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Abstract We study the entanglement between soft and hard
particles produced in generic scattering processes in QED.
The reduced density matrix for the hard particles, obtained
via tracing over the entire spectrum of soft photons, is shown
to have a large eigenvalue, which governs the behavior of
the Renyi entropies and of the non-analytic part of the entan-
glement entropy at low orders in perturbation theory. The
leading perturbative entanglement entropy is logarithmically
IR divergent. The coefficient of the IR divergence exhibits
certain universality properties, irrespectively of the dressing
of the asymptotic charged particles and the detailed prop-
erties of the initial state. In a certain kinematical limit, the
coefficient is proportional to the cusp anomalous dimension
in QED. For Fock basis computations associated with two-
electron scattering, we derive an exact expression for the
large eigenvalue of the density matrix in terms of hard scat-
tering amplitudes, which is valid at any finite order in per-
turbation theory. As a result, the IR logarithmic divergences
appearing in the expressions for the Renyi and entanglement
entropies persist at any finite order of the perturbative expan-
sion. To all orders, however, the IR logarithmic divergences
exponentiate, rendering the large eigenvalue of the density
matrix IR finite. The all-orders Renyi entropies (per unit time,
per particle flux), which are shown to be proportional to the
total inclusive cross-section in the initial state, are also free
of IR divergences. The entanglement entropy, on the other
hand, retains non-analytic, logarithmic behavior with respect
to the size of the box (which provides the IR cutoff) even to
all orders in perturbation theory.

a e-mail: irakleous.anastasios@ucy.ac.cy
b e-mail: tomaras@physics.uoc.gr
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1 Introduction

The emission of soft radiation is ubiquitous in scattering pro-
cesses in gauge theories and gravity. The hard asymptotic
particles are accompanied by an infinite number of soft pho-
tons and gravitons. Much of the structure of the IR dynam-
ics is dictated by symmetry, independently of the details of
the UV completion of the theory [1–12]. It is important to
provide measures of the entanglement between the hard and
soft degrees of freedom [13–19], and to uncover implications
for the structure of the S-matrix (in both gauge theories and
gravity) [20–24], black hole physics [25–31] and holography
[32–38].

In [19] we computed the leading perturbative entangle-
ment entropy between the soft and the hard particles pro-
duced in two-electron scattering processes in QED. The ini-
tial and final states were dressed with clouds of soft photons,
in accordance with the Faddeev–Kulish construction [39–
42]. We found that tracing over the entire spectrum of soft
photons, including those in the clouds, leads to (logarithmic)
IR divergences in the perturbative expansion of the Renyi and
the entanglement entropies. The coefficient of the logarith-
mic divergence was found to be independent of the dressing
and to contain physical information. In a certain kinematical
limit, it is related to the cusp anomalous dimension in QED
[43].

A question that arises concerns the order of limits. We
place the system in a large box of size L , imposing, there-
fore, an infrared cutoff λ of order 1/L . For the perturbative
calculations, we first expand to a given order in perturba-
tion theory, keeping λ finite, and take the continuum, λ → 0
limit at the end. The logarithmically divergent quantities in
this limit are the entanglement and Renyi entropies per unit
time per particle flux.

Thus, because of the IR divergences, the perturbative
expansion of the entanglement and Renyi entropies breaks
down in the strict λ → 0 limit. Rather, its validity is guaran-
teed at small, but fixed λ, taking the electron charge e to be
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sufficiently small. Equivalently, we take the size of the box
to be large but finite.1

These results suggest that the continuum, λ → 0 limit
does not commute with the perturbative expansion. An anal-
ogy to keep in mind concerns the perturbative expansion of
the conventional Fock basis scattering amplitudes. At any
finite order in perturbation theory, these amplitudes are non-
vanishing and exhibit IR divergences due to virtual soft pho-
tons. To all orders, however, these IR divergences exponenti-
ate leading to the vanishing of these amplitudes [12,44]. This
result can also be understood as a consequence of symmetries
associated with large gauge transformations [1,2].

The structure of the reduced density matrix is indeed very
suggestive. At any finite order in perturbation theory, the
matrix elements that are off-diagonal with respect to momen-
tum indices, are non-zero, containing IR logarithmic diver-
gences in λ (for both the dressed and undressed cases). To
all orders in the electron charge however, the logarithmic IR
divergences exponentiate, leading to the vanishing of these
off-diagonal elements in the continuum limit [14–16]. The
diagonal elements are given in terms of inclusive Bloch–
Nordsieck rates associated with dressed box states. These
are free of any IR divergences in λ, order by order in per-
turbation theory [12,44,45]. However they scale inversely
proportional with powers of the volume of the box. They
also tend to zero in the continuum limit, albeit less fast than
the off-diagonal elements in the momentum.

So, to all orders in perturbation theory, the reduced density
matrix assumes an almost diagonal form in the continuum
limit – there are nonvanishing off-diagonal elements with
respect to particle polarization indices. The number of non-
vanishing eigenvalues grows large, revealing strong entan-
glement between the soft and hard degrees of freedom and
decoherence [13–18]. See also [46–48] for earlier work.

As we will see, there is an exponentiation pattern for the
IR divergences appearing in the perturbative expansion of
the Renyi entropies. As a result, to all orders in the elec-
tron charge, the Renyi entropies are free of logarithmic IR
divergences, rendering the continuum limit well defined. The
entanglement entropy, though, has non-trivial volume depen-
dence. It is non-analytic in terms of dimensionless parameters

1 It was suggested in [17–19] to distinguish between the soft cloud
photons, “dressing” the asymptotic charged particles, and additional
radiative photons, comprising the soft part of the emitted radiation.
The extra soft radiated photons have energies greater than the energy
characterizing the soft cloud photons. Indeed, the dressed amplitudes
describing the emission of photons with energy less than or equal to the
energy of the photons present in the clouds are suppressed. Restricting
the partial trace over the additional soft radiated photons leads to a
well-behaved perturbative expansion for the Renyi and entanglement
entropies. In particular, these are finite, free of IR divergences, order by
order in perturbation theory [19]. We will not study this second type of
partial tracing in this work.

given by products of the size of the box L and various energy
scales characterizing the scattering process.

Below we outline the plan and summarize the main results
of this paper.

We first generalize the perturbative computation of [19]
to generic scattering processes, and study the structure of
the leading entanglement entropy. We consider an initial
Faddeev–Kulish state with arbitrary (but relatively small)
numbers of electrons and positrons, and trace over the entire
spectrum of soft photons in the final state. The reduced den-
sity matrix has one large eigenvalue, governing the behavior
of the Renyi entropies for integer m ≥ 2 and the entan-
glement entropy at leading order. The coefficient of the IR
logarithmic divergence of the leading entanglement entropy
exhibits certain universality properties. In particular, it is
independent of the dressing of the incoming charged par-
ticles with soft photons. The dominant contributions arise
from amplitudes associated with two-particle interactions, at
small scattering angle or scattering angle close to π . In the
relativistic, high energy limit, these dominant contributions
are proportional to the cusp anomalous dimension in QED,
extending the result of [19] to more general scattering pro-
cesses. We also find that the entanglement entropy per unit
time per particle number density scales proportionally with
the number of charged particles in the initial state. These
results are described in great detail in Sect. 2.

We proceed in Sect. 3 to compute the next to leading
order corrections to the Renyi and entanglement entropies.
Since the leading order analysis reveals that the singular part
of the entanglement entropy is independent of the dressing
function, we focus in a Fock basis computation concerning
electron–electron scattering for simplicity. At next to leading
order, two types of IR divergent terms appear in the expres-
sions for Renyi entropies. The first is proportional to the sum
of the squares of the amplitudes for the emission of two soft
photons, and it is of order (ln λ)2. The second is proportional
to the sum of the squares of the amplitudes for the emission
of one soft and one hard photon, and it is of order ln λ. A
similar term to the latter one appears at leading order, but
the coefficient is controlled by the sum of the squares of the
amplitudes for single soft photon emission [19]. We comment
on the pattern of the exponentiation of these logarithmic IR
divergences. In addition, we obtain the next to leading order
corrections to the coefficient of the non-analytic part of the
entanglement entropy.

The analysis of the two-electron scattering case to all
orders in perturbation theory is carried out in Sect. 4. We
derive an exact expression for the large eigenvalue of the
density matrix in terms of a series of hard scattering ampli-
tudes. At any finite order in perturbation theory, this eigen-
value is plagued with logarithmic IR divergences due to vir-
tual soft photons. To all orders, however, the IR divergences
exponentiate leading to a finite, nonvanishing result. The
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shift of the large eigenvalue from unity becomes arbitrar-
ily small in the continuum, large volume limit, determining
completely the behavior of the Renyi entropies to all orders.
The contributions from the small nonzero eigenvalues (to the
Renyi entropies) remain subleading, despite the fact that their
number grows with the volume of the box. Thus the Renyi
entropies to all orders are free from any IR divergences in the
continuum limit. The Renyi entropies per unit time per parti-
cle flux are proportional to the total, inclusive cross-section
in the initial sate. We comment on the dependence of the
total cross-section on the reference energy scale separating
the soft from the hard parts of the Hilbert space, as well as
other characteristic energy scales associated with the scatter-
ing process. The entanglement entropy, on the other hand,
retains the non-analytic, logarithmic behavior with respect
to the size of the box L , even to all orders in the continuum
limit.

Throughout, we follow the notations and conventions of
[19] – see also “Appendix A”. The following leading soft
theorems [12,44,45,49–53] concerning soft photon emission
are applied

lim
|�q|→0

(2ω�q)1/2 〈β|ar (�q) S |α〉

=
⎛
⎝∑

i∈β

ei pi · ε∗
r (�q)

pi · q −
∑
i∈α

ei pi · ε∗
r (�q)

pi · q

⎞
⎠ 〈β| S |α〉

(1.1)

and

lim
|�k|→0

(2ω�k)
1/2 〈β| S a†

r (
�k) |α〉

= −
⎛
⎝∑

i∈β

ei pi · εr (�k)
pi · k −

∑
i∈α

ei pi · εr (�k)
pi · k

⎞
⎠ 〈β| S |α〉.

(1.2)

A multielectron/positron dressed state α = {ei , �pi , si } is
given as a product of a conventional Fock basis state|α〉 and
a coherent state | fα〉 describing the photons in the cloud

|α〉d = |α〉 × | fα〉 (1.3)

where

| fα〉 = e

∫ Ed
λ

d3 �k
(2π)3

1
(2ω�k )1/2

(
fα(�k, �p)·a†(�k)−h.c.

)

|0〉. (1.4)

The dressing function is given by [39,40]

f μ
α (�k) =

∑
i∈α

ei

(
pμ
i

pi k
− cμ

)
e−i pi k t0/p0

i . (1.5)

In particular, the dressing function f μ
α (�k, �p) is singular as

the photon momentum �k vanishes. Also, t0 is a time refer-
ence scale and cμ is a null vector, c2 = 0, satisfying ck = 1.
Only soft photons, with energies below the infrared refer-
ence scale Ed , are present in the cloud. Taking Ed < 1/t0,
we may approximate the phase e−i pk t0/p0

in Eq. (1.5) with
unity – see [18] for comprehensive discussions. S-matrix ele-
ments between asymptotic dressed states are free of IR log-
arithmic divergences, order by order in perturbation theory
[39–42,54–56]. The dressing energy scale can be taken to
be sufficiently small so as the leading soft theorems can be
readily applied in various computations of amplitudes.

In [19] we computed the overlap between coherent photon
states associated with generic charged states α = {ei , �pi , si }
and β = {e′

i , �p ′
i , s

′
i }. See also [18]. Calling the β particles

outgoing and the α particles incoming, we define ηi to be +1
for all outgoing particles and −1 for all incoming particles.
Then when the net charges of the incoming and outgoing
states are equal, Qα = Qβ , and to all orders in the electron
charge e, we find

〈 fβ | fα〉 =
(

λ

Ed

)Bβα

(1.6)

where

Bβα = − 1

16π2

∑
i j

ηi η j ei e j v−1
i j ln

(
1 + vi j

1 − vi j

)
(1.7)

and

vi j =
[

1 − m2
i m

2
j

(pi · p j )2

]1/2

(1.8)

is the magnitude of the relative velocity of particle j with
respect to i . The overlap admits the following expansion

〈 fβ | fα〉 = eBβα ln(λ/Ed ) = 1 + Bβα ln(λ/Ed) + · · · (1.9)

Notice that when the momenta of the states β and α differ,
Bβα is nonzero and positive [12]. Therefore, to all orders in
the electron charge, the overlap vanishes in the λ → 0 limit.

As we already remarked, the infrared cutoff λ is taken nat-
urally to be the inverse of the size of the box: λ = 2π/L . The
particle momenta take discrete values and the corresponding
single particle states are unit normalized.

Using a reference energy scale E , which we take to be
smaller than the mass of the electron, we separate the asymp-
totic Hilbert spaces into soft and hard factors

H = HH × HS (1.10)
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whereHH includes particle states with energy greater than E
and HS includes photon states with total energy less than E .
We take the energy scale Ed , characterizing the cloud photons
to be arbitrarily small, so that we can apply soft theorems to
simplify various expressions: λ < Ed < E . We take the scale
	 characterizing soft virtual photons to be of the order of Ed

(or E for Fock basis calculations). The continuum limit, λ →
0, is taken at the end of the computation, keeping the ratios
Ed/E , Ed/	 constant. For the Fock basis computations, we
set the dressing function Eq. (1.5) to be zero. The relevant
energy scales in this latter case are λ, 	 and E . Further work
on entanglement after scattering includes [57–64].

2 Scattering and entanglement

In this section we extend the perturbative analysis of [19] to
generic scattering setups. We will work at leading order in
perturbation theory. Higher order corrections are discussed
in the following sections.

