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Abstract We find a large class of supersymmetric domain
wall solutions from six-dimensional N = (2,2) gauged
supergravity with various gauge groups. In general, the
embedding tensor lives in 144, representation of the global
symmetry SO(5,5). We explicitly construct the embed-

ding tensors in 157! and 30! representations of GL(5) ~
R* x SL(5) C $O(5,5) leadingto CSO(p,q,5— p —q)
andCSO(p,q,4—p—q) X R;‘ gauge groups, respectively.
These gaugings can be obtained from S' reductions of seven-
dimensional gauged supergravity with CSO(p, q,5—p—¢q)
and CSO(p, q, 4— p —q) gauge groups. As in seven dimen-
sions, we find half-supersymmetric domain walls for purely
magnetic or purely electric gaugings with the embedding ten-
sors in 157! or E_l representations, respectively. In addi-
tion, for dyonic gauge groups with the embedding tensors
in both 15~! and E‘l representations, the domain walls
turn out to be zll—supersymmetric as in the seven-dimensional
analogue. By the DW/QFT duality, these solutions are dual
to maximal and half-maximal super Yang-Mills theories
in five dimensions. All of the solutions can be uplifted
to seven dimensions and further embedded in type IIB or
M-theories by the well-known consistent truncation of the
seven-dimensional N = 4 gauged supergravity.

1 Introduction

Supersymmetric domain walls in gauged supergravities in
various space-time dimensions have provided a useful tool
for studying various aspects of the AdS/CFT correspon-
dence since the original proposal in [1], see also [2,3]. In
particular, these solutions play an important role in the so-
called DW/QFT correspondence [4-6], a generalization of
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the AdS/CFT correspondence to non-conformal field theo-
ries. They are also useful in studying some aspects of cos-
mology, see for example [7-9]. Due to their importance
in many areas of applications, many domain wall solu-
tions in gauged supergravities have been found in differ-
ent space-time dimensions [10-25]. A systematic classifica-
tion of supersymmetric domain walls from maximal gauged
supergravity in various space-time dimensions can also be
found in [26].

In this paper, we are interested in maximal N = (2, 2) six-
dimensional gauged supergravity with SO (5, 5) global sym-
metry. Compared to other dimensions, supersymmetric solu-
tions to this six-dimensional gauged supergravity have not
been systematically studied since the original construction of
the ungauged N = (2, 2) supergravity long ago in [27]. The
first N = (2, 2) six-dimensional gauged supergravity with
SO(5) gauge group has been constructed in [28] by perform-
ing an S' reduction of the S O (5) maximal gauged supergrav-
ity in seven dimensions [29]. More recently, the most gen-
eral gaugings have been constructed and classified in [30]
using the embedding tensor formalism. From the results of
[30], there are two particularly interesting classes of gaug-
ings under GL(5) and SO (4, 4) subgroups of SO (5, 5). The
former contains gaugings obtained from an S! reduction of
seven-dimensional maximal gauged supergravity while the
latter can be truncated to half-maximal N = (1, 1) gauged
supergravity.

We will consider only gaugings in the first class with
the embedding tensor in 157! and 30" representations
of GL(5). These gaugings have known seven-dimensional
origins via an S! reduction and can also be embedded in
string/M-theory using the truncations to maximal gauged
supergravity in seven dimensions. The fact that there does
not exist an N = 4 superconformal symmetry in five dimen-
sions [31] is in agreement with the recent classification of
maximally supersymmetric AdS vacua given in [32]. This
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implies that there is no AdS¢/CFT5 duality in the case of
32 supercharges. Therefore, maximally supersymmetric vac-
uum solutions of the N = (2,2) gauged supergravity are
expected to be half-supersymmetric domain walls. In this
work, we will systematically study this type of solutions and
give a large number of them including %-supersymmetric
solutions.

It has been shown recently that maximally supersymmet-
ric Yang—Mills theory in five dimensions plays an important
role in the dynamics of (conformal) field theories in both
higher and lower dimensions via a number of dualities, see
for example [33-38]. In particular, this theory could even be
used to define the less known N = (2, 0) superconformal
field theory in six dimensions compactified on S!. The latter
is well-known to describe the dynamics of strongly coupled
theory on M5-branes. Accordingly, we expect that supersym-
metric domain walls of the maximal gauged supergravity in
six dimensions could be useful in studying various aspects of
the maximal super Yang—Mills theory in five dimensions via
the DW/QFT correspondence. A simple domain wall solu-
tion with SO(5) symmetry has already been given in [28]
for SO(5) gauging, see [39,40] for the holographic inter-
pretation of this solution. In this paper, we extend this study
by including a large class of supersymmetric domain walls
with different unbroken symmetries in N = (2,2) gauged
supergravity with various gauge groups.

The paper is organized as follows. In Sect. 2, the con-
struction of six-dimensional maximal gauged supergravity

in the embedding tensor formalism is reviewed. Supersym-
. . . . 1 -1
metric domain wall solutions from gaugings in 157!, 40,

and (15 4 40)~! representations are respectively given in
Sects. 3, 4, and 5. Conclusions and discussions are given
in Sect. 6. Branching rules for relevant SO(S5, 5) repre-
sentations under GL(5) are given in Appendix A. The
conventions on symplectic-Majorana—Weyl Spinors in six-
dimensional space-time used throughout this work are col-
lected in Appendix B. Finally, consistent truncation ansatze
for seven-dimensional SO (5) gauged supergravity on ' giv-
ing rise to S O (5) maximal gauged supergravity in six dimen-
sions are reviewed in Appendix C.

2 N = (2, 2) gauged supergravity in six dimensions

We begin by giving a brief review of six-dimensional N =
(2,2) gauged supergravity in the embedding tensor formal-
ism constructed in [30]. We will mainly collect relevant for-
mulae for constructing the embedding tensor and finding
supersymmetric domain wall solutions. For more details, we
refer the reader to the original construction in [30].

As in other dimensions, N = (2, 2) maximal supersym-
metry in six dimensions allows only a unique graviton super-
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multiplet with the following field content

(eﬁ» B;wm» Aﬁ» VA%, w+;ux7 I/I—p,da X+ada s X—a'a) . @D
Most of the conventions are the same as in [30]. Curved
and flat space-time indices are respectively denoted by
w,v,...=0,1,....,5and 1,0,... = 0,1,...,5. Lower
and upper m, n,... = 1,...,5 indices label fundamental
and anti-fundamental representations of GL(5) C SO(5,5),
respectively. Indices A, B,... = 1,...,16 describe
Majorana—Weyl spinors of the SO (5, 5) duality symmetry.
We also note that according to this convention, the electric
two-form potentials By, ,,, transform as 5 under G L(5) while
the vector fields Aﬁ transform as 16, under SO (5, 5).

Fermionic fields, transforming under the local SO(5) x
SO(5) symmetry, are symplectic-Majorana—Weyl (SMW)
spinors, see Appendix B for more detail on the convention.
Indices o, ... =1,...,4and &, ... = i,...,4arerespec-
tively two sets of SO (5) spinor indices in SO(5) x SO(5).
Similarly, vector indices of the two S O (5) factors are denoted
bya,...=1,...,5and a,... = i,...,S. We use &+ to
indicate space-time chiralities of the spinors. Under the local
SO(5) x SO(5) symmetry, the two sets of gravitini Yy ¢
and ¥_, transform as (4,1) and (1,4) while the spin-%
fields x4q¢ and x_gq transform as (5, 4) and (4, 5).

In ungauged supergravity, only the electric two-forms
B,wm appear in the Lagrangian while the magnetic duals
B,,™ transforming in 5 representation of G L(5) are intro-
duced on-shell. The electric and magnetic two-forms are
combined into a vector representation 10 of the full global
symmetry group SO(5,5) denoted by Byoy = (Buvm,
B,,). Therefore, only the subgroup GL(5) C SO(5,5)
is a manifest off-shell symmetry of the theory. On the other
hand, the full SO (5, 5) duality symmetry is the on-shell sym-
metry interchanging field equations and Bianchi identities of
the two-form potentials. However, the most general gaugings
of the ungauged supergravity can involve a symmetry that
is not a subgroup of the off-shell GL(5) symmetry. More-
over, the magnetic two-forms can also appear in the gauged
Lagrangian via topological terms.

In N = (2,2) supergravity, there are 25 scalar fields
parametrizing the coset space SO(5,5)/ (SO(5) x SO(5)).
In chiral spinor representation, we can describe the coset
manifold by a coset representative V4% transforming under
the global SO(5,5) and local SO(5) x SO(5) by left
and right multiplications, respectively. The inverse elements
(v—h o BA will be denoted by V4 «f satisfying the relations
VaPvE gy =55 and va"PvA g = ocel (2.2)
In vector representation, the coset representative is given by
a 10 x 10 matrix Vy& = (V' Vu®) with A = (a, ).
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This is related to the coset representative in chiral spinor
representation by the following relations

1 Aad BBy, B
Vi = VAT an(r e VP g, 23)
Vi = = VAT 05 D™ Vs 2:4)
16 BB

In these equations, (I'y7)4p and (I‘A)ad’g’é = ((ya)ad’g’é,

(y;l)adﬁﬁ ) are respectively SO (5, 5) gamma matrices in non-
diagonal 177y and diagonal n 4 g bases, see Appendix A.3 for
more detail.

The inverse will be denoted by
lowing relations

VYMA satisfying the fol-

VMLIVMIJ — 8ab’ VMavMb — 8(1177 VMaVMa -0 (25)
and

ViVNG — vy dpNe — s (2.6)
In these equations, we have explicitly raised the SO(5) x
SO (5) vector index A = (a, a) resulting in a minus sign in
Eq. (2.6).

The most general gaugings of six-dimensional N = (2, 2)
supergravity can be efficiently described by using the embed-
ding tensor ® 4V . This tensor introduces the minimal cou-
pling of various fields via the covariant derivative
Dy =8, —gAL ©4"Ntyy Q2.7
where g is a gauge coupling constant. The embedding ten-
sor identifies generators X4 = © AMNg L of the gauge
group Go C SO(S5, 5) with particular linear combinations
of the SO(5,5) generators £yy. Supersymmetry requires
the embedding tensor to transform as 144, representation of
SO(5,5). Accordingly, ® 4 MV can be parametrized in term
of a vector-spinor 04M of SO(5, 5) as

OAMN = _gBIM (N, = (F[MQN])A 2.8)
with 64M subject to the constraint
(Ca)ap 871 = 0. 2.9)

With the SO (5, 5) generators in vector and spinor repre-
sentations given by

tun)p? = 477P|M51% and (tmn)a® = Cun)a®
(2.10)
in which nysy is the off-diagonal SO (5, 5) invariant tensor

given in (A.1), the corresponding gauge generators take the
forms

Xou™ =2(Tuo") +2(roy)  and

(X4)5€ = (FMGN)A (T 5C. @.11)

For consistency, the gauge generators must form a closed
subalgebra of SO(5,5), so the embedding tensor needs to
satisfy the quadratic constraint
[Xa, X5l = —(X)8 Xc. (2.12)
In terms of 94M | the quadratic constraint reduces to the fol-
lowing two conditions

AMGBN iy =0, 9AMeBIN (TPl 15 = 0. (2.13)

It follows that any 4™ ¢ 144, satisfying this quadratic
constraint defines a consistent gauging of the theory.

To identify possible gaugings, we first decompose
under a given subgroup of SO (5, 5). As pointed out before,
the G L(5) subgroup of SO (5, 5) is of particular interest since
this is the symmetry of the ungauged Lagrangian. As given
in [30], 64 ¢ 144, decomposes under GL(5) C SO(5, 5)
as

GAM

144, > 57 057 @107 @ 157
0245030 o, (2.14)
The explicit form of all the seven irreducible components can
be found in Appendix A.4. In this case, determining consis-
tent gaugings is to find the irreducible components satisfying
the quadratic constraint (2.13).
By decomposing the SO (5, 5) vector index under GL(5),
we can write 04M = (94 9A) with 4™ and 62 containing
the following irreducible components

oA =57 107 @ 2475 @ 20 ',

0 =5" @57 010 @15 945 .

* (2.15)

(2.16)

It is easily seen that the first equation in (2.13) is automat-
ically satisfied for purely electric or purely magnetic gaug-
ings that involve only 64" or GmA components. We note that
as pointed out in [30], gaugings triggered by 4" are electric
in the sense that only electric two-forms participate in the
resulting gauged theory while magnetic gaugings triggered
by 9,;‘ involve magnetic two-forms together with additional
three-form tensor fields. Comparing (2.15) and (2.16) to
(2.14), we immediately see that gaugings in 24> @ 30 ' and
57157 @ RH representations are respectively purely
electric and purely magnetic whereas those in 5+ @ 107!
representation correspond to dyonic gaugings involving both
electric and magnetic two-forms. Other dyonic gaugings can
also arise from combinations of various electric and magnetic
components leading to many possible gauge groups.

@ Springer
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Apart from the minimal coupling implemented by the
covariant derivative (2.7), gaugings also lead to hierarchies of
non-abelian vector and tensor fields of various ranks. How-
ever, since we are only interested in domain wall solutions
which only involve the metric and scalar fields, we will, from
now on, set all vector and tensor fields to zero. It is straight-
forward to verify that this is indeed a consistent truncation.
With only the metric and scalars non-vanishing, the bosonic
Lagrangian of the maximal N = (2, 2) gauged supergravity
takes the form

1 1.
e 'L =—-R— —pupt v,

T (2.17)

and supersymmetry transformations of fermionic fields are
given by

¢
8Vipa = Dy€ta + ZVuTa'BG_ﬁ', (2.18)
g .
8Y_yg = Dye_g — Z)/uTﬁdG-',-ﬂ, (2.19)
L own a B B
X taa = ZPaaVu(V Ja €_p+28(Ta) se4p
g
—5T “o(Va)aesp, (2.20)
1, . .
X —ia = ZPQ’ZVM(V“)a’Bew + Zg(Ta)aﬁe,ﬁ
g ~
+5 T (vadale_g. 2:21)

The covariant derivatives of supersymmetry parameters,
€44 and €_g, are defined by

Du€+u¢ = 3u€+a + %wu‘)p)’)vp6+a + iQZb(Vab)aﬂEJr,B,
(2.22)

D€'=36'+la)"p" L B

nw€—a W€ —a 4 w ! Yvp€—a + 4QM (Vab)a 6713
(2.23)

with p, = eﬁ Y- Matrices p; are space-time gamma matri-
ces, see the convention in Appendix B. For simplicity, we
will suppress all space-time spinor indices.

The scalar vielbein P44 and SO(5) x SO(5) composite

connections, Q;‘f’ and de, are given by

. 1 - ap

Pit = POV it Vagg, (2.24)
1 Ny

0 = S LIV iV gy (2.25)
L 1 ap

0% = gszo‘ﬁ(y“”) VAaduVags (2.26)

in which Q% and Q% are the two U Sp(4) symplectic forms
whose explicit forms can be found in (A.23). These defini-
tions can be derived from the following relation

@ Springer

1 .
VA3aa0uVagp = 3 P (Vadap (Vg

1 ab 1 ab
+3 O Vab)ap + 7 Q3 Rap Vi i
2.27)

The scalar potential is given by

2 .
V= L oMMoBN VU [V (e () Ve

2
= =5 [T = 20 (T s | (2.28)
where we have introduced the T-tensors defined by
(Ta)otd — VMaQAM VAotdt (Tiz)otd — _VMEJQAM VAad
(2.29)
with
T = (TP (y,)5% = —(TH% () 4°. (2.30)

3 Supersymmetric domain walls from gaugings in 157!
representation

In this section, we consider gauge groups arising from the
embedding tensor in 157! representation. These are purely
magnetic gaugings with the corresponding embedding tensor
given by
04 = T4V, (3.1
The matrix T4” is the inverse of the transformation matrix
T 4n given in (A.59) and Yy, is a symmetric 5 x 5 matrix.
As previously mentioned, for 64" = 0, the embed-
ding tensor 64 = (0, T4"Y,,,) automatically satisfies the
quadratic constraint (2.13). Therefore, every symmetric ten-
sor Y, defines a viable gauging in 157! representation. As
in [41], we can use SL(5) C GL(5) symmetry to bring Y,
to the form
(3.2)

Y = diag(l,...,1,—1,...,—1,0,...,0)
—_——— ) —— ) —— —

P q r
where p +qg +r = 5.

Under GL(5), the gauge generators transforming as a
spinor 16, of SO(5, 5) decompose as follows
XA = TAme —i—T'X”an + TaxX. (3.3)

For the embedding tensor in 157! representation, the only
non-vanishing gauge generators are given by

Xmn = 2Yp[mtpn] (3.4)
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with ¢, being G L(5) generators. In vector representation,
the explicit form of X,,,,, is given by

Xoun) L = =42 Yu1ph + 1pim Yurgn?9). (3.5)
These generators satisfy the commutation relations
[Xonn, qu] = (an)pqrsxrs (36)

in which (X,0) pg™ = 2(Xn)p p[’ég]]. Therefore, the corre-
sponding gauge group is determined to be

Go = CSO(p.q.r) = SO(p,q) x R¥FV". (37
These gaugings arise from an S! reduction of seven-
dimensional maximal gauged supergravity with the same
gauge groups. In the case of SO(5) gauge group (p = 5
and ¢ = r = 0), the complete reduction ansatz has already
been constructed in [28].

3.1 Supersymmetric domain walls

In order to find supersymmetric domain wall solutions, we
take the space-time metric to be the standard domain wall
ansatz

dsé = eZA(r)nﬁgdx‘_‘dx‘_’ +dr? (3.8)
where p,v = 0,1,...,4, and A(r) is a warped factor
depending only on the radial coordinate r. To parametrize
the coset representative of SO (5, 5)/(SO(5) x SO(5)), we
first identify the corresponding non-compact generators of
SO(5,5) in the basis with diagonal SO (S, 5) metric nap.
These are given by
£, = MMM N ey (3.9)
where M4 M — (MM, M;M) is the inverse of the transfor-
mation matrix M given in (A.50).

We then split these generators into two parts that are sym-
metric and antisymmetric in a and b indices as follows

~ A+ A—

Loy = Lgp + 14 (3.10)
with

1. 1.

ty =5 (t,,+tra) and 7, = 3 (typ —tra) .  (3.11)

It is now straightforward to check that symmetric gen-
erators f:}; are given by %(t’"n + t",,) which are non-
compact generators of GL(5). Accordingly, the scalars cor-
responding to these generators parametrize the submani-
fold GL(5)/S0O(5). The antisymmetric generators i;f; cor-

respond to the shift generators s,,,. Therefore, the 25 non-
compact generators decompose into

25 — 1414+ 10 . (3.12)
=~ —_—— ——
ial; 2:—[, smn

We can also separate the trace part of f:,;, correspond-
ing to the dilaton scalar field ¢ in GL(5)/SO(5) ~ RT x
SL(5)/SO(5) scalar coset. This generator is the RT ~
SO(1, 1) generator defined in (A.4). In terms of i:b» this
is given by
d = )i+ iy +igy+ig+is (3.13)
The remaining generators can be identified as the four-
teen non-compact generators corresponding to scalar fields

{¢1, ..., $14} in the SL(5)/SO(S) coset. These generators
are given by the symmetric traceless part

} 1
Fuy = Loy — 5954 (3.14)

satisfying 8% ; = 0.

The other ten scalars denoted by {¢1, . .., ¢10} correspond
to the shift generators s,,,. These will be called the axions
or shift scalars in this work. The decomposition in equation
(3.12) is in agreement with that in [28] in which the con-
sistent circle reduction of seven-dimensional SO (5) gauged
supergravity giving rise to S O (5) gauged theory in six dimen-
sions is performed. From a higher-dimensional perspective,
the fourteen scalars are the seven-dimensional scalars param-
eterizing the SL(5)/S O (5) coset in seven dimensions while
the dilaton and shift scalars descend from the reduction of
seven-dimensional metric and vector fields, respectively, see
Appendix C for more detail.

By this decomposition of the scalar fields, we can rewrite
the kinetic terms of the scalars in (2.17) and obtain the fol-
lowing bosonic Lagrangian

eIL = A—I‘R—GUGMQDIS‘LCDJ -V (3.15)
in which Gy, is a symmetric matrix depending on scalar
fields denoted by ol = {o,01,...,014,61,..., c10} With
I,J=1,...,25.

In order to find supersymmetric solutions, we consider
first-order BPS equations derived from the supersymmetry
transformations of fermionic fields in the background with
vanishing fermionic fields. In this section, we only discuss
a general structure of the procedure leaving a more detailed
analysis and explicit results in subsequent sections. We begin
with the variations of the gravitini which are given by

@ Springer
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1 .
A'prerg + 5gTase” =0, (3.16)

Sl/f-ﬂla : )

SV_jpa: Ape_g— %gTdaei =0. (3.17)
In these equations, we have used the notation A’ = ‘fi—’;‘. We
will use a prime to denote an r-derivative throughout the
paper.

Multiply the first equation by A’p, and use the second
equation or vice-versa, we find the following consistency

conditions
1 iy
A%5,P = ZngadQ“ﬁTVBQﬂV = W2,°, (3.18)
R 1 .. .
A5P = 78 Taa QP Tpy QP = W2o,P (3.19)

in which we have introduced the “superpotential” WV. We
then obtain the BPS equations for the warped factor

A =2W. (3.20)

Using this result in Egs. (3.16) and (3.17) leads to the fol-
lowing projectors on the Killing spinors

);r€+ot = adei and J;re—d = Péuxf?f_ (321)
with

1 Ty 1 T;
P = =38 X‘j‘ and  Pio = 58 X, (3.22)

satisfying PP, = §,f and P;*P,P = §4P. The con-
ditions 6y4,o = 0 and §y_,4 = O determine the Killing
spinors as functions of the radial coordinate r as usual.

Using these projectorsin§ x4 = 0and § x—so = Oequa-
tions, we eventually obtain the BPS equations for scalars.
These equations are of the form

ow

(DI/ — 2GIJ
T el

(3.23)
in which G!7 is the inverse of the scalar metric G, defined
in (3.15).

In addition, the scalar potential can also be written in term
of W as

1 OW oW 2
V=2G 0T 507 A% (3.24)
It is well-known that the BPS equations of the form (3.20)
and (3.23) satisfy the second-order field equations derived
from the bosonic Lagrangian (3.15) with the scalar potential
given by (3.24), see [42—47] for more detail.

As in other dimensions, we will follow the approach intro-
duced in [48] to explicitly find supersymmetric domain wall

solutions involving only a subset of the 25 scalars that is

@ Springer

invariant under a particular subgroup Hy C G to make the
analysis more traceable.

3.2 SO(5) symmetric domain walls

We first consider supersymmetric domain walls with the
maximal unbroken symmetry SO(5) C CSO(p,q,5—p —
q). The only gauge group containing SO (5) as a subgroup is
SO(5) with Yy, = Sun. In this case, only the dilaton ¢ cor-
responding to the non-compact generator (3.13) is invariant
under SO(5). Thus, the coset representative can be written
as
V=, (3.25)
We recall that this coset representative is a 16 x 16 matrix
with an index structure VAB . To compute the T-tensor, we
need to write the SO (5) x SO(5) index as a pair of SO (5)
spinor indices resulting in the coset representative of the form
VA“é‘. To achieve this, we use the transformation matrices p
introduced in (A.35) so that VA“é‘ and its inverse V4,4 are
given by

Va% = VuBp % and VAu, = (V)" pBLa. (3.26)

With all these, it is now straightforward to find the T-tensor

. 5 . 2 R
TP = 20 qeBsh — 2y QoBsh (3.27)
2V2 P g 4
from which the superpotential is given by
5
= e?. (3.28)
42
The resulting scalar potential reads
15g>
V= —Tge2¢ (3.29)

which does not admit any stationary points.
The general analysis given above leads to the BPS equa-
tion for the warped factor

58
A = e 3.30
W, (3.30)
and the following projector
Pré+ = €x. (3.31)

For definiteness, we have chosen a particular sign choice in
the A" equation and the p, projector. The condition v+, = 0
gives the standard solution for the Killing spinors
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(3.32)

with the constant spinors ei satisfying )7,63: = 6%. Accord-
ingly, the solution is half-supersymmetric.

The BPS equation for the dilaton can be found from the
condition § x4+ = 0 with the projector (3.31). This results in
a simple equation

/ g [
= ———¢". 3.33
@ G (3.33)

All of these equations can be readily solved to obtain the
solution

8r 8gr
A=s5m(2_—c) and o=-m(2_—c).
n<4f2 ) e e n<4ﬁ )
(3.34)

The integration constant C can be removed by shifting
the radial coordinate r. We have also neglected an addi-
tive integration constant for A since it can be absorbed by
rescaling the coordinates x”. This is the SO(5) domain
wall originally found in [28]. In order to recover the same
form of the solution, we redeﬁne the radial coordinate as

r— M[C—i—(fﬁ«/_gr—i-C) ]andsetq)—ﬁa.

3.3 SO (4) symmetric domain walls

We now look for more complicated solutions with SO (4)
symmetry. The gauge groups that contain SO (4) as a sub-
group are SO(5), SO(4, 1), and CSO (4, 0, 1). To incorpo-
rate all of these gauge groups within a single framework, we
write the embedding tensor in the form

Y = diag(1, 1,1, 1, k) (3.35)

with « = 1,0, —1 corresponding to SO (5), CSO(4,0, 1),
and SO (4, 1) gauge groups, respectively.

There are two SO (4) singlet scalars. The first one is the
dilaton corresponding to the non-compact generator (3.13),
and the other one comes from the SL(5)/SO(5) coset cor-
responding to the non-compact generator

P N PN At
V=1t +1y g+ 1, — 41 (3.36)
Using the coset representative
V = e¢d+¢y’ (3.37)

we find that the T-tensor is given by

reb — 1 ¢4 (4 4 ke??) Q“ﬁag
2 af /3
= -WQ™s,. (3.38)
g
This leads to the superpotential and the scalar potential of
the form

& o—4¢ 20¢
W= —"—e""?@+ke"?), 3.39
44/2 ( ) o
g
V= —Zez‘/’fgq5 (8 + 8ice?0? K2€4O¢) . (3.40)

Using the projector (3.31), we find the BPS equations

A = S o744 4 09, (3.41)
4f
;o 8 o—4¢ 206
=———F¢ 4+ ke s 3.42
@ 20ﬁ ( ) (3.42)
= 2 971 — ke?0?). 3.43
¢ = Sﬁ ( (3.43)

The resulting solutions for the dilation ¢ and the warped
factor A as functions of ¢ are given by

:—¢+C+1—161n<1—/<e20¢),

_ _ 5 200
A=—5¢ = 5¢—5C—Eln<l—/<e )

(3.44)

(3.45)

To obtain the solution for ¢, we change r to a new radial
coordinate p defined by Z—’r’ = ¢¥17%%_ The solution for ¢ is
then given by

1
% — __ tanh [ﬁ (V2gp + cl)] (3.46)
JK

for an integration constant Cj. It is useful to note that for
k = —1, the solution for ¢ can be written as

1% — tan [ﬁgp 4 Cl] . (3.47)
For k = 0, the solution is simply given by

e'%% = V2gp + Ci. (3.48)

3.4 SO(3) x SO(2) symmetric domain walls
We now consider SO (3) x SO(2) residual symmetry, which

is possible only for SO(5) and SO (3, 2) gauge groups. In
this case, we write the embedding tensor as
Yin = diag(1, 1, 1, «, ) (3.49)

with k = 1 and k = —1 corresponding to SO(5) and
SO@3,2), respectively. The SO3) x SO(2) symmetry is

@ Springer
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generated by X;;, i, j = 1,2, 3, and Xys. There are three
singlet scalars corresponding to the dilaton and the follow-
ing non-compact generators

S S TP
V1 =28 +2t, +2t35— 3ty —3t55, Yy = 845.

