
Eur. Phys. J. C (2021) 81:764
https://doi.org/10.1140/epjc/s10052-021-09536-4

Regular Article - Theoretical Physics

Supersymmetric domain walls in maximal 6D gauged
supergravity I

Parinya Karndumria, Patharadanai Nuchinob

String Theory and Supergravity Group, Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan,
Bangkok 10330, Thailand

Received: 6 March 2021 / Accepted: 7 August 2021 / Published online: 23 August 2021
© The Author(s) 2021

Abstract We find a large class of supersymmetric domain
wall solutions from six-dimensional N = (2, 2) gauged
supergravity with various gauge groups. In general, the
embedding tensor lives in 144c representation of the global
symmetry SO(5, 5). We explicitly construct the embed-

ding tensors in 15−1 and 40
−1

representations of GL(5) ∼
R

+ × SL(5) ⊂ SO(5, 5) leading to CSO(p, q, 5 − p − q)

and CSO(p, q, 4 − p−q)�R
4
s gauge groups, respectively.

These gaugings can be obtained from S1 reductions of seven-
dimensional gauged supergravity withCSO(p, q, 5− p−q)

andCSO(p, q, 4− p−q) gauge groups. As in seven dimen-
sions, we find half-supersymmetric domain walls for purely
magnetic or purely electric gaugings with the embedding ten-

sors in 15−1 or 40
−1

representations, respectively. In addi-
tion, for dyonic gauge groups with the embedding tensors

in both 15−1 and 40
−1

representations, the domain walls
turn out to be 1

4 -supersymmetric as in the seven-dimensional
analogue. By the DW/QFT duality, these solutions are dual
to maximal and half-maximal super Yang–Mills theories
in five dimensions. All of the solutions can be uplifted
to seven dimensions and further embedded in type IIB or
M-theories by the well-known consistent truncation of the
seven-dimensional N = 4 gauged supergravity.

1 Introduction

Supersymmetric domain walls in gauged supergravities in
various space-time dimensions have provided a useful tool
for studying various aspects of the AdS/CFT correspon-
dence since the original proposal in [1], see also [2,3]. In
particular, these solutions play an important role in the so-
called DW/QFT correspondence [4–6], a generalization of
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the AdS/CFT correspondence to non-conformal field theo-
ries. They are also useful in studying some aspects of cos-
mology, see for example [7–9]. Due to their importance
in many areas of applications, many domain wall solu-
tions in gauged supergravities have been found in differ-
ent space-time dimensions [10–25]. A systematic classifica-
tion of supersymmetric domain walls from maximal gauged
supergravity in various space-time dimensions can also be
found in [26].

In this paper, we are interested in maximal N = (2, 2) six-
dimensional gauged supergravity with SO(5, 5) global sym-
metry. Compared to other dimensions, supersymmetric solu-
tions to this six-dimensional gauged supergravity have not
been systematically studied since the original construction of
the ungauged N = (2, 2) supergravity long ago in [27]. The
first N = (2, 2) six-dimensional gauged supergravity with
SO(5) gauge group has been constructed in [28] by perform-
ing an S1 reduction of the SO(5) maximal gauged supergrav-
ity in seven dