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Abstract Recently it is found that Weyl anomaly leads to
novel anomalous currents in the spacetime with a boundary.
However, the anomalous current is suppressed by the mass
of charge carriers and the distance to the boundary, which
makes it difficult to be measured. In this paper, we explore
the possible mechanisms for the enhancement of anomalous
currents. Interestingly, we find that the anomalous current can
be significantly enhanced by the high temperature, which
makes easier the experimental detection. For free theories,
the anomalous current is proportional to the temperature in
the high temperature limit. Note that the currents can be
enhanced by thermal effects only at high temperatures. In
general, this is not the case at low temperatures. For general
temperatures, the absolute value of the current of Neumann
boundary condition first decreases and then increases with
the temperature, while the current of Dirichlet boundary con-
dition always increases with the temperature. It should be
mentioned that the enhancement does not have an anoma-
lous nature. In fact, the so-called anomalous current in this
paper is not always related to Weyl anomaly. Instead, it is an
anomalous effect due to the boundary.
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1 Introduction

Weyl anomaly measures the quantum violation of scaling
symmetry of a theory, and has a wide range of applica-
tions in black-hole physics, cosmology and condensed mat-
ter physics [1]. It is interesting that Weyl anomaly is well-
defined for not only conformal field theories but also the gen-
eral quantum field theories [1–3]. Recently, it is found that,
due to Weyl anomaly, an external electromagnetic field can
induce novel anomalous currents in a conformally flat space
[4,5] and a spacetime with boundaries [6,7]. It is similar to
the anomaly-induced transport [8,9] such as chiral magnetic
effect (CME) [10–14] and chiral vortical effect (CVE) [15–
21]. See also [22–39] for related works.

In this paper, we focus on the anomalous current in the
spacetime with a boundary [6,7]. It takes the following uni-
versal form in four dimensions

〈J〉 = e2c

h̄

4b1n × B
x

+ · · · , x ≥ ε, (1)

where e is the electric charge, c is the speed of light, h̄ is the
Planck constant, b1 is a dimensionless constant, n is normal
vector to the boundary, B is the external magnetic field, x is
the proper distance to the boundary, ε is a small cutoff of x and
... denotes higher order terms in O(x). It should be mentioned
that there are boundary contributions to the current, which
cancels the bulk “divergence” of (1) and makes finite the
total current [6]. Note that (1) applies to the region near the
boundary. The anomalous current in the full space is studied
in [33], where it is found that the mass and the distance to
the boundary heavily suppress the currents. See also [26].

In general dimensions, the anomalous currents take the
following form [6,7]

〈
Jdμ

〉
∼ Fnμ

xd−3 + · · · , x ≥ ε, (2)

where d denotes the dimension of spacetime, Fμν is the
field strength, n is the normal direction to the boundary,
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and ... denotes sub-leading terms in x . In general, Jd is
not always related to Weyl anomaly. For example, there is
no Weyl anomaly due to a background electromagnetic field
Fμν in two dimensions. However, following [6,7], we still
call it “anomalous current” in this paper, since it can be
regarded as an anomalous effect due to the boundary. Recall
the fact that a constant magnetic field cannot produce non-
zero renormalized currents in a flat space without bound-
aries. Thus, the current (2) is kind of “anomalous” in general
dimensions.

In this paper, we explore the mechanism for the enhance-
ment of anomalous currents, which is important for the exper-
imental measurement. We find that the high temperature can
greatly enhance the anomalous currents. For free complex
scalars, the anomalous current is proportional to the tem-
perature in the high temperature limit. As a result, for any
given mass and distance, one can always produce a detectable
anomalous current by increasing the temperature.