(3.50)

With the coset representative
V = e</7d+¢07|+§3727 (3.51)
we find the scalar potential

3¢ 2(p—8¢) 209
V= — ¢ ¢ (1 + 4ke”™?). (3.52)
The superpotential reads

8 —8¢
W= 2_¢* (3 + 2ke209)2 4 8ic2 2409 (3.53)

42 v °

which can be found from the T-tensor given by
TP = ——_o9789(3 1 24ce209) QB sP

2V2 A

—V 2K cefT12052F (3.54)

In this case, it turns out that consistency of the supersym-
metry conditions from 8 x+ requires ¢ = 0. Therefore, in
order to find a consistent set of BPS equations, we need to
truncate the axion out. With ¢ = 0, the superpotential is
given by

W = ie‘/’fgd’(?s + 2ke?0?).

442

With the projector (3.31), we find the following BPS equa-
tions

(3.55)

_ 8 —8¢ 20¢
A= 2 ¢ 3+ 2keY?), 3.56
42 ( ) (3:50)
; 8 o-8¢ 20¢
=———c¢ 3+ 2ke , 3.57
v 2072 ( ) 67
r_ 8 o-8¢ 20¢
= ——¢ (1 — ke ™). 3.58)

It can be verified that all these equations satisfy the corre-
sponding field equations as expected.

With a new radial coordinate p given by Z—f = e 2% we
obtain the domain wall solution

3¢ 1

_ 3¢ (200
0= 4+C+161n(1 Ke ) (3.59)
15 5
A=—5p = T¢ ~5C—=n (1 - Ke2°¢> . (3.60)
1
10 — e tanh [ﬁ(ﬁgp + Cl)] . 3.61)

@ Springer

3.5 SO(3) symmetric domain walls

We now move to domain wall solutions with SO (3) symme-
try. Many gauge groups contain SO (3) as a subgroup with
the embedding tensor parameterized by
Yun = diag(1, 1, 1, «, A) (3.62)
for k, 2 = 0, 1. With this embedding tensor, the SO (3)
symmetry is generated by X,,,, m,n = 1,2, 3. In addition
to the dilaton, there are four singlet scalars corresponding to
the following non-compact generators

T T e —+

V=21t + 215 + 2835 =31y, — 355, Mo = 15,
o

V3 =1ty —tss5, V4 = ss5. (3.63)

With the only exception for « = A = 0 corresponding to
CSO0(3,0, 2) gauge group, we need to truncate out the scalar
corresponding to §45 generator in order to find a consistent
set of BPS equations as in the previous case. For the moment,
we will set this shift scalar to zero and consider the particular
case of k = A = 0 afterward.

For vanishing shift scalars, the coset representative is
given by

V = oPd+o1V1+d20a+¢3)s (3.64)

giving rise to the superpotential and the scalar potential of
the form

ge? 3¢ 206,
W=—[3+e K -+ A) cosh 2¢, cosh 4
W (« ) P2 3
—(k — ) sinh 4¢3)] , (3.65)
2,2(0-81)
V= —“T [3 + 6¢2%91 ((ic + 1) cosh 26> cosh 43

e40¢1

—(k — 1) sinh4¢3) + <K2 +10kA + 22

—(3k2 = 2k) + 31%) cosh 8¢3
—2(k + 1)* cosh 4¢, cosh® 4¢3

+4(kc? — 22) cosh 26, sinh 8¢>3)] . (3.66)
We also note the matrix G’ in this case
o L 2
G = @dlag(é, 1, 60sech“4¢3, 15) (3.67)

for ®; = {@, ¢1, P2, 3} with I, J =1, 2,3, 4.

In this case, the Killing spinors are different from the
ansatz given in (3.32) due to the non-vanishing composite
connections Q% and Q* appearing in 8¢, = O condi-
tions. In more detail, there are additional terms involving
(y45)aﬂ €yp and (mg)&ﬁ €_4 in the covariant derivative of
the supersymmetry parameters, see Eqgs. (2.22) and (2.23).
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According to this, we modify the ansatz for the Killing
spinors to

= MFHBOYS O

AP +B(Yis 0

€4 and e_ =e¢ (3.68)

where B(r) is an r-dependent function, and ei are constant

symplectic-Majorana—Weyl spinors satisfying 7, ei = e?F.
Using this ansatz for the Killing spinors satisfying the

projector (3.31), we find the following set of BPS equations

from the supersymmetry transformations of fermions

A ge? o [3 + %1 ((k + 1) cosh 2¢ cosh 4¢
= e K
4\/5 2 3
—(k — ») sinh4¢3)], (3.69)
¢ =— g [3 + 21 ((k + 1) cosh 2¢» cosh 4¢3
2042
—(k — 1) sinh 4¢»)], (3.70)
o = ger [2 — 291 ((k + 1) cosh 2¢ cosh 4¢3
T 02
—(k — X) sinh4¢3)], (3.71)
) = —%e‘“’lzd’l (i + ) sinh 2¢ sech 4¢3, (3.72)
. gewti2e
= =———((k — X)cosh4
?3 Wi (( ) @3
—(k 4 A) cosh 2¢» sinh 4¢3) (3.73)
together with
B = ——&_¢#+1201 (4 4 ) sinh 2¢, tanh 4¢b3. (3.74)

22

To find explicit solutions, we will separately discuss various
possible values of « and A.

3.5.1 Domain walls in CSO(4,0,1) and CSO@3,1,1)
gauge groups

For A = 0 and ¥ # 0, the gauge groups are given by
CS04,0,1) and CSO@3,1,1) fork = 1 and k = —1,
respectively. Using a new radial coordinate p defined by
Z,p e9T12¢1 3 domain wall solution to the BPS equations
can be obtained

2.2 2 2
b %m |:g p2(1 +2C3)2 4+ 2(1 + C3) } 375)

g2p2(1 4+ 2C3)2 +2C3

1 [e?2 —C3e* +C3 + 1
=1 3.76
=3 n[e2¢z+c3e4¢2—c3—1] (3.76)
P Kk (24 Ci(e*”? — 1))
1 = b
\/(1 e*2) (C2e*2 — (C3 + 1)2)
(3.77)
$1 Ci(e* —1)+2
_h e LGz , 3.78
T TS [ T 3.78)
5
A=—5¢p = _% —5C
5 Ci(e*?2 — 1) 42
together with
1 . 1 e4¢2 —1
B=-sin"" | C3
4 2C3 + 1
1 1 — e%2)(C3 + 1)2
fhnt | UG D (3.80)
4 Cie* — (C3+1)2

We have chosen integration constants for ¢, and B to be zero
for simplicity.

3.5.2 Domain walls in SO (4, 1) gauge group

In SO(4, 1) gauge group with «k = —X\ = 1, the BPS equa-
tions give ¢5 = B’ = 0. Accordingly, we can set B = 0 and
¢2 = 0. We can readily verify that this is a consistent trun-
cation. Taking ¢, = 0 and redefining the radial coordinate r
to p as given in the CSO (4,0, 1) and CSO(3, 1, 1) gauge
groups, we obtain a domain wall solution

1 —1
¢3 = 5 tanh [tan [ﬁgp + C3]] , (3.81)
_ 1 e 4
¢1 = 5 In [ (Cr+ 1)+ Cre™ ], (3.82)
b1 3% 1
A | . (383
=5 16 n[2(01+68¢3(c1 1) (3.83)
5
A5y = 20 _5c
2
5 8¢3 1 1
I + . (3.84)
16| 2(Cr+e83(Cr + 1))

3.5.3 Domain walls in SO (5) and CSO (3, 2) gauge groups

For k = A = =+£1 corresponding to SO(5) and SO(3, 2)
gauge groups. we find the following domain wall solution

@ Springer
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¢2=—1In

1 |:1 — 262\@5”("’ + 64\/55"(/0 + e4x/§gkp+2C3 :|

4 1 4 22V28Kp 4 o4/28Kp | o4v/28Kp+2C3
(3.85)
1 2202 4pa+C3 _ ,C3
gy = <In| =51 1 (3.86)
8 2202 — 42+C3 4 oG5
1 ke 202 (Cr(e*2 — 1) =2
o= tn (G D22 )
10 20 \/4g4¢2 — eZC3 (e4¢2 — 1)2
¢1 1 4
e fufe ]
[0 > +C T nje
1
+1¢ InlC) (e*2 — 1) -2], (3.88)
_ _ S5 [ 40
A=—Sp= -1 -5C+ 16111[e —1]
1
+1e In[Cy(e*? — 1) — 2] (3.89)

in terms of the new radial coordinate p defined previously.
The function B(r) appearing in the Killing spinors is given
in term of ¢, as

1 | 1 — et 42726
B = ——tan™
8 \/4e4¢2—2c3 — (%2 —1)2
M1+ 2e72) — 1
——tan
8 Va4 =203 _ (42 — 1)2

(3.90)

in which the integration constant has been set to zero.

3.5.4 Domain walls in CSO(3, 0, 2) gauge group

In the case of CSO(3, 0, 2) gauge group withk = A =0,
supersymmetry allows a non-vanishing axion corresponding
to Vs generator. We write the coset representative as

V = Pd+ 0114022 +¢3 Y3+ (3.91)
and find a simple scalar potential

2
v = — 38 e, (3.92)

4

We also note that this potential does not depend on ¢ and can
be obtained from (3.66) by setting k = A = 0. This potential
can also be written in the form (3.24) using the superpotential

38 »—38¢1

= ——=¢€

= 3.93
7 (3.93)

@ Springer

and the symmetric matrix

1 2
() 0 0 =
0z O 0 -—%
G =0 0 sech®4¢30 0 (3.94)
00 0 1 0
2 2
s 0 0l+4g

for ® = {¢, ¢1, 2, 3. ¢}, 1, J =1,2,3,4,5.

With all these and the usual ansatz for the Killing spinors
(3.32) together with the projector (3.31), we find the BPS
equations

38 4o 3¢

A = P8 = e? 81
42 2042

r_ 8 o8¢

= e s

¢l 5\/5

=gy = 0, ¢ =—Sevsorc (3.95)
; V2

Except for an additional equation for ¢, these are the BPS

equations obtained from (3.69)—(3.73) by settingk = 1 = 0.

Furthermore, ¢ and ¢3 can be consistently truncated out

since the scalar potential (3.92) is independent of ¢, and ¢3.
With all these, we find a domain wall solution

¢ = %m [%(ﬁgp + C1)] , (3.96)
p=C-— %m [%(\/Eg,o - cl)} : (3.97)
¢ = Cye 50 = C4 = (3.98)

(%(ﬁgp + Cl))T
A=-5¢0 = —5C + gln [%(ﬁgp + cl)] (3.99)

in which p is anew radial coordinate defined by Z—f = ¥4,
It should also be noted that the axion ¢ can also be truncated
out.

3.6 SO(2) x SO(2) symmetric domain walls

As a final example of domain wall solutions in 15~ repre-
sentation, we consider an SO (2) x SO (2) unbroken symme-
try. In this case, the embedding tensor for all possible gauge
groups takes the form
Y = diag(1, 1, k, k, X) (3.100)
for A = 0, =1 and ¥ = +£1. These gauge groups are SO (5)
k =r=1),5041) k = —-r2=1),8503,2) (x =
—2=-1),CS04,0,1)(k =1,A=0),andCSO(2,2, 1)
k=—-=1,1=0).
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There are five scalars invariant under SO(2) x SO(2)
generated by X2 and X34. As usual, one of these is the
dilaton and the other four are associated with the following
non-compact generators

= At = b oAb oAt
Vi=1ty+iy — 2155, Vo =135+ 1y — 253,

V3 =s12, YVa=-s3. (3.101)

As in many previous cases, we need to truncate out the axions
corresponding to the shift generators s1, and §34 in order to
find a consistent set of BPS equations that are compatible with
the field equations. We then take the coset representative of
the form

V = e¢d+¢|§|+¢2y2‘ (3.102)
The resulting scalar potential reads
2
V = _ & 20-261+¢2) [4K (2 4 2o 2011862
4
FAeSTI202(4 A612¢1+8¢2)] (3.103)
which can be written in terms of the superpotential
-8 ~4¢ ~4¢ 8(g1+¢2)
W= —"—e?Qe """ +2ke™ "2 4 Xe ) (3.104)
42
using
&= 0 0
1J 3 1
=10 3 —% (3.105)
0 —L 3
10 20

for &' = {p, ¢1. ¢}, 1, J = 1,2,3.
Using the projector (3.31) together with the Killing
spinors (3.32), we find the following BPS equations

-8 —4¢ —4¢ 8(¢1+¢2)
A = 2 _e?(2e M 4 2uce P2 4 AP0y (3.106)
42
r_ 8 L0, —4¢ —4¢ 8(p1+¢2)
=— e?(2e + 2ke + Ae ),
YT 0
(3.107)
1 _ 8 03,4 —4dpy 8(d1+¢2)
= e (3e —2ke — e ), (3.108)
¢l 5\/5
®h = —5_e¥ (Bre™ 2 — 20741 _ 8@ (3.109)

52

Solving these BPS equations gives a domain wall solution

3V2 3
¢ = — \{;gp + 5 [KeZﬁgﬂ + Cz]
1
—5gn [Cle—zﬁgp + /\] , (3.110)
2 1
. =—%—Eln [Clefzﬁgpﬂ], 3.111)
¢ 3v2gp 1 22
=———-—4+C—-—1 [C &P A],
=% ¢ T g o +
(3.112)
5 154/2
6 24
5
~5C+ 2 ln [Cre72V20 4 4] (3.113)
in which p is the new radial coordinate defined by the relation
dp _ Lp—4
d_/r’ — P41

For domain walls preserving smaller residual symmetries
such as SO (2)diag C SO(2) x SO(2) and SO(2), there are
many more scalars, and the analysis is much more involved
without any possibility for complete analytic solutions. We
will not consider these cases in this work.

——1
4 Domain walls from gaugings in 40 ~ representation

In this section, we consider gaugings in which the irre-
ducible part of the embedding tensor transforms in E_l
representation. These gauged theories are obtained from a
consistent circle reduction of the maximal seven-dimensional
CSO(p,q,4 — p — q) gauged supergravity constructed in
[41].

In six dimensions, gaugings in 30! representation are
purely electric and triggered by
04" =Ty U™ 4.1)
where U™"P = ylmhr satisfying U1 = 0. With
gAM  — (T,‘;‘pU””*m, 0), the second condition from the
quadratic constraint (2.13) reduces to

U™ " UP g ppqr = 0. 4.2)
This condition can be solved by setting
ymnnr — U[mwn]p (4.3)

inwhich v isa G L(5) vector and w™" is a symmetric tensor,
wm — w(mn)_

To classify possible gauge groups, we follow [41] by using
the SL(5) symmetry to further fix v = §5' and split the
index m = (i,5),i = 1,...,4. For simplicity, we also
restrict to cases with w’> = w>> = 0. The remaining SL(4)
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residual symmetry can be used to diagonalize the 4 x 4 block
corresponding to w'/ as
4.4)

w' = diag(l,...,1,—-1,...,—1,0,...,0)
——— —~————

p q r

with p + g + r = 4. From the decomposition in (3.3), we
find that in this case, only X;; and X ! gauge generators are
non-vanishing. The generators X;; are given in terms of the
G L(5) generators while X’ only involve the shift generators.
Explicitly, these generators are given by

Xij = —Sijkmwkltml and X' = w”s§j.

V2

It is now straightforward to show that the gauge generators
satisfy the following commutation relations

(4.5)

(X', X/1=0, [Xi, X"1=&X;)"xX,

[Xij, Xil = Xipu™ Xmn (4.6)

in which (X;;)™" = 2(X,-j)[k[m8["]]. This implies that the
corresponding gauge group is of the form

Go=CSO(p,q,4—p—q) x R}

— SO(p, q) x (RU’WK‘*—P—W x Rg‘) . @.7)

The CSO(p, q,4 — p — q) factor and the four-dimensional
translation group from the shift symmetries R‘s‘ are respec-
tively generated by X;; and X [

We should note here that the corresponding gauge group
in seven dimensions is just CSO(p, ¢, 4— p—q). Afteran S'
reduction, this gauge group is accompanied by a translation
group R‘s‘. As pointed out in [30], the complete off-shell sym-
metry group of the maximal six-dimensional gauged super-
gravity is GL(5) x 10™*, with 10~* being shift symmetries
of scalar fields. The gauge group given in (4.7) is embedded
in GL(5) x 107*as CSO(p,q,4— p —¢q) C GL(5) and
R? C 10~*. We also note that in vector representation of
SO, 5), the gauge generators are given by

(xhp? = 477P[j5;g5§ wh,

Xij)p2 = V261w 252 — 0" nip). (4.8)

By splitting the SO(5) x SO(5) vector indices as a =
(i,5 and a = (f, 5), we find the following decomposition
for non-compact generators of SL(5) C GL(5) C SO(5,5)
under SL(5) — SL(4) x SO(1,1)

L= (0 T3 1) 4.9)

Since the SL(5) generators £ ; are traceless, the generator
f55 is related to the trace part of 7, ; according to #j + 55 +
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f33 + 145 = —ts5. Itis then convenience to define new non-
compact generators 7, ; as

_ - 1.
t:= tij’ + _tSS‘Sij

ij 2 (4.10)

which are symmetric traceless. The nine scalar fields cor-
responding to these generators then parametrize an SL({M
$ O (4) coset. The other four scalars associated with ;5 = £ ;5
are nilpotent scalars and will be denoted by b; as in seven
dimensions. In addition, there are also ten axions correspond-
ing to the antisymmetric shift generators as in the previous
section.

As in the previous section, we will systematically find
supersymmetric domain walls invariant under some residual
symmetries of the CSO(p, g, 4 — p — ¢) factor in the gauge

group.
4.1 SO (4) symmetric domain walls

We first consider domain walls with the largest possible
unbroken symmetry namely SO (4). The only gauge group
containing SO (4) as a subgroup is SO(4) x ]R;L with the
embedding tensor parametrized by w'/ = §". The SO (4)
symmetry is generated by X;;,7, j =1, 2, 3, 4, generators.

There are two SO (4) singlet scalars given by the dilaton
¢ and another dilatonic scalar corresponding to the SO(1, 1)
factorin SL(4) x SO(1, 1) C SL(5). The latter is given by
the non-compact generator

Vo=t +ij+11;+14—4is (4.11)
and will be denoted by ¢y.

The coset representative can be written as
V = od+9030 (4.12)
leading to the T-tensor given by
7B = o040 (5P 5h — gw(yS)aﬁag (4.13)
with the superpotential

_ 8 o490
W= Ze . (4.14)

The appearance of y° rather than other SO (5) gamma matri-
ces is due to the specific choice of v™ = &' for the tensor
U™"P_ The scalar potential can also be directly computed
and is given by

V = —g2e? 8%, (4.15)
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The Killing spinors are given by the same ansatz as in
(3.32) but in this case subject to the following projector

Prex = yles. (4.16)

because of the appearance of > in the T-tensor. With this new
projector, it is now straightforward to derive the following
BPS equations

P P . T )

2 ' 10 ' 10
4.17)
These equations are solved by the solution
1
¢=4C—-1n[£+Co], (4.18)
5 2
1 gr
A=—5¢ = In [% n Co] —20C. (4.20)

4.2 §0(3) symmetric domain walls

We now look for more complicated solutions with SO (3)
symmetry. Gauge groups with an SO(3) subgroup are
SOM@) xRY, SO(3,1) x R}, and CSO(3, 0, 1) x R¥ which
are collectively described by the symmetric tensor
w = diag(1, 1, 1, k) 4.21)
for « =1, —1, 0, respectively.

The residual symmetry SO (3) is generated by the gen-
erators X;. 4 with i = 1,2, 3. Apart from the two dilatons,
there are three additional SO(3) singlet scalars, one from
the SL(4)/SO(4) coset and the other two from symmetric
and antisymmetric axions denoted by b and ¢. These three
singlets correspond to the following SO(5, 5) non-compact
generators

ST S A+
V=t +1ty +t3 =31,

~  ar o~

V=1t V3 =s15. (4.22)
Using the coset representative of the form

vV = e¢d+¢0370+¢3~71 +b3~72+§3~73’ (4.23)

we find the scalar potential and the T-tensor given by

2
V = & 20400 +30) <6Ke16¢ + (9¢¥*? + k%) cosh 2b)

16
(4.24)

and
TP — Ze“’_4(¢°+3¢) [(3e16¢ + k) cosh b (ys)“ﬁég

+(3e'% — k) sinh b (y“)“ﬁag] ) (4.25)

It turns out that consistency of the BPS equations from §
conditions requires vanishing symmetric axion b unless k =
0 corresponding to CSO (3,0, 1) x ]R? gauge group.

4.2.1 Domain walls without the symmetric axion
With b = 0, the scalar potential and superpotential read

2
V= _% Q20=4G030) (3,320 4 640160 _ 42y
W = gewf4(¢o+3¢)(3elﬁ¢ FK).
Imposing the projector (4.16) on the Killing spinors

(3.32), we can derive the following set of BPS equations

(4.26)

4.27)

S R ) (4.28)
¢ = = o RO EI ), (4.29)
& = %e‘/’_4(¢0+3¢)(3616¢ + 1), (4.30)
9 = SN 3 ), (4.31)
g’ — —ge‘/’_4(¢0+3¢)g. (4.32)

From these equations, we can find the solutions for A, ¢, and
¢o as functions of ¢ of the form

1
to="2+Co— 55 — ) 4.33)
1
Q= —(;—5 +C-Cot+ 35 In(e'% — ), (4.34)
e b e
A=-5¢ = ¢—5C+5Co— ;In(e K).  (4.35)

With the new radial coordinate p defined by Zl—f = ¥4 P0te)
the solutions for ¢ and ¢ are given by

3% = /k tanh [Vk(gp+C1] and
¢ = Cyesch[Vi(go + CD].

In particular, for « = —1 and k¥ = 0, we find respectively

(4.36)

3 — _tan [Vk(gp+CD]., = Caesc(gp+C)
4.37)

and
1

8¢ _
(gp + C1)

c =0 (4.38)
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4.2.2 Domain walls with the symmetric axion

For k = 0 correspondingto CSO (3, 0, 1) x R;‘ gauge group,
itis possible to find solutions with the symmetric axion b non-
vanishing. With « = 0, the scalar potential and the T-tensor
are given by

38° 2(p—tg0+49)
V= ST cosh 2 (4.39)
and
ref = Zer i) [coshb (y*)% 8y + sinh b (y4)°"36g] .
(4.40)

By the general procedure given in Sect. 3.1, we find the super-
potential and y, projectors on the Killing spinors

3
W= ?ge‘/’_4¢0+4¢x/cosh 2b (4.41)
and
Préta = S [coshb(yS)ﬁyag + sinh b (y4)ﬁ”6f,‘]
cosh 2b
€ g (4.42)
A L B |: 5\af o . 4\ap B
e g =——B _[coshb (y5)*PsP + sinhb (y*)Ps ]
Vré-a cosh 2b 4 p v p
i (4.43)

It should be noted that these projectors are not independent.
Therefore, the resulting solutions will preserve half of the
supersymmetry. Moreover, we can easily see that these pro-
jectors reduce to that given in (4.16) for b = 0.

With all these, we find the following set of BPS equations

3
A = §e¢_4¢°+4¢VCosh 2b,

3ge? 49014 tanh 2b

B = , (4.44)
8+/cosh 2b
3
¢ =— %e“’_%ﬁ‘w’v cosh 2b,
o = 3ge? 4014 (cosh 4b — 9) 4.45)
o 320 cosh®/2 2b ’ '
& = ge? 4048 (cosh 4b + 7)
B 64 cosh/2 2b ’
b — 3ge?~4P0+49 ginh 25 4.46)
B 4+/cosh 2b '

together with ¢’ = 0. Since the scalar potential does not
depend on ¢, we can consistently truncate ¢ out by setting
¢ = 0. The domain wall solution to the above BPS equations
is then given by

@ Springer

3 115 1
/sinh 2b (%p +Cb) — ,F ( >

444 sinh?2b

(4.47)
b ! 4b
$o = Co — b L1n(1 — ey + L1n(1 + %)
40 20 16 ’
(4.49)
¢=Ci— b + iln(l — ey — i1n(1 +¢*), (4.50)
24" 12 16 T
b 1 4b
A==5¢ = =5C+ 7 — o In(1 =), 4.51)
1
B =3 tan”! (ezb) +Cp (4.52)

in which the new radial coordinate p is defined by j—’r) =
e¥~40+49 and , Fy is the hypergeometric function.

4.3 SO((2) x SO(2) symmetric domain walls

Domain walls preserving SO(2) x SO(2) symmetry can
be found in SO (4) x R‘s‘ and SO(2,2) x R? gauge groups
described by the embedding tensor with

w' = diag(1, 1,k,«), k=1,—1. (4.53)

In addition to the two dilatons, there are three SO (2) x
S O (2) singlet scalars corresponding to the following SO (5, 5)
non-compact generators
S st ot s+ ot
Vi=1tyj+1y —ty3— 1y,
W =512, V3 =53. (4.54)

In this case, a consistent set of BPS equations can be found
only when the scalars corresponding to )72 and 373 generators
vanish.

With the coset representative

V= e¢d+¢0370+¢371 , (4.55)

the scalar potential and superpotential are given by
V= — o280 and W = Eevmd00+d) (80 4 ).
4
(4.56)

With all these and the usual Killing spinors (3.32) subject
to the projector (4.16), the resulting BPS equations read

A = §e<ﬂ*4(¢o+¢) @ + 1), (4.57)
o = _;;Oew*4(¢0+¢) @ + 1), (4.58)
&) = 2%6¢74<¢o+¢) € + 1), (4.59)
¢ = _% P4 G0+9) (89 _ 1oy, (4.60)
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Using a new radial coordinate p defined by Z—f = e 72% we
find a domain wall solution

_¢ ! 8¢
¢0_§+c0—%1n(e —K), (4.61)
_ ¢ 1 86
go——5~|—C—Co+2oln(e —K), (4.62)
|
A=—5p = ¢—5c+5c0—11n(e8¢—x), (4.63)
e = i tanh [V (gp + C1)]. (4.64)

4.4 SO (2) symmetric domain walls

As afinal example in this case, we consider S O (2) symmetric
domain walls. There are many gauge groups admitting an
SO (2) subgroup. They are collectively characterized by the
following component of the embedding tensor

w' = diag(1, 1, k, 1). (4.65)

Together with the two dilatons, there are additional nine
SO (2) singlet scalars. Three of them are in the SL(4)/SO (4)
coset corresponding to non-compact generators

= st et st ot

Y=ty +ty — 35— Ly,

= ~4 5 At

V= L3, V3= tys — 1y (4.66)

The remaining ones consist of two nilpotent scalars associ-
ated with

R T

Va=ty5, YVs=1y (4.67)
and four shift scalars corresponding to

Vo =512, Y7=1535, Vg=s45. Vo =534 (4.68)

However, dealing with all eleven scalars turns out to be highly
complicated, so we perform a subtruncation by setting the
shift scalar corresponding to s 1> and the two nilpotent scalars
to zero. It is straightforward to verify that this is a consistent
truncation and still gives interesting solutions. We now end
up with eight singlet scalars with the coset representative

V = e¢d+¢03~70+¢1§1 +$2 V2403 V3461 V71+ 62 Vs +53Vo . (4.69)

Consistency of the resulting BPS equations requires vanish-
ing of the shift scalar ¢3 unless x = A = 0 correspond-
ingtoCS0O(2,0,2) x R? gauge group. In what follows, we
will for the moment set ¢3 = 0 and separately consider the
CS50(2,0,2) x R;‘ gauge group with ¢3 # 0.

