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Abstract We analyse the phenomenological effects of a
varying Dark Energy (DE) effective speed of sound parame-
ter, c2

sd, on the cosmological perturbations of three phantom
DE models. Each of these models induce a particular abrupt
future event known as Big Rip (BR), Little Rip (LR), and
Little Sibling of the Big Rip (LSBR). In this class of abrupt
events, all the bound structures in the Universe would be
ripped apart at a finite cosmic time. We compute the evolu-
tion of the perturbations, f σ8 growth rate and forecast the
current matter power spectrum. We vary the c2

sd parameter
in the interval [0, 1] and compute the relative deviation with
respect c2

sd = 1. In addition, we analyse the effect of gravita-
tional potential sign flip that occurs at very large scale factors
as compared with the current one.

1 Introduction

During the last two decades Cosmology has experienced
a great improvement in the theoretical and observational
scopes. The discovery of an accelerated Universe, a fact sup-
ported by several observations [1,2], has developed a flour-
ishing of new ideas that deal with the intriguing current speed
up. The simplest explanation consists into invoking a new
component in the Universe named DE as the responsible of
the current acceleration [3]. Among the vast amount of DE
models, those where the null energy condition is violated are
coined as phantom [4–7]. In these class of models, the equa-
tion of state (EOS) parameter of DE, wd (the ratio between
pressure and energy density of DE), stays always below −1.
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Despite some energy conditions are not satisfied, phantom
DE models seem to be favoured by observations [8–17].

It is known that most phantom DE models predict future
singularities. As we have already mentioned in the intro-
duction section, we focus on three genuine phantom mod-
els where each of them induce a particular future doomsday
known as BR, LR, and LSBR (see [4–6,18–22], [23–30],
[31–33] for a detailed description of the respective models).
We recall that no matters if a true singularity or an abrupt
event takes place, all the bound structures in the Universe are
torn away and destroyed.

All the models mentioned above can be understood as
alternatives to the widely accepted �CDM paradigm, and
therefore, good models to describe suitably the current Uni-
verse. An appropriate fitting of the parameters involved could
make these models indistinguishable among them at the
background level. Therefore, it becomes necessary to address
the cosmological perturbations as well.

Observables as for example, the matter power spectrum
and the growth rate provide useful data about the distribution
of matter. Unfortunately, in most of the cases the imprints of
different DE models on such observables are insignificant.
Therefore, important efforts have been made to improve the
accuracy of the observations, particularly, focusing on scru-
tinising the DE sector as it is the case of Euclid mission
[34,35].

The squared speed of sound parameter, c2
s , is another

important variable that plays a key role on cosmological per-
turbations. It is well known that DE models with a negative
c2
s parameter induce instabilities at the perturbation level.

To avoid those instabilities, in [36,37] the authors consider
a non-adiabatic contribution on the pressure perturbations.
This method lead to separate the adiabatic speed of sound, ca ;
which depends on the EoS, and the rest frame speed of sound
(often coined as the effective speed of sound), c2

s ; which is
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regarded as a free parameter.1 Several works have addressed
the issue of pressure decoupling in different DE models.
For example, in [38] the authors study the implications of
a time varying speed of sound in quintessence models. In
[39] the authors analyse the effects of a varying effective
speed of sound parameter on the matter perturbations for a
DE content described by a scalar field. A recently introduced
pretty interesting approach consists on modelling the effec-
tive speed of sound as a function of the EoS parameter i.e.
c2
s = c2

s (w). For example, in [40] the authors show how
to reconstruct the Lagrangian (in particular, for those models
with a purely kinetic term) starting from a known c2

s (w) func-
tion and address several approaches for a range of different
DE models. In particular, the so called effective field theory of
DE consists on a Lagrangian description of the cosmological
perturbations [41]. The effective speed of sound parameter
will be given by the fundamental Lagrangian, therefore, this
formalism could be potentially efficient to check the validity
of DE models and fitting the DE speed of sound parame-
ter. In [42], the authors consider a model with a constant
EoS parameter and estimate the corrections on the growth
index when changing c2

s . On the other hand, in [43] it is con-
sidered a DE model with an affine EoS. Then, the results
obtained when fixing c2

s = 0 and c2
s = 1 are compared. A

further analysis on the effective speed of sound parameter
is performed in [44], where the authors consider the contri-
bution of matter (Baryonic and dark matter (DM)), photons
and neutrinos to get, for example, a probability distribution
for the c2

s value. In [45], a new class of DM-DE interacting
models is identified. The authors study the implications of a
varying effective speed of sound on the Cosmic Microwave
Background (CMB) and the matter power spectrum.

An interesting extension of the widely studied DE models
consists in considering the effects of anisotropy and viscos-
ity. In [46] the authors address the effects of viscosity on the
CMB and matter power spectrum for a Generalised Chap-
lying Gas and models with a constant EoS parameter (both
standard and phantom type DE matter). Then, the obtained
results are compared against the effects that a non-vanishing
effective speed of sound could induce. Furthermore, in [47]
the authors analyse the effects of a viscosity bulk within a
modified gravity scenario endowed with the general action
f (R, T ) and perform a test to check the validity of the stud-
ied models. The impact of the non adiabatic perturbations
have been studied for example in [48,49]. In [48], the authors
address a particular parametrisation of DE considering a lin-
ear combination of the intrinsic and entropy perturbations.
In the recent work [49], aside the non-adiabatic perturba-
tions the non-vanishing anisotropic stress tensor is regarded

1 In the case of a scalar field representation, the effective speed of
sound parameter coincides with unity, i.e. c2

s = 1 (c.f please [36,37]
for a detailed explanation).

as well. Here, the authors use both analytical and numeri-
cal solutions of the growth rate to compare with the latest
observational data. On the other hand, in the recent work
[50], the authors use machine learning computation methods
to reconstruct the relevant perturbation parameters including
those involved with the anisotropic effects, pointing out a
way to detect imprints of anisotropies on a wide range of DE
models. As it is shown in [46,50], when considering such
anisotropies the DE sound speed could be negative without
inducing instabilities at the perturbation level as long as the
effective speed of sound parameter stands positive.

A model that has gained some attention recently is the
so called Early Dark Energy (EDE) model, which has been
shown to be slightly favoured by observational data. This
model simply consists on considering a small but not neg-
ligible DE presence at early stages of the Universe (for
example, before the matter-radiation decoupling time) which
could induce significant footprints on the structure forma-
tion [51,52]. Following this new research line the relevant
model parameters were observationally constrained together
with the c2

s parameter in [53] and considering the additional
viscosity speed of sound parameter in [54]. Other models
have been observationally constrained in order to fit a value
for c2

s . For example, in [36,55] the authors use the tempera-
ture fluctuations of the CMB dataset to set the value of the
speed of sound. In [56] the authors measure the effects of
DE clustering on the large scale structure using CMB and
the galaxy clustering cross correlation data. On the other
hand, in [57] the author analyse the effects of DE clustering
on the structure formation at large scales and forecast the
upper bounds on the DE speed of sound parameter to dis-
tinguish among DE models. In [58], the authors study the
structure formation and constrain a CPL model with a free
effective speed of sound parameter. Significant results could
be obtained using the large neutral Hydrogen surveys as it has
been shown in [59,60], where the authors highlight the poten-
tial of the square kilometre array to constrain DE models. In
view of the upcoming Euclid mission, several works forecast
the necessary accuracy in order to discriminate between dif-
ferent DE models. For instance, in [61] the authors compute
the sensitivity of the photometric and spectroscopic surveys
for measuring the speed of sound and viscosity parameters.

In this work, we consider a Universe filled with radiation,
matter and DE components, where the latter is described by
three different phantom models. We have focused our atten-
tion on the models coined, in the present work, as model A,
model B and model C since they share the common feature
that their induced singularities and abrupt events (BR, LR and
LSBR respectively) are genuinely phantom, that is, they only
occur if and only if a phantom type of component is present.
We address the scalar cosmological perturbations following
the method of pressure decomposition for DE [36,37]. We
set the initial conditions as done in [62,63] where the phys-
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ical value of the total matter density contrast, δphys.(k), for
a single field inflation is taken from Planck data 2018 [64].
On the other hand, the background parameters are fixed fol-
lowing [65]. After imposing adiabatical conditions for scales
larger than the horizon at the beginning, the physical value of
δphys.(k) is the last condition needed to ultimately fix all the
initial numerical values. We analyse the phenomenological
effects of changing the effective speed of sound on the per-
turbations. We emphasise that a complete constraint of the
parameters should involve both, the background parameters
and the c2

sd parameter at the perturbation level. However, we
are not interested in constraining c2

sd but in the phenomeno-
logical effect of varying it. Therefore, we set the background
parameters following [65] and then, we compute the pertur-
bations considering, as the simplest choice, a constant value
of c2

sd inside the interval [0, 1]. In addition, we compute the
relative differences on observables by evaluating the matter
power spectrum and f σ8 growth rate. Finally, we study the
behaviour of the gravitational potential on large scales and
large scale factors as compared with current one.

The paper is organised as follows, In Sect. 2 we briefly
review the background of the models inducing the BR, LR,
and LSBR events. In Sect. 3 we present the obtained results
and in Sect. 4, we present the main conclusions. Finally, in the
“Appendix 1” we show in detail the pressure decomposition
into its adiabatic and non-adiabatic contributions.

2 Background models

In this section, we introduce the background of three genuine
phantom DE models. Each of this models induce a particu-
lar abrupt event known as; Big Rip (model A), Little Rip
(model B) and Little Sibling of the Big Rip (model C). We
start by considering an isotropic and homogeneous Universe,
where the geometry is given by the Friedman–Lemaître–
Robertson–Walker (FLRW) space-time metric:

ds2 = −dt2 + a2 (t)
[
dx2 + dy2 + dz2

]
. (1)

We have considered the case of a spatially flat Universe in
agreement with observations [17]. Therefore, the Friedmann
and Raychaudhuri equations are written as follows

H2 = 8πG

3
ρ , (2)

Ḣ = −4πG (ρ + p) , (3)

where G is the gravitational constant, ρ is the total energy
density of the Universe, while p is likewise the total pressure.
We assume that each component is independently conserved,
therefore, the conservation equation reads

ρ̇� + 3H (ρ� + p�) = 0, (4)

where, � = r, m, d stands for radiation, matter and DE,
respectively. In consequence, the Friedman equation can be
written as

H2 = H2
0

[
�r0a

−3(1+wr) + �m0a
−3(1+wm) + �d0 fj (a)

]

(5)

where H is the Hubble parameter, a is the scale factor and the
parameters ��0 (� = r, m, d) are the current fractional energy
densities of the aforementioned components. The subindex
0 denotes the values at present time. From now on, we will
adopt a0 = 1. In order to avoid repetitions on the notation,
the scale factor will be denoted simply by a. While the EoS
parameters for radiation (wr = 1/3) and matter (wm = 0)
are constant, it can be scale dependent in the case of DE.
The contribution of DE to the total energy budget can be
expressed by means of the dimensionless function fj (a),
where the subindex j refers to the selected model (j=A,B,C).

The set of parameters corresponding to each models are
fixed by using the constraints obtained in the work [65].
The necessary parameters to totally describe the background
models are: The current fractional energy densities of radia-
tion and matter, �r0 and �m0; the current Hubble parameter,
H0 (cf. table III in [65]). While to get the perturbations we
need: The root mean square mass fluctuations amplitude in
spheres of size 8 h−1Mpc, σ8; the amplitude of the scalar per-
turbations as predicted for single field inflation, As , and the
spectral index, ns . These later parameters are fixed by Planck
data (cf. table 17.18 in [64]).

We understand that the differences between background
models mostly lie on the fj (a) function, while we expect
to find footprints of different DE models, (i) at present, in
such a way that they could be useful to distinguish between
different DE models, and (ii) in the far future, where such
deviations between DE models become larger and enhance
some features of each particular DE model.

2.1 Model A: BR singularity

The BR singularity can be induced by a DE content charac-
terised by the following EoS [4–6,18–22],

pd = wdAρd, (6)

where wdA is a constant and smaller than −1. Solving the
conservation equation we get the expression for the corre-
sponding fA (a) function in Eq. (5)

fA (a) = a−3(1+wdA). (7)
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2.2 Model B: LR abrupt event

The model B induces a LR abrupt event [23–30] and can
be identified by having the following EoS for DE content
[25,27]

pd = −ρd − B√
ρd, (8)

where B is a positive constant which has the dimension of
an inverse squared length. This model can be understood as a
deviation of the widely known �CDM paradigm. Notice that
for a vanishing parameter B the �CDM model is recovered.
Solving the conservation equation we get the corresponding
fB (a) function for model B [23–30],

fB (a) =
[

1 + 3

2

√
�B

�d0
ln (a)

]2

, (9)

where the parameter B is reabsorbed in the dimensionless
parameter �B ≡ [

(8πG) /
(
3H2

0

)]B2. This class of abrupt
event suffers from all the divergences prevalent in a BR sin-
gularity but driven at infinite cosmic time. Therefore, we
consider a LR less harming that a BR.

2.3 Model C: LSBR abrupt event

This model induces a LSBR abrupt eventy and it is distin-
guished by having the following EoS [31–33]

pd = −ρd − C
3
, (10)

where C is a positive constant. The smaller is C, the closer is
the model C to �CDM. Solving the conservation equation
we get the corresponding expression of fC (a) for model C
[31],

fC (a) = 1 + �C

�d0
ln (a) , (11)

where the constant C is absorbed in the new parameter �C ≡[
(8πG) /

(
3H2

0

)] C. The model C induces the abrupt event
known as LSBR. In this kind of abrupt event, the scale factor
and the Hubble parameter diverge at infinite cosmic time
while the first cosmic time derivative of the Hubble parameter
is finite. We regard the LSBR as the less harming abrupt event
among those induced by phantom scenarios.

3 Results: the effect of the speed of sound

In the following, we present the results obtained for the cos-
mological perturbations evolution and for the three models

addressed in this paper. We remind that in order to set the
model parameters we have used those obtained in our pre-
vious work [65]. We compute the evolution of the matter
density contrast and peculiar velocities, from well inside the
radiation dominated epoch,2 a ∼ 2.65 × 10−6, till the far
future, a ∼ 1.62 × 105. We perform the integrations for the
following six particular modes

– small k (large distances): k1 = 3.33×10−4h Mpc−1 and
k2 = 1.04 × 10−4 h Mpc−1.

– medium k (intermediate distances): k3 = 3.26 ×
10−3 h Mpc−1 and k4 = 1.02 × 10−2 h Mpc−1.

– large k (short distances): k5 = 3.19 × 10−2h Mpc−1 and
k6 = 1.00 × 10−1 h Mpc−1.

The minimum mode, k1, coincides with the current Hubble
horizon, i.e. no smaller mode can be detected. On the other
hand, we consider as maximum mode, k6, where the linear
approximation breaks down and the non-linear contributions
become important.