Let us list our main results below. Recovering the units of
anomalous current (21) in four dimensions, we have

lim
T→∞ 〈J〉 = ke2

h̄2 T n × B (c0 + c1 ln(xμ)), x ∼ 0,

(3)

where k is Boltzmann constant, T is the temperature, μ

denotes the energy scale and c0, c1 are some dimensionless
constants depending on the boundary conditions. Since the
Planck constant appears in the denominator of (3), it is clear
that the anomalous current at high temperature is dominated
by quantum effects. In general dimensions, according to (46)
we have

lim
T→∞

〈
Jd

〉
= k

h̄c
T lim

T→0

〈
Jd−1

〉
, (4)

where limT→∞ Jd is the anomalous current at high tempera-
ture in d dimensions, and limT→0 Jd−1 is anomalous current
at zero temperature in (d − 1) dimensions. It is remarkable
that the anomalous currents at high temperature and zero
temperature are related by (4). Since the anomalous current
at zero temperature is a pure quantum effect, so does the the
anomalous current at high temperatures. Interestingly, the
relation (4) provides an indirect way to measure the anoma-
lous current at zero temperature in lower dimensions, which
can make easier the experiment. Let us stress again that
by “anomalous current”, in general, we means the “renor-
malized current” in a space with a boundary in this paper.
Besides, by “enhancement of the current” we always means
the absolute value of the current in this paper. In general, the
temperature can change the sign of the current.

Let us try to understand the interesting relation (4). Usu-
ally one takes Euclidean signature to study the vacuum expec-
tation value of currents at finite temperature. The period of

Euclidean time is given by β = 1/T , which approaches
zero in the high temperature limit. According to Kaluza–
Klein theory, a d-dimensional QFT with a small extra space-
time dimension (a small circle) behaves effectively as a
(d-1)-dimensional QFT. That is why we could relate a d-
dimensional current to a (d-1)-dimensional current in the high
temperature limit.

Let us summarize the properties of anomalous currents at
a finite temperature below. For simplicity, we focus on free
complex scalars.

1. The anomalous current is proportional to the temper-
ature in the high temperature limit. Remarkably, the coeffi-
cient is just the anomalous current in lower dimensions at
zero temperature. See (46).

2. The anomalous current of Dirichlet boundary condition
(DBC) always increases with temperature, while the abso-
lute value of the current of Neumann boundary condition
(NBC) first decreases and then increases with temperature.
See Figs. 2 and 3.

3. Although the large mass always suppresses anomalous
currents, the small mass could enhance the anomalous current
for NBC. See Fig. 5(right).

The paper is organized as follows. In Sect. 2, by apply-
ing the heat-kernel method [40,41], we study the anomalous
current for free complex scalars at finite temperature up to
the linear order of magnetic fields. We find that it is pro-
portional to the temperature in the high temperature limit.
In Sect. 3, we obtain a non-perturbative formal expression
of the anomalous current, which can be evaluated numeri-
cally. Again, the anomalous current is enhanced by the high
temperature. Finally, we conclude with some discussions in
Sect. 4.

2 Anomalous current I: perturbative result

In this section, by applying the heat kernel method [40,41],
we study the anomalous current of complex scalars at a finite
temperature. It is found that, in the high temperature limit,
the anomalous current increases linearly with temperature.
As for the case of low temperature, the anomalous current
increases with temperature for Dirichlet boundary condi-
tion (DBC), while decreases with temperature for Neumann
boundary condition (NBC).

For simplicity, we focus on a flat half space x ≥ 0 with a
constant magnetic field B parallel to the boundary. We have
coordinates xμ = (τ, x, ya) = (τ, x, y1, ..., yd−2), back-
ground vector field Aμ = (0, 0, Bx, 0, ..., 0) and the metric
gμν = δμν = diag(1, 1, ...., 1). Here τ � τ + β is the
Euclidean time, β = 1/T is the inverse temperature and x
denotes the distance to the boundary.
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2.1 Heat kernel

The heat kernel of complex scalars satisfies the equation of
motion (EOM)