With ¢3 = 0, we can compute the scalar potential and the
superpotential of the form

2
v i_z S20—40t61) [KZ + 10k A + A2

—2(k + k)z cosh 4¢» cosh? 4¢3
—(3k? = 2k) + 31%) cosh 8¢3
+16(x — 1)e3?1 sinh 4¢3

+4(k 4+ A) cosh 2¢» (€% cosh 4¢3

—(k — A)sinh 8¢3)], (4.70)
W = ge‘/’*‘*(%*"")[zegd’l +(k + )
cosh 2¢» cosh 4¢3 4+ (k — A) sinh 4¢3].
4.71)

This scalar potential can be written in term of the superpo-
tential according to (3.24) using

i Giv
1_ (G
Gl _ (ij ny) 4.72)
where
i I . 2
Gl = Edlag(4, 1, 5, 40sech“4¢3, 10),
2 _3a _g1 % 15}
. 5 20 4 (14€893)2 2
G — (e ™) , 4.73)
20 39 _g 45’ o
5 20 T4 (14532 2
and
8¢ 16¢
1 +467 + 3B sech?4gy  Z2UHCRIcT)
G — (14€°73) )
2 1446893 41043
ZISECTET 14 4g] £ 6o sechdgy

4.74)

Here, we have denoted ®! = {o, do, d1, D2, P3, 1, C2} =
{®f, ®*) fori,j = 1,2,...,5and x, y = 6,7. Note also
that the scalar potential for CSO(2, 0, 2) x R? gauge group
with k = X = 0 vanishes identically leading to a family of
Minkowski vacua.

Imposing the projector (4.16) on the Killing spinors of the
form

M+B(r)y3469r

A0 N
€L =e 2 and e_ =¢ 2 TBOVO (475

we obtain the following set of BPS equations

A = S 4@toD 26801 | (i 4 1)

i cosh 2¢ cosh 4¢3 + (k — A) sinh 4¢3], (4.76)
o = _%ew—umwn[z S 4 (k42

x cosh 2¢p cosh 4¢3 + (k — A) sinh 4¢3], 4.77)
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b0 = %e¢—4(¢0+¢1)[268¢1 +(k+A)
x cosh 2¢p cosh4¢ps + (k — A) sinh 4¢3], (4.78)
¢, = _gew—4(¢o+¢1)[2€8¢1 —(k+ 1)
8
x cosh 2¢p cosh 4¢3 — (k — A) sinh 4¢3], 4.79)
¢ = —§e¢0_4(¢0+¢‘)(1< 4 A)sinh2¢y sechdgs,  (4.80)
¢ = — S eM=40+8) (4 1)
4
x cosh 2¢ sinh 3¢3 4+ (k — A) cosh 4¢3) (4.81)
together with
B = —§e¢0_4(¢0+¢‘)(lc +3)sinh2¢, tanh 4¢3, (4.82)
, ge? T4
gl:—m [gl (K — A+ (K + )\.) COSh2¢2)
+¢o(k 4+ A) sinh 2¢ sech4¢3], (4.83)
ge¢_4¢3 .
gzz—m [¢1(k + A) sinh 2¢; sech 4¢3
—¢2 (k — A — (k + A)cosh2¢,)] . (4.84)

We are unable to completely solve these equations for arbi-
trary values of the parameters « and A. However, the solutions
can be separately found for each value of x and A.

4.4.1 Domain walls in SO (3, 1) X ]R? gauge group

In this case, we set k = —A = 1, and the BPS equations
give B’ = ¢, = 0. We can again truncate ¢ out and set the
constant B = 0. As a result, we find a domain wall solution

¢1 = %¢3 — éln [1 +Ci(1+ e8¢3>] , (4.85)
¢o = Co + %@ - % In(1 + ¢5%3)

+%ln [1 F O+ e8¢3)], (4.86)
¢p=C—Co— %¢3+ %ln(l + ¢8)

—4%1r1 [1 +Ci(1 +e8¢3)], (4.87)
A=-5p =5(Cy—C)+ %¢3

—% In(1 + &893 + %m [1 roid+ e8¢3)] . (4.88)
¢3 = %ln tan(C3 — gp), (4.89)
g1 = Cygsec(C3 — gp), (4.90)
62 = Cscese(C3 — gp) (4.91)

with p defined by 92 = ¢#=4@o+o1),
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4.4.2 Domain walls in CSO(3,0, 1) x RY and
CSO0(2,1,1) x R? gauge groups

For A = 0 and k = %1 corresponding to CSO(3, 0, 1) x
R? and CSO(2,1,1) x R? gauge groups, the domain wall
solution is given by

1
¢ =1 n [(e4¢2 — (1 +2¢5

1

426 _ 62C3+4¢2):| -3 In(4 — 2¢%2), (4.92)

1 4(1 C3\2 1 2 C3\2,2 2
6= 11n (I+e"3)"+ (1+2e-3)%g"p (4.93)

4 4203 + (1 + 2¢C3)2g2p2

1 2¢0 DA C3 C3+2¢
oy = i [T DAF R TTTT) og)

8 1 4+ eC3 4 202 — oGt

1 1
— Cpo— = — In(1 — &*2
b0 o 5¢1 4 0 n(l —e*?)
1

[l 26 + 20 20t ] @)
0= C — ¢, (4.96)
A=—5¢ (4.97)
together with

B | | et — ]
B=Cp+ Z sin e m
462 — 1) (1 + €©3)?2
- (e
Ty \/1 1260 1 20— gemam | (Y

In this solution, we have defined the coordinate p by Z—‘r) =
e~2%0=2¢1 and set the integration constant for ¢ solution to
be Cy = 16(1+]TW in order to simplify the expression for
the solution. We also note that the two gauge groups have
exactly the same domain wall solution since the parameter
k does not appear anywhere in the solution. In more detail,
«2 appears in ¢, solution as g%« p?, but this term is simply
given by gZp? for k = =+1.

For the remaining scalars ¢ and ¢», we are not able to
analytically find their solutions. We can instead perform a
numerical analysis to find these solutions, but we will not
pursue any further along this direction. In any case, these
scalars can be consistently truncated out since they do not
appear in the scalar potential.

4.4.3 Domain walls in SO (4) x R and SO (2,2) x R?
gauge groups

Inthis case, wesetk = A = %1 correspondingto SO (4) MR?
and SO (2, 2) x R;‘ gauge groups. As in the previous case, the
resulting BPS equations are very complicated to find explicit
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solutions. Therefore, we will set ¢; = ¢» = 0 and find the
domain wall solution for the remaining fields as follows

¢)1:% In [e4¢2 _ eZC} (e4¢2 _ 1)2] _ é]n(z _ e4¢2)7 (499)
1 1 — 2628KP 4 o48kP 4 442C3
¢2=1 1 |:1 1 2e28Kp 4 o8Kp 4 402C3 ] B (4.100)
1 292 — o034 oC3tidgn
# 8 i |:€2¢2 +eC — eC3+4¢2] ’ (4.101)
¢ 1 ”
=Co— 2~ —ne* — 1
$o=Co — = — 5, In(e )
1
[ =20 4200 et | (4.102)
9=C— o, (4.103)

1 —C3 4¢2_2 2C3 22C3+4¢2
e o L [ 200 g2i0rey ]

2\/€4¢2 — 2C3 + 202C3+4¢2 _ p2C3+8¢n

o e=C3(1 4 26263 4 262C+4b)
—ghn |:2\/e4¢2(1 T 26203) — 26265 — ezc3+s¢2:| ’
(4.104)
A=-5¢ (4.105)

with ‘;_P — 4o +o1)
4.4.4 Domain walls in CSO(2,0, 2) x R? gauge group
Finally, we consider the case of «k = A = 0 corresponding to

CS50(2,0,2) x Rg‘ gauge group. Using the coset represen-
tative (4.69), we find the T-tensor given by

T — 5e</7*4(¢0*¢7|) I:(y5)a/35§ +2¢3 (y12)aﬁ5§] .
(4.106)

By the general procedure given in Sect. 3.1, we find the super-
potential

W = §e<ﬂ74(¢0*¢|) /5‘32 +1 (4.107)
and the following projectors
) [ 978] + 26 ('8
Vr€ra = Qp €_g, (4.108)
\/ 53? +1
) [ 78] + 265 (v 18]
Vré—a = _ng €+a-
\/ §32 +1
(4.109)

As expected for half-supersymmetric solutions, these pro-
jectors are not independent. In addition, for ¢3 = 0, they
reduce to a simpler projector given in (4.16). At this point, it
is useful to note that for this gauge group, the scalar poten-
tial vanishes as previously mentioned, so there exists a six-

dimensional Minkowski vacuum for this gauge group. How-

ever, the superpotential (4.107) does not have any stationary

points, so this Minkowski vacuum is not supersymmetric.
With the following ansatz for the Killing spinors

A(r)
€L =¢ 2

A@r) ..
eTr_B(r)yMGO_’

(4.110)

+B(r)y3a 63_ and €

we obtain the BPS equations

A = §e<ﬂ*4(¢0*¢1) /5_3%_1_1’ ¢ = -
ge?—4do—o1)

20/ 1

;o 4ge‘/’*4(¢0*¢')g32g| o 4ge¢74(¢07¢])§32§2

S1 = , = ,
Jei+1 Jei+1

p—4(¢o—1)
o = —gerioong f2 iy g o 88 T

20,/g32+1

With a new radial coordinate p defined by Z—’r’ = 97490 the
corresponding solution is given by

ge?*bo—on) (] 4 20§32)
20,/65 +1

—4(¢o—¢1)
ge?
Y, ¢, = ¢; =0,

4,/5'32—1-1

b ¢ = —

@.111)

A:—‘l—‘lng, B:CB—%tan*‘zgg, (4.112)
(p=C+2—101ng3+%ln(1+4g32), (4.113)
¢o = Co + %m ¢ — %m(l +4¢3), (4.114)
b= Cit yings — g In(l 445D, (4.115)
g1 =Cay/1+453, o = Cs\/144¢3, (4.116)
¢ = m. (4.117)

5 Domain walls from gaugings in (15 + 40)~!
representation

We now consider gaugings with non-vanishing components
of the embedding tensor in both 15~ and 4_0_1 representa-
tions. These gaugings are dyonic with the embedding tensor
containing both electric and magnetic parts. The full embed-
ding tensor is given by 04M = (4™, 04) with
oA =Ty, U™ and 6 =TV, (5.1
for Y,y = Y(nny and U™HP = ylmnl.p satisfying ylmn.pl —
0.

However, for dyonic gaugings, the first condition in the
quadratic constraint (2.13) is not automatically satisfied. For
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the embedding tensor given in (5.1), we find that this con-
straint imposes the following condition

Uy, = 0. (5.2)

To solve this condition, we follow [41] and split the G L(5)
index as m = (i, x). By choosing a suitable basis, we can
take Y, to be

Y;j =diag(+1,...,+1,—1,...,—1) and Yy, =0.
(5.3)

The constraint (5.2) then implies that only the components
U*YZand U™ = U'™Y) are non-vanishing. As a result, the
embedding tensor is parametrized by the following tensors

Yij, U@y (5.4)
We now consider different possible gauge groups with
rankY =0, 1, ..., 5. There are two trivial cases for rankY =
5 with U™"P = 0 and rankY = 0 with all Y,,,, = 0. These
correspond respectively to gaugings in 157! and E_l repre-
sentations and have already been considered in the previous
two sections.

For rankY = 4, only U’ can be non-vanishing,
but another condition from the quadratic constraint (2.13)
requires U3 = 0. Accordingly, the corresponding gauge
groups are given by CS0O(4,0,1), CSO@3,1,1) and CSO
(2,2, 1) which again have been considered in Sect. 3.

In the following, we will study supersymmetric domain
walls in the two non-trivial cases with rankY = 3 and
rankY = 2. Gaugings in these cases are expected to
arise from a circle reduction of seven-dimensional maxi-
mal gauged supergravity with the embedding tensor in both
15 and 40 representations of SL(5). Similar to the seven-
dimensional solutions given in [15], we will find that in
these gaugings, the domain walls are ;{-BPS preserving eight
supercharges. For the case of rankY = 1, the second condi-
tion from the quadratic constraint (2.13) is much more com-
plicated to find a non-trivial solution for U?®-Y) and U*2.
We refrain from discussing this case here.

5.1 %-BPS domain walls for rankY = 3

We first consider the case of rankY = 3 with i, j = 1,2, 3.
The second condition from the quadratic constraint (2.13)
becomes

1

o UIx kw,y _ LIy
BZJkij Zgsz = TYUU (55)
2
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which can be solved by U'*+? of the form

. 1 oy
U™ = ———e% (20, (5.6)

242

where (Z7),” are 2 x 2 matrices. In terms of these X, the
quadratic constraint (5.5) can be rewritten as

(2, 2] = 267ky, 2!, (5.7)

As pointed out in [41], a real, non-vanishing solution for
U'*Y is possible only for

Y;; = diag(1,1, —1) (5.8)

with the explicit form of X! given in terms of Pauli matrices
as

vl=0, 22=03 X’=iom. (5.9)

The constraint (5.7) is then the Lie algebra of a non-compact
group SO (2, 1). It should also be noted that the tensor U*Y>*
is not constrained by this condition, so it can be parametrized
by an arbitrary two-component vector u* as

U*Ye — V2.