Consider an incoming Faddeev–Kulish state α with m
electrons and n positrons. The corresponding bare state|α〉 is
taken to be a momentum eigenstate. Then the incoming state
factorizes in HH × HS as follows

|
〉in = |α〉d = |α〉H × | fα〉S . (2.1)

Initially, there is no entanglement between the soft and hard
degrees of freedom since |α〉d is a product state. Entangle-
ment arises as a result of scattering. In order to ensure the
applicability of the perturbative analysis, we keep the total
number of charged particles in the initial state to be relatively
small.

The outgoing state is given by

|
〉out = S|
〉in = (1 + iT )|α〉d (2.2)

where we denote by iT the non-trivial part of the S-matrix.
Since the S-matrix is unitary, the following relation holds

i(T − T †) + T †T = 0. (2.3)

Inserting a complete basis of dressed states, the outgoing
state can be written as

|
〉out = |α〉d + T̃βα|β〉d + T̃βγ,α|βγ 〉d + · · · (2.4)

where T̃βα =d 〈β|iT |α〉d and T̃βγ,α =d 〈βγ |iT |α〉d are S-
matrix elements between dressed states. Summation over the
final state indices β and γ is implied. The indices stand for
both the momenta and the polarizations of the particles.

The set {|β〉} includes all allowable final states with no
photons. In addition, it includes final states with the smallest

number of photons that can be produced as a result of a given
number of electron/positron annihilations. These photons are
hard.2 For example, if l annihilations take place, the corre-
sponding state contains m − l electrons, n − l positrons and
2l hard photons. Notice that 0 ≤ l ≤ min(m, n). The state
|βγ 〉 contains an additional photon, which can be either hard
or soft, emitted from a charged particle.

The undressed amplitudes Tβα and Tβγ,α
3 are given in

terms of the conventional connected and disconnected Feyn-
man diagrams. The leading contributions to Tβα arise from
disconnected diagrams (or connected in some special cases)
of order e2 if no photons are present in |β〉, and of order e2l

if l pairs of photons are present. Accordingly, the leading
contribution to Tβγ,α is of order e3 or e2l+1. We denote the
order of Tβα with eN (where N depends on the details of β).

We will also use the following relations between dressed
and undressed amplitudes [18,19,40]

T̃βα = Tβα/ 〈 fβ | fα〉 (2.5)

and

T̃βγ, α = Tβγ, α/ 〈 fβ | fα〉 if ωγ > Ed

T̃βγ, α = 1

(2Vωγ )1/2 Fβα(�qγ , εr (�qγ )) if ωγ < Ed . (2.6)

As shown in [55], the function Fβα(�qγ , εr (�qγ )) is smooth
and nonsingular in the limits λ, ωγ = |�qγ | → 0 (and of
order the dressing scale Ed ). The volume factor appears due
to the relative normalization between box and continuum
states (see Sect. 2.3).

The ellipses in Eq. (2.4) stand for higher order contri-
butions, which do not contribute to the leading Renyi and
entanglement entropies. The outgoing density matrix (which
is pure) is |
〉out 〈
|out .

To obtain the hard density matrix ρH , we trace over the
entire spectrum of soft degrees of freedom. These include
cloud photons with energies less than the dressing scale Ed ,
and additional radiative photons with energy less than E .4

Therefore, the reduced density matrix is given by

ρH = TrHS (|
〉out 〈
|out ) . (2.7)

Using Eq. (2.4) and implementing the partial trace, we can
expand ρH in terms of ket-bra operators associated with con-

2 The momenta of the incoming particles are taken to be different and
generic. In order to get one of the emitted photons to be soft, we must
consider very special cases in which the electron “chases” the positron.
We do not consider such special cases in this work.
3 We would like to stress that in our notation Tx,y (T̃x,y) are the matrix
elements of the operator iT between undressed and dressed states,
respectively.
4 The dressed amplitudes for photon emission are suppressed when the
photon energy is below Ed [55].
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ventional, Fock-basis hard states. The terms relevant for the
leading order computation of the Renyi and the entanglement
entropies are derived explicitly in “Appendix B”. A useful list
of formulae to calculate the various partial traces is included
in “Appendix A”.

Let us stress that for our perturbative calculations, we
expand to a given order in perturbation theory, keeping the
volume of the box finite, and take the continuum λ → 0 limit
at the end. The matrix elements of ρH are given in terms of
dressed amplitudes, which are free of IR divergences in λ

(at least perturbatively), as well as overlaps of coherent pho-
ton states describing the clouds – see Eq. (B.1). The diagonal
elements are proportional to inclusive Bloch–Nordsieck rates
associated with dressed box states. They are free of any IR
divergences in λ, order by order in perturbation theory [19].
The off diagonal elements are proportional to the overlaps
〈 fβ ′ | fβ〉, which at any finite order in perturbation theory,
induce logarithmic divergences in λ – see Eq. (1.9). Finally,
the unitarity relation Eq. (2.3) ensures that TrρH = Trρ = 1.

2.1 The large eigenvalue of ρH and the leading order Renyi
entropies

In “Appendix B”, we compute the Renyi entropies

Sm = 1

1 − m
ln Tr(ρH )m (2.8)

for integer m ≥ 2 perturbatively, extending the analysis of
[19] to the generic case. The leading order Renyi entropies
are of order e6, irrespectively of the number of charged par-
ticles in the initial state. This is because disconnected dia-
grams contribute to leading order. Either a pair of electrons
or positrons scatter and the rest propagate intact, or an elec-
tron/positron pair gets annihilated to two photons (and the
rest of the charged particles propagate intact).

Indeed to leading order, we find for m ≥ 2

Tr(ρH )m = 1 − m
 (2.9)

where


 =
∑
β

∑
ωγ <E

Tβγ,αT
∗
βγ,α (2.10)

is an order e6 quantity, depending on the amplitude for single
real photon emission in the energy range λ < ωγ < E .
Therefore, the Renyi entropies for integer m ≥ 2 take the
form

Sm = − 1

m − 1
ln[1 − m
] = m

m − 1

. (2.11)

These results are in accordance with the fact that ρH has
one large eigenvalue, which is equal to 1−
 to order e6. All
other nonvanishing eigenvalues are of order e6 (or higher).
Their sum must be equal to 
. To prove this, let us set

|�〉 = |α〉H +
∑
β

Cβ |β〉H +
∑
β

∑
ωγ >E

Cβγ |βγ 〉H + · · ·

(2.12)

as dictated by the first two lines of Eq. (B.1), and write the
reduced density matrix in the form

ρH =|�〉 〈�| + G (2.13)

where G is an order e6 matrix.5 The coefficients Cβ and Cβγ

are given in terms of dressed amplitudes and overlaps of
coherent cloud photon states in Eqs. (B.2) and (B.3), respec-
tively. Specifically we obtain

G =
∑
β,β ′

[ (〈 fβ ′ | fβ〉 − 〈 fα| fβ〉 〈 fα| fβ ′ 〉∗) T̃βα T̃
∗
β ′α

+〈 fβ ′ | fβ〉
∑
ωγ<E

T̃βγ,α T̃
∗
β ′γ,α

]
|β〉 〈β ′| + · · · (2.14)

where the ellipses stand for higher order terms. Using this
expression (as well as energy conservation), we find that G
annihilates |�〉 to order e6.6 Thus |�〉 is an eigenstate of ρH

with eigenvalue

λ� = 1 − 
 + O(e8). (2.15)

The last equality is shown explicitly in “Appendix B”. The
other nonvanishing eigenvalues coincide with the nonvanish-
ing eigenvalues of the matrix G.7 Each is at least of order e6.
Their sum is equal to 
, as can be verified by computing
explicitly the trace of G to order e6, Eqs. (B.30) and (B.31).

2.2 Entanglement entropy to leading order

The entanglement entropy is given by the expression

Sent = −TrρH ln ρH = −
∑
i

λi ln λi (2.16)

where the sum runs over the eigenvalues of the reduced den-
sity matrix. As we have seen, to leading perturbative order
(e6), there is a “large” eigenvalue, λ� = 1 − 
, and the rest

5 The ellipses in Eq. (2.12) stand for contributions from states contain-
ing more than one photons, which do not affect the matrix elements of
the perturbation G and the eigenvalue analysis to leading order.
6 Up to negligible terms, of order E2

d (at most), which we drop.
7 The corresponding eigenstates must be orthogonal to|�〉.
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non-zero eigenvalues add up to 
. We set λi = e6ai when
i �= �, where ai are order one quantities, to obtain

Sent = −
 ln e6 +
− e6
∑
i �=�

ai ln ai = −
 ln e6 +O(e6).

(2.17)

The leading entanglement entropy is of order e6 ln e6.
The coefficient of the non-analytic part is obtained to be

equal to 
. We will consider the dominant singular part in
the limit λ → 0. We get


sing =
∑
β

∑
ωγ <Ed

Tβγ,αT
∗
βγ,α. (2.18)

Using soft theorems, we obtain for the singular part of the
leading entanglement entropy

Sent,sing = − ln e6
∑
β

(TβαT
∗
βα)

×
( ∑

ωγ <Ed

1

2Vωγ

∑

ss′ ∈{α,β}
eses′ ηsηs′

ps ps′

(psqγ )(ps′qγ )

)

(2.19)

where the bare amplitude Tβα is calculated at tree level. The
sum over β is now restricted to final states for which the lead-
ing non-trivial (disconnected) diagrams are of order e2. This
formula is universal, applicable for generic initial states. It
is also independent of the dressing.

2.3 Continuum limit

To take the continuum limit, we need the relative normaliza-
tion between continuum states and box states

| �p〉Box = 1

(2E �pV )1/2 | �p〉. (2.20)

The relevant final states {|β〉} comprise configurations of m
electrons and n positrons, arising from the scattering of any
two charged particles in the initial state, as well as config-
urations of m − 1 electrons, n − 1 positrons and 2 pho-
tons, resulting from the annihilation of an electron/positron
pair. In either case the number of particles in the final
state is N = m + n. We denote the corresponding invari-
ant amplitudes by iM(α → me− + ne+) and iM(α →
(m − 1)e− + (n − 1)e+ + 2γ ), respectively. We shall con-
sider generic cases where the momenta of the initial particles
differ from each other. For simplicity we average over the
polarizations of the initial particles.

The singular part of the leading entanglement entropy
takes the following form in the continuum limit

Sent,sing

= − 1

V N

ln e6

m! n!
{( N∏

f =1

∫
d3 �p f

(2π)32E f

)( N∏
i=1

1

2Ei

)

×
(
|iM(me−,ne+)

α |2 + mn

2
|iM((m−1)e−,(n−1)e+,2γ )

α |2
)

×
[
(2π)4δ4

(∑
f

p f −
∑
i

pi

)]2

×
∫ Ed

λ

d3 �q
(2π)32ω�q

∑
s,r∈{α,β}

ηsηr eser
ps pr

(psq)(prq)

}
.

(2.21)

The integral over the soft photon momentum can be carried
out using the relation
∫ Ed

λ

d3 �q
(2π)32ω�q

∑
s,r∈{α,β}

ηsηr eser
ps pr

(psq)(prq)

= ln

(
Ed

λ

)
2Bβα (2.22)

yielding a logarithmically divergent factor in the IR cutoff λ.
The kinematical factor Bβα is positive, given in terms of the
momenta of the initial and final charged particles by Eq. (1.7).
Therefore, the leading entanglement entropy takes the form

Sent,sing

= − 2

V N

ln e6

m! n! ln

(
Ed

λ

){( N∏
f=1

∫
d3 �p f

(2π)32E f

)( N∏
i=1

1

2Ei

)

×
(
|iM(me−,ne+)

α |2 + mn

2
|iM((m−1)e−,(n−1)e+,2γ )

α |2
)
Bβα

×
[
(2π)4δ4

(∑
f

p f −
∑
i

pi
)]2

}
. (2.23)

This expression generalizes the two-electron scattering case
studied in [19]. Notice also that it is Lorentz invariant. We
would like to understand the scaling with the number of
charged particles N in the initial state.

In the generic case, non-trivial disconnected diagrams in
which only two particles interact with each other contribute
at leading order. In “Appendix C” we explain in detail how
to obtain the dominant leading contributions to the squares
of the amplitudes iM(α → me− + ne+) and iM(α →
(m−1)e− +(n−1)e+ +2γ ) in the continuum, large volume
limit. We also implement the integrations over the momenta
of the final particles in Eq. (2.23).