∂t K (t, xμ, x ′
μ) − δμν(∂μ + Aμ)(∂ν + Aν)K (t, xμ, x ′

μ) = 0

(5)

together with the following boundary conditions (BC)

lim
t→0

K (t, xμ, x ′
μ) = δd(xμ − x ′

μ), (6)

K (t, τ, τ ′) = K (t, τ + β, τ ′) = K (t, τ, τ ′ + β), (7)

for t and τ , respectively. Besides, one further imposes either
DBC

K (t, xμ, x ′
μ)|x=0 = 0, (8)

or NBC

∂x K (t, xμ, x ′
μ)|x=0 = 0, (9)

on the boundary x = 0.
From the heat kernel, we can obtain the Green function

G(xμ, x ′
μ) =

∫ ∞

0
dtK (t, xμ, x ′

μ), (10)

and then derive the expectation value of the current by

Ĵμ = lim
x ′→x

[
(∂xμ + Axμ) − (∂x ′

μ
− Ax ′

μ
)
]
G(xμ, x ′

μ). (11)

In general Ĵμ is divergent, which can be renormalized by sub-
tracting the value it would have in the space without bound-
ary,

Jμ = Ĵμ − Ĵ0μ. (12)

In general, it is difficult to solve the heat kernel in the
spacetime with boundaries, even for free theories. For sim-
plicity, we focus on the perturbation solution in the linear
order of the magnetic field O(B). Following [41], we obtain
the heat kernel

K =
∞∑

m=−∞

1

(4π t)
d−3

2 β
exp

(
− 4π2m2t

β2

+2iπm
(
τ − τ ′)

β
−

d−2∑
a=2

(
ya − y′

a

)
2

4

)
(
K0 + Kbdy

)
,

(13)

where K0 is the heat kernel in a 2d free space

K0 = B

4π sin(Bt)
exp

(
− B

4
cot(Bt)

(
(x − x ′)2

+(y1 − y′
1)

2
)

+ B

2

(
x ′ + x

) (
y′

1 − y1
))

, (14)

and Kbdy denotes the correction due to the boundary

Kbdy = χB

4π sin(Bt)
exp

(
− B

4
cot(Bt)

(
(x + x ′)2

+(y1 − y′
1)

2
)

+ B

2

(
x ′ + x + fBC

) (
y′

1 − y1
))

.

(15)

Here χ = −1 (χ = 1) for DBC (NBC) and fBC is given by

fBC =⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−√
πxx ′e

(x ′+x)
2

4t erfc
(
x ′+x
2
√
t

)
√
t

+ O(B2), DBC,

−(x ′ + x)+
√

πe
(x ′+x)

2

4t
(

2t+x2+(x ′)2
)

erfc
(
x ′+x
2
√
t

)

2
√
t

+ O
(
B2

)
, NBC,

(16)

where erfc(x) is the complementary error function. One can
check that the heat kernel (13) satisfies EOM (5) and BCs
(6,7,8,9) at the linear order of O(B).

2.2 Current at finite temperature

Now we are ready to calculate the anomalous current at finite
temperature. From (10,11,12,13), we derive

Jy1 =
∞∑

m=−∞

∫ ∞

0
dt

2πB

(4π t)d/2β
e
− 4π2m2 t

β2

×

⎧
⎪⎨
⎪⎩

−x2erfc
(

x√
t

)
+ O(B2), DBC,

2
√
t xe− x2

t√
π

− (
t + x2

)
erfc

(
x√
t

)
+ O

(
B2

)
, NBC.

(17)

Before we try to perform the above complicated sum and
integral, let us first consider some interesting limits, the high
temperature limit and low temperature limit. In the high tem-
perature limit β → 0, only the term with m = 0 contributes
to the sum,

lim
T→∞

∞∑
m=−∞

e
− 4π2m2 t

β2 = 1. (18)

Substituting (18) into (17) and performing the integral along
t, we get

lim
T→∞ Jy1

=

⎧
⎪⎪⎨
⎪⎪⎩

− 22−dπ
1
2 − d

2 

(
d−1

2

)

(d−2)xd−4 B T + O(B2), DBC,

21−d ((d−7)d+8)π
1
2 − d

2 

(
d−3

2

)

(d−4)(d−2)xd−4 B T + O
(
B2

)
, NBC.

