2m−1

n −n(2m−1)+4m+O(q̃6m)

}
, (3.4)

where Kp, C(m) and C(m−1/2) are defined by

Kp = T 2
p Vp+1

2(2π)9−p

1

det(U/8π)

∞∏
m=1

|detM(m−1/2)|2
|detM(m)|2 ,

C(t) = Tr
(
Q†

(t)Q(t)

)
+ 7 − p . (3.5)

The index “t” is a positive integer “m” or a positive half-
integer “m − 1/2”.

Now for obtaining the LREE we should take the limit
n → 1 of the Rényi entropy, which yields

S(p)
LREE ≈ 1

2
ln 2 + ln Kp + 9 − p

2
(2 ln 2 + ln ε − 1) + π

3ε

+
∞∑

m=1

{
lnC(m−1/2) + C(m)

(
1 − mπ

2ε

)
e−mπ/2ε

− 1

2
C2

(m)

(
1 − mπ

ε

)
e−mπ/ε + O(exp(−3mπ/2ε))

}
.

(3.6)

The first term comes from the sum over the spin structure and
a contribution from the oscillators. The second term shows
the boundary entropy of the brane, the third term originates
from the zero-modes, and the rest terms are regarding to the
contributions of the oscillators and conformal ghosts. The
parameters of the setup have been appeared in Kp, C(m) and
C(m−1/2). Besides, the mode dependence of the LREE is a
consequence of the presence of the tachyonic field.

3.3 The LREE and the thermodynamic entropy

To investigate the thermal properties of our system we can
associate a temperature to it. This temperature is proportional
to the inverse of the correlation length, i.e. β = 2ε. Applying
the definition of the thermodynamic entropy and using the
partition function (3.2), in the high temperature limit of the
system ε → 0, we find

Sthermal = β2 ∂

∂β

(
− 1

β
ln ZNS−NS

)

≈ 1

2
ln 2 + ln Kp + 9 − p

2
(ln 2β − 1) + 2π

3β

+
∞∑

m=1

{
lnC(m−1/2) + C(m)

(
1 − mπ

β

)
e−mπ/β

−1

2
C2

(m)

(
1 − 2mπ

β

)
e−2mπ/β

+O(exp(−3mπ/β))

}
. (3.7)

We observe that the thermodynamic entropy of the system
exactly is equivalent to its LREE. This similarity between the
thermal and entanglement entropies also has been obtained
in the literature, e.g., see Refs. [47–51].

Since the constants {C(m)|m ∈ N} depend on the mode
numbers calculation of the summation of the series in Eq.
(3.7) is very complicated. Therefore, we don’t have an
explicit form of the entropy function Sthermal(T ), in which
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β = 1/T . Hence, the phase transition of the corresponding
system is not clear.

4 Condensing the tachyon

4.1 Evolution of the LREE under the tachyon condensation

Presence of an open string tachyon on a D-brane drastically
makes it unstable. Through the tachyon condensation pro-
cess the D-brane collapses, i.e., it looses some of its direc-
tions. Ultimately, one receives the closed string vacuum or
at most an intermediate stable D-brane [38,39]. Under the
tachyon condensation at least one of the elements of the
tachyon matrixUαβ tends to infinity. For instance, if we apply
Upp → ∞ the condensation occurs in the x p-direction.

Before imposing the condensation on the tachyon we com-
pute the LREE in the large value of the tachyon matrix, that
is U � 2( −F). This tachyon matrix accompanied by the
conditions (2.8) yield

S̃(p)
LREE ≈ ln 2 + ln Kp + 9 − p

2
(2 ln 2 + ln ε − 1) + π

3ε

+
∞∑

m=1

{
ln H(m−1/2) + H(m)

(
1 − mπ

2ε

)
e−mπ/2ε

−1

2
H2

(m)

(
1 − mπ

ε

)
e−mπ/ε

+O(exp(−3mπ/2ε))

}
, (4.1)

up to the order O(U−3), where we defined

H(t) = 8 − 512 t2Tr
(
ω2U−2

)
, (4.2)

The index “t” is a positive integer “m” or a positive half-
integer “m − 1/2”.