Disconnected Feynman diagrams for a three particle initial
state that contribute to the entanglement entropy at leading
order are shown in Fig. 1. Detailed diagrams and explicit
expressions are included in “Appendix C”.
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Fig. 1 Non-trivial disconnected
Feynman diagrams associated
with a two electron/positron
initial state contributing to the
leading entanglement entropy

We end up with the following expression for the leading
entanglement entropy

Sent,sing = −T ln e6

32π V
ln

(
Ed
λ

)

×
∫ π

0
dθ sin θ

{ m∑
i, j=1

vi j

2E2
i j

|iM1(Ei j , θ)|2B1(i ′ j ′; i j)

+
n∑

i, j=1

vi j

2E2
i j

|iM2(Ei j , θ)|2B2(i ′ j ′; i j)

+2
m∑
i=1

n∑
j=1

vi j

2E2
i j

|iM3(Ei j , θ)|2B3(i ′ j ′; i j)

+
m∑
i=1

n∑
j=1

vi j

2E2
i j

|iM4(Ei j , θ)|2B4(i ′ j ′; i j)
}
. (2.24)

Here, T is the time scale of the experiment (arising from
an overall energy conserving δ-function). The sums run over
all possible pairs of interacting incoming particles. We may
always choose to work in the center of mass frame of the
two interacting particles, where �pi = − �p j . The scatter-
ing angle is denoted by θ and the center of mass energy by
Ei j = 2Ei . The magnitude of the relative velocity is given
by vi j = 4| �pi |/Ei j . We denote the scattering amplitudes for
the four relevant processes e−e− → e−e−, e+e+ → e+e+,
e−e= → e−e+ and e+e− → γ γ by M1,M2,M3,M4,
respectively. Finally, B1, . . . ,B4 are the kinematical factors,
Eq. (1.7), associated with each of the four scattering ampli-
tudes M1, . . . ,M4.8

Next consider the case where the initial state contains m
electrons. The number of possible pairs of interacting parti-
cles is Npairs = m(m − 1)/2. We get

Sent,sing = −Npairs T ln e6

32π V
ln

(
Ed

λ

) 〈
vi j

E2
i j

×
∫ π

0
dθ sin θ |iM1(Ei j , θ)|2 B1(i

′ j ′; i j)
〉

(2.25)

where
〈

vi j

E2
i j

∫ π

0
dθ sin θ

∣∣iM1(Ei j , θ)
∣∣2 B1(i

′ j ′; i j)
〉

8 The terms i = j do not contribute since vi j = 0.

= 1

Npairs

m∑
i, j=1

vi j

2E2
i j

∫ π

0
dθ sin θ |iM1(Ei j , θ)|2

× B1(i
′ j ′; i j) (2.26)

is the two electron result of [19], averaged over all possible
interacting pair configurations.

The entanglement entropy per unit time per particle den-
sity is equal to

sent,sing = V Sent,sing
Tm

= − (m − 1) ln e6

64π
ln

(
Ed

λ

)

×
〈

vi j

E2
i j

∫ π

0
dθ sin θ |iM1(Ei j , θ)|2 B1(i

′ j ′; i j)
〉

(2.27)

and diverges logarithmically in the continuum, λ → 0 limit.
Notice the scaling with the number of particles in the ini-
tial state, implying that the entanglement entropy is further
enhanced as compared to the two-electron scattering case.

Of course the appearance of logarithmic divergences sig-
nals the breakdown of perturbation theory. Rather the pertur-
bative analysis is valid when the size of the box is kept large,
but fixed, taking the coupling e to be sufficiently small. As
shown in [19], upon restricting the partial trace to be over the
additional radiated soft photons, which energies in the range
Ed < ωγ < E , and thus excluding the soft photons in the
clouds, regulates the IR logarithmic divergences, and leads
to well-behaved results in the continuum limit. This type
of tracing alleviates the decoherence of the reduced density
matrix [17,18].

2.4 Relation to the cusp anomalous dimension

The integrand in Eq. (2.24) diverges for forward (θ = 0) and
backward (θ = π ) scattering. Since forward or backward
scattering cannot be distinguished from no scattering, we
introduce an effective lower and upper cutoff on the scattering
angle, θ0 ≤ θ ≤ π−θ0 where θ0 is a small angle, to regularize
the integral. As a result, the dominant contributions to the
leading entanglement entropy arise from the regions θ � θ0

and θ � π − θ0, close to the cutoffs.
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These dominant contributions exhibit certain universal
behavior, irrespectively of the details of the initial state. To
see this, recall that the squares of the amplitudes for the pro-
cesses e−e− → e−e−, e+e+ → e+e+ and e+e− → e+e−
in the center of mass frame are given, respectively, by

1

4

∑
spins

|iM1(E, θ)|2

= 1

4

∑
spins

|iM2(E, θ)|2 = 1

4

∑
spins

|iM3(E, θ)|2

= 4e4
(
E2 + p2

p2

)2
(

4

sin4 θ
− 3

sin2 θ

+
(

p2

E2 + p2

)2 (
1 + 4

sin2 θ

))
(2.28)

where E and p = | �p| are the energy and momentum of each
one of the incoming particles, while θ is the scattering angle.
As before, we have averaged over the polarizations of the
initial particles for simplicity. The above three amplitudes
diverge for forward and backward scattering. For the process
e+e− → γ γ , we obtain

1

4

∑
spins

|iM4(E, θ)|2 = 4e4
(
E2 + p2(1 + sin2 θ)

E2 − p2 cos2 θ

− 2p4 sin4 θ

(E2 − p2 cos2 θ)2

)
(2.29)

which remains finite and well-behaved at θ = 0 and θ = π .
As usual, it is useful to define the Mandelstam variables

s = 4E2, t = −4p2 sin2 θ

2
,

u = −4p2 cos2 θ

2
, s + t + u = 4m2. (2.30)

We will examine the behavior of the dominant terms at
θ0 and π − θ0 in a particular double scaling limit. We take
the momentum to be very large and the cutoff angle very
small, p → ∞ and θ0 → 0, keeping the quantity ξ =
4p2 sin2 (θ0/2) fixed and large. When θ = θ0, u � −s →
∞ in this limit, with t = −ξ remaining fixed and large.
Similarly, when θ = π − θ0, t � −s → ∞, with u = −ξ

fixed. For the first three invariant amplitudes squared, we
obtain in this limit

1

4

∑
spins

|iMi (E, θ0)|2 = 1

4

∑
spins

|iMi (E, π − θ0)|2

� 64e4 1

sin4 θ0
� 64e4 p4

ξ2 , i = 1, 2, 3 (2.31)

while
1

4

∑
spins

|iM4(E, θ0)|2

= 1

4

∑
spins

|iM4(E, π − θ0)|2 � 8e4 p2

m2 + ξ
. (2.32)

Evidently, the amplitude squared for the process e+e− →
γ γ is suppressed in this limit, as compared to the other three.
So this contribution can be neglected.9

The kinematical factors B1 and B2 appearing in Eq. (2.24)
are given by

B1 = B2 = e2

4π2

[
1 − 2m2

t√
1 − 4m2

t

ln

(1 − 2m2

t +
√

1 − 4m2

t

1 − 2m2

t −
√

1 − 4m2

t

)

+ (t ↔ u) − (t ↔ s) − 2

]
(2.33)

while B3 is given by

B3 = − e2

4π2

[
1 − 2m2

t√
1 − 4m2

t

ln

(1 − 2m2

t +
√

1 − 4m2

t

1 − 2m2

t −
√

1 − 4m2

t

)

+ (t ↔ u) − (t ↔ s) + 2

]
. (2.34)

In the double scaling limit, we obtain at both θ0 and π − θ0

B1 = B2 = −B3 = e2

4π2 ln

(
ξ

4m2

)
. (2.35)

This factor is precisely equal to the cusp anomalous dimen-
sion in QED, e2�(ϕ)/4π2, via the relation ξ = 2m2(cosh ϕ−
1), which controls the vacuum expectation value of a Wilson
loop with a cusp of angle ϕ [43,65,66].

Collecting all factors together, we arrive at a universal for-
mula for the leading perturbative differential entanglement
entropy, per unit time, per particle density, in the double scal-
ing limit

dsent,sing
d�

|θ=θ0, π−θ0

= − e6 ln e6

π2 N sin4 θ0
ln

(
Ed

λ

) ∑
i j

vi j

2E2
i j

êi ê j �(ϕi j )/4π2

(2.36)

where the sums are over all charged particles in the ini-
tial state; êi is +1 for positrons and −1 for electrons,
and the cusp angles ϕi j are defined via the relation ξi j =
4p2

i sin2 (θ0/2) = 2m2(cosh ϕi j − 1). Thus, the coefficient
of the logarithmic singularity is given in terms of the cusp
anomalous dimension of QED, averaged over all pairs of
interacting particles via the above equation.

9 The kinematical factor B4 grows logarithmically with the momentum
p in the limit, but not fast enough to alter this conclusion.
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3 Next to leading order analysis for electron/electron
scattering

In this section we extend the perturbative analysis to the next
to leading order and obtain O(e8) corrections to the Renyi
and entanglement entropies. For simplicity, we focus on a
Fock basis computation concerning the case of two-electron
scattering. Thus we set the dressing function f μ equal to zero.
As we have seen from the leading order analysis, the singular,
logarithmically divergent part of the Renyi and entanglement
entropies is independent of the dressing.

3.1 The large eigenvalue of ρH and the Renyi entropies to
order e8

Two-photon outgoing states, |βγ1γ2〉, contribute to next to
leading order and must be properly taken into account. For
such a state to be in the soft part of the Hilbert space HS , the
sum of the energies Eγ1 + Eγ2 must be below the reference
energy scale E . Therefore, even if both Eγ1 < E and Eγ2 <

E , if Eγ1 + Eγ2 > E , the two-photon state is taken to be in
HH . If Eγ1 > E and Eγ2 < E , then |βγ1γ2〉 → |βγ1〉H ×
|γ2〉S .

The outgoing state is given by

|
〉out = S|α〉 =|α〉 +
∑
β

Tβα|β〉 +
∑
β,γ

Tβγ,α|βγ 〉

+
∑

β,γ1,γ2
ωγ1 ≤ωγ2

Tβγ1γ2,α|βγ1γ2〉 + . . . (3.1)

where Tβγ1γ2,α = 〈βγ1γ2| iT |α〉 is the amplitude for the two
incoming electrons (described by the state|α〉) to scatter and
produce the electron/positron state |β〉, emitting at the same
time two photons (|γ1γ2〉). The set {|β〉} comprises of elec-
tron/positron states with zero number of photons. To order
e8, we must consider states with two electrons and states with
two electrons and an electron/positron pair.10 The amplitudes
Tβα are of order e2 for the two-electron case and e4 for the
case of three electrons and a positron. Likewise, the ampli-
tudes Tβγ,α , describing the emission of an additional photon,
are of order e3 and e5, respectively. Finally, Tβγ1γ2,α is of
order e4 if |β〉 is a two-electron state and of order e6 if |β〉
is a state of three electrons and a positron. States with more
than two photons will not affect the entanglement and Renyi
entropies to order e8. So we do not write them explicitly in
the equation above.

The reduced density matrix is obtained upon taking a par-
tial trace over HS : ρH = TrHS |
〉out 〈
|out . We define the

10 As it turns out, the latter do not contribute to the Renyi and entan-
glement entropies to this order.

state

|�〉 = |α〉H +
∑
β

Tβα|β〉H +
∑
β

∑
ωγ >E

Tβγ,α|βγ 〉H

+
∑
β

∑
|γ1γ2〉∈HH

Tβγ1γ2,α|βγ1γ2〉H + . . . (3.2)

and write the reduced density matrix as

ρH =|�〉 〈�| + G (3.3)

where to order e8 G is given by

G =
( ∑

ωγ <E

Tβγ,αT
∗
β ′γ,α +

∑
|γ1γ2〉∈HS

Tβγ1γ2,αT
∗
β ′γ1γ2,α

)

×|β〉H 〈β ′|H
+
( ∑

ωγ <E

Tβγ,αT
∗
β ′γ γ ′,α|β〉H 〈β ′γ ′|H + h.c.

)

+
∑

ωγ1 <E

Tβγ γ1,αT
∗
β ′γ ′γ1,α

|βγ 〉H 〈β ′γ ′|H . (3.4)

The first sum in the first line includes cross-terms between
two-electron states and states with three electrons and a
positron.

Using the fact that at finite λ, T ∗
αγ,α = T ∗

αγ1γ2,α
= 0 by

energy conservation and
∑

β TβαT ∗
βγ,α = 0 by incompatibil-

ity of the corresponding energy-momentum δ-functions, we
see that G annihilates|�〉 to order e8. So|�〉 is an eigenstate
of ρH with eigenvalue 〈�|�〉. Thus to this order there is a
“large” eigenvalue given by

λ� = 〈�|�〉 = 1 + Tαα + T ∗
αα +

∑
β

TβαT
∗
βα

+
∑
β

∑
ωγ >E

Tβγ,αT
∗
βγ,α

+
∑
β

∑
|γ1γ2〉∈HH

Tβγ1γ2,αT
∗
βγ1γ2,α

. (3.5)

Using unitarity Eq. (2.3), the eigenvalue can be written as
follows

λ� = 1 − 
 (3.6)

where to order e8


 =
∑
β

∑
ωγ <E

Tβγ,αT
∗
βγ,α +

∑
β

∑
|γ1γ2〉∈HS

Tβγ1γ2,αT
∗
βγ1γ2,α

+
∑
β

∑
ωγ1<E,ωγ2 >E

Tβγ1γ2,αT
∗
βγ1γ2,α

. (3.7)

States with three electrons and a positron do not contribute
to 
 to order e8, and so the sums over β in the expression
above can be restricted to two-electron states.
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The rest of the non-zero eigenvalues of ρH coincide with
the non-zero eigenvalues of G. These split into two groups,
the eigenvalues of order e6 (which may receive corrections
of order e8) and the eigenvalues of order e8. The sum of all
of these must be equal to 
, as can be verified by computing
TrG.

The traces Tr(ρH )m for integer m ≥ 2 are given by

Tr(ρH )m = 1 − m
. (3.8)

This equation can be verified by direct computation of the
traces to order e8 – see “Appendix D”. The corresponding
Renyi entropies take the form

Sm = − 1

m − 1
ln(1 − m
) = m

m − 1

. (3.9)

Notice that to all orders, the traces satisfy the inequali-
ties 0 < Tr(ρH )m ≤ 1. So the perturbative result Eq. (3.8)
breaks down at large m ∼ 1/
. To regulate the perturbative
expansion of the entanglement entropy, we consider instead
the generating functional [67]

G(w, ρH ) = −Tr (ρH ln[1 − w(1 − ρH )]) . (3.10)

The entanglement entropy is recovered in the limit w → 1

Sent = lim
w→1

G(w, ρH ). (3.11)

The Taylor expansion of G(w, ρH ) is convergent for |w| < 1
and gives

G(w, ρH )

=
∞∑
n=1

wn

n

[
n∑

m=0

n!
(n − m)!m! (−1)m Tr(ρH )m+1

]
.