(19)
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It is remarkable that the anomalous current is proportional to
the temperature in the high temperature limit. This provides
an interesting mechanism to enhance the anomalous current,
which is usually suppressed by the mass and the distance
to the boundary. Note that (19) works for d > 2 for DBC
and d > 4 for NBC. For d = 4, one should perform suit-
able regularization in order to get finite results. Taking the
regularization [33]

J 4d
y1

= lim
ε→0

Jy1(d = 4 + ε) + Jy1(d = 4 − ε)

2
, (20)

we derive the current in four dimensions

lim
T→∞ J 4d

y1

=

⎧
⎪⎪⎨
⎪⎪⎩

− 1
16π

B T + O(B2), DBC,

4 log(x)+3+log(16)+2 log(π)−2ψ(0)
(

1
2

)

16π

B T + O
(
B2

)
, NBC,

(21)

where ψ(0) is the PolyGamma function.
Let us go on to discuss the low temperature limit, where

the discrete summation can be replaced by a continuous inte-
gration

lim
T→0

∞∑
m=−∞

1

β
e
− 4π2m2 t

β2 =
∫ ∞

−∞
e−4π2z2t dz = 1

2
√

π t
, (22)

where z = m/β. Substituting (22) into (17), we derive

lim
T→0

Jy1

=

⎧
⎪⎪⎨
⎪⎪⎩

− 21−dπ
− d

2 

(
d
2

)

(d−1)xd−3 B + O(B2), DBC,

2−d
(
d2−5d+2

)
π

− d
2 


(
d
2 −1

)

(d−3)(d−1)xd−3 B + O
(
B2

)
, NBC,

(23)

which agree with the results of [33,41]. This can be regarded
as a check for our calculations.

There is another method to study the current in the high
and low temperature limits. By applying the transformation

∞∑
m=−∞

e
− 4π2m2 t

β2

β
=

∞∑
m=−∞

e− β2m2

4t

2
√

π
√
t
, (24)

we can rewrite the current (17) into the following form

Jy1 =
∞∑

m=−∞

∫ ∞

0
dt

2πB

(4π t)(d+1)/2
e− β2m2

4t

×

⎧
⎪⎨
⎪⎩

−x2erfc
(

x√
t

)
+ O(B2), DBC,

2
√
t xe− x2

t√
π

− (
t + x2

)
erfc

(
x√
t

)
+ O

(
B2

)
, NBC.

(25)

Note that the transformation (24) maps the high (low) tem-
perature to the low (high) temperature. Now the term with
m = 0 dominates the sum in the low temperature limit

lim
T→0

∞∑
m=−∞

e− β2m2

4t

2
√

π t
= 1

2
√

π t
, (26)

which exactly agrees with (22,24). Substituting (26) into
(25), we re-derive (23). As in the high temperature limit,
the sum can be replaced by the following integral

lim
T→∞

∞∑
m=−∞

e− β2m2

4t

2
√

π
√
t

=
∫ ∞

−∞
e− z̄2

4t

2
√

π
√
tβ

dz̄ = 1

β
, (27)

which agrees with (18,24). From (25,27), we reproduce the
anomalous current (19) in high temperature limit. Now we
have obtained the currents in the low and high temperature
limits by using two methods. This is a double check for our
calculations.

