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Abstract We revisit the operator mixing in massless QCD-
like theories. In particular, we address the problem of deter-
mining under which conditions a renormalization scheme
exists where the renormalized mixing matrix in the coor-
dinate representation, Z(x, μ), is diagonalizable to all per-
turbative orders. As a key step, we provide a differential-
geometric interpretation of renormalization that allows us
to apply the Poincaré-Dulac theorem to the problem above:
We interpret a change of renormalization scheme as a (for-
mal) holomorphic gauge transformation, − γ (g)

β(g) as a (for-
mal) meromorphic connection with a Fuchsian singularity
at g = 0, and Z(x, μ) as a Wilson line, with γ (g) =
γ0g2 + · · · the matrix of the anomalous dimensions and
β(g) = −β0g3 +· · · the beta function. As a consequence of
the Poincaré-Dulac theorem, if the eigenvalues λ1, λ2, . . . of
the matrix γ0

β0
, in nonincreasing order λ1 ≥ λ2 ≥ · · · , satisfy

the nonresonant condition λi −λ j −2k �= 0 for i ≤ j and k a
positive integer, then a renormalization scheme exists where
− γ (g)

β(g) = γ0
β0

1
g is one-loop exact to all perturbative orders. If

in addition γ0
β0

is diagonalizable, Z(x, μ) is diagonalizable
as well, and the mixing reduces essentially to the multiplica-
tively renormalizable case. We also classify the remaining
cases of operator mixing by the Poincaré–Dulac theorem.

1 Introduction and physics motivations

In the present paper we revisit the operator mixing in asymp-
totically free gauge theories massless to all perturbative
orders, such as QCD with massless quarks. We refer for short
to such theories as massless QCD-like theories.

In fact, nonperturbatively, according to the renormaliza-
tion group (RG), massless QCD-like theories develop a non-
trivial dimensionful scale that labels the RG trajectory – the
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RG invariant – ΛRGI :

ΛRGI ∼ μ e
− 1

2β0g
2 g

− β1
β2

0 c0

(
1 +

∞∑
n=1

cng
2n

)
(1)

– the only free parameter [1,2] in the nonperturbative S
matrix of confining massless QCD-like theories [1,2] – that
any physical mass scale must be proportional to, with β0 and
β1 the renormalization-scheme independent first-two coeffi-
cients of the beta function β(g):

∂g

∂ log μ
= β(g) = −β0g

3 − β1g
5 + · · · (2)

and g = g(μ) the renormalized coupling.
Hence, our main motivation is for the study of the ultravio-

let (UV) asymptotics, implied by the RG, of 2-, 3- and n-point
correlators of gauge-invariant operators for the general case
of operator mixing, in relation to an eventual nonperturbative
solution, specifically in the large-N limit [3–6].

In this respect, the study of the UV asymptotics for cor-
relators of multiplicatively renormalizable operators [7–9],
apart from the intrinsic interest [10], sets powerful constraints
[1,2,7–9,11] on the nonperturbative solution of large-N con-
fining QCD-like theories.

Accordingly, the present paper is the first of a series, where
we intend to study the structure of the UV asymptotics of
gauge-invariant correlators implied by the RG in the most
general case above, in order to extend the aforementioned
nonperturbative results [1,2,7–9,11] to operator mixing.

In particular, since operator mixing is ubiquitous in gauge
theories, an important problem, which is hardly discussed
in the literature, is to determine under which conditions it
may be reduced, to all orders of perturbation theory, to the
multiplicatively renormalizable case.

The aim of the present paper is to solve this problem,
and also to classify the cases of operator mixing where the
aforementioned reduction is not actually possible.
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2 Main results and plan of the paper

We can exemplify the structure of the UV asymptotics of 2-
point correlators as follows. In massless QCD-like theories,
we consider 2-point correlators in Euclidean space-time:

Gik(x) = 〈Oi (x)Ok(0)〉 (3)

of renormalized local gauge-invariant operators Oi (x):

Oi (x) = ZikOBk(x) (4)

where OBk(x) are the bare operators that mix1 under renor-
malization and Z is the bare mixing matrix.