(5.10)

‘We now consider the corresponding gauge algebra spanned
by the following gauge generators

X' = —%gﬂ(ﬁ")fsiy +&%u%s (5.11)
Xij = 2Yiit* j) + 23260 t*

—%sijk(xk);‘tzx, (5.12)
Xix = Yut*, + %af,»k@f')ft’z. (5.13)

To determine the form of the corresponding gauge group, we
explicitly evaluate these generators in vector representation
and find the following commutation relations
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[X*, X7] =0,

[Xij, X*] = (Xip)," XY, [Xix, X'] =0, (5.14)
[Xie, Xj,] =0, [Xij, Xix] = 22X Xiy,  (5.15)
[Xij. Xu| = —XipuP !X pg — 2(Xij)u™ Xpx.  (5.16)
Redefining the X;; generators as
Xij = Xij — %EEUWMXIMX (5.17)

with 77’7 = diag(+1, +1, —1), we find that }?ij generate an
SO (2, 1) subgroup with the Lie algebra
[Xij, Xu] = —(Xiju" X pg - (5.18)
The remaining generators X;, and X, which transform non-
trivially under SO (2, 1), generate two translation groups.
Note also that there are only four independent X;, generators.
With all these, the resulting gauge group is then given by

Go=5S0@2, 1) x (R“ x Rﬁ) (5.19)

in which ]R% is the translation group from the shift symmetries
generated by X*. As also pointed out in [41], we see that the
vector ™ does not change the gauge algebra, so we can set
u*® = 0 for simplicity.

We now look for supersymmetric domain wall solutions
invariant under SO (2) C SO(2, 1) generated by X ;. There
are five SO(2) singlet scalars corresponding to the non-
compact generators

T s T s T
Yd=t11+t22+t33+t44+t55, (5.20)
Y =27 + 285 + 285 — 3, —31%, (5.21)

4t A+
Yo =1+t —2t3, (5.22)
Y3 =512, (5.23)
Y4 = s45. (5.24)
Using the coset representative of the form
V = ?YatoYi+er Yo+ Ys+6 Ve (5.25)
we find the scalar potential

e
V = -2 20=801+202) (1202 4 ), (5.26)

4

Consistency of the BPS equations from §x+ conditions
requires ¢1 = 0. After truncating out ¢, we find the T-tensor

Teh — Ee‘ﬂ—gd’l—“q’z [vicesel - 5357

W (8%8f — agsf)] (5.27)

with
_ 8 o-8p1—4¢ 124,
Wi = == %1792 (3 — ¢7°92),
42
_ 8 o-8p1—4¢ 12¢,
Wy = =¥ PP17%02(] — ¢'502), (5.28)
442

It turns out that only W) gives rise to the superpotential in
term of which the scalar potential can be written.

With the superpotential given by WV, the unbroken super-
symmetry corresponds to ei and ei. Therefore, we set
ei = ei = 0 in the following analysis. Alternatively, we
can implement this by imposing an additional projector of

the form

y3e¢ = €x. (5.29)
By the same procedure as in the previous cases together
with the projector (3.31), we obtain the BPS equations, with

§2=§7

Al = 4%#—8@—44’2(3 — o120y, (5.30)
¢ = _zag;ﬁewsm%m (3 — l202), (5.31)
o) = %ﬁefﬂ—“l—“‘l’z (3 — 2, (5.32)
¢, = %ﬁew—wl—“@@ + 1202, (5.33)
c= —%es"*&m —462(3 _ 1202 (5.34)

Introducing a new radial coordinate p via Z—‘r) = ¥ 8014202

we find a domain wall solution

3
5 = \/gtan(«/ggp + (),

(5.35)
2 1 124,
d1=Ci+ S — 55 InG3 +2127), (5.36)
¢ = C3e (3 42¢'%2)3, (5.37)
3 3 3
p=C=7C1— b %m(a + 21292, (5.38)
15
A=-5¢p = =5C+-Ci
3 3 1249
+52 + o InG + 2202, (5.39)

52 JT-BPS domain walls for rankY = 2

In this case, i, j = 1,2, we have ¥;; = diag(1, £1). The
second condition from the quadratic constraint (2.13) allows
only the components U*Y%, x, y, ... = 3,4, 5, which can be
parametrized by a 3 x 3 traceless matrix u,” as

XY,z 1 Xyt z

@ Springer



764 Page 20 of 31

Eur. Phys. J. C (2021) 81:764

with u,* = 0. The non-vanishing gauge generators read

1
XY = —euts (5.41)
202
1
X1 = 2Yt5) + Eum)‘y, (5.42)
) 1 .

Xix = Y,'jt]x - Eé‘ij'ux)t]y (5.43)

with the commutation relations given by

[x*. x*] =0, [X*. Xp]=0. [Xir.X};] =0,
(5.44)

[X12, X*] = (X12)," X7, [X12, Xix] = =2(X12)ir™ X .
(5.45)

X" and X;, commute with each other and separately gener-
ate two translation groups R? and R® which transform non-
trivially under X 1». The single X, generator in turn leads to a
compact SO (2) or a non-compact SO (1, 1) group for ¥;; =
diag(1, 1) or ¥;; = diag(l, —1), respectively. The corre-
sponding gauge groups are then given by SO (2) x (R6 X R;’)
or SO(1, 1) x (R® x R).

5.2.1 Domain walls in SO (2) X (R6 X Rf) gauge group
To find solutions with a non-trivial residual symmetry, we

will consider SO (2) x (R® x R?) gauge group with ¥;; =
d;j. In vector representation, the X, generator is given by

2i(07)i’ 0
X12)n" = ( é 2)i 2Xyﬁ>. (5.46)
2x6  Ux
Accordingly, we choose the matrix u,” to be
00 0
u =00 -2 (5.47)
or O

with A € R. The SO(2) subgroup is then embedded diag-
onally with only X* and X> non-vanishing. Thus, the cor-
responding gauge group, in this case, is given by SO (2) x
(R® x R2).

There are five SO(2) singlets corresponding to the fol-
lowing non-compact generators commuting with X1

Yo =ij+1y 415 +ig+1is, (5.48)
Y, =38 +3235 — 285 — 22, — 2is:, (5.49)
Yo = 2005+ 14+ 1az, (5.50)
Y3 =512, (5.51)
Y4 = s45. (5.52)
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With the coset representative

V= e‘Pvd+¢lY1+¢2Y2+§1Y3+§2v4’ (5.53)

it turns out that the scalar potential vanishes identically. On
the other hand, the T-tensor is given by

e?—12¢1

T(Xﬁ. — I:)\‘ 3 Dlﬂ

Wi r?)

+20% + 26 [ ) — 20 ] 8]
(5.54)
or explicitly
0[}3 _ e‘p_12¢1
2V2
200 +2)s1 0 *+2) 0
0 2(Ah —2)g] 0 —-(r=2)

—(A+2) 0 20 +2)61 0
0 r—-2) 0 2k =251
(5.55)
This leads to two superpotentials
8 o—12¢ 2
W = —=—=e7?1 (A +2),/1 + 47, 5.56
W, ( Y. Si (5.56)
8 —12¢ 2
Wy = ——¢* YA —=2)4/1+4¢67. 5.57
2= 3/ ( Y. Si (5.57)

Unlike the previousrankY = 3 case, both of these give a valid
superpotential in term of which the scalar potential can be
written. As in the previous case, half of the supersymmetry is
broken by choosing any one of these two possibilities which
again corresponds to imposing an additional y> projector of
the form

yler=er or pler=—es (5.58)

for W = W, or W = W, respectively. Together with the
usual p, projectors

BB Tob

Vrésa = QaﬁTG_Bv Vre—q = _Qdﬁ76+a7

(5.59)
the resulting solutions will preserve only eight supercharges
or % of the original supersymmetry.

With the following ansatz for the Killing spinors

A(r) A _ .
er=e 2 B0 and e_ =7 BV (5.60)
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for ei satisfying the projectors (5.58) and (5.59), we obtain
the following BPS equations

8 —12 2
A= e £2),/1 + 462,
442
o=12¢1() +2
B = gqie ( )’ (561)
J2+ 8¢}
o = _get P (£ 2)(1 +20g7)
- ,
20,/2 + 857
ge?~12¢1(). +2)
o =— 2, (5.62)
10,/2 + 8¢7
8 —12 2
=0, ¢ =-"=cie? 21 (1x+2),/1+4c2, 5.63)
&, S1 ﬁg Si (
= %g2e¢—12¢1 (h£+2),/1+4¢2. (5.64)

The choices of plus or minus signs in these equations are
correlated with the plus or minus signs of the two projectors
given in (5.58).

We can consistently set ¢ = 0 and find a domain wall
solution

1 1
A:—Zlns‘l, B:CB—Etan_IZS‘l, (5.65)
1 1
@ +ognst+ g Ind +4¢D) (5.66)
1 1
=Ci+ —Ing — = In(1 +4¢]), 5.67
¢1=Ci+ 5Iner — 55 In(1 +4g7) (5.67)
1
c1=75 tan [\/ze_locl (A x2)gp + C3], (5.68)
52 = C461 (5.69)

where p is the new radial coordinate defined by Cdl—‘r’ =972,

5.2.2 Domain walls in CSO(2, 0, 2) x R? gauge group

From the previous result, there are special values of A = £2
at which the SO(2) x (R® x R?) gauge group reduces to
S0(2) x (R* x R2) ~ CS0(2,0,2) x R2. The two choices
are equivalent, so we will choose A = 2 for definiteness.

In this case, there are nine scalars invariant under the resid-
ual SO(2) symmetry generated by X12. They are given by
the five scalars associated with the non-compact generators
given in (5.48)—(5.52) together with additional two symmet-
ric and two shift scalars respectively corresponding to

s o+ oo 4t
Y6=t14+t25, Y; = ts— 1y, (5.70)
Yg =514 +525, Yo = s15— 524. (5.71)

However, with this large number of scalar fields, the analysis
is highly complicated. To make things more manageable,
we will further truncate the nine scalars to the previous five

singlets together with each of the two sets of axionic scalars
separately.

Turning on two shift scalars, denoted by ¢3 and ¢4, corre-
sponding to Yg and Yo generators, we find the solution given
in Egs. (5.65)—(5.69) together with the solutions for ¢3 and
¢4 of the form

63 =Cs\/1+4¢? and ¢4 = Ce\/1+ 452

More interesting solutions are obtained by including the
scalars corresponding to Y and Y7 generators. With the coset
representative

(5.72)

V= e(/)Yd-HZNYl+¢2Y2+¢3Yo+¢477+§1Y3+§274 (5.73)

we find that the scalar potential vanishes as in the previous
case. There are also two superpotentials. One of them van-
ishes identically while the non-trivial one is given by

W = & o120
2

\/cosh2 23 cosh? 2¢4 + (¢1 — <2 + cosh 2¢3 cosh 2¢4(c1 + 62))2 .
(5.74)

Unlike the previous case, the Minkowski vacuum in this case
is half-supersymmetric with the unbroken supersymmetry
corresponding to the vanishing superpotential. This is very
similarto CSO(2, 0, 2) gauged supergravity in seven dimen-
sions [41].

Only the supersymmetry corresponding to the superpo-
tential (5.74) is preserved by the domain wall. This again
amounts to imposing a y> projector of the form (5.58).
Furthermore, consistency of the BPS equations from § x4+
requires ¢ = ¢» = ¢. It is useful to note the explicit form
of the T-tensor for ¢; = ¢» = ¢ which is given by

e(p_12¢1
VA
+0 4+ 26 () - ("D )] of.

7o =

cosh 2¢3 cosh 2¢)4 [(y3)a/3

(5.75)

Using the Killing spinors (5.60) subject to the projectors
in (5.59) and the first projector in (5.58), we can derive the
following BPS equations

A = %e‘”_lw‘ cosh 2¢3 cosh 2¢4+/1 + 4¢2, (5.76)
B — 2ge?~ 1201 cosh 2¢3 cosh 24 ¢ ’ (5.77)

V2 +8¢2
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;o ge? 121 cosh 2¢p3 cosh 2¢p4(1 4 20¢2)

v = 52+ 8¢2

71291 (cosh? 2¢h3 cosh? 2¢p4 + 5) sech 2¢3 sech 2¢b,

(5.78)

= 152 + 8¢2
(5.79)
o = ge“’*lz‘f’l (cosh2 2¢3 cosh? 2¢4 — 1) sech 2¢3 sech 2¢4
: 3/2+ 82 ’
(5.80)
o = _ﬁge‘/’*u"" sinh 2¢3 sech 2¢4’ (5.81)
V1442
o) = _ﬁge‘/’*u"" cosh 2¢3 sinh 2¢4’ (5.82)
V1+4¢2
¢ = —2ge?" 1291 cosh2¢)3 cosh 2¢uc+/2 + 8¢2. (5.83)
. . . .dp 91241
Introducing a new radial coordinate p via b= m, we
eventually find a domain wall solution
¢2 1 4
=Ci+ = — —In(*» —1
o1 1+ s 1o n(e )
1
+1 In(e*® + 1), (5.84)
1
¢2=C2— I (e4¢3 + 1)
1
+5;1n [e204(1 — 263 4 83y e4¢3] . (5.85)
1 [ 14262280 4 o420 4 4026
¢3=—1In , (5.86)
4 1 — 2e2V280 4 ¢4V280 4 4¢2Cs
1 2¢3 _ ,Cq Cy+4¢3
¢y=-In|S _—C_*¢ , (5.87)
4 203 + 003 — oC3+4e3
1
o=C+ %m(e“"’3 -1
1
t5gln (2641 = 2647 4 8 — 407 (5.88)
_l In [e4¢>3 _ e2C4(1 — D43 + 88¢>3)
8
4265 (1 — 264 + e8¢3)] , (5.89)

A=-In

1 | —

03— 204 (1 — 2693 4 893) 4 40205 (1 — 26493 1 893)
(e*3 — 1)2 ’

(5.90)
€S53 — 1)

° T \/e2C4(1 — 26493 4 ¢863) — 4¢2C5 (1 — 26403 + £893) — 443 .
(5.91)

We end this section by noting that a domain wall solution
with ¢ = 0 can similarly be obtained with the coordinate p
defined by Z—’r) = ¢¥~12¢1 1n this case, the solutions for the
dilaton and warped factor are given by

@ Springer

1
¢p=C+ %ln(e4¢3 -1

|
—5n [ — Gt =26 4 M), (5.92)
A=—5¢ (5.93)

while solutions for the remaining scalars are the same as
given above.