Let us go on to consider the general temperature. Summing
(25), we get

Jy1 =
∫ ∞

0
dt

2πBϑ3

(
0, e− β2

4t

)

(4π t)(d+1)/2

×

⎧
⎪⎨
⎪⎩

−x2erfc
(

x√
t

)
+ O(B2), DBC,

2
√
t xe− x2

t√
π

− (
t + x2

)
erfc

(
x√
t

)
+ O

(
B2

)
, NBC,

(28)

where ϑ3 is the Elliptic theta function. Although it is difficult
to work out the exact expression of (28), it can be evaluated
numerically. See Figs. 1, 2 and 3 for examples. Without loss
of generality, we set B = x = 1 for all the figures of this
paper. We find that, in the high temperature limit, the currents
increase linearly with temperature for both DBC and NBC
in general dimensions. It is interesting that the currents of
DBC and NBC approach the same high-temperature limit
in five dimensions. It is also interesting that, in dimensions
higher than four, the absolute values of the currents of NBC
first decrease and then increase with temperature, while the
currents of DBC always increase with temperature.

2.3 Mass effect

We focus on massless scalars in the above discussions, where
exact expressions of the currents can be derived in the high
and low temperature limits. In this section, let us study the
mass effect, which can be taken into account by adding e−M2 t

to the heat kernel (13). Following the approach of Sect. 2.2,
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Fig. 1 Anomalous currents of complex scalars for DBC (left) and NBC (right) in four dimensions. The current of NBC is much larger than the
current of DBC. Here we have set B = x = 1

Fig. 2 Anomalous currents of complex scalars for DBC (orange line)
and NBC (blue line) in five dimensions. It is remarkable that the currents
increase linearly with temperature and approach the same value for DBC
and NBC in the high temperature limit

we obtain the anomalous currents for massive scalars as

Jy1 =
∫ ∞

0
dt

2πBϑ3

(
0, e− β2

4t

)
e−M2t

(4π t)(d+1)/2

×

⎧
⎪⎨
⎪⎩

−x2erfc
(

x√
t

)
+ O(B2), DBC,

2
√
t xe− x2

t√
π

− (
t + x2

)
erfc

(
x√
t

)
+ O

(
B2

)
, NBC,

(29)

where M is the scalar mass. It is clear that the current (29)
is heavily suppressed by large mass. In the high and low
temperature limits, the anomalous current (29) becomes

lim
T→∞ Jy1 = T

∫ ∞

0
dt

2πB

(4π t)d/2 e
−M2t

×

⎧
⎪⎨
⎪⎩

−x2erfc
(

x√
t

)
+ O(B2), DBC,

2
√
t xe− x2

t√
π

− (
t + x2

)
erfc

(
x√
t

)
+ O

(
B2

)
, NBC,

(30)

and

lim
T→0

Jy1 =
∫ ∞

0
dt

2πB

(4π t)(d+1)/2
e−M2t

×

⎧
⎪⎨
⎪⎩

−x2erfc
(

x√
t

)
+ O(B2), DBC,

2
√
t xe− x2

t√
π

− (
t + x2

)
erfc

(
x√
t

)
+ O

(
B2

)
, NBC.

(31)

Fig. 3 Anomalous currents of complex scalars for DBC (orange line) and NBC (blue line) in six dimensions. The current of NBC first decreases
and then increases with temperature, while the current of DBC always increases with temperature
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It is remarkable that, similar to the massless case, the anoma-
lous currents of massive scalars also increase linearly with
temperature in the high temperature limit. This means that,
for a given charge carrier with fixed mass, by increasing the
temperature, one can always produce a detectable anomalous
current in laboratory.

To end this section, let us draw some figures to illustrate
the mass effect of anomalous currents. See Figs. 4, 5 and 6.
In general, the large mass suppresses but does not change the
high-temperature behaviors of the currents. In other words,
the currents are always enhanced by high temperatures. It is
remarkable that, as is shown in Fig. 4, the current of NBC
can also be enhanced by increasing the mass slightly.

3 Anomalous current II: exact result

In the above section, we focus on the currents at the linear
order of the magnetic field O(B). In this section, we gener-
alize our discussions to non-perturbative currents. We follow
the method of [33], where the anomalous current at zero tem-
perature is investigated.