(3.12)

In fact, setting w = e−κ , for κ ∼ 
, suppresses the contribu-
tions of the traces for large integerm ∼ 1/
 and regulates the
perturbative expansion. Using Eq. (3.8), we obtain to order
e8 at fixed w

G(w, ρH ) = 
(− ln(1 − w) + 1) = −
 ln κ + 
. (3.13)

The leading perturbative entanglement entropy computed in
the previous section is recovered to be −
 ln e6. Because
of the logarithmic cutoff term, there are ambiguities in the
analytic, cutoff independent part. The perturbative expansion
does not commute with the w → 1 limit.

3.2 Entanglement entropy to order e8

We proceed now to discuss next to leading order corrections
to the entanglement entropy. In particular, we will study the

structure of the non-analytic part (in the electron charge e)
of the entanglement entropy, which depends on the non-
vanishing, “small” eigenvalues of ρH . As we remarked in
the previous section, these eigenvalues coincide with the
(non-zero) eigenvalues of G. They split into two groups,
of order e6 and e8, respectively, and their sum is given by∑

i �=� λi = 1−λ� = 
. Let 
6 and 
8 be the order e6 and

the order e8 parts of 
, respectively.
In “Appendix E”, we describe how to obtain the shifts of

the order e6 eigenvalues ofG using second order perturbation
theory. Let us denote the sum of these shifts with 
̃8. It is then
clear that the sum of the order e6 eigenvalues of G is given
by 
6 + 
̃8, while the sum of all the order e8 eigenvalues
by 
 − (
6 + 
̃8) = 
8 − 
̃8. These sums determine the
non-analytic part of the entanglement entropy

Sent = −
∑
i

λi ln λi = −(
6 + 
̃8) ln e6

−(
8 − 
̃8) ln e8 + analytic in e. (3.14)

Thus the non-analytic part is given by

(Sent )N .A. = −
(


6 + 4
8

3
− 
̃8

3

)
ln e6. (3.15)

3.3 IR divergences to order e8

The IR divergent terms in the Renyi and entanglement
entropies can be obtained by examining the singular part
of 
 (which gives the shift of the “large” eigenvalue from
unity). When the energy scale E is sufficiently small, we can
apply soft theorems for real photon emission to obtain (in the
continuum limit) [12]


 =
∑
β

TβαT
∗
βα

[
2Bβα ln

(
E

λ

)
+ 2

(
Bβα ln

(
E

λ

))2
]

+
∑
β

∑
ωγ >E

Tβγ,αT
∗
βγ,α

(
2Bβγ,α ln

(
E

λ

))
. (3.16)

Now this expression must be computed to order e8. So
the amplitude squared in the first term should be calculated
to order e6, and, therefore one-loop diagrams contribute. As
a result, logarithmic IR divergences due to virtual photons
appear. Soft theorems for virtual photons give [12]

TβαT
∗
βα = (TβαT

∗
βα)	

(
λ

	

)2Bβα

= (TβαT
∗
βα)	

(
1 − 2Bβα ln

(
E

λ

)
− 2Bβα ln

(
	

E

))

+ · · · (3.17)

where scattering amplitude squared (TβαT ∗
βα)	 does not

include contributions from virtual photons with energy below
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the cutoff scale 	 ∼ E . The factor ln(	/E) is negligible
when the reference scales E and 	 are of the same order.
Substituting into the expression for 
, yields


 =
∑
β

(TβαT
∗
βα)	

[
2Bβα ln

(
E

λ

)
− 2

(
Bβα ln

(
E

λ

))2
]

+
∑
β

∑
ωγ >E

Tβγ,αT
∗
βγ,α

(
2Bβγ,α ln

(
E

λ

))
. (3.18)

The first term is in accordance with an exponentiation
pattern. Notice however the appearance of the last term which
originates from two-photon final states in which one photon
is soft and the other is hard. The logarithmic divergence is
now proportional to the amplitude squared for real (hard)
photon emission, and a different kinematical factor. So the
exponentiation pattern of the IR logarithmic divergences is
an intricate one.

4 To all orders entanglement in electron/electron
scattering

In this section we attempt to generalize some of the results
of the previous sections to all orders in perturbation theory
so as to gain insight into the exponentiation pattern of the IR
logarithmic divergences, and to link our perturbative results
with the results of [13–16] (see also [17,18]) on the deco-
herence of the density matrix ρH . As in Sect. 3, we focus
on a Fock basis computation associated with two-electron
scattering for simplicity.

We denote by|γ 〉 =|γ1γ2, . . . , γn〉 a generic multiphoton
box state. The number of photons n is nonzero and finite,
but arbitrary. It will be convenient to order the photons in
ascending order, according to their energy: E1 ≤ E2 ≤ · · · ≤
En . If the total energy of the photons is less that the reference
energy scale E ,

∑n
i=1 Ei < E , then |γ 〉 ∈ HS . Suppose∑n

i=1 Ei > E . In order to decompose |γ 〉 in HH × HS , we
first determine the maximum subset of photons {γ1, . . . γm},
for some positive integer m, each having energy below the
reference scale E , so that

∑m
i=1 Eγi < E and

∑n
i=m+1 Eγi ≥

E . Then we write the multiphoton state as a product state as
follows

|γ 〉 = |γ1γ2, . . . , γn〉 =|γm+1, γm+2, . . . , γn〉H
×|γ1γ2, . . . , γm〉S . (4.1)

If no such m exists, then the state|γ 〉 is in HH . Photons with
energy scaling with the IR cutoff λ will appear in the soft
part of the Hilbert space in the continuum, λ → 0 limit.11

11 Alternatively, we could take any photon with energy below E to lie
in HS , without imposing any restriction on the total energy of the soft
and hard factors of the state.

Adopting these notations, the outgoing state can be written
as

|
〉out = Sα〉 =|α〉 +
∑
β

Tβα|β〉 +
∑
|βγ 〉

Tβγ ,α|βγ 〉 (4.2)

at any order in perturbation theory. The set {|β〉} comprises of
states with 2+ l electrons, l positrons states and zero number
of photons, with l = 0, 1, . . .. The reduced density matrix is
given by ρH = TrHS |
〉out 〈
|out . As before, we define

|�〉 =|α〉H +
∑
β

Tβα|β〉H +
∑
β

∑
|γ 〉∈HH

Tβγ ,α|βγ 〉H (4.3)

in terms of which the reduced density matrix is given by

ρH =|�〉 〈�| + G (4.4)

where

G =
∑

|γ ′〉∈HS

Tβγ ′,αT
∗
β ′γ ′,α |β〉H 〈β ′|H

+
( ∑

|γ ′〉∈HS

Tβγ ′,αT
∗
β ′γ γ ′,α|β〉H 〈β ′γ |H + h.c.

)

+
∑

|γ ′′〉∈HS

Tβγ γ ′′,αT
∗
β ′γ ′γ ′′,α|βγ 〉H 〈β ′γ ′|H . (4.5)

The expression for G is valid to all orders in perturbation
theory.

Next we impose energy-momentum conservation at finite
λ: for any|γ ′〉 , |γ ′′〉 ∈ HS , T ∗

αγ ′,α = 0 and
∑

β TβαT ∗
βγ ′,α =

0,
∑

β

∑
|γ 〉∈HH

Tβγ ,αT ∗
βγ γ ′′,α = 0 due to the incompati-

bility of the corresponding energy-momentum δ-functions.
As a result G annihilates |�〉. We conclude that |�〉 is an
exact eigenstate of the reduced density matrix with eigen-
value λ� = 〈�|�〉.

Explicitly λ� is given by

λ� = 1+Tαα +T ∗
αα +

∑
β

TβαT
∗
βα +

∑
β

∑
|γ 〉∈HH

Tβγ ,αT
∗
βγ ,α.

(4.6)

The sum of the rest of the eigenvalues of ρH is given by


 =
∑
i �=�

λi = 1 − λ� = −
(
Tαα + T ∗

αα +
∑
β

TβαT
∗
βα

+
∑
β

∑
|γ 〉∈HH

Tβγ ,αT
∗
βγ ,α

)
. (4.7)

We remark that the amplitudes Tβα, Tβγ ,α appearing in
the above expressions for 
 and λ� are hard, in that the final
state does not include soft photons with energies scaling with
λ in the continuum limit. At any finite order in perturbation
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theory, these amplitudes are plagued by IR logarithmic diver-
gences, due to virtual soft photons running in the loops [12],
when the momenta of the two-electron states α and β differ.
Since the corresponding transition processes do not involve
the emission of soft radiation, there are no similar divergent
contributions from real soft photons to λ� (and 
) to cancel
the virtual IR divergences.

However, the term Tαα+T ∗
αα is free of any IR divergences,

order by order in perturbation theory, since this is related to
the total inclusive cross-section in the state α by unitarity,
Eq. (2.3):

Tαα + T ∗
αα = −

∑
β

TβαT
∗
βα −

∑
β

∑
|γ 〉

Tβγ ,αT
∗
βγ ,α. (4.8)

The corresponding transition processes include the emission
of real soft photons. As is well known, such inclusive transi-
tion rates are IR finite, with the IR divergences due to virtual
soft photons cancelling against the ones due to real photon
emission [12]. We emphasise that Tαα is a box transition
amplitude, scaling inversely proportional with the volume of
the box in the λ → 0, continuum limit:

Tαα → T

V E2
12

iMαα (4.9)

where T is the time-scale of the experiment, iMαα is the
invariant amplitude at infinite volume12 and E12 is the total
energy in the center of mass frame of the two electrons of the
state|α〉. In particular,

Tαα + T ∗
αα = − T

V E2
12

2ImMαα = −T vi j

V
�α (4.10)

where vi j is the relative velocity of the two electrons in the
state α and �α is the total, inclusive cross-section in this
state.

As a result, at any finite order in perturbation theory IR log-
arithmic divergences appear in the expressions for the Renyi
and the entanglement entropies, as we have seen explicitly
at leading and next-to-leading order in Sects. 2 and 3.

To all orders, however, the virtual IR logarithmic diver-
gences exponentiate [12]

TβαT
∗
βα = (TβαT

∗
βα)	

(
λ

	

)2Bβα

,

Tβγ ,αT
∗
βγ ,α = (Tβγ ,αT

∗
βγ ,α)	

(
λ

	

)2Bβα

(4.11)

leading to the vanishing of the hard amplitudes Tβα, Tβγ ,α

when the momenta of β and α differ. The vanishing of these

12 We follow the normalizations of [68] so that the invariant amplitude
iMβα has units of length to the power N f −2, where N f is the number
of particles in the final state β.

hard amplitudes can be also understood as a consequence of
symmetry [1,2]. Taking into account the scaling of the box
amplitude Tαα in the large volume limit, we conclude that to
all orders, λ� becomes equal to a diagonal element of ρH

λ� = 1 + Tαα + T ∗
αα = 1 − T vi j

V
�α (4.12)

and


 = T vi j

V
�α (4.13)

free of any IR divergences in λ. Indeed, to all orders, the
reduced density matrix ρH assumes a diagonal form in terms
of the momentum indices exhibiting decoherence [13–16].
The diagonal elements (in momentum) are given in terms of
inclusive Bloch–Nordsieck rates associated with box states,
and are free of IR divergences.

Assuming that �α is finite, we see that to all orders, the
reduced density matrix is dominated by a large eigenvalue,
λ�, in the continuum, λ → 0 limit. The rest of the eigenval-
ues must be small, scaling inversely proportional with powers
of the volume of the box. Despite the fact that the number of
the small eigenvalues also grows with the volume, the traces
Tr(ρH )m for integer m ≥ 2 are given by

Tr(ρH )m = 1 − m
 = 1 − m
T vi j

V
�α (4.14)

and the corresponding Renyi entropies take the form

Sm = − 1

m − 1
ln(1 − m
) = m

m − 1

T vi j

V
�α. (4.15)

The Renyi entropies per particle flux, per unit time

sm = m

(m − 1)
�α (4.16)

remain finite in the limit. They are proportional to the total
cross-section �α , free of IR divergences.

Let us discuss the dependence of �α on the reference scale
E , taking into account the scaling of the box amplitudes with
the volume and the vanishing of the purely hard amplitudes
to all orders in the continuum limit. Equation (4.8) gives

T vi j

V
�α = −Tαα − T ∗

αα =
∑
β

∑
|γ ′〉∈HS

Tβγ ′,αT
∗
βγ ′,α

+
∑
β

∑
|γ 〉∈HH

∑
γ ′〉∈HS

Tβγ γ ′,αT
∗
βγ γ ′,α. (4.17)

The total cross-section �α is proportional to a sum of inclu-
sive Bloch–Nordsieck rates, of the form,

∑
|γ ′〉∈HS

Tβγ γ ′,αT
∗
βγ γ ′,α (4.18)
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for the initial two electrons α to scatter and produce the hard
state βγ , emitting at the same time any number of soft pho-
tons with total energy less than E . Notice that in the con-
tinuum limit, the sums over β and γ give rise to multiple
integrals over the momenta of the hard final particles with
appropriate volume factors (as well as discrete sums over
the polarization indices) – see Sect. 2.3. Each such contribu-
tion scales proportionally with T/V in the continuum limit,
irrespectively of the number of particles in the final state.

The inclusive rates Eq. (4.18) have been computed to all
orders in [12], taking into account the cancellation of the IR
divergences due to virtual soft photons and real soft photon
emission

∑
|γ ′〉∈HS

Tβγ γ ′,αT
∗
βγ γ ′,α = (Tβγ ,αT

∗
βγ ,α)	 bβα

(
E

	

)2Bβα

(4.19)

where bβα � 1 − π2B2
βα/3 [12]. Therefore, we obtain

Sm ∼ T vi j

V
�α =

∑
β

(TβαT
∗
βα)	 bβα

(
E

	

)2Bβα

+
∑
β

∑
|γ 〉∈HH

(Tβγ ,αT
∗
βγ ,α)	 bβα

(
E

	

)2Bβα

. (4.20)

The ratio E/	 remains fixed in the λ → 0 limit. To all
orders, the small parameter controlling the expansion of the
Renyi entropies in the continuum limit is set by the inverse
of the product of the size of the box L and the center of mass
energy of the initial state.

The entanglement entropy is not analytic in the volume
of the box. (More precisely it is not analytic in the small
dimensionless parameter discussed above). The non-analytic
part is governed by the small eigenvalues, via the expressions
−λi ln λi , for i �= �. Ignoring the spin polarization structure,
we may approximate the small eigenvalues with the diagonal
elements of ρH , which are given in terms of inclusive rates

Dβγ ,βγ =
∑

|γ ′〉∈HS

Tβγ γ ′,αT
∗
βγ γ ′,α (4.21)

where|γ 〉 is a hard photon state. This diagonal element scales
with T 2/V N f in the large volume limit, where N f is the
number of particles in the final state, taking into account the
energy-momentum conserving δ-functions. It gives a con-
tribution −Dβγ ,βγ ln(Dβγ ,βγ ) to the entanglement entropy.
So terms logarithmic divergences in the size of the box (or
the IR cutoff λ), of the form ln(V N f /T 2), in the expression
for the entanglement entropy per particle flux per unit time
persist to all orders in the continuum, large volume limit.

One way to recover the entanglement entropy is to take
the w → 1 limit of the generating functional G(w, ρH ),

Eq. (3.10), whose Taylor expansion is given in terms of the
traces Tr(ρH )m (and hence the exponentials of the Renyi
entropies) – see Eq. (3.12). How is it then that the all orders
entanglement entropy (per particle flux, per unit time) retains
non-analytic, logarithmic behavior with respect to the size of
the box or the IR cutoff? Notice that for any given large m,
the scaling of Tr(ρH )m with the volume, Eq. (4.14) (con-
sequently the scaling of the corresponding Renyi entropy,
Eq. (4.15)), is valid for sufficiently large volume. At large
but fixed volume, however, this scaling breaks down for large
enough integers m > 1/
, since the traces satisfy the strict
inequalities 0 < Tr(ρH )m ≤ 1. A similar behavior was
observed in the case of the perturbative results of the pre-
vious sections (see the discussion around Eq. (3.10)), lead-
ing to the non-analyticity of the entanglement entropy in the
electron charge e. In the case at hand, the expansion param-
eter scales inversely proportional with the size of the box L .
As a result, the w → 1 limit does not commute with the
large L expansion of the traces. Indeed when |w| < 1, the
contribution of the large m traces in Eq. (3.12) is suppressed.
Using Eq. (4.14) and the Taylor expansion of the generating
functional, we obtain at large but fixed volume

G(w, ρH ) = (− ln(1 − w) + 1)
 = (− ln(1 − w) + 1)
T vi j

V
�α.

(4.22)

However, this yields a diverging result in the limit w → 1,
indicating that we cannot reverse the order of limits. Simi-
larly, another way to recover the entanglement entropy is to
analytically continue the expression for the Renyi entropies
for integer m ≥ 2 to general real values, and take the limit
Sent = limm→1 Sm . However, this limit does not commute
with the large volume expansion of the Renyi entropies, as
can be seen from Eq. (4.15). Essentially, the entanglement
entropy is non-analytic in the eigenvalues of the reduced den-
sity matrix. Since to all orders the small eigenvalues scale
inversely proportional with the volume of the box, the entan-
glement entropy retains non-analytic behavior in the inverse
of the volume or the IR cutoff.

5 Conclusions

In this work we study generic scattering processes in QED
in order to establish measures of the entanglement between
the soft and hard particles in the final state. The initial state
consists of an arbitrary number of Faddeev–Kulish electrons
and positrons. To regulate the computation of the entangle-
ment and the Renyi entropies, we place the system in a large
box of size L , which provides an infrared momentum cutoff
λ ∼ 1/L . The perturbative computations are carried out at
fixed λ, for sufficiently small coupling e. The density matrix
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for the hard particles is constructed via tracing over the entire
spectrum of soft photons, including those in the clouds dress-
ing the asymptotic charged particles. The leading perturba-
tive behavior of the Renyi and entanglement entropies is gov-
erned by a large eigenvalue, which we compute at leading
order, and next to leading order for two-electron scattering,
in perturbation theory. The leading entanglement entropy and
Renyi entropies for integer m ≥ 2 are logarithmically diver-
gent with respect to the IR cutoff λ for all scattering cases we
consider. We find that the coefficient of the logarithmic diver-
gence is independent of the particle dressing and exhibits
certain universality properties, irrespectively of the detailed
properties of the initial state. The dominant contributions
arise from two-particle interactions at forward and backward
scattering. In the relativistic limit, these dominant contribu-
tions are proportional to the cusp anomalous dimension in
QED. We see that the entanglement entropy in momentum
space can be IR divergent, with the coefficient of the diver-
gence containing physical information. We also study next to
leading order corrections to the non-analytic part (in the elec-
tron charge e) of the entanglement entropy, and comment on
the pattern of the exponentiation of the IR logarithmic diver-
gences.

Since the perturbative expansion does not commute with
the continuum, λ → 0 limit due to the appearance of IR
divergences, we proceed to study the behavior of the Renyi
and entanglement entropies to all orders in perturbation the-
ory. We focus on Fock basis computation associated with
two-electron scattering for simplicity. We derive an exact
expression for the large eigenvalue of the density matrix in
terms of hard scattering amplitudes, which is valid at any
finite order in perturbation theory. At any finite order in the
electron charge e, this eigenvalue is plagued with IR logarith-
mic divergences due to soft virtual photons. To all orders in
perturbation theory, the IR divergences exponentiate, lead-
ing to a finite result. In the large volume limit, the shift
of this eigenvalue from unity governs the behavior of the
Renyi entropies for integer m ≥ 2. The Renyi entropies,
per unit time, per particle flux, turn out to be proportional
to the total, inclusive cross-section in the initial state, which
is free from any IR divergences. The contributions of the
small eigenvalues remain subleading, despite the fact that
their number grows with the volume in the continuum limit.
The entanglement entropy though retains non-analytic, log-
arithmic behavior with respect to the size of the box, even
to all orders in perturbation theory, in the continuum limit.
This reveals strong entanglement between the soft and hard
particles produced in the scattering process.

It would be interesting to extend our analysis to gravi-
tational and black hole scattering processes, and study the
correlation between the soft photons and gravitons with the
hard particles produced in the process. Interesting correla-
tions could be uncovered if we examine four-dimensional

celestial scattering amplitudes involving boost eigenstates,
which are sensitive to both UV and IR physics. The fac-
torization structure of the S-matrix found in [20] could be
important in order to quantify the entanglement between the
soft and the hard degrees of freedom, and the information
carried the unobserved soft particles.
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Appendix A: Notations and conventions

We work in the Lorenz gauge ∂μAμ = 0, in which the electro-
magnetic gauge field satisfies the wave equation ∂ν∂

ν Aμ =
0. We adopt a mostly plus signature metric. In terms of cre-
ation and annihilation operators, the gauge field is given by

Aμ(x) =
∫

d3k

(2π)3

1√
ω�k

∑
r

(
εμ
r (�k)ar (�k)eikx

+εμ∗
r (�k)a†

r (
�k)e−ikx

)
(A.1)

with the Greek indices taking values from 0 to 3. We adopt the
conventions of [68]. The polarisation vector ε

μ
r (�k) satisfies

the following orthonormality relations

εrμ(�k)εμ∗
s (�k) = ζrδrs,

∑
r

ζrε
μ
r (�k)εν∗

r (�k) = ημν (A.2)

where ζ0 = −1, ζ1 = ζ2 = ζ3 = 1. The commutators of the
photon creation and annihilation operators are given by

[ar ( �p), a†
s (�q)] = (2π)3δ3( �p − �q)ζrδrs . (A.3)

Notice also the Gupta–Bleuler condition on physical states
[
a0( �p), a3( �p)] |
〉 = 0. (A.4)

Finally the non-trivial anticommutators associated with the
electron/positron creation and annihilation operators are,
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respectively

{br ( �p), b†
s (�q)} = {dr ( �p), d†

s (�q)} = (2π)3δ3( �p − �q)δrs .

(A.5)

The indices r, s, . . . of the spinor creation and annihilation
operators take the values 1, 2. We hope they will not be con-
fused with the same symbols used to label the polarisations
of the electromagnetic field.

In the continuum, single particle states are normalized so
that they satisfy the Lorentz invariant norm

〈�q, r | �p, s〉 = 2E �p(2π)3δ3( �p − �q)δrs . (A.6)

On the other hand, box single particle states have discrete
momenta

�k = 2π

L
(n1, n2, n3) (A.7)

and they are unit normalized.
We also list some partial traces over the soft part of the

Hilbert space, HS , associated with dressed ket-bra operators,
which are useful in obtaining the reduced density matrix ρH

– see [19] for explicit derivations. We first have

TrHS

(|β〉d〈β ′|d
) = |β〉H 〈β ′|H 〈 fβ ′ | fβ〉 (A.8)

where 〈 fβ ′ | fβ〉 is given in Eq. (1.6), in the large volume,
continuum limit. Taking |�qγ | < Ed gives

TrHS

(|βγ 〉d〈β ′|d
) = |β〉H 〈β ′|H 〈 fβ ′ | fβ〉 1

(2Vωγ )1/2

×
(
f ∗
β ′(�qγ ) − f ∗

β (�qγ )
)

· εr (�qγ ).

(A.9)

Finally, when both |�qγ |, |�qγ ′ | < Ed , we obtain

TrHS

(|βγ 〉d〈β ′γ ′|d
) = |β〉H 〈β ′|H 〈 fβ ′ | fβ〉

×
{
δrr ′δ�qγ �qγ ′ + 1

(2Vωγ ′)1/2(2Vωγ )1/2

× (
fβ(�qγ ′) − fβ ′(�qγ ′)

)

· εr ′(�qγ ′)
(
fβ ′(�qγ ) − fβ(�qγ )

) · εr (�qγ )

}
. (A.10)

Partial traces for the cases in which two or more soft photons
are present in the initially undressed states are higher order
in the dressing function f μ

β (�qγ ).

Appendix B: Leading order analysis

The terms in the expansion of the reduced density matrix
Eq. (2.7) relevant for the leading order computation of the

Renyi and the entanglement entropies are

ρH = |α〉H 〈α|H
+
(
Cβ |β〉H +

∑
ωγ >E

Cβγ |βγ 〉H + . . .

)
〈α|H

+|α〉H
(
C∗

β
′ 〈β ′ |H +

∑
ω

γ
′ >E

C∗
β

′
γ

′ 〈β ′
γ

′ |H + . . .

)

+D
β,β

′ |β〉H 〈β ′ |H
+

∑
ω

γ
′ ,ωγ >E

D
βγ,β

′
γ

′ |βγ 〉H 〈β ′
γ

′ |H

+
∑

ωγ >E

D
βγ,β

′ |βγ 〉H 〈β ′ |H

+
∑

ω
γ
′ >E

D
β

′
γ

′
,β

|β〉H 〈β ′
γ

′ |H + · · · (B.1)

where

Cβ

〈 fα| fβ〉 = T̃βα +
∑

ωγ <Ed

1

(2Vωγ )
1
2

T̃βγ,α

×
(
f ∗
α ( �qγ ) − f ∗

β ( �qγ )
)

· ε(γ ) + · · · (B.2)

Cβγ = 〈 fα| fβ〉T̃βγ,α + · · · (B.3)
D

β,β
′

〈 f
β

′ | fβ〉 = T̃βα T̃
∗
β

′
α

+
∑

ωγ <Ed

1

(2Vωγ )
1
2

T̃βγ,α T̃
∗
β

′
α

×
(
f ∗
β

′ ( �qγ ) − f ∗
β ( �qγ )

)
· ε(γ )

+
∑

ω
′
γ <Ed

1

(2Vωγ )
1
2

T̃ ∗
β

′
γ

′
,α
T̃βα

×
(
fβ(�q

γ
′ ) − f

β
′ (�q

γ
′ )
)

· ε∗(γ ′
)

+
∑

ωγ <E

T̃βγ,α T̃
∗
β

′
γ,α

+ · · · (B.4)

D
βγ,β

′ = 〈 f
β

′ | fβ〉T̃βγ,α T̃
∗
β

′
α

+ · · · (B.5)

D
βγ,β

′
γ

′ = 〈 f
β

′ | fβ〉T̃βγ,α T̃
∗
β

′
γ

′
,α

+ · · · (B.6)

Notice that the leading contributions in Cβ are of order
eN , in Cβγ of order eN+1, in D

β,β
′ of order e2N , in D

βγ,β
′

of order e2N+1 and in D
βγ,β

′
γ

′ of order e2N+2. Also in the
expression for Cβ , the second term and terms in the ellipses
vanish when β = α [19]. So Cα = T̃αα to all orders.

Let us verify that TrρH = Trρ = 1 using unitarity,
Eq. (2.3). We have

TrρH − 1 = Cα + C∗
α +

∑
β

(
Dβ,β +

∑
ωγ >E

Dβγ,βγ

)
+ . . .

= T̃αα + T̃ ∗
αα +

∑
β

T̃βα T̃
∗
βα +

∑
βγ

T̃βγ,α T̃
∗
βγ,α
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+ · · · =d 〈α|i(T − T †) + T †T |α〉d = 0. (B.7)

Therefore, Cα +C∗
α = T̃αα + T̃ ∗

αα is of order e4 by unitarity.