Now, suppose that the tachyon is condensed only in the
x p-direction of the brane. In this case, one finds

lim
Upp→∞ ln Kp = ln Kp−1 + ln

(
πL p

Ūpp

)
, (4.3)

in which the infinite value of Upp was called Ūpp, and L p is
the infinite length of the brane in the x p-direction. For acquir-
ing this result, the trusty relation Tp = Tp−1/(2π

√
α′) and

the regularization schemes
∏∞

n=1 n → √
2π and

∏∞
n=1(2n−

1) → √
2 have been exerted. The third phrase of Eq. (4.1)

can be rephrased as

9 − p

2
(2 ln 2 + ln ε − 1) = 9 − (p − 1)

2
(2 ln 2 + ln ε − 1)

−1

2
(2 ln 2 + ln ε − 1) . (4.4)

By taking the limitUpp → ∞, the factor Tr
(
ωU−2

)
reduces

to Tr
(
ωU−2

)′
, where the prime indicates a p × p matrix.

Accordingly, under the tachyon condensation experience the
LREE finds the form

lim
Upp→∞ S̃(p)

LREE = S̃(p−1)
LREE + λ, (4.5)

λ ≡ ln

(
πL p

2Ūpp

)
− 1

2
(ln ε − 1). (4.6)

In fact, when the tachyon condensation acts on one direction
of an unstable Dp-brane, it collapses to a D(p − 1)-brane
[39]. Here, the associated LREE with the D(p − 1)-brane is
exactly given by S̃(p−1)

LREE . The infinite parameters L p and Ūpp

can be accurately adjusted such that their ratio to be a finite
value.

The extra contribution to the entropy, i.e. λ, can be inter-
preted as the entropy of the released closed superstrings via
the collapse of the Dp-brane. In comparison with the bosonic
case [37], the extra entropy λ has reduced by − ln(2Ūpp),
which can be interpreted as reduction of superstring radia-
tion during the collapse of the brane. For example, consider
the case that the total entropies of the bosonic and super-
string systems, after tachyon condensation, are equal. Then,
the inequality λbosonic > λsuperstring induces the following
inequality

(
S̃(p−1)

LREE

)
superstring

>
(
S̃(p−1)

LREE

)
bosonic string

.

Thus, one may deduce that under the tachyon condensation
the resultant D(p−1)-brane in the superstring theory is more
stable than that in the bosonic string theory.

4.2 The second law of thermodynamics for the LREE

The thermal and entanglement entropies have some close
connections [47–51]. For instance, in Refs. [47–49] it has
been demonstrated that the entanglement entropy obeys rela-
tions which are similar to the laws of thermodynamics. In Sec.
(3.3) we proved that the LREE and thermal entropy of our
setup possess an identical feature. This similarity stimulated
us to check the second law of thermodynamics for the LREE
under the tachyon condensation process.

Now we compare the LREE of our initial state, which is
the Dp-brane, with that of the final state, i.e. the resultant
D(p − 1)-brane and the released closed superstrings. Thus,
we have
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Sinitial = S̃(p)
LREE ,

Sfinal = lim
Upp→∞ S̃(p)

LREE = S̃(p−1)
LREE + λ. (4.7)

The second law of thermodynamics implies that, the entropy
should be increased during the process. Therefore, we should
check the inequality Sfinal − Sinitial > 0,

S̃(p−1)
LREE + λ − S̃(p)

LREE

= ln

(
π

2Ūpp

)
− ln

(
detU ′

detU

)

−
∞∑

m=1

{
2 ln

(
det M ′

(m)

det M(m)

det M(m−1/2)

det M ′
(m−1/2)

)

+ ln

(
H(m−1/2)

H ′
(m−1/2)

)