6 Conclusions and discussions

We have constructed the embedding tensors of six-dimensional
maximal N = (2, 2) gauged supergravity for various gauge
groups with known seven-dimensional origins via an §'
reduction. These gaugings are triggered by the embed-
ding tensor in 157! and 30 representations of GL(5) C
S0O(5, 5) duality symmetry. In 157! representation, the cor-
responding gauge group is CSO(p,q,5 — p — g) which
is the same as its seven-dimensional counterpart. On the
other hand, for gaugings in 30 representation, additional
translation groups R} associated with the shift symmetries
on the scalar fields appear in the gaugings resulting in
CSO(p,q,4—p—q) X R;‘ gauge group. This is also the
case for gaugings in (15 + 40) ! representation with gauge
groups SO(2,1) x (R* x R?), SO(2) x (R® x R2), and
CS0(2,0,2) x R2.

We have also studied supersymmetric domain wall solu-
tions and found a large number of half-supersymmetric
domain walls from purely magnetic and purely electric gaug-
ings in 157! and 4_0_l representations, respectively. In addi-
tion, we have given %-supersymmetric domain walls for
dyonic gaugings involving the embedding tensor in both
15! and 30" representations. These are similar to the
seven-dimensional solutions and in agreement with the gen-
eral classification of supersymmetric domain walls in [26] in
which the existence of %-BPS domain walls has been pointed
out.

Apart from solutions with seven-dimensional analogues,
we have also found solutions that are not uplifted to seven-
dimensional domain walls due to the presence of axionic
scalars leading to non-vanishing vector fields in seven dimen-
sions. This can be explicitly seen from the truncation ansatz
collected in Appendix C. Although this ansatz has originally
been given only for SO(5) gauge group, a similar ansatz
with possibly suitable modifications in the tensor field con-
tent is also applicable for other gauge groups. In particular,
the fact that a truncation of seven-dimensional vectors leads
to axionic scalars in six dimensions is still true. Therefore,
domain wall solutions with non-vanishing axionic scalars
obtained in this work cannot be obtained from an S' reduction
of any domain wall solutions in seven dimensions. Accord-
ingly, these solutions are genuine six-dimensional domain
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walls without seven-dimensional analogues. As a final com-
ment, we note that there is no S O (5) symmetric domain wall
in seven dimensions since there is no S O (5) singlet scalar in
SL(5)/SO(5) coset. The six-dimensional SO (5) symmetric
domain wall, on the other hand, arises form an S! reduction
of the supersymmetric Ad S7 vacuum by the general result of
[49].

The seven-dimensional origin of all the gaugings consid-
ered in this work can also be embedded in ten or eleven
dimensions, so the six-dimensional domain wall solutions
can be embedded in string/M-theory via the corresponding
seven-dimensional truncations. Accordingly, the solutions
given here are hopefully useful in the study of DWg/QFT}5
duality for maximal supersymmetric Yang—Mills theory in
five dimensions from both six-dimensional framework and
string/M-theory context. It is interesting to explicitly uplift
the domain wall solutions to seven dimensions and subse-
quently to ten or eleven dimensions using the truncation
ansatze given in [50-54].

Constructing truncation ansatze of string/M-theory to six
dimensions using SO (5, 5) exceptional field theory given in
[55] is also of particular interest. This would allow uplifting
the six-dimensional solutions directly to ten or eleven dimen-
sions. In this paper, we have considered only gaugings with

the embedding tensor in 15~! and 20! representations. It is
natural to extend this study by performing a similar analysis
for the embedding tensors in other GL(5) representations
as well as finding supersymmetric domain walls. Unlike the
solutions obtained in this paper, these solutions will not have
seven-dimensional counterparts via an S' reduction.

It is also interesting to construct the embedding tensors
for various gaugings under SO(4,4) C SO(5,5). These
gaugings can be truncated to gaugings in half-maximal
N = (1, 1) supergravity coupled to four vector multiplets
in which supersymmetric AdSe vacua are known to exist
in the presence of both conventional gaugings and mas-
sive deformations [56-58]. Finding supersymmetric solu-
tions from these gauge groups could be useful in the study of
AdS¢/CFTj5 correspondence. Finally, finding supersymmet-
ric curved domain walls with non-vanishing vector and tensor
fields as in seven-dimensional maximal gauged supergravity
in [59,60] is worth considering. This type of solutions can
describe conformal defects or holographic RG flows from
five-dimensional N = 4 super Yang—Mills theories to lower
dimensions. Along this line, examples of solutions dual to
surface defects from N = (1, 1) gauged supergravity have
appeared recently in [61].
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A GL(5) branching rules

In this appendix, we collect all of the SO(5,5) — GL(5)
branching rules used throughout the paper. Relevant decom-
positions have already been given in [30], but in order to
construct the embedding tensor, we need a concrete realiza-
tion. Therefore, we will determine the decompositions for
various representations of SO (5, 5) in terms of GL(5) rep-
resentations using explicit matrix forms.

A.1 Vector

A vector or fundamental representation of SO (5, 5) decom-
poses under GL(5) C SO(5,5) as § and 5, ie., Vu =
(Viu, V™). The SO (5, 5) vectorindex M =1, ..., 10 canbe
raised and lowered through the following SO (5, 5) invariant
metric in the light cone or off-diagonal basis

01
_ _MN _ 5
n"nMN = 17 —(15())

in which 1,, is an (n x n) identity matrix. For example, V¥ =
N Vy = (V™ V).
In vector representation, the SO (5, 5) algebra

(A1)

[tmn.tro] = 4Gmiptoin — nnipt oim) (A.2)

is realized by SO(5,5) generators , tyny = f[mn], of the
form
tun)p? = 47]P[M51%] (A.3)

where §% = 1. Defining an R™ ~ SO(1,1) C GL(5) ~
R* x SL(5) generator by

d=1", =t ++05+t% + s, (A4)
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we find the explicit form of the R™ generator in vector rep-
resentation given by

_ 1s O
i)

With an SO (5, 5) vector decomposing as Vy; = (V,,,, V"),
we obtain the commutation relations

(A.5)

[d, V] = +2V,, and [d, V"] = —2V". (A.6)

These imply that we can assign the RT weights 42 to the
S and S representations of SL(5) C GL(5). Therefore, the
branching rule for a vector representation reads

10 > 522 @57, (A7)
Vm Vin ym

A.2 Adjoint

The decomposition of adjoint representation follows from
the branching rule of vector representations. Using (A.7), we
can decompose the SO(5, 5) generators as

tun — (tmnatmnatmn) (A8)

with¢,," = —t",,. The 25 generators ¢, of G L(5) consist of
the R generator defined in (A.4) and the SL(5) generators
given by

1
= 1" = o d5) (A.9)

with T, = 0.
We denote the shift and hidden generators by §,,, = tun

and B™" = ™", respectively. In vector representation, the
SO(5, 5) generators can be written as

(tun)p? = (t n b )

m
Smn —t"'n

(A.10)
Fromthe SO (5, 5) algebra, we can derive the following com-

mutation relations

[d,d] =0,

[d, Smn] = _4smn,

[d.z",] =0,
[d, hmn] — +4hmn7

(A.11)
(A.12)
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[smn, qu] =0, [hmn’ hpq] = 0, (A.13)
[t"0, tPq] = 20877 — 8 TP0), (A.14)
2
[T"0, 8pq] = 2(87'Snp — 8'Sng + ES,TSM), (A.15)
2
[t"0. BP?] = 287 W™ — §1H™P — g(SZ’h”q), (A.16)
[smnv hpq] =28t — STy

2
00T+ 8T ) — < dsyysd]

=2(8b¢d, — 8L¢P, — 8P4, + 81tP,,)
(A.17)

in which 857" = 1(s557 — 848%). In the second line of
(A.17), we have used (A.9) to rewrite the commutation rela-
tion in terms of the G L(5) generators. Note also that (A.14)
is the SL(5) algebra. It follows that the G L(5) branching
rule for adjoint representation is given by

0 0 —4 . 74
45 —- 1" 24 100" 10

tunN d ™, Smn "

(A.18)

where the RT weights are determined from the relations
(A.11) and (A.12).

A.3 Spinor

Unlike the vector, decomposition of SO (S5, 5) spinor repre-
sentation under GL(5) is not straightforward. To describe
this branching rule, we begin with the following two sets of
USp(4) ~ SO(5) gamma matrices satisfying

{va, v} = 28ap14, Sap = diag(+, +, +, +, +),

(A.19)
{va. v} = 28,514, 8 = diag(+, +, +, +, +)

(A.20)
where a, b, ... = 1,...,5andd,B,... = i,...,5aretw0

sets of SO(5) vector indices raised and lowered by §,; and
3,5, respectively. For both sets of SO(5) gamma matrices,
we will use the following explicit representation

3 = 1h ®o3,
(A21)

Vi=—-0Q00, »n =1®o0,
Va=01Q02, Y5 = 03802

where {01, 02, 03} are the usual Pauli matrices given by

o1 = (? é) , oy = (? _()i> , o3 = <(1) _01> . (A22)

Each gamma matrix is a 4 x 4 matrix with the index struc-
ture (ya)o,’3 and (yd)dﬂ. Indices «, 8,... = 1,...,4 and
a,B,...=1,...,4are two sets of USp(4) fundamental or
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SO (5) spinor indices raised and lowered through two iden-
tical U Sp(4) symplectic forms

Qup = Qdﬁ =1L ioy (A.23)

satisfying

Qo = ~Qp. P = (Qp)’, QupQ" = -4,
(A24)

and similarly for €2, g Therefore, the matrices (Yu)opg =
Qpy (Va)o! satisfy

Va)pe = —Vadaps QP a)ap = O,

((Va)ap)® = Q2P (va)ys, (A.25)

and similarly for ()/[J)O'[B = Q,é);(yd)d’}-
The 32-dimensional SO(5,5) gamma matrices, r A=
(Ta, Ty withA=1,...,10, satisfying the Clifford algebra

{f‘é, I:Q} = 2napl3 (A.26)

with nap = diag(+, +,+,+,+, —, —, —, —, —) can be
constructed from the SO (5) gamma matrices as

I, = 1®14®y,) and T; = (i02®@y; ®14). (A27)

The matrices A, 1B, and C, which respectively realize Dirac,
complex, and charge conjugation, have the following defin-
ing properties

(A.28)

In our explicit representation, the matrices A and IB are given
by

A = TeIl'I'gl'gTp and B = 1,  Q ® Q. (A.29)

The charge conjugation matrix C can be obtained from A
and B through the relation
C = BTA. (A.30)

The SO (S, 5) chirality matrix takes the following diagonal
form

I, =T,...T = diag(1is, —116). (A31)

Therefore, as seen from the definition (A.27), SO(5,5)
gamma matrices are chirally decomposed as

= 0 ]]-4®Va
r, = d
“ (h@ya 0 ) o

P 0 va @ 1y
¢ —v.®1ly O '

Elements of the 16 x 16 SO (5) gamma matrices 14 ® y, and
y; ® 14 are denoted by the following index structure

(A.32)

Li®y. = (Vu)ad'gﬂ = (Vu)aﬂsg and
Ve ®1s = va)ad®® = 8E(va)e? . (A.33)

On the other hand, we can splita 32-dimensional SO (5, 5)

spinorindex into A = (A, A’)for A, B,...=1,..., 16and

A',B',...=17,...,32so that

Foa’ = ( 0 (FA)AB/) . (A.34)
= Toa® 0

We can then relate these two decompositions of SO(5, 5)
spinor indices into A, A’ and a pair of U Sp(4) indices ()
by using the following transformation matrices

Pi = 8507 + 8503 + 6305 + 856,

Plg = 8084 + 844453 + 844,883 + 51 1255 (A.35)
These matrices satisfy the relations
PPl = 8f and piipl; = 8385 (A.36)

We can now write chiral SO (5, 5) gamma matrices in terms
of the SO (5) ones as

Ca)a® = p3 )™ Pl

Ta)a™ = P ra)ai™ pf;. (A.37)
Toa? = pi e Py,
Taa® = —p% e piy. (A38)

To raise and lower the spinor indices A and A’, we use the
charge conjugation matrix which in this basis takes the form
of

e Q) (A.39)

0
€= <—Q®Q 0

Its elements can be explicitly expressed as

(0 cap as _ [ 0 AP
Cun = (CA/B ()) and C =\ o |-

(A.40)
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The 16 x 16 matrix c4/p is antisymmetric, c4/p = —Cpa’.
Similarly, the matrix ¢A? satisfying the relations

C'B

’ ’
Ccac'C =—8§ and cA/CcCB =—8§,

(A41)

is also antisymmetric cA'B = BN
By raising and lowering the SO (S, 5) spinor index, we

can define gamma matrices with all upper or lower indices

2 AB_ cdce B (@0
Ta) =C" T = ( 0 (FA)A/B, , (A42)
= _ & C _ (Taas O
TaAa=Ta Cep = ( 0 (FA)A’B’> (A43)

in which

T =2 T, T = ATt

Ta)as = (FA)AC/"C’& Toap = Taaecp.
(A.44)

Interms of the U Sp(4) symplectic forms €2, and €2, 5 which
can be used to raise or lower U Sp(4) fundamental indices,
we can write the matrices ¢4/ g and cA'B ag

cap = p%‘f‘pgﬂQaﬂQdB and ¢*'F = pgj;pgﬁszaﬂsz""ﬁ.
(A45)

With all these, we can eventually find the following relations

T = pagpys (ra)* P,

T = poapls ()PP,

TCa)*? = =pog Py (ra) PP,
T = pogpf; ) P,
Cas = PP Gdasppr Tadas = PEPY Vidag pie

Toap = —p°F I’fj (Yidas, g
(A.46)

Tas = P Py Vadws -

with

() PP = QUQ (1) 5PP = ()P QP
() PP = QQI (1) 5PP = QP ()P
Vdaspp = 525 Vadai™ = VadapQu -
Vdacpp = 625 Vadaa® = Qap V) g (A47)

We now transform all these results to the basis with off-
diagonal npn given in (A.1). Denoting SO(5,5) gamma
matrices in this basis by I 37, we can write the corresponding
Clifford algebra as

[Fu. B} = 201 (A48)

@ Springer

From [30], the relation between diagonal and off-diagonal n
is given by

nun = MyAMyEnap (A.49)
with

_ 1 (15 15
M = 7 (115 _15>. (A.50)

We can then find the following relation between these two
sets of gamma matrices

Ty = MyAT, (A51)

with the same chiral decomposition of the form

(Fna® = ( ) (FM)AB) (A52)
a0

Moreover, we can still raise and lower the chirally decom-
posed spinor indices with the charge conjugation matrix
given in (A.39) such that

~ = F O
Tu)a = (rM)ACCCB - <( A{))AB (FM)A’B’)

(A.53)

with (M) ap = (Ca) A cerpand (Cy) e = (T aCec.
We will see in the following analysis that (I'ys)4p play an
important role in determining specific forms of the embed-
ding tensor.