B.1 Traces to leading order

To facilitate the perturbative analysis, we set

ρH = ρ0 + ε, ρ0 = |α〉H 〈α|H . (B.8)

Since ε is of order e2, we need to expand (ρH )m to cubic order
in order to obtain the leading perturbative contributions to
the Renyi entropies. The fact that (ρ0)

2 = ρ0 and the cyclic
property of the trace limit the number of structures we need
to consider. As in the case of two-electron scattering, only
linear and quadratic structures contribute to leading order
(e6). The cubic structures in ε turn out to vanish (to order
e6).

To linear order in ε, it suffices to consider the term ερ0

whose trace is

Trερ0 = Cα + C∗
α + Dα,α = T̃αα + T̃ ∗

αα + T̃αα T̃
∗
αα

+
∑

ωγ <E

T̃βγ,α T̃
∗
βγ,α + . . . (B.9)

The ellipses include terms of higher order than e6 and do not
contribute to the entanglement entropy at leading order.

The quadratic terms include ε2, ε2ρ0, ερ0ερ0. The trace
of the first term is

Trε2 = C2
α + C∗2

α +
∑
β

2Dα,βCβ + 2Dβ,αC
∗
β + 2CβC

∗
β

+2
∑

ωγ >E

Cβγ,αC
∗
βγ,α + . . .

= T̃ 2
αα + T̃ ∗2

αα + 2
∑
β

|〈 fβ | fα〉|2 (
1 + T̃αα + T̃ ∗

αα

)
T̃βα T̃

∗
βα

+2
∑
β

∑
ωγ <Ed

|〈 fβ | fα〉|2
(2Vωγ )1/2 ×

(
T̃βα T̃

∗
βγ,α

(
fα(�qγ )

− fβ(�qγ )
) · ε∗(γ ) + T̃ ∗

βα T̃βγ,α

(
f ∗
α (�qγ )

− f ∗
β (�qγ )

)
· ε(γ )

)

+2
∑
β

∑
ωγ >E

|〈 fβ | fα〉|2T̃βγ,α T̃
∗
βγ,α + · · · (B.10)

The third line is absent for the Fock basis computation.
For the second quadratic trace we obtain

Tr(ε2ρ0) = C2
α + C∗ 2

α + CαC
∗
α + Dα,α(Cα + C∗

α)

+
∑
β

(
Dα,βCβ + Dβ,αC

∗
β + CβC

∗
β

+
∑

ωγ >E

CβγC
∗
βγ

)
+ · · ·

= T̃ 2
αα + T̃ ∗ 2

αα + (
1 + T̃αα + T̃ ∗

αα

)
T̃αα T̃

∗
αα

+
∑
β

| 〈 fβ | fα〉 |2 (
1 + T̃αα + T̃ ∗

αα

)
T̃βα T̃

∗
βα

+
∑
β

∑
ωγ <Ed

| 〈 fβ | fα〉 |2
(2Vωγ )1/2

[
T̃βα T̃

∗
βγ, α

(
fα(�qγ )

− fβ(�qγ )
) · ε∗(γ ) + T̃ ∗

βα T̃βγ, α

(
f ∗
α (�qγ )

− f ∗
β (�qγ )

)
· ε(γ )

]

+
∑
β

∑
ωγ >E

| 〈 fβ | fα〉 |2T̃βγ, α T̃
∗
βγ, α + · · ·

(B.11)

Notice the appearance of off diagonal elements in the per-
turbative expansions for both Trε2 and Trε2ρ0. At any finite
order in perturbation theory, the off diagonal elements are
non-zero and contain IR logarithmic divergences in λ. Both
of these traces contribute to the Renyi and the entanglement
entropies to leading order (e6).

Finally we have

Trερ0ερ0 = (Cα + C∗
α)(Cα + C∗

α + 2Dα,α) + · · ·
= (T̃αα + T̃ ∗

αα)(T̃αα + T̃ ∗
αα + 2T̃αα T̃

∗
αα) + · · ·

(B.12)

which does not contribute to order e6 by unitarity.
The cubic terms are ε3, ε3ρ0, ε2ρ0ερ0, ερ0ερ0ερ0. How-

ever these terms do not contribute to leading order. Firstly

Trε3 = C3
α + C∗3

α + 3(Cα + C∗
α)

∑
β

CβC
∗
β + · · ·

= T̃ 3
αα + T̃ ∗3

αα + 3(T̃αα + T̃ ∗
αα)

∑
β

CβC
∗
β + · · · (B.13)

which does not contribute to order e6 by unitarity.
For the next terms we have

Tr(ε3ρ0) = C3
α + C∗3

α + (Cα + C∗
α)

(
CαC

∗
α

+2
∑
β

CβC
∗
β

)
+ · · · (B.14)

Tr(ε2ρ0ερ0) = (Cα + C∗
α)

(
C2

α + C∗2
α

+CαC
∗
α +

∑
β

CβC
∗
β

)
+ · · · (B.15)

Tr(ερ0ερ0ερ0) = (Cα + C∗
α)3 + · · · (B.16)

which do not contribute to the leading entanglement entropy.
To order e6, only Tr(ερ0), Tr(ε2) and Tr(ε2ρ0) contribute.
To proceed, we use the perturbative expansion for the

overlap of the coherent states Eq. (1.6). Recall that we first
expand to a given order in perturbation theory, keeping the
volume of the box and the cutoff λ finite. The continuum
limit (where the volume of the box is taken to infinity and
the cutoff λ to zero) is taken in the end. If the logarithmic IR
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divergences do not cancel, the perturbative expansion breaks
down in the continuum limit. We will also need the rela-
tions between dressed and undressed amplitudes Eqs. (2.5)
and (2.6). We will use these relations to express the traces in
terms of undressed amplitudes, which we can calculate more
easily via the Feynman diagrams.

For the first trace we have

Trερ0 = Tαα + T ∗
αα + TααT

∗
αα +

( ∑
ωγ <Ed

1

2Vωγ

Fαα(γ )F∗
αα

+
∑

Ed<ωγ <E

Tαγ,αT
∗
αγ,α

)
. (B.17)

The second term in parentheses is zero due to energy conser-
vation. In the continuum limit, the first term in parentheses
yields

∫ Ed

λ

d3 �q
(2π)32ω�q

∑
r

|Fαα(�q, εr (�q))|2 (B.18)

up toλ independent multiplicative factors. Since Fαα(�q, εr (�q))

is finite and nonsingular in the limits |�q|, λ → 0, the contri-
bution of this term is at most of order E2

d , and can be neglected
relative to other contributions.

For the quadratic traces we obtain

Trε2 = T 2
αα + T ∗2

αα + 2
∑
β

(
TβαT

∗
βα +

∑
ωγ >E

Tβγ,αT
∗
βγ,α

)

+2
∑
β

∑
ωγ <Ed

1

2Vωγ

[
TβαF

∗
βα(γ )

(
fα(�qγ ) − fβ(�qγ )

)

· ε∗(γ ) + T ∗
βαFβα

(
f ∗
α (�qγ ) − f ∗

β (�qγ ) · ε(γ )
)]

(B.19)

Tr(ε2ρ0) = T 2
αα + T ∗2

αα + TααT
∗
αα

+2
∑
β

(
TβαT

∗
βα +

∑
ωγ >E

Tβγ,αT
∗
βγ,α

)

+2
∑
β

∑
ωγ <Ed

1

2Vωγ

[
TβαF

∗
βα(γ )

(
fα(�qγ ) − fβ(�qγ )

)

· ε∗(γ ) + T ∗
βαFβα

(
f ∗
α (�qγ ) − f ∗

β (�qγ ).ε(γ )
)]

. (B.20)

Since Fβα is of order e3 and fα is of order e, Tβα must be
calculated at tree level. So it does not lead to any IR diver-
gences in the limit λ → 0. In the continuum limit, the last
lines of expressions Eqs. (B.19) and (B.20) are given by the
following integral (up to smooth factors in the limit λ → 0
and volume factors)
∫ Ed

λ

d3 �q
(2π)32ω�q

∑
r

F∗
βα(�qγ , εr (�qγ ))

×
∑

s∈{α,β}

esηs ps · ε∗
r (�q)

ps · q + h.c. (B.21)

The integral is not divergent in the limit |�q| → 0. In fact it
is of order Ed making a negligible contribution to the Renyi
and the entanglement entropies.

Let us calculate the quantity Tr(ρH )2 to order e6.

Tr(ρH )2 = Tr(ρ0)
2 + 2Trερ0 + Trε2

= 1 + 2(Tαα + T ∗
αα) + (Tαα + T ∗

αα)2

+2
∑
β

(
TβαT

∗
βα +

∑
ωγ >E

Tβγ,αT
∗
βγ,α

)
. (B.22)

Using unitarity, Eq. (B.22) is simplified to

Tr(ρH )2 = 1 − 2
 (B.23)

where


 =
∑
β

∑
ωγ <E

Tβγ,αT
∗
βγ,α (B.24)

is of order e6, depending on the amplitude for single real
photon emission in the energy range λ < ωγ < E .

Next we calculate Tr(ρH )m with m ≥ 3 to order e6. We
obtain

Tr(ρH )m = 1 + mTrερ0 + mTrε2ρ0 (B.25)

which simplifies further to

Tr(ρH )m = 1 − m
. (B.26)

To leading order, the Renyi entropies for integer m ≥ 2 are
given by

Sm = 1

1 − m
ln Tr(ρH )m = m

1 − m

. (B.27)

B.2 The large eigenvalue to leading order

The large eigenvalue of ρH is given by

λ� = 〈�|�〉 = 1 + Cα + C∗
α +

∑
β

CβC
∗
β

+
∑
β

∑
ωγ >E

CβγC
∗
βγ + . . .

= 1 + T̃αα + T̃ ∗
αα +

∑
β

| 〈 fα| fβ〉 |2T̃βα T̃
∗
βα

+
∑
β

∑
ωγ >E

| 〈 fα| fβ〉 |2T̃βγ,α T̃
∗
βγ,α

+
(∑

β

∑
ωγ <Ed

| 〈 fα| fβ〉 |2
(2Vωγ )1/2 T̃

∗
βα T̃βγ,α

(
f ∗
α ( �qγ )

− f ∗
β ( �qγ )

)
· ε(γ ) + h.c.

)
+ O(e8). (B.28)
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As shown in [19] (and also discussions in the previous sub-
section), the terms in the last line give suppressed contribu-
tions, of order the characteristic energy of the photons in the
clouds Ed , and can be dropped. Using unitarity and the rela-
tions between dressed and undressed amplitudes [Eqs. (2.5)
and (2.6)], λ� can be written as

λ� = 1 + Tαα + T ∗
αα +

∑
β

TβαT
∗
βα +

∑
β

∑
ωγ >E

Tβγ,αT
∗
βγ,α

+O(e8) = 1 − 
 + O(e8). (B.29)

The other nonvanishing eigenvalues coincide with the
nonvanishing eigenvalues of the matrix G, and each is of
order e6, at least. Their sum is equal to 
. Let us verify this
by computing explicitly the trace of G to order e6:

Tr G =
∑
β

(
1 − 〈 fα| fβ〉 〈 fα| fβ〉∗

)
T̃βα T̃

∗
βα

+
∑
β

∑
ωγ <E

T̃βγ,α T̃
∗
βγ,α. (B.30)

Using unitarity, this can be written as

Tr G = −Tαα − T ∗
αα −

∑
β

∑
ωγ >E

Tβγ,αT
∗
βγ,α

−
∑
β

TβαT
∗
βα = 
. (B.31)

Appendix C: The leading entanglement entropy in the
continuum limit

In the generic case, non-trivial disconnected diagrams in
which only two particles interact with each other con-
tribute to the singular part of the leading entanglement
entropy, Eq. (2.23), in the continuum, large volume limit.
Each disconnected line associated with a noninteracting
incoming (outgoing) particle i ( j), with momentum �pi,in
( �p j,out ), contributes to the Feynman diagram with a factor
(2π)3 2Ei,in δ3( �pi,in − �p j,out ). We consider the case where
the momenta of the initial particles differ from each other.

The amplitude iM(α → me− + ne+) can be written
as a sum of the following three terms. The first term arises
from Feynman diagrams in which only two electrons interact,
while the rest of the initial particles do not:

I1 =
m∑
i=1

m∑
j<i

∑
σ, σ ′

sign(σ ) sign(σ ′)

×
m∏

l �=i, j

(
(2π)32E( �pl,in)δ3( �pl,in − �pσ(l),out )

)

×
n∏

l ′=1

(
(2π)32E(�kl ′,in)δ3(�kl ′,in − �kσ ′(l ′),out )

)

Fig. 2 A disconnected Feynman diagram contributing to I1 for an ini-
tial state of 3 electrons and 2 positrons. Additional contributions can be
obtained by permuting the outgoing momenta among the external lines
associated with the outgoing particles. Diagrams in which the first and
third electron, and also the second and third electron must be also added

×iM1t

(
�pi,in, �p j,in; �pσ(i),out , �pσ( j),out

)
. (C.1)

We have denoted the momenta of the electrons by �pl and of
the positrons by �kl ′ . For brevity, we have omitted the inclusion
of polarizations indices, since we average over these in the
end. In Fig. 2 we show a disconnected diagram contributing
to I1 to leading order, for an initial state of 3 electrons and
2 positrons. Also, iM1 is the scattering amplitude for the
process e−e− → e−e−, calculated at tree level, and iM1t is
the t-channel amplitude. The permutation of m (n) objects is
denoted by σ (σ ′).