3.1 Matter power spectrum and f σ8

We have computed the current matter power spectrum and
the growth rate f σ8, testing the effective squared speed of
sound from 0 to 1 in steps of 0.2. In this process, the numerical
integration was repeated for 200 modes ranged from k1 to k6.

Figure 1 shows the current matter power spectrum and the
evolution of f σ8 predicted by the models. These results are
in agreement with observations but does not allow to dis-
tinguish any deviation for different models. In addition, the
effects of a varying speed of sound turn out to be almost unde-
tectable since the results appear totally overlapped. There-
fore, in order to give an account of the contrast, we compute
the relative deviation with respect to c2

sd = 1.
As it is shown in the left column of Fig. 2, the relative

differences (with respect to c2
sd = 1) on the matter power

spectrum are negative for the smallest modes and positive for
the largest ones. The transition occurs in a narrow interval
around the wave number k ∼ 1.8 × 10−3h Mpc−1. The sep-
aration obtained for a vanishing speed of sound parameter is
remarkable. First, looking at small modes, the deviations are
constant, the larger is the deviation from c2

sd = 1 the larger
is such a constant. Secondly, looking at the larger modes, the
deviation is constant for vanishing c2

sd parameters while such
deviation vanishes for non vanishing c2

sd parameters.
Something similar happen for f σ8 results. As it is shown

on the right panel of Fig. 2, the relative difference for a van-
ishing effective speed of sound parameter show an impor-

2 The scale factor for this epoch represents a moment in the early Uni-
verse where its energy content consists in 1% of matter against 99% of
radiation.
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Fig. 1 The left panel of this figure represents the matter power spectrum while the right panel shows the evolution of f σ8 in terms of the redshift
z. All models with different values of c2

sd give an almost identical result, so the curves appear completely overlapped and their differences are
negligible

tant separation with respect to the results given for a non-
vanishing c2

sd parameter. Conversely, the deviation is pos-
itive for the smallest redshifts and negative for the largest
ones. The transition occurs at z ∼ 0.85 for a vanishing c2

sd
and at z ∼ 1 for non-vanishing c2

sd. Such transition point is
slightly affected depending which DE model is considered.
In addition, contrary to what happens for the matter power
spectrum, in f σ8 the deviations goes to a constant for both
large and small modes. As expected, such a constant is larger
the larger is the deviation from c2

sd = 1.
The largest deviations are of the order 10−3 for both the

matter power spectrum and f σ8 evolution. So we conclude
that no significant footprints appear on the matter distribution
when changing the effective speed of sound. In fact, the most
relevant effects of a varying effective speed of sound are
clearly manifested in the DE sector.

3.2 DE perturbations

Figure 3 shows the evolution of the matter density contrast
of DE for different models and ranges of c2

sd. We remind
that due to the phantom nature of DE models, the adiabatic
condition imposed at the early Universe implies that the DE
perturbations are negative [63,66].

Figure 3 shows the evolution of DE density contrast for
different models and values of c2

sd. We realise that the effect
of varying c2

sd is minimal for values larger than 0.2, i.e.,
inside the interval [0.2, 1]. Hence, we just show the results
for c2

sd = 0, c2
sd = 0.2 and c2

sd = 1. As can be seen in the first
column of Fig. 3 (i.e. for a vanishing c2

sd parameter), once
the modes enters the horizon, the perturbations increase up to
three orders of magnitude in the case of the largest mode and
around two orders of magnitude for the medium size modes.
All the growing modes reach a maximum at present time
(x = 0, where x = ln (a)) and decay during the later DE
domination era. That is; once the modes enters the horizon

they grow, and then, when they exit the horizon, the perturba-
tions decay evolving towards a negative constant.3 This is not
the case of the smallest modes, we should bear in mind that
such small modes have recently entered the horizon and are
the first exiting it, so the smallest modes do not experience
important deviations.

For a c2
sd = 0.2, the growth of DE perturbations is strongly

suppressed in the matter domination era. During this epoch,
the largest modes (k5 and k6) decay and reach a plateau
while the medium sized modes (k3 and k4) experience a
small growth. When DE starts dominating, the perturbations
decrease up to three orders of magnitude for the largest modes
and one order of magnitude for the medium sized modes. The
smallest modes (k1 and k2) do not seem to be significantly
affected.

For a value of c2
sd = 1, the resulting plot is very similar

to the one when c2
sd = 0.2. The main difference consists on

the total suppression of the growing perturbations during the
matter dominated epoch. Once again, the perturbations decay
when the corresponding mode enters the horizon and evolve
to a negative constant after exiting the horizon.

In summary, DE perturbation are strongly affected near
vanishing values of c2

sd parameter and mostly, for large
modes. On the contrary, small modes do not show significant
deviations. We should bear in mind that due to the change of
the acceleration of the Universe (from a negative to a positive
acceleration stage) the smallest modes are the last entering
the horizon and the first exiting it, therefore, such modes have
not enough time to be significantly affected.

On the other hand, it is possible to find important devia-
tions between the different models, mostly, in the early Uni-
verse where radiation dominates over the other components.

3 We remind that phantom DE perturbations are considered to be nega-
tive at the beginning of the numerical integration, as it is the case of the
gravitational potential. On the other hand, standard matter perturbations
are considered to be positive.
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Fig. 2 These plots represent the relative deviation with respect to the
result given when c2

sd = 1. The top, middle and bottom panels corre-
spond with the models A, B and C, respectively. The left panels show
the results for the matter power spectrum as a function of the mode. The
right panels show the results for f σ8 in terms of redshift, z. Different

values of c2
sd are coloured as; c2

sd = 0 (black), c2
sd = 0.2 (red), c2

sd = 0.4
(orange), c2

sd = 0.6 (purple) and c2
sd = 0.8 (blue). The plots are repre-

sented in a logarithmic scale, in such a way that dashed lines correspond
with negative values while solid lines represent positive values

We set the initial value of DE matter density contrast, δ	
d

(where the script 	 denotes the initial value) through the adi-
abatic condition [3].

δ	
r

1 + w	
r

= δ	
m

1 + w	
m

= δ	
d

1 + w	
d
. (12)

Taking into account that we have used in all the models the
same value of the current radiation fractional energy, �r0, and
that the current matter fractional energy is almost the same
in the three paradigms analysed, �m0 � 0.3, it is worthy
to point out the next approximation relating the initial DE
perturbations of the different models

δ	
d,A

1 + w	
d,A

� δ	
d,B

1 + w	
d,B

� δ	
d,C

1 + w	
d,C

. (13)

Given the model parameters used in this work [65], the
EoS parameters at the beginning (deep inside the radiation
era) read

w	
d,A = −1.027, w	

d,B = −1.050, w	
d,C = −1.320. (14)

Therefore, the relation of the initial DE perturbation
between the different models is roughly

12δ	
d,A � 13

2 δ	
d,B � δ	

d,C. (15)
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Fig. 3 These plots show the evolution of DE density contrast for dif-
ferent models and different values of c2

sd. The panels of the first, second
and third row correspond with the model A, B and C, respectively.
The panels of the first, second and third columns correspond, respec-
tively, to the values of the squared speed of sound c2

sd = 0, c2
sd = 0.2

and c2
sd = 1. The plot is drawn as a function of x = ln (a) which

goes from well inside the radiation dominated epoch, x	 = −12.84, to
the far future, x = 12. Each colour corresponds to a particular value
of the wave-number k: k1 = 3.33 × 10−4 h Mpc−1 (purple), k2 =
1.04 × 10−4 h Mpc−1 (dark blue), k3 = 3.26 × 10−3 h Mpc−1 (light
blue), k4 = 1.02 × 10−2 h Mpc−1 (green), k5 = 3.19 × 10−2 h Mpc−1

(orange) and k6 = 1.00 × 10−1 h Mpc−1 (red)

As can be seen the larger is the deviation from −1 of the
initial EoS parameter, the larger is the initial DE density con-
trast. This explains the large initial amplitude for model C.
Similarly, in the case of model B it can be observed a weak
decay, while in model A, on the contrary, it is almost con-
stant. Despite the large deviation given by these DE models
in the early Universe, the amplitudes are strongly suppressed
during the late-radiation dominated epoch and matter domi-
nation era, in such a way that different models predict very
similar results at present time, and therefore, no significant
deviations should be expected at a future cosmic time.

3.3 Evolution of the gravitational potential

Aside from DE perturbations analysis, we found some devi-
ations on the evolution of the gravitational potential. We
remind that in our phantom models the gravitational potential
evolves asymptotically to a positive constant, which is not the
case of a �CDM or standard DE models, where the gravi-

tational potential evolves towards a vanishing or a negative
constant [66]. Since no relevant differences are observed for
the different models, we just present the results correspond-
ing to model A. The left panel of Fig. 4 shows the gravita-
tional potential evolution for a vanishing effective speed of
sound parameter. As can be seen, at a particular scale factor
the gravitational potential flips the sign. We can notice that
the gravitational potential evolution is almost unaffected by
changing c2

sd from the early time till present. However, in the
far future some differences merge.

The left panel of Fig. 4 shows the evolution of the gravi-
tational potential, 
, divided by its initial value, 
	 for the
six relevant modes previously chosen. As can be seen, the
gravitational potential almost vanishes for the largest modes,
while it evolves to a positive constant for small modes. We
remind once again that the gravitational potential is nega-
tive at the beginning of the computations, which confers the
attractive nature of gravity. Therefore, a positive sign on the
gravitational potentials is understood as a repulsive effect.
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Fig. 4 The left panel of the above figure presents the evolution of the
gravitational potential divided by its initial value, 
	. These results cor-
respond to model A and choosing a vanishing effective speed of sound
c2
sd = 0. The vertical dashed line corresponds to radiation-matter equal-

ity, x ∼ −8.24, while the solid gray vertical line denotes the matter-DE
equality, x ∼ −0.27. The range and the numerical value of the modes

for different colours are the same as those used in Fig. 3. The right
panel shows the asymptotic value of the gravitational potential in terms
of log(k) for five different values of the effective speed of sound param-
eter: c2

sd = 0 (black), c2
sd = 0.2 (red), c2

sd = 0.4 (orange), c2
sd = 0.6

(purple), c2
sd = 0.8 (blue) and c2

sd = 1 (gray)

The right panel of Fig. 4 shows the asymptotic value of
the gravitational potential divide by the initial value, 
	. The
plot is done to highlight how such a constant is affected by
the different values of the modes and c2

sd parameter. As can
be seen, for large modes the gravitational potential vanishes
with independence of the chosen c2

sd parameter, while for the
smallest modes such a constant is set to be around −0.065.
Bear in mind that the initial value of the gravitational poten-
tial is negative while asymptotically it approximates to the
constant 
fin, which is a positive value.

We find interesting to focus on the evolution of the gravita-
tional potential in the far future, mainly, where it flips its sign.
For instance, Fig. 5 shows the evolution of the gravitational
potential from the present time till the distant future. As can
be seen, for a vanishing effective speed of sound parame-
ter the gravitational potential flip of sign occurs, for all the
modes, at the same time (x ∼ 3). In addition, such flip occurs
before some of the modes have exited the horizon. This is not
the case of a non-vanishing c2

sd parameter (second and third
column of Fig. 5, for c2

sd = 0.2 and c2
sd = 1, respectively). As

can be seen, the smallest modes switch the sign earlier than
the largest modes do, however, all the relevant modes have
exited the horizon when those flips occur. In addition, we
found that that the more abrupt is the cosmic event induced
by the model, the sooner occurs the sign flip. This difference
is more pronounced the larger are the k modes and c2

sd values.
With the aim to better understand the asymptotic evolution

of the metric perturbation, we solve the second order differ-
ential equation for the gravitational potential. By incorporat-
ing the decomposition of the pressure (see [36,37,44,49] for
detailed calculations on decomposing the DE pressure in its
adiabatic and non-adiabatic contributions) in the perturbation

equation of the gravitational potential4 we get


xx + 1

2

[
5 − 3w + 6c2

ad

]

x

+
[

3
(
c2
ad − w

)
+ c2

sdk
2

H2

]

 = 0 (16)

Let us consider a constant EoS parameter where.5 c2
ad =

wd Therefore, in a phantom DE dominated Universe the
Eq. (16) can be approximated as6


xx + 1

2
(5 + 3wd)
x

+
(

c2
sdk

2

�d0k2
0

)
e(3wd+1)x 
 = 0, (17)

whose solutions are given by


[
c2
sd=0

] = C1 + C2

β
e−βx , (18)


[
c2
sd �=0

] = e− β
2 x

{
D1 Jν

[
A (k) e−γ x]

−D2Yν

[
A (k) e−γ x]}, (19)

4 see, for example, Eq.(3.16) in [63].
5 The differential equations for models B and C are not the same. How-
ever, after solving those cases by numerical analysis, we have not found
significant deviations with respect the model A.
6 In the case of the models B and C, this assumption is not correct since
the differential equation (16) is different. However, we do not observe
significant changes between the numerical results given by the different
models. So we focus on model A since its differential equation becomes
analytically solvable.
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Fig. 5 This figure presents the evolution of the gravitational poten-
tial, 
, with respect to its initial value, 
	, in a logarithmic scale and
from the present to the far future. The solid lines represent the positive
values while the dashed lines represent negative values. We apply the

same criteria as the ones used in Fig. 3 to represent the different modes.
The coloured vertical lines represent the moment of horizon exit for the
corresponding mode


[
c2
sd �=0

] ∼ D1

� (ν + 1)

[
A (k)

2

]ν

+D2� (−ν)

π

[
A (k)

2

]−ν

e−βx for 1 � x,

(20)

where Jν and Yν are the first kind Bessel functions with order
ν, � is the Gamma function, while C1, C2, D1 and D2 are
integration constants. The remaining parameters are defined
as

β ≡ 1

2
(5 + 3wd) , γ ≡ −1

2
(1 + 3wd) ,

ν ≡ − β

2γ
, A (k) ≡ 1

γ

√
c2
sd

�d0

k

k0
. (21)

Since 
 is linear, a particular solution multiplied by a
constant factor is still a solution. Therefore, the total result
can be written as


tot (x) = 
 (x) F (k, csd) , (22)

where F (k, csd) can be fixed (with an appropriate choice
for C1, and D1) by analysing the asymptotic behaviour of

the gravitational potential shown on the right panel plot of
Fig. 4.

As can be seen, the asymptotic behaviour for large scale
factors, given in7 Eq. (20), coincides with the solution for a
vanishing c2

sd, Eq. (18). However, instead of having just the
constants terms C1, and C2, the solutions for non-vanishing
c2
sd �= 0 parameter keep some information of the modes

through the function A(k) and modulated by the constants
D1, and D2. Note that the dominant solution for x → ∞
is constant as long as the coefficient β is positive, i.e.
−5/3 < wd which is indeed our case.

Finally, in order to obtain the point where the gravitational
potential flip of sign occurs, we just solve 
 = 0 for the
couple of Eqs. (18) and (19). Therefore, we get

xcrit = − 1

β
ln [−α1β] , (23)

7 Notice that the coefficient γ is positive, therefore, the argument of
Bessel function vanishes when x → ∞. We have obtained the expres-
sion for small arguments making use of (9.1.7) and (9.1.9) of reference
[67]).

123



803 Page 10 of 13 Eur. Phys. J. C (2021) 81 :803

Fig. 6 This figure shows the moment where the gravitational potential
switches its sign, xflip, in terms of log10 (k). Each curve corresponds to
a given value of the speed of sound parameter; c2

sd = 0 (solid black),
c2
sd = 0.2 (red), c2

sd = 0.4 (orange), c2
sd = 0.6 (purple),c2

sd = 0.8
(blue) and c2

sd = 1 (gray). The red dashed curve corresponds to c2
sd =

2.09 × 10−3 while the black-dotted line represent the value of x where
modes exit the horizon

xflip = − 1

β
ln [α2 sin (πν)]

+ 1

γ
ln

⎡
⎣1

2

√
c2
sd

�d0

⎤
⎦ + 1

γ
ln

[
k

k0

]
. (24)

where we have defined a proportionality between the inte-
gration constants, i.e. C1/C2 ≡ α1 and D1/D2 ≡ α2. Given
that C1, D1 < 0 and 0 < C2, D2, α1 and α2 are negative
constants.

On the one hand, xcrit is the lower value for which the
gravitational potential can switch its sign and corresponds
to a vanishing effective speed of sound parameter. Bear in
mind that the differential equation (17) remains invariant by
choosing different k and c2

sd as long as the product k2c2
sd is

fixed. Therefore, the solution for the limit k → 0 corresponds
to the solution for a vanishing c2

sd. On the other hand, for non-
vanishing values of the product k2c2

sd, the moment at which
the gravitational potential flips its sign is given by (24) (which
is valid as long as xcrit < xflip).

Therefore, we could define a second surface whose size is
the distance where the gravitational potential becomes posi-
tive. In addition, we notice that such a second surface changes
with time as fast as the true horizon does, i.e. ln (k/k0) ∼ γ x .
So this could be understood as two horizons, the true one; i.e.
that enclose the observable Universe, and a second one; i.e.
where the gravitational potential becomes positive, keeping
the relative distance as constant.

Figure 6 shows a plot of xflip vs log10 (k). Since no rel-
evant differences are found between models, we again only
present the result given for the model A. We should keep in

mind that the differential equation that lead to the analytical
solution will be different if instead we choose model B or
C. However, in practical terms all the models give similar
numerical solutions.

As it is shown in Fig. 6, for a vanishing c2
sd parameter

(solid black line) the flip of sign occurs at the same time for all
the modes. The plots given by non-vanishing c2

sd parameters
(coloured solid lines) becomes parallel, at large modes, with
respect to the horizon exiting line (black dotted line). This
means that there is an upper bound on c2

sd that will ensure
sign-flipped modes inside the horizon, while values larger
than such an upper bound would stand beyond the observable
Universe. We have estimated such an upper bound roughly
to be the order of c2

sd � 2 × 10−3 (represented by the red
dotted curve).

4 Conclusions

In this work, we have analysed the cosmological perturba-
tions of three genuine phantom DE models with a varying
effective speed of sound parameter. These models, named
in the present work as model A, B and C, induce a particu-
lar future event known as BR, LR and LSBR, respectively.
In these future events the Universe reach a scenario where
all the bound structures are ripped apart. We have addressed
the computation of the linear cosmological perturbations fol-
lowing the method of decomposing the DE pressure perturba-
tion in its adiabatic and non adiabatic contributions [36,37],
which leaves a dynamical set of equations free of instabili-
ties. In this way, the effective speed of sound parameter of
DE, c2

sd, is regarded as a free parameter.
We have considered a Universe filled with radiation, mat-

ter and DE, where the latter is described by the aforemen-
tioned models. We have computed the perturbations since
the radiation dominated epoch, (aini ∼ 2.6 × 10−6), till a far
future (afin ∼ 1.6 × 105), where DE completely dominates.
On the one hand, the model parameters where fixed by using
the background observational constraints obtained in [65].
On the other hand, the physical values as the initial conditions
for single field inflation, giving rise to the spectral amplitude
and spectral index were fixed using Planck data [64]. Then,
we obtain the predicted current matter power spectrum and
the evolution of f σ8 growth rate. Finally, we study the effect
of changing c2

sd from 0 to 1.
We find that different values of the c2

sd parameter does not
affect significantly the matter perturbations. Consequently,
the matter power spectrum and f σ8 evolution do not show
any relevant footprint. In fact, the relative deviations with
respect to c2

sd = 1 are, in the best case, up to 10−2 in the
matter power spectrum (for small modes) and 10−3 in f σ8