The corresponding Callan–Symanzik equation [15–18]
reads in matrix notation:(
x · ∂

∂x
+ β(g)

∂

∂g
+ 2D

)
G + γ (g)G + G γ T (g) = 0

(5)

with γ T the transpose of γ , D the canonical dimension of
the operators, and γ (g) the matrix of the anomalous dimen-
sions:2

γ (g) = − ∂Z

∂ log μ
Z−1 = γ0g

2 + γ1g
4 + · · · (6)

The general solution has the form:

G(x) = Z(x, μ)G(x, g(μ), μ)ZT (x, μ) (7)

with G(x, g(μ), μ) satisfying:(
x · ∂

∂x
+ β(g)

∂

∂g
+ 2D

)
G = 0 (8)

and:

Z(x, μ) = P exp

(
−

∫ g(μ)

g(x)

γ (g)

β(g)
dg

)
(9)

where Z(x, μ) is the renormalized mixing matrix in the
coordinate representation, P denotes the path ordering of
the exponential, and g(μ), g(x) are short notations for the
running couplings g( μ

ΛRGI
), g(xΛRGI ) at the corresponding

scales, with UV asymptotics:

g2(xΛRGI ) ∼ 1

β0 log( 1
x2Λ2

RGI
)

⎛
⎝1 − β1

β2
0

log log( 1
x2Λ2

RGI
)

log( 1
x2Λ2

RGI
)

⎞
⎠ .

(10)

1 In fact [12–14], gauge-invariant operators also mix with BRST-exact
operators and with operators that vanish by the equations of motion
(EQM). But correlators of gauge-invariant operators with BRST-exact
operators vanish, while correlators with EQM operators reduce to con-
tact terms. Hence, for our purposes it suffices to take into account the
mixing of gauge-invariant operators only.
2 The sign of the coefficient matrices in Eq. (6), γ0, γ1, . . ., is the
standard one, but opposite with respect to the convention employed
in [1,2,7–9,11].

We will discuss the UV asymptotics of G(x, g(μ), μ) in a
forthcoming paper,3 while in the present paper we concen-
trate on the UV asymptotics4 of Z(x, μ).

In the general case, because of the path-ordered exponen-
tial and the matrix nature of Eq. (9), it is difficult to work
out the actual UV asymptotics of Z(x, μ). Of course, were
γ (g)
β(g) diagonal, we would get immediately the correspond-
ing UV asymptotics for Z(x, μ), as in the multiplicatively
renormalizable case [17,18].

Therefore, the main aim of the present paper is to find
under which conditions a renormalization scheme exists
where Z(x, μ) is diagonalizable to all perturbative orders.

Another aim is to classify the cases of operator mixing
where such a diagonalization is not possible.

We accomplish the aforementioned purposes in three
steps:

In the first step (Sect. 3), we furnish an essential differential-
geometric interpretation of renormalization: We interpret a
change of renormalization scheme as a (formal) holomorphic
gauge transformation, − γ (g)

β(g) as a (formal) meromorphic con-
nection with a Fuchsian singularity at g = 0, and Z(x, μ) as
a Wilson line.

In the second step (Sect. 4), we employ the above inter-
pretation to apply in the framework of operator mixing –
for the first time, to the best of our knowledge – the theory
of canonical forms, obtained by gauge transformations, for
linear systems of differential equations with meromorphic
singularities [19], and specifically (a formal version of) the
Poincaré–Dulac theorem [20] for Fuchsian singularities, i.e.,
simple poles.

In the third step (Sect. 5), we provide a condensed proof
of the Poincaré–Dulac theorem in the case (I) below, where
Z(x, μ) is diagonalizable to all orders of perturbation theory.

From the three steps above, our conclusions follow:
As a consequence of the Poincaré–Dulac theorem, if the

eigenvalues λ1, λ2, . . . of the matrix γ0
β0

, in nonincreasing
order λ1 ≥ λ2 ≥ · · · , do not differ by a positive even integer
(Sect. 4), i.e.:

λi − λ j − 2k �= 0 (11)

for i ≤ j and k a positive integer, then it exists a renormal-
ization scheme where:

− γ (g)

β(g)
= γ0

β0

1

g
(12)

3 M. Becchetti, M. Bochicchio, Canonical forms of operator mixing
and UV asymptotics of OPE coefficients in massless QCD-like theories,
to appear in arXiv.
4 In the present paper γ (g) and β(g) in Eq. (9) are actually only defined
in perturbation theory by Eqs. (2) and (6). In this case, Eq. (9) only fur-
nishes the UV asymptotics of Z(x, μ), thanks to the asymptotic free-
dom.
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is one-loop exact to all orders of perturbation theory, with
− γ (g)

β(g) defined in Eq. (16).
Moreover, according to the terminology of the Poincaré–

Dulac theorem, our classification of operator mixing is as
follows:

If a renormalization scheme exists where − γ (g)
β(g) can be set

in the canonical form of Eq. (12), we refer to the mixing as
nonresonant, that by Eq. (11) is the generic case. Otherwise,
we refer to the mixing as resonant.

Besides, γ0
β0

may be either diagonalizable5 or nondiago-
nalizable.

Therefore, there are four cases of operator mixing:

(I) Nonresonant diagonalizable γ0
β0

.

(II) Resonant diagonalizable γ0
β0

.

(III) Nonresonant nondiagonalizable γ0
β0

.

(IV) Resonant nondiagonalizable γ0
β0

.