+
(
H(m) − H ′

(m)

) (
1 − mπ

2ε

)
e−mπ/2ε

− 1

2

(
H2

(m) − H ′2
(m)

) (
1 − mπ

ε

)
e−mπ/ε

}
. (4.8)

The primes represent the p×pmatrices and H(m) was defined
by Eq. (4.2). There are many parameters, i.e. the various
matrix elements, which control the value of this difference.
The minimal condition for positivity of (4.8) is given by

detU

detU ′
∞∏

m=1

⎡
⎣
(

det M(m) det M ′
(m−1/2)

det M ′
(m) det M(m−1/2)

)2
H(m−1/2)

H ′
(m−1/2)

⎤
⎦

>
2Ūpp

π
, (4.9)

up to the leading order. According to the following formula

cos θ =
∞∏

m=1

[
1 − θ2

(m − 1/2)2π2

]
,

we can write
∞∏

m=1

H(m−1/2)

H ′
(m−1/2)

= cos φ

cos φ′
∞∏

m=1

Tr(ω2U−2)

Tr(ω2U−2)′

= cos φ

cos φ′

(
Tr(ω2U−2)

Tr(ω2U−2)′

)N

, (4.10)

where N = ∑∞
m=1 1, and the angle φ has the definition

φ = π

8
√

Tr(ω2U−2)
.

Now we impose an additional condition

R ≡ Tr(ω2U−2)

Tr(ω2U−2)′
> 1. (4.11)

This inequality inspires that the second factor in the RHS
of Eq. (4.10) is infinite. In fact, the infinities in the LHS
and RHS of (4.9) completely are independent. However,

the value of the quantity R depends on all matrix ele-
ments of the matrices U and ω. By adjusting the parameters
{Uαβ, ωαβ |α, β = 0, 1, . . . , p} we can receive a large value
for R such that the infinity in the LHS of (4.9) to be dominant
to Ūpp, and the ratio RN/Ūpp to be fixed. Finally, these con-
ditions reliably confirm the preservation of the second law of
thermodynamics for the LREE of the setup.

5 Conclusions

In the context of the type IIA/IIB superstring theories we
investigated the left-right entanglement entropy of a non-
BPS unstable Dp-brane. The brane has tangential dynamics.
Besides, they have been dressed by theU (1) gauge potential,
the anti-symmetric tensor field and the open string tachyon
field. For achieving this, the boundary state formalism in the
NS–NS sector was employed and the interaction amplitude
between two identical dynamical Dp-branes with the fore-
going fields was introduced.

The parameters of the dynamics and background fields
were entered into the LREE, and hence, they generalized
the form of the LREE. Therefore, the value of the LREE
can be accurately controlled by adjusting these parameters.
Because of the presence of the tachyon field, the closed string
mode numbers drastically appeared in the LREE through the
infinite product and the series. However, as we chose only
the NS–NS sector, both the integer and half-integer modes
were entered.

Effect of the tachyon condensation on the LREE was also
studied. The LREE of the initial Dp-brane was decomposed
to the LREE of a new unstable dressed-dynamical D(p−1)-
brane and an extra contribution which belongs to the emitted
closed superstrings through the brane collapse. In compari-
son with the bosonic case [37], the extra entropy has been
reduced, which indicates a smaller amount of string radi-
ation. This reveals that after the tachyon condensation the
resultant D-brane in the superstring theory is more stable
than its counterpart in the bosonic string theory.

Furthermore, we defined a temperature for our system
to derive the thermodynamic entropy via the partition func-
tion. We found that the thermal entropy of the configuration
exactly is equivalent to its LREE. Similar equivalence rela-
tions have been demonstrated in Refs. [9,36,37]. The com-
mon properties of the thermodynamic entropy and LREE
motivated us to check the second law of thermodynamics for
the LREE under the tachyon condensation process. In fact,
preservation of the second law of thermodynamics for the
LREE imposes two prominent conditions among the param-
eters of the setup.
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