(for vanishing values of c2
sd). Given that the upcoming Euclid

data is expected to measure the primordial matter power spec-
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trum with an accuracy of one percent [34], we expect that the
effects predicted in this work will be difficult, but not impos-
sible, to detect. A combined data set of large scale structure
with Planck could increase the accuracy just enough to dis-
tinguish the footprints predicted at small modes. On the one
hand, the accuracy on the growth rate might not be enough
to measure the very small deviations predicted by our results
(see figure 2.5 in reference [34]). On the other hand, the asso-
ciated deviations into the gravitational potential, 
, due to
the different values of the c2

sd parameter become important
at large scales, reaching the largest deviation at asymptotic
values (see right panel in Fig. 4). Nevertheless, we expect
that at present time those deviations in 
 are very small (see
Fig. 5 at x = 0) to induce a significant change when comput-
ing the cross correlation between CMB and the large scale
structure in pursuit of footprints traced by c2

sd. The integrated
Sachs-Wolf effect has its footprints mainly connected with
the gravitational potential behaviour, which is more sensi-
tive to the chosen models, due to its dependence on the adi-
abatic speed of sound, c2

ad, rather than the value of c2
sd. So

we expect that the effects of different values of c2
sd will leave

no significant footprints detectable on the integrated Sachs-
Wolf effect. However, we have found interesting footprints in
the DE density contrast when changing c2

sd. Those changes
are amplified when c2

sd is set very small. Despite the dif-
ferent three models are almost indistinguishable at present,
there are significant deviations in the early Universe, which
strongly depend on the initial EoS parameter of DE due to
the adiabatic conditions imposed at the beginning (see (13)
and (15)).

We conclude that the possibility of a vanishing speed of
sound parameter does not seem to be favoured by two rea-
sons: (i) the DE density contrast grows too much during the
matter dominated epoch, and this would lead to a DE clus-
tering, something that has not been detected so far, (ii) the
gravitational potential sign flip occurs at the same time for
all the modes, such unexpected and sudden event does not
seem physical. This is not the case of a non-vanishing effec-
tive speed of sound parameter, where the Bardeen potential
becomes progressively negative from very large distances to
smaller ones. Such distances decrease with time as fast as
the horizon does. Therefore, there is a particular value of
c2
sd where the gravitational potential switches the sign pre-

cisely at the horizon. We have found that this value is close
to c2

sd ∼ 2 × 10−3. For such a small value the DE clustering
could be large enough to become detectable, a fact that has not
been observed yet. Therefore, it could play an important role
favouring or ruling out different DE models and c2

sd values.
We hope the upcoming Euclid mission will provide a refined
data on the c2

sd parameter likewise other important cosmolog-
ical parameters. We have found that the standard deviation
Euclid will present on the DE speed of sound parameter is
large for values close to one, 1 � σ(c2

sd)/c
2
sd when c2

sd ∼ 1,

while it gets a reasonable accuracy close to vanishing val-
ues, σ(c2

sd)/c
2
sd ∼ 0.11 when c2

sd = 10−6 (see page 143 on
reference [35]). Therefore, if the measured speed of sound is
non-zero but close to vanishing values, then it could become
a suitable indicator to discriminate or favour different DE
models, aside from the potential use to constrain several DE
models.

Despite the fact that the DE perturbations have not been
observed so far, we strongly believe that they hide reveal-
ing footprints that could allow us to distinguish different DE
models if ever detected. We hope that upcoming missions
such as Euclid will provide crucial information about the dark
sector of the Universe, granting us a useful tool to favouring
or discriminating among DE models as those addressed in
the present work.
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Appedix: Decomposition of a non-adiabatic pressure

We first consider a gauge transformation from the rest frame
to the Newtonian gauge. Therefore, the physical quantities
in both gauges are related as

δp� = δp�|r.f. − p′
�δη, δρ� = δρ�|r.f. − ρ′

�δη

(v� + B) = (v� + B)|r.f. + δη, (25)

where subscript r.f denotes rest frame and no subscript refers
to Newtonian gauge. In the rest frame, v�r.f. = 0 and Br.f. = 0,
while in the Newtonian gauge it is set B = 0. Therefore, this
implies v� = δη. On the other hand, we consider that the
total pressure perturbation is given by its adiabatic and non-
adiabatic contributions,
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δp� = δp�ad + δp�nad, (26)

where by definition, δp�ad = c2
a�δρ� is the adiabatic part. We

compute the gauge difference on both sides of the equality
(26) using Eq. ( 25) together with the definitions for the speed
of sounds

c2
s A = δpA

δρA

∣∣∣∣
r.f.

, c2
aA = p′

A

ρ′
A

, (27)

First, we deduce that the non adiabatic part is gauge invari-
ant, i.e. δp�nad = δp�nad|r.f.. Therefore, we get

δp�nad =
(
c2
s� − c2

a�

)
δρ�|r.f. ,

δp� = c2
s�δρ� +

(
c2
s� − c2

a�

)
ρ′

�δη. (28)

Finally, making use of the conservation equation, ρ′
� =

−3H (1 + w�) ρ�, the non-adiabatic contribution and total
pressure perturbation can be written as

δp�nad =
(
c2
s� − c2

a�

)
[δρ� − 3H (1 + w�) ρ�v�] ,

δp� = c2
s�δρ� +

(
c2
a� − c2

s�

)
3H (1 + w�) ρ�v�. (29)
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