In spinor representation, the SO (5, 5) generators satisfy-
ing (A.2) are given by

(tun)a® = Tun)a®. (A.54)

In 32 x 32 representation, we can write

- 1/ -~ - - -
P = 5 (Faa"Ewc” = Ena” Fane”)

(Tyn)a® 0 )
( 0  (Twmma® (A5
with

1 , /
(Cun)al = 3 [(FM)AC (T — (OCn)a€ (FM)C’B] ,
(A.56)

’ 1 / !

Cun)a? = 3 [(FM)A/C(FN)CB — T4 Tuc? ]
(A.57)

It should be noted that the SO(5,5) generators in spinor
representation given in (A.54) also decompose according to
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(A.18) and satisfy the same algebra given in (A.11)—(A.17)
for vector representation.

As pointed out in [30], the branching rules for spinor and
conjugate spinor representations of SO (5, 5) are respectively
given by

16, > 57 @107 ® 175 and
16, > 53 @10 @ 115, (A.58)

To find the corresponding decompositions of spinor indices,
we define the following transformation matrices

1
Tam = —=Tw)apis 2, (A.59)
272
1
= (I 45 Py Qap, A.60
A 4\/5( )ABPB af ( )
1
Tas = 15" m)as Py Q. (A.61)

In these equations, pgl‘ﬁ matrices are defined in the same way
as p;‘B in (A.35).

We can now decompose an SO (5, 5) spinor in 16, repre-
sentation as
Yy = I’]I‘Am‘ljm + T'Xn\pmn + Tas Wy (A.62)

with W,,, = Wn,). The commutation relations between
these components and the R™ generator are given by

[d, "JI‘Am\IJ’”] = 43T 4, ¥, (A.63)
[d. T} " W] = =T Wy, (A.64)
[d» TA*\I’*] = _STA*\IJ* (A~65)
in accord with the branching rule
=3 -1 -5
16, - 5 10 1 . (A.66)
N — T = =~

Wy wn \y[mn] Wy

The inverse matrices of T 4 are simply given by their com-
plex conjugation T4 = (T4)~! = (T4)* satisfying

TA"Ta, = 87, TATH =slPstl, TATA = 1,

TA"Tanp = 0, T*"Ta, =0, Tp,Tax =0

(A.67)
together with
TA™T gy, + TA, T2 + TATp, =64 . (A.68)

In addition, we also note that a complex conjugation of the
SO(5,5) gamma matrices is related to raising the indices
(T ap)* = (FM)AB. We can then similarly decompose a
conjugate spinor of SO (5, 5) transforming in 16, as follows

wA = TAmy, 4 TA U 4 TAY, (A.69)

The following commutation relations

[d, TAmwm] — _3TAMy,,, (A.70)
[d, T,ﬁnwmn] = +TA gmn, (A1)
[d, Tj}\p*] — $5TAw, (A72)
imply the branching rule
-3 —+1 +5
6. > 53010 @ 1%, (A73)

wA v, W lmn] v,

A.4 Vector-spinor

The vector-spinor of SO(5,5) we are interested in is given
by #4M ¢ 144,., which parameterizes the embedding tensor.
It transforms according to

[tn, 027 | =~ 0”02 = (tun) 07, (AT4)

HAM

Here, is a (16 x 10) matrix subject to

(Ca)apdBM =0 (A.75)

which is the linear constraint required by supersymmetry,
reducing 160 components of the 64 to 144 in 144, repre-
sentation.

To determine the decomposition of the vector-spinor rep-
resentation under G L(5), we first split the SO (5, 5) vector
index M as 64M = (94", 9,,‘2). Then, with the inverse of
the transformation matrices T 4 given in (A.59)—(A.61), 94"
and 9,;‘1‘ can be further decomposed into the following six
components

04" = TA (), + T, (03)"7" + TL@5)".  (A.76)
O = T @2um + Thyy @)l + T (F6)m.- (A77)

It is straightforward to show that their commutation relations
with the RT generators in both vector and spinor represen-
tations are given by

—5TA"(91),,"™,

[d. T4 @0)," ]
[d. T4 @2 | = =T @2)um,

[d. T2, @3] = —T, @37,

|d. T3, @07 | = +3T5, 037
[d. T2 09| = +3T03)",

(A.78)

[d, T2 B6)m | = +TT2W6)m.

@ Springer
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The branching rule for 144, representation is then given by

144, > 50 057 0107 @157 @ 247
[ —— [ N S
HAM Jm K Zmn Yiun Sm"
03 ‘o (A.79)
S~—— S———
ymn.p WP

in agreement with that given in [30]. We now explicitly con-
struct a number of possible embedding tensors arising from
various components of the above decomposition.

A.4.1 2473 representation

With only 91 # 0, we have QQ = 0, and 64" is parametrized
by a 5 x 5 matrix (¢1),". Therefore, the embedding tensor
is given by

9AM (’H‘A"(z?])nm, 0) . (A.80)
The linear constraint (A.75) implies that (), is traceless
or

@D = S (A.81)

for S,,”" = 0. This leads to an embedding tensor in 2473
representation of G L(5) given by

ezAM (A.82)

M (TA"S,,’", o) .
A.4.2 157! representation
For 4™ = 0, Gﬁ is parametrized by a 5 x 5 matrix (92)n
which can further be decomposed in terms of symmetric and
antisymmetric parts, Y, = Yun) and Zy,,, = Zjpmn), as

O =T O2)m = T Y + Zum). (A.83)

The linear constraint (A.75) requires Z,,, = 0, so the embed-
ding tensor is given by

(A.84)

oM = (0, A" Y,,m)

in15~! representation of GL(5).

A43 30" representation

With only (3)"™ non-vanishing, we have /1 = 0 and #4™
given by

04" =T (93)"P". (A.85)

@ Springer

The tensor (93)"7>™ can in turn be parametrized as

1
(B3)"P" = UMD g, (A.86)

ymp = ylmlp with ym-rl = 0 and ¢, = L[mn)] COI-

respond to 30 ' and 10~ representations, respectively. The
condition (A.75) requires ¢, = Oresulting in the embedding

L= .
tensor in 40 ~ representation of the form

oA, = (T,Um ", 0). (A87)

A.4.4 107" representation

Turning on 10~ irreducible part of both (), and (J3)"*7-""
by setting Yy, = 0 and U"™"P = 0, we find the embedding
tensor of the form

1
9;})",41 = (ET;‘,,S'""M’@,, TA" z,,m) ) (A.88)
The condition (A.75) is satisfied for
V2
Emn = szm (A.89)

Therefore, the embedding tensor in 10! representation is
given by

1
pAM (_T;‘psm"ﬂqrzq,, TA”an> . (A.90)

107! 32
A4S E—H representation

In this case, we consider non-vanishing (1%4),, which can be

. -—=+3 =43 . . .
decomposed into 457 and 57 irreducible representations
of the form

@ = Wil + Jsh) (A91)
with W,/ = W,E,np ] satisfying W,"" = 0. The linear con-
straint (A.75) requires J” = 0 leading to the embedding
tensor in 45 representation given by

o2, = (0, T, Wi ). (A.92)

=3 .
A.4.6 5 representation

We now consider non-vanishing 5 components from both
(U5)™ and (¥4)™ in terms of which the embedding tensor is
given by
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oAY = (TAgm T JUsh) ) (A.93)
This satisfies the linear constraint (A.75) for

g = —%EJ'” (A.94)
Therefore, we find the embedding tensor in 5+ representa-
tion given by

o2 = ( 2‘/_11‘*‘ Jm, A gts)) ) . (A.95)

A.4.7 577 representation

Finally, we consider (9%),, corresponding to 57 representa-
tion. This can be parameterized by an arbitrary G L(5) vector
of the form (J¢),, = K. The corresponding embedding ten-
sor is also in 577 representation and takes the form
0AY = (o, TAK,, ) (A.96)
which automatically satisfies the condition (A.75).

We end this appendix by giving the full parametrization
of the embedding tensor pAM — (gAm Q,Q) under GL(5)

1
Am __ A A s
oM = TA"S,™ +Tnp <U”p m ﬁgmnpqrzqr)

2
‘/—TA Jm, (A.97)
= T“(Ynm + Zum) + Ty (Wil

+Jnshh + TAK (A.98)

B Symplectic-Majorana—Weyl spinors in six dimensions

In this appendix, we collect conventions and fundamental
relations involving irreducible spinors in six-dimensional
space-time used throughout this work. In six dimensions,
there exist Dirac spinors with 16 real components. The Dirac
spinors are reducible and can be decomposed into two irre-
ducible Weyl spinors of opposite chirality with 8 real compo-
nents each. The six-dimensional Clifford algebra is defined
by the relation

{Pavo + Vsva) = 205 Ls. (B.1)
Here, )?,1 are 8 x 8 Dirac matrices and Nap = diag(—1, +1,
+1,+1,+1, +1) with 4,v,... = 0,1,...,5 being six-

dimensional flat space-time indices. We will use the follow-
ing explicit representation of the gamma matrices

W=01Qin®l, p1=0l®o0,
» =010 Q1y,
=001 ®o,

75 =01003® 1.

=01 ® o3,

(B.2)

In this representation, the Dirac, complex, and charge conju-
gation matrices are respectively given by

A A A

A=y, B=—ip3ps, C=ipoP374. (B.3)
They satisfy the following relations
Gt =—Ap AT gt = BB
G = —Cp ! (B.4)
together with the identities
BT =CA™!, B'B=-15, ¢T=-C'=-C"=¢(
(B.5)

The chirality operator p, can be defined as

AAAAAA

(B.6)

The diagonal form of 9, implies that a Dirac spinor ¥ can
be chirally decomposed as

W=y, +V_ withPpWy =3V, (B.7)
where the projection operators are given by

1 .
Py = 5 (g £ 7%). (B.8)

Therefore, we can define two irreducible Weyl spinors
and x_ from the Dirac spinor ¥ by

= ()= (0) - ()

Although the second property in (B.5) implies that areality
condition cannot be imposed on the Dirac or Weyl spinors, we
can define a symplectic-Majorana—Weyl spinor of the form

W, = (1//8“> and V_4 = (Xod)

with W4, and W_g satisfying the pseudo-reality condition
given by

(B.9)

(B.10)

WY = (Vi) = Q¥PBW, g and

= (V_p)* = QB (B.11)

@ Springer
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Q2 and Q4P are symplectic forms of the two U Sp(4) factors
in the R-symmetry U Sp(4) x U Sp(4) under which W, and
W_, transform separately.

C Truncation ansatze

In this appendix, we collect some useful formulae for a
consistent truncation of seven-dimensional SO (5) gauged
supergravity on a circle (S'), giving rise to SO(5) gauged
supergravity in six dimensions. This truncation has been con-
structed in [28].

The truncation ansatze for the seven-dimensional metric,
scalar, vector, and tensor fields are respectively given by

2 _ a0 s 2
ds; = evViods; +e V0(dz+ Aqy)”,

(C.1)
I/ (x*, z) = T, (xH), (C.2)
é(l)lj = By + By (dz + Ay, (C.3)
Sayr = Say + Sz + Agy) (C.4)

in which hatted quantities refer to seven-dimensional fields.
x" are six-dimensional space-time coordinates, and z is the
coordinate on S!. Here, I.J,... = 1,...,5 are vector
indices of the gauge group SO (5) while i, j,...=1,...,5
are vector indices for the local composite SO (5)..

There are (14-14410) scalars denoted by {o, T1;%, B(o)s”}
in the six-dimensional theory. These are given by the dila-
ton scalar field from the matric ansatz (C.1), fourteen scalars
parametrizing SL(5)/SO(S). coset, and ten axionic scalar
fields from the truncation ansatz of vector fields (C.3). There
are also (10 4 1) vectors {B(1y;”, A1y} together with five
two-form potentials S2y;. The five three-form potentials
S3y1 donot contribute to the Lagrangian of the S O (5) gauged
theory in six dimensions since the seven-dimensional self-
duality condition allows to eliminate them in favor of the
two-form potentials.

For supersymmetric domain wall solutions considered in
this work, we can set A(j) = B(]),J = Sy1 = 0. Using the
domain wall ansatz for the matric from (3.8) together with

[

¢ =550 We find that (C.1) becomes

e2Adx12 s+ dr?

= e2A+2“’dxf4 +e78d? + e¥dr?
84
5

=5 (dxiy +dz?) + e*dr? (C.5)

In the second line, we have substituted ¢ = —% from the
domain wall solutions given here. This is also necessary
for dx12 gand d 22 to form a six-dimensional flat space-time

matching a’xi5 on the left hand side. We can also see the

relations between the warped factors A= %A and the radial
coordinates d7 = e“dr.

@ Springer

The ansatz (C.2) implies that the scalars parametrizing
SL(5)/SO(5), coset in seven- and six-dimensional super-
symmetric domain walls are the same since they are inde-
pendent of z and depend only on the corresponding radial
coordinates

/() =, (). (C.6)

For ten axionic scalars B(g);’, which are called shift scalars
in this work, we can see from (C.3) that they give rise to
non-vanishing vector fields in seven dimensions

B[ = By’ dz. (C.7)

Therefore, domain wall solutions with non-vanishing axionic
scalars obtained in this work cannot be obtained from an S
reduction of any domain wall solutions in seven dimensions.
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