In the case (I), Z(x, μ) is diagonalizable to all orders of
perturbation theory, since the mixing is nonresonant and γ0

β0
is diagonalizable.

The remaining cases, where Z(x, μ) is not actually diag-
onalizable, will be analyzed in a forthcoming paper [21].
Specifically, we will work out in [21] the canonical form of
− γ (g)

β(g) for resonant mixing – that is different from Eq. (12) –
.

In the case (I), the UV asymptotics of Z(x, μ) reduces
essentially to the multiplicatively renormalizable case:

Zi (x, μ) = exp

(∫ g(μ)

g(x)

γ0i

β0g
dg

)
=

(
g(μ)

g(x)

) γ0i
β0

(13)

in the diagonal basis, where Zi (x, μ) and γ0i denote the
eigenvalues of the corresponding matrices.

Of course, Z(x, μ) in any other renormalization scheme
can be reconstructed from the canonical diagonal form above
– if it exists – by working out the other way around the appro-
priate change of basis according to Eq. (22).

Then, in the case (I) Eq. (7) reads:

Gik(x) = Zi (x, μ)Gik(x, g(μ), μ)Zk(x, μ) (14)

in the diagonal basis, where no sum on the indices i, k is
understood. Eq. (14) furnishes the UV asymptotics ofGik(x),
provided that the asymptotics of Gik(x, g(μ), μ) is known as
well.

We believe that the aforementioned employment of the
Poincaré–Dulac theorem makes the subject of operator mix-
ing in the physics literature more transparent than in previous
treatments [22].

5 A sufficient condition for a matrix to be diagonalizable is that all its
eigenvalues are different.

3 Differential geometry of renormalization

We point out that renormalization may be interpreted in
a differential-geometric setting, where a (finite) change of
renormalization scheme, i.e., a coupling-dependent change
of the operator basis:

O ′
i (x) = Sik(g)Ok(x) (15)

is interpreted as a matrix-valued (formal6) real-analytic
invertible gauge transformation S(g). Accordingly, the matrix
A(g):

A(g) = −γ (g)

β(g)
= 1

g

(
A0 +

∞∑
n=1

A2ng
2n

)

= 1

g

(
γ0

β0
+ · · ·

)
(16)

that occurs in the system of ordinary differential equations
defining Z(x, μ) by Eqs. (6) and (2):(

∂

∂g
+ γ (g)

β(g)

)
Z = 0 (17)

is interpreted as a (formal) real-analytic connection, with a
simple pole at g = 0, that for the gauge transformation in
Eq. (15) transforms as:

A′(g) = S(g)A(g)S−1(g) + ∂S(g)

∂g
S−1(g) (18)

Moreover,

D = ∂

∂g
− A(g) (19)

is interpreted as the corresponding covariant derivative that
defines the linear system:

DX =
(

∂

∂g
− A(g)

)
X = 0 (20)

whose solution with a suitable initial condition is Z(x, μ).
As a consequence, Z(x, μ) is interpreted as a Wilson line

associated to the aforementioned connection:

Z(x, μ) = P exp

(∫ g(μ)

g(x)
A(g) dg

)
(21)

that transforms as:

Z ′(x, μ) = S(g(μ))Z(x, μ)S−1(g(x)) (22)

for the gauge transformation S(g).
Besides, by allowing the coupling to be complex valued,

everything that we have mentioned applies in the (formal)
holomorphic setting, instead of the real-analytic one.

6 A formal series is not assumed to be convergent and, indeed, in the
present paper we do not assume that the series in Eqs. (2) and (6) are
convergent, since they arise from perturbation theory.
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Hence, by summarizing, a change of renormalization
scheme is interpreted as a (formal) holomorphic gauge trans-
formation, − γ (g)

β(g) as a (formal) meromorphic connection with
a Fuchsian singularity at g = 0, and Z(x, μ) as a Wilson line.

4 Canonical nonresonant form for − γ (g)
β(g)

by the
Poincaré-Dulac theorem

According to the interpretation above, the easiest way to com-
pute the UV asymptotics of Z(x, μ) consists in setting the
meromorphic connection in Eq. (16) in a canonical form by
a suitable holomorphic gauge transformation.

Specifically, if the nonresonant condition in Eq. (11) is
satisfied, a (formal) holomorphic gauge transformation exists
that sets A(g) in Eq. (16) in the canonical nonresonant form
– the Euler form [20] –:

A′(g) = γ0

β0

1

g
(23)

according to the Poincaré–Dulac theorem.
In this respect, the only minor refinement that we need for

applying the Poincaré-Dulac theorem to Eq. (16) is the obser-
vation that the inductive procedure in its proof [20] works as
well by only restricting to the even powers of g in Eq. (27)
that match the even powers of g in the brackets in the rhs of
Eq. (16).

As a consequence, the nonresonant condition in Eq. (11)
only involves positive even integers, as opposed to the general
case (Sect. 5).

5 A condensed proof of the Poincaré–Dulac theorem for
nonresonant diagonalizable A0

We provide a condensed proof of (the linear version of) the
Poincaré–Dulac theorem [20] for nonresonant diagonaliz-
able A0, which includes the case (I) in the setting of operator
mixing for a massless QCD-like theory.

The proof in the general case will be worked out in [21].
Poincaré–Dulac theorem for nonresonant diagonalizable

A0: The linear system in Eq. (20), where the meromorphic
connection A(g), with a Fuchsian singularity at g = 0,
admits the (formal) expansion:

A(g) = 1

g

(
A0 +

∞∑
n=1

Ang
n

)
(24)

with A0 diagonalizable and eigenvalues diag(λ1, λ2, . . .) =
Λ, in nonincreasing order λ1 ≥ λ2 ≥ · · · , satisfying the
nonresonant condition:

λi − λ j �= k (25)

for i ≤ j and k a positive integer, may be set, by a (formal)
holomorphic invertible gauge transformation, in the Euler
normal form:7

A′(g) = 1

g
Λ (26)

We only report the key aspects of the proof, leaving more
details to [20].

Proof : The proof proceeds by induction on k = 1, 2, . . .

by demonstrating that, once A0 and the first k − 1 matrix
coefficients, A1, . . . , Ak−1, have been set in the Euler normal
form above – i.e., A0 diagonal and A1, . . . , Ak−1 = 0 – a
holomorphic gauge transformation exists that leaves them
invariant and also sets the kth coefficient, Ak , to 0.

The 0 step of the induction consists just in setting A0 in
diagonal form – with the eigenvalues in nonincreasing order
as in the statement of the theorem – by a global (i.e., constant)
gauge transformation.

At the kth step, we choose the holomorphic gauge trans-
formation in the form:

Sk(g) = 1 + gk Hk (27)

with Hk a matrix to be found momentarily. Its inverse is:

S−1
k (g) = (1 + gkHk)

−1 = 1 − gkHk + · · · (28)

where the dots represent terms of order higher than gk .
The gauge action of Sk(g) on the connection A(g) fur-

nishes:

A′(g) = kgk−1Hk(1 + gk Hk)
−1

+(1 + gk Hk)A(g)(1 + gk Hk)
−1

= kgk−1Hk(1 + gk Hk)
−1

+(1 + gk Hk)
1

g

(
A0 +

∞∑
n=1

Ang
n

)
(1 + gk Hk)

−1

= kgk−1Hk(1 − · · · )

+(1 + gk Hk)
1

g

(
A0 +

∞∑
n=1

Ang
n

)
(1 − gk Hk + · · · )

= kgk−1Hk + 1

g

⎛
⎝A0 +

k∑
n=1

Ang
n

⎞
⎠

+gk−1(Hk A0 − A0Hk) + · · ·
= gk−1(kHk + Hk A0 − A0Hk)

+Ak−1(g) + gk−1Ak + · · · (29)

where we have skipped in the dots all the terms that contribute
to an order higher than gk−1, and we have set:

Ak−1(g) = 1

g

(
A0 +

k−1∑
n=1

Ang
n

)
(30)

7 In the present paper, we refer to it as the canonical nonresonant diag-
onal form.
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that is the part of A(g) that is not affected by the gauge
transformation Sk(g), and thus verifies the hypotheses of the
induction – i.e., that A1, . . . , Ak−1 vanish –.

Therefore, by Eq. (29) the kth matrix coefficient, Ak , may
be eliminated from the expansion of A′(g) to the order of
gk−1 provided that an Hk exists such that:

Ak + (kHk + Hk A0 − A0Hk) = Ak + (k − adA0)Hk = 0

(31)

with adA0Y = [A0, Y ]. If the inverse of adA0 − k exists, the
unique solution for Hk is:

Hk = (adA0 − k)−1Ak (32)

Hence, to prove the theorem, we should demonstrate that,
under the hypotheses of the theorem, adA0 − k is invertible,
i.e., its kernel is trivial.

Now adΛ − k, as a linear operator that acts on matrices,
is diagonal, with eigenvalues λi − λ j − k and the matrices
Ei j , whose only nonvanishing entries are (Ei j )i j , as eigen-
vectors. The eigenvectors Ei j , normalized in such a way that
(Ei j )i j = 1, form an orthonormal basis for the matrices.

Thus, Ei j belongs to the kernel of adΛ − k if and only if
λi − λ j − k = 0.

As a consequence, since λi − λ j − k �= 0 for every i, j
by the hypotheses of the theorem, the kernel of adΛ − k only
contains the 0 matrix, and the proof is complete.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: There are no data
associated to the present paper, since it is of theoretical nature.]
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