The second term arises from Feynman diagrams in which
only two positrons interact:

I2 =
n∑

i=1

n∑
j<i

∑
σ, σ ′

sign(σ ) sign(σ ′)

×
m∏
l=1

(
(2π)32E( �pl,in)δ3( �pl,in − �pσ(l),out )

)

×
n∏

l ′ �=i, j

(
(2π)32E(�kl ′,in)δ3(�kl ′,in − �kσ ′(l ′),out )

)

×iM2t

(�ki,in, �k j,in; �kσ ′(i),out , �kσ ′( j),out
)

(C.2)

where iM2 is the amplitude for the process e+e+ → e+e+
and iM2t is the t-channel amplitude. See Fig. 3.

Finally, when one electron and one positron interact, we
get the following contribution

I3 =
m∑
i=1

n∑
j=1

∑
σ, σ ′

sign(σ ) sign(σ ′)

×
m∏
l �=i

(
(2π)32E( �pl,in)δ3( �pl,in − �pσ(l),out )

)

×
n∏

l ′ �= j

(
(2π)32E(�kl ′,in)δ3(�kl ′,in − �kσ ′(l ′),out )

)
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Fig. 3 A disconnected Feynman diagram contributing to I2 for an ini-
tial state of 3 electrons and 2 positrons

×iM3

(
�pi,in, �k j,in; �pσ(i),out , �kσ ′( j),out

)
(C.3)

where iM3 is the total amplitude for the process e−e+ →
e−e+, calculated at tree level. See Fig. 4 for the t-channel
and s-channel diagrams.

To leading order, the amplitude iM(α → (m − 1)e− +
(n − 1)e+ + 2γ ) takes the form

m∑
i=1

n∑
j=1

∑
σ, σ ′

sign(σ ) sign(σ ′)

×
m∏
l �=i

(
(2π)32E( �pl,in)δ3( �pl,in − �pσ(l),out )

)

×
n∏

l ′ �= j

(
(2π)32E(�kl ′,in)δ3(�kl,in − �kσ ′(l ′),out )

)

×iM4

(
�pi,in, �k j,in; �q1,out , �q2,out

)
(C.4)

where iM4 is the tree-level amplitude for the process
e−e+ → 2γ . The momenta of the photons are denoted by
�q1 and �q2. Relevant diagrams are shown in Fig. 5.

To calculate the entanglement entropy, we need to deter-
mine the square of the absolute value of the amplitudes
iM(α → me− + ne+) and iM(α → (m − 1)e− +
(n − 1)e+ + 2γ ), and integrate over the momenta of the
final particles (Eq. (2.23)). Each amplitude is obtained as
a sum of Feynman diagrams in which only a pair of par-
ticles interact, as we explained before. Taking the absolute
value squared, a number of terms appear, each containing a
product of 2(m + n − 2) δ-functions (in three-dimensional
momentum space). There is also an overall 4-momentum δ-
function squared, imposing energy-momentum conservation
– see Eq. (2.23). In most cross-terms that are not perfect
squares, the δ-functions are incompatible with each other.
So, upon integrating over the momenta of the noninteracting
particles, such cross terms give vanishing contributions.

The dominant contributions come from perfect squares
(of the form αα∗). For such terms, the sign of the dia-
gram does not contribute. For such terms, the products of
δ-functions from each factor are identical. If we integrate over

the momenta of the n +m − 2 = N − 2 noninteracting par-
ticles, we get a factor [(2π)3δ3(0)]N−2 = V N−2. There are
also cross terms with nonvanishing contributions, but these
are suppressed in the continuum, large volume limit, since
they are proportional to a smaller power of the volume V .
We will drop such subleading terms. Notice however that the
precise volume dependence is non-trivial. A detailed exam-
ple with three charged particles in the initial state is presented
in the following subsection.

For a given pair of interacting incoming electrons, i
and j , there are m!n!/2 dominant terms, each propor-
tional to |iM1( �pi , �p j ; �pi ′ , �p j ′)|2, where we denote the
corresponding, outgoing interacting particles by i ′, j ′.
Likewise, we get m!n!/2 dominant terms, proportional to
|iM2( �pi , �p j ; �pi ′ , �p j ′)|2, for a pair of interacting positrons.
When the i-th electron scatters against the j-th positron, we
get m!n! dominant terms, each proportional to |iM3( �pi , �p j ;
�pi ′ , �p j ′)2|. Finally, there are (m−1)!(n−1)! dominant terms
produced, proportional to |iM4( �pi , �p j ; �pi ′ , �p j ′)|2, when the
i-th electron and the j-th positron annihilate to produce two
outgoing photons. In this latter case i ′, j ′ denote the two
outgoing photons.

There are two more integrations involved in Eq. (2.23),
over the momenta of the interacting outgoing particles. Inte-
grating over �p j ′ , imposes momentum conservation and gives
rise to an additional volume factor. We can always choose
to work in the center of mass frame for the two interact-
ing incoming particles i and j ( �pi = − �p j ). The center of
mass energy of these particles is denoted by Ei j = 2Ei and
the relative velocity by vi j = 4| �pi |/Ei j . We also denote the
scattering angle by θ . Integrating over the magnitude of �pi ′
results in a factor (2π)δ(2Ei − 2Ei ) = T , equal to the time
scale of the experiment, and a factor of the relative velocity
vi j .

C.1 Three-particle scattering

In this appendix we illustrate the continuum, large volume
analysis of Sect. 2.3 for a particular case concerning a three-
electron initial sate. We take the momenta of the incoming
particles to be different. The leading perturbative entangle-
ment entropy takes the form

Sent,sing = −2 ln e6

3!V 3 ln

(
Ed

λ

)( 3∏
f =1

∫
d3 �p f

(2π)32E f

)

×
( 3∏

i=1

1

2Ei

) ∣∣∣iM(α → 3e−)

∣∣∣2Bβα

×
[
(2π)4δ4(

∑
f

p f −
∑
i

pi )
]2

. (C.5)
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Fig. 4 Disconnected Feynman
diagrams contributing to I3. On
the left is the t-channel
contribution and on the right the
s-channel contribution

The leading contributions to the amplitude iM(α →
3e−) (arising from disconnected tree-level Feynman dia-
grams in which only a pair of two electrons are interacting)
are given by
(
iM1(p1, p2; p′

1, p
′
2)(2π)32E3δ

3( �p3 − �p′
3)

+iM1(p1, p2; p′
3, p

′
1)(2π)32E3δ

3( �p3 − �p′
2)

+iM1(p1, p2; p′
2, p

′
3)(2π)32E3δ

3( �p3 − �p′
1)

)

+(2 → 3) + (1 → 3). (C.6)

Upon taking the absolute value squared of this amplitude, we
get terms that are perfect squares, like for instance,

∣∣∣iM1(p1, p2; p′
1, p

′
2)

∣∣∣2
[
(2π)32E3δ

3( �p3 − �p′
3)

]2
(C.7)

and cross-terms.
Let us calculate the contribution from the perfect square

above. We work in the center of mass frame of the interacting
particles 1, 2. The center of mass energy is denoted by E12 =
2E1, the relative velocity of the incoming particles by v12 =
4| �p1|/E12 and the scattering angle by θ . Integrating over the
final momenta �p′

3, �p′
2, and | �p′

1|, produces a factor V 2T v12/4,
giving a net contribution

−T ln e6

96V
ln

(
Ed

λ

)∫ π

0
dθ sin θ

v12

E2
12

∣∣∣

×iM1(E12, θ)

∣∣∣2 B1(12; 1′2′). (C.8)

Notice that there are three such terms, for each pair of inter-
acting particles, in accordance with Eq. (2.24).

There are cross-terms with incompatible δ-functions, for
example,
[
M1(p1, p2; p′

1, p
′
2)M∗

1(p1, p3; p′
2, p

′
1) + c.c.

]

×
[
(2π)32E3δ

3( �p3 − �p′
3)

][
(2π)32E2δ

3( �p2 − �p′
3)

]
.

(C.9)

Upon integration over �p′
3, we get a factor (2π)3δ3( �p3 − �p2),

which vanishes for generic states in which the incoming three
particles have different momenta. Another example that gives
a vanishing contribution is the following
[
M1(p1, p2; p′

1, p
′
2)M∗

1(p1, p2; p′
3, p

′
1) + c.c.

]

Fig. 5 A disconnected Feynman diagram contributing to iM(3e− +
2e+ → 2e−+e++2γ ). The u-channel diagram is obtained by exchang-
ing the outgoing photon momenta between the outgoing photon lines

×
[
(2π)32E3δ

3( �p3 − �p′
3)

][
(2π)32E3δ

3( �p3 − �p′
2)

]
.

(C.10)

We work in the center of mass frame of the two interacting
particles (1 and 2). Integrating over �p′

3, �p′
2 imposes �p′

3 =
�p′

2 = �p3. This is incompatible with momentum conservation
unless �p3 = 0. But then generically the energy will not be
conserved.

A cross-term with a non-vanishing but suppressed contri-
bution in the large volume, continuum limit is

[
M1(p1, p2; p′

1, p
′
2)M∗

1(p1, p3; p′
1, p

′
3) + c.c.

]

×
[
(2π)32E3δ

3( �p3 − �p′
3)

][
(2π)32E2δ

3( �p2 − �p′
2)

]
.

(C.11)

Integration over �p′
3, �p′

2 imposes �p′
3 = �p3 and �p′

2 = �p2.
Integration over �p′

1, using one of the overall momentum δ-
functions imposes �p′

1 = �p1 and yields a factor of VT 2. The
contribution of this term is of order T 2/(V 2E2

1 E2E3) times
dimensionless amplitudes and kinematical factors. Letting
T � L/c, where L is the size of the box and c the speed
of light, the ratio of this contribution to Eq. (C.8) is of order
1/(L2E2E3), which becomes vanishingly small when the IR
cutoff 1/L is taken to zero.
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Appendix D: Traces to next to leading order

For the next to leading order computation concerning the
scattering of two Fock basis electrons, the reduced density
matrix takes the explicit form

ρH = TrHS |
〉out 〈
|out
=|α〉H 〈α|H +

(
Tαβ |β〉H +

∑
ωγ >E

Tβγ,α|βγ 〉H

+
∑

|γ1γ2〉∈HH

Tβγ1γ2,α|βγ1γ2〉H + . . .

)
〈α|H

+|α〉H
(
T ∗

αβ 〈β|H +
∑

ωγ ′>E

T ∗
β ′γ ′,α 〈β ′γ ′|H

+
∑

|γ ′
1γ

′
2〉∈HH

T ∗
β ′γ ′

1γ
′
2,α

〈β ′γ ′
1γ

′
2|H + . . .

)

+Dβ,β ′ |β〉H 〈β ′|H +
∑

ωγ ′>E

Dβ,β ′γ ′ |β〉H 〈β ′γ ′|H

+
∑

ωγ >E

Dβγ,β ′ |βγ 〉H 〈β ′|H

+
∑

ωγ ,ωγ ′>E

Dβγ,β ′γ ′ |βγ 〉H 〈β ′γ ′|H

+
∑

|γ ′
1γ

′
2〉∈HH

TβαT
∗
β ′γ ′

1γ
′
2,α

|β〉H 〈β ′γ ′
1γ

′
2|H

+
∑

|γ1γ2〉∈HH

T ∗
β ′αTβγ1γ2,α|βγ1γ2〉H 〈β ′|H + . . .

+
∑

|γ ′
1γ

′
2〉∈HH

ωγ >E

Tβγ,αT
∗
β ′γ ′

1γ
′
2,α

|βγ 〉H 〈β ′γ ′
1γ

′
2|H

+
∑

|γ1γ2〉∈HH
ωγ ′>E

T ∗
β ′γ ′,αTβγ1γ2,α|βγ1γ2〉H 〈β ′γ ′|H + . . .

+
∑

|γ1γ2〉∈HH
|γ ′

1γ
′
2〉∈HH

T ∗
β ′γ ′

1γ
′
2,α

Tβγ1γ2,α|βγ1γ2〉H 〈β ′γ ′
1γ

′
2|H + . . .

(D.1)

where

Dβ,β ′ = TβαT
∗
β ′α +

∑
ωγ <E

Tβγ,αT
∗
β ′γ,α

+
∑

|γ1γ2〉∈HS

T ∗
β ′γ1γ2,α

Tβγ1γ2,α + . . . (D.2)

Dβγ,β ′ = T ∗
β ′αTβγ,α +

∑
ωγ ′<E

T ∗
β ′γ ′,αTβγ γ ′,α + . . . (D.3)

Dβ,β ′γ ′ = TβαT
∗
β ′γ ′,α +

∑
ωγ <E

Tβγ,αT
∗
β ′γ γ ′,α + . . . (D.4)

and

Dβγ,β ′γ ′ = Tβγ,αT
∗
β ′γ ′,α +

∑
ωγ1<E

Tβγ γ1,αT
∗
β ′γ ′γ1,α

+ · · ·

(D.5)

A sum over β, β ′ is implied. The ellipses in the equations
above stand for terms of order greater than e8.

The unitarity relation takes the form

Tαα + T ∗
αα +

∑
β

TβαT
∗
βα +

∑
β,γ

Tβγ,αT
∗
βγ,α

+
∑

β,γ1,γ2
ωγ1≤ωγ2

Tβγ1γ2,αT
∗
βγ1γ2,α

+ · · · = 0. (D.6)

From this relation we conclude that Tαα + T ∗
αα is of order e4

and Tαα + T ∗
αα + ∑

β TβαT ∗
βα of order e6.

We write the density matrix in the form ρH =|α〉 〈α|+ε ≡
ρ0 + ε, where ε is a perturbation of order e2. So we need to
expand the powers of the reduced density matrix to order ε4

in order to calculate the Renyi entropies for integer m ≥ 2
to order e8. Due to the cyclic property of the trace, it suffices
to consider the traces of the following structures: ρ0ε, ε2,
ρ0ε

2, ρ0ερ0ε, ε3, ρ0ε
3, ρ0ε

2ρ0ε, (ρ0ε)
3, ε4, ρ0ε

4, ρ0ε
3ρ0ε,

ρ0ε
2ρ0ε

2, ρ0ε
2(ρ0ε)

2 and (ρ0ε)
4.

For the linear and quadratic terms, we get to order e8

Trρ0ε = Tαα + T ∗
αα + Dα,α

= Tαα + T ∗
αα + TααT

∗
αα +

∑
ωγ <E

Tαγ,αT
∗
αγ,α

+
∑

|γ1γ2〉∈HS

Tαγ1γ2,αT
∗
αγ1γ2,α

(D.7)

Trε2 = T 2
αα + T ∗2

αα + 2TβαT
∗
βα + 2

∑
ωγ>E

Tβγ,αT
∗
βγ,α

+2
∑

|γ1γ2〉∈HH

Tβγ1γ2,αT
∗
βγ1γ2,α

+2TβαDα,β + 2T ∗
βαDβ,α + 2

∑
ωγ >E

Tβγ,αDα,βγ

+2
∑

ωγ >E

T ∗
βγ,αDβγ,α + Dβ,β ′ Dβ ′,β

= T 2
αα + T ∗2

αα + 2TβαT
∗
βα + 2

∑
ωγ >E

Tβγ,αT
∗
βγ,α

+2
∑

|γ1γ2〉∈HH

Tβγ1γ2,αT
∗
βγ1γ2,α

+2
(
Tαα + T ∗

αα

)
TβαT

∗
βα + (TβαT

∗
βα)2 (D.8)

Trρ0ε
2 = T 2

αα + TααT
∗
αα + T ∗2

αα + TβαT
∗
βα

+(Tαα + T ∗
αα)Dα,α + TβαDα,β + T ∗

βαDβ,α

+
∑

ωγ >E

Tβγ,αT
∗
βγ,α
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+
∑

ωγ >E

Tβγ,αDα,βγ +
∑

ωγ >E

T ∗
βγ,αDβγ,α

+
∑

|γ1γ2〉∈HH

Tβγ1γ2,αT
∗
βγ1γ2,α + Dα,βDβ,α

= T 2
αα + TααT

∗
αα + T ∗2

αα + TβαT
∗
βα(1 + Tαα + T ∗

αα)

+
∑

ωγ >E

Tβγ,αT
∗
βγ,α +

∑
|γ1γ2〉∈HH

Tβγ1γ2,αT
∗
βγ1γ2,α

+TβαT
∗
βαTααT

∗
αα (D.9)

and finally

Trρ0ερ0ε

= T 2
αα + 2TααT

∗
αα + T ∗2

αα + 2(Tαα + T ∗
αα)Dα,α + D2

α,α

= (Tαα + T ∗
αα)(Tαα + T ∗

αα + 2TααT
∗
αα) + T 2

ααT
∗2
αα .

(D.10)

To cubic order we have

Trε3 = T 3
αα + T ∗3

αα + 3(Tαα + T ∗
αα + Tβ ′αT

∗
β ′α

+T 2
αα + TααT

∗
αα + T ∗2

αα )TβαT
∗
βα

+3
∑

ωγ >E

(Tαα + T ∗
αα)Tβγ,αT

∗
βγ,α

= T 3
αα + T ∗3

αα + 3TβαT
∗
βα(T 2

αα + TααT
∗
αα

+T ∗2
αα ) = −2(Tαα + T ∗

αα)3 = 0 (D.11)

Trρ0ε
3 = T 3

αα + T ∗3
αα + T 2

ααT
∗
αα + TααT

∗2
αα + T 3

ααT
∗
αα

+T 2
ααT

∗2
αα + TααT

∗3
αα

+TβαT
∗
βα(2Tαα + 2T ∗

αα + 4TααT
∗
αα + 2T 2

αα

+2T ∗2
αα + Tβ ′αT

∗
β ′α)

+2
∑

ωγ >E

(Tαα + T ∗
αα)Tβγ,αT

∗
βγ,α

= (Tαα + T ∗
αα + TααT

∗
αα)(T 2

αα + T ∗2
αα )

+T 2
ααT

∗2
αα + (Tαα + T ∗

αα)TβαT
∗
βα (D.12)

Trρ0ε
2ρ0ε = T 3

αα + T ∗3
αα + 2T 2

ααT
∗
αα + 2TααT

∗2
αα

+3T 2
ααT

∗2
αα + 2T 3

ααT
∗
αα + 2TααT

∗3
αα

+TβαT
∗
βα(Tαα + T ∗

αα + T 2
αα + T ∗2

αα

+3TααT
∗
αα) +

∑
ωγ >E

(Tαα + T ∗
αα)Tβγ,αT

∗
βγ,α

= (Tαα + T ∗
αα + TααT

∗
αα)(T 2

αα + T ∗2
αα

+TααT
∗
αα + TβαT

∗
βα) (D.13)

Tr(ρ0ε)
3 = T 3

αα + T ∗3
α,α + 3TααT

∗
αα(Tαα + T ∗

αα + T 2
αα

+T ∗2
αα + 2TααT

∗
αα) = (Tαα + T ∗

αα)3

+3TααT
∗
αα(Tαα + T ∗

αα)2 = 0. (D.14)

The latter trace does not contribute to order e8.

The quartic terms yield

Trε4 = T 4
αα + T ∗4

αα + 2TβαT
∗
βα(T 2

αα + T ∗2
αα + Tβ ′αT

∗
β ′α)

(D.15)

Trρ0ε
4 = T 2

ααT
∗2
αα + TβαT

∗
βα(T 2

αα + T ∗2
αα + Tβ ′αT

∗
β ′α)

(D.16)

Trρ0ε
2ρ0ε

2 = T 2
ααT

∗2
αα + TβαT

∗
βα(T 2

αα + T ∗2
αα + Tβ ′αT

∗
β ′α)

(D.17)

and

Trρ0ε
3ρ0ε = Trρ0ε

2(ρ0ε)
2 = Tr(ρ0ε)

4 = 0. (D.18)

We proceed now to compute Tr(ρH )m for integer m ≥ 2.
For m = 2, we obtain to order e8

Tr(ρH )2 = 1 + 2Trρ0ε + Trε2

= 1 + 2(Tαα + T ∗
αα + TβαT

∗
βα)

+2
∑

ωγ >E

Tβγ,αT
∗
βγ,α

+2
∑

|γ1γ2〉∈HH

Tβγ1γ2,αT
∗
βγ1γ2,α

= 1 − 2
∑

ωγ <E

Tβγ,αT
∗
βγ,α

−2
∑

|γ1γ2〉�HH

Tβγ1γ2,αT
∗
βγ1γ2,α

= 1 − 2


(D.19)

where


 =
∑

ωγ <E

Tβγ,αT
∗
βγ,α −

∑
|γ1γ2〉�HH

Tβγ1γ2,αT
∗
βγ1γ2,α

. (D.20)

To arrive to this result we applied the unitarity relation. It is
important to emphasise that the second sum in the expression
for 
 includes cases for which one photon is soft while the
other is hard.

For the cubic and the quartic traces, we get

Tr(ρH )3 = 1 + 3Trρ0ε + 3Trρ0ε
2 + Trε3

= 1 + 3(Tαα + T ∗
αα + TβαT

∗
βα) + 3(Tαα + T ∗

αα)2

+3TβαT
∗
βα(Tαα + T ∗

αα)

+3
∑

ωγ >E

Tβγ,αT
∗
βγ,α

+3
∑

|γ1γ2〉∈HH

Tβγ1γ2,αT
∗
βγ1γ2,α

+T 3
αα + T ∗3

αα + TβαT
∗
βα(A2

αα + T ∗2
αα + TααT

∗
αα)

= 1 − 3
∑

ωγ <E

Tβγ,αT
∗
βγ,α
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−3
∑

|γ1γ2〉�HH

Tβγ1γ2,αT
∗
βγ1γ2,α

= 1 − 3
 (D.21)

Tr(ρH )4 = 1 + 4Trρ0ε + 4Trρ0ε
2 + 2Trρ0ερ0ε

+4Trρ0ε
3 + Trε4

= 1 + 4

(
Tαα + T ∗

αα + TβαT
∗
βα +

∑
ωγ >E

Tβγ,αT
∗
βγ,α

+
∑

|γ1γ2〉∈HH

Tβγ1γ2,αT
∗
βγ1γ2,α

)

+2(Tαα + T ∗
αα)(3Tαα + 3T ∗

αα

+2T 2
αα + 2T ∗2

αα + 2TααT
∗
αα + 4TβαT

∗
βα)

+2TααT
∗
αα(2T 2

αα

+2T ∗2
αα + 3TααT

∗
αα) + T 4

αα

+T ∗4
αα + 2TβαT

∗
βα

(
T 2

αα + T 2∗
αα + Tβ ′αT

∗
β ′α

)

= 1 − 4
∑

ωγ <E

Tβγ,αT
∗
βγ,α

−4
∑

|γ1γ2〉�HH

Tβγ1γ2,αT
∗
βγ1γ2,α

= 1 − 4
.

(D.22)

For m > 4, we use the following expansion of the trace
of ρH , valid to order e8,

Tr(ρH )m = 1 + mTrρ0ε + mTrρ0ε
2

+m(m − 3)

2
Trρ0ερ0ε + mTrρ0ε

3

+m(m − 4)Trρ0ε
2ρ0ε + mTrρ0ε

4

+m(m − 5)

2
Trρ0ε

2ρ0ε
2 (D.23)

to obtain

Tr(ρH )m = 1 + m

(
Tαα + T ∗

αα + TβαT
∗
βα +

∑
ωγ >E

Tβγ,αT
∗
βγ,α

+
∑

|γ1γ2〉∈HH

Tβγ1γ2,αT
∗
βγ1γ2,α

)

= 1 − m
∑

ωγ <E

Tβγ,αT
∗
βγ,α

−m
∑

|γ1γ2〉�HH

Tβγ1γ2,αT
∗
βγ1γ2,α

= 1 − m
. (D.24)

Appendix E: Next to leading order corrections to the
eigenvalues of ρH

In this Appendix we describe how to obtain next to lead-
ing order corrections to the order e6 eigenvalues of G using

second order perturbation theory. To this extend we write

G = G(0) + G(1) (E.1)

where

G(0) =
( ∑

ωγ <E

Tβγ,αT
∗
β ′γ,α +

∑

|γ1γ2〉∈HS

Tβγ1γ2,αT
∗
β ′γ1γ2,α

)

×β〉H 〈β ′|H +
∑

ωγ1 <E

Tβγ γ1,αT
∗
β ′γ ′γ1,α

|βγ 〉H 〈β ′γ ′|H

(E.2)

and treat

G(1) =
∑

ωγ <E

Tβγ,αT
∗
β ′γ γ ′,α|β〉H 〈β ′γ ′|H + h.c. (E.3)

as a perturbation to find the eigenvalues of G. Since G(0)

assumes a block diagonal form, it does not mix states with no
photons, of the form |β〉, with the single-photon states |βγ 〉.
Because of energy conservation, we may restrict to the sub-
space spanned by states with energies Eα > Eβ > Eα − E
and Eα > Eβγ > Eα −E . These states are orthogonal to|�〉
(and so are annihilated by |�〉 〈�|). In particular the eigen-
states of G with non-vanishing eigenvalues necessarily lie in
this orthogonal to |�〉 subspace, and so are simultaneously
eigenstates of ρH (with the same eigenvalue).

The eigenstates of G(0) with eigenvalues of order e6 com-
prise linear combinations of two-electron states with no pho-
tons (and energies satisfying Eα > Eβ > Eα − E) only.
We denote these order e6 eigenstates by |β̃〉 and the corre-
sponding eigenvalues by λ

(0)

β̃
. The sum of these eigenvalues

is given by
∑

λ
(0)

β̃
= 
6, where 
6 stands for the order e6

part of 
.
There are also linear combinations of |β〉 states that

are eigenstates of G(0) with eigenvalues of order e8 (or
higher). For example, up to order e6, momentum conser-
vation requires that two-electron |β〉 states with vanishing
net momentum are annihilated by G(0). Presumably, certain
linear combinations of such zero-momentum two-electron
states can be eigenstates of G(0) with eigenvalues of order
e8. Certain linear combinations of |β〉 states involving three
electrons and a positron can also be eigenstates of G(0) with
eigenvalues of order e8. Notice however that the perturbation
G(1) does not mix these eigenstates with order e6 eigenstates,
or the order e6 eigenstates among themselves. To find the e8

corrections to the leading eigenstates of G(0), we must apply
second order perturbation theory.

The other eigenstates of G(0), with eigenvalues of order
e8, comprise linear combinations of single photon states (and
energies Eα > Eβγ > Eα − E) only. We shall denote these
eigenstates by |β̃γ 〉 and the corresponding eigenvalues by
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λ
(0)

β̃γ
. The perturbation G(1) mixes these eigenstates with the

order e6 eigenstates of G(0).
Assuming that the order e6 eigenstates of G(0) have been

found to be non-degenerate, we can apply second order per-
turbation theory to determine the order e8 corrections to the
eigenvalues

δλ
(0)

β̃

=
∑

β̃γ

∣∣∣〈β̃|G(1)|β̃γ 〉
∣∣∣2/

(
λ0

β̃
− λ0

β̃γ

)

=
∑

β̃γ

(λ0
β̃
)−1

∣∣∣∣
∑

ωγ <E

Tβγ,αT
∗
β ′γ γ ′,α 〈β̃||β〉 〈β ′γ ′|β̃γ 〉

∣∣∣∣
2

+O(e10). (E.4)
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