Green’s function obeys EOM

[−DμDμ + M2]G(x, x ′) = δ(d)(x, x ′), (32)

and DBC

G(xμ, x ′
μ)|x=0 = 0, (33)

or NBC

∂xG(xμ, x ′
μ)|x=0 = 0, (34)

on the boundary x = 0. Performing Fourier transform with
the correct period τ � τ + β,

G = 1

β

∞∑
m=−∞

∫ dkd−2
‖

(2π)d−2 G̃(k,m)ei
2πm

β
(τ−τ ′)e−ika(ya−y′

a)

(35)

we can rewrite (32) as

[
−∂2

x +
(
M2 + k2

a +
(

2πm

β

)2
)

− 2Bxk1 + B2x2

]

G̃ = δ(x − x ′), (36)

where k1 = ky1 . We split Green’s function G̃ into the one in
a free space and the correction due to the boundary

G̃ = G f ree + Gbdy, (37)

where G f ree is given by [42,43]

G f ree

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
1

4πB
(λk)D−λk

(√
2

(
x̄ − k̄1

))
D−λk(√

2
(
k̄1 − x̄ ′)) , x > x ′,√

1
4πB
(λk)D−λk

(√
2

(
k̄1 − x̄

))

D−λk

(√
2

(
x̄ ′ − k̄1

))
, x < x ′.

(38)

Here D denotes the parabolic cylinder function, λk = (B +
M2 +k2

a + ( 2πm
β

)2 −k2
1)/(2B), k̄1 = k1/

√
B and x̄ = √

Bx .
Imposing BCs (33, 34), we solve the corrections to Green’s
function

Gbdy =
−
 (λk) D−λk

(√
2k̄1

)

2π1/2
√
BD−λk

(
−√

2k̄1

)D−λk

×
(√

2
(
x̄ − k̄1

))
D−λk

(√
2

(
x̄ ′ − k̄1

))
(39)

for DBC and

Gbdy =

 (λk)

(√
2D1−λk

(√
2k̄1

)
− k̄1D−λk

(√
2k̄1

))

2π1/2
√
B

(√
2D1−λk

(
−√

2k̄1

)
+ k̄1D−λk

(
−√

2k̄1

))

×D−λk

(√
2

(
x̄ − k̄1

))
D−λk

(√
2

(
x̄ ′ − k̄1

))
(40)

for NBC.
Now we are ready to derive the anomalous current. Sub-

stituting (35,39,40) into (11,12) , we get the renormalized
current

Jy1 = −1

β

∞∑
m=−∞

∫ ∞

−∞
dpd−3dk1

×
(
x̄ − k̄1

)



(
λp

)
D−λp

(√
2k̄1

)

2d−2πd− 3
2 D−λp

(
−√

2k̄1

) D−λp

(√
2

(
x̄ − k̄1

)) 2,

(41)

for DBC and

Jy1 = 1

β

∞∑
m=−∞

∫ ∞

−∞
dpd−3dk1

×
(x̄ − k̄1)


(
λp

) (√
2D1−λp

(√
2k̄1

)
− k̄1D−λp

(√
2k̄1

))

2d−2πd− 3
2

(√
2D1−λp

(
−√

2k̄1

)
+ k̄1D−λp

(
−√

2k̄1

))

×D−λp

(√
2

(
x̄ − k̄1

)) 2, (42)
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Fig. 4 Mass effects of currents for DBC (left) and NBC (right) in five dimensions. It is interesting that the mass can change the sign of currents
of NBC

Fig. 5 Mass effects of currents for DBC (left) and NBC (right) in six dimensions. It is remarkable that a suitable small mass can enhance the
currents of NBC

Fig. 6 Mass effects of currents for DBC (left) and NBC (right) in seven dimensions. The mass suppresses the currents of DBC and NBC

for NBC. Recall that λp = (B + M2 + ( 2πm
β

)2 + p2)/(2B),

k̄1 = k1/
√
B and x̄ = √

Bx . In principle, the formal expres-
sions (41,42) can be evaluated numerically.

In the low temperature limit β → ∞, the sum can be
replaced by the integral

1

β

∞∑
m=−∞

=
∫ ∞

−∞
dpτ

2π
, (43)

where pτ = 2πm/β. And the currents (41,42) reduce to
exactly the ones at zero temperature [33]

lim
T→0

Jy1 = −
∫ ∞

−∞
dpd−2dk1

×
(
x̄ − k̄1

)



(
λp

)
D−λp

(√
2k̄1

)

2d−1πd− 1
2 D−λp

(
−√

2k̄1

)

×D−λp

(√
2

(
x̄ − k̄1

)) 2, (44)
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for DBC and

lim
T→0

Jy1 =
∫ ∞

−∞
dpd−2dk1

×
(x̄ − k̄1)


(
λp

) (√
2D1−λp

(√
2k̄1

)
− k̄1D−λp

(√
2k̄1

))

2d−1πd− 1
2

(√
2D1−λp

(
−√

2k̄1

)
+ k̄1D−λp

(
−√

2k̄1

))

×D−λp

(√
2

(
x̄ − k̄1

)) 2, (45)

for NBC, where λp = (B + M2 + p2
a + p2

τ )/(2B).
Note that only the combination M2+( 2πm

β
)2 appears in the

currents (41,42). Thus ( 2πm
β

) behaves effectively as a mass.

In the high temperature limit, the effective mass M2
e f f =

M2 + ( 2πm
β

)2 becomes infinite for m �= 0, which would

heavily suppress the current 1. As a result, only the term with
m = 0 is dominated in the high temperature limit. Keeping
only the zero-m terms of (41,42) and using (44,45), we finally
obtain the anomalous current in the high temperature limit

lim
T→∞ Jdy1

= T lim
T→0

Jd−1
y1

, (46)

where Jd denotes the current in d dimensions. It is remark-
able that the non-perturbative current is also proportional
to the temperature in the high temperature limit. It is also
remarkable that the coefficient is just the current in (d − 1)
dimensions at zero temperature. One can check that the per-
turbative currents obtained in Sect. 2 obey the novel relation
(46).

4 Conclusions and discussions

In this paper, we explore the mechanism to enhance the
anomalous current caused by a background magnetic field
in the spacetime with a boundary. Usually, the anomalous
current is suppressed by the mass and the distance to the
boundary, which are the main experimental obstructions.
Remarkably, we find that the high temperature can greatly
enhance the anomalous current and make easier the exper-
imental measurement. For free complex scalars, it is found
that the anomalous current is proportional to the tempera-
ture in the high temperature limit. Interestingly, the coeffi-
cient is just the current in lower dimensions at zero tempera-
ture. Thus, for any given charge carrier with a fixed mass M ,
one can always produce a detectable anomalous current by
increasing the temperature. We look forward to the experi-
mental detection of this novel anomalous current. For sim-
plicity, we focus on free complex scalars in this paper. It is
interesting to generalize the results of this paper to Dirac

1 One can check that the integrand functions of (41) and (42) approach
zero as Mef f → ∞.

fields. It is also interesting to study the holographic anoma-
lous current at finite temperature following the approach
of [7,30,44]. Note that (4) shows that the anomalous cur-
rent at zero temperature in four dimensions is related to the
renormalized current at high temperature in five dimension.
This implies that there is an “effective Weyl anomaly” in
the high temperature limit in five dimensions, which is con-
sistent with the Kaluza–Klein mechanism. According to the
Kaluza–Klein theory, a 5-dimensional Euclidean QFT with a
small period of Euclidean time β = 1/T behaves effectively
as a 4-dimensional Euclidean QFT, which is expected to has
a Weyl anomaly. We hope these problems could be addressed
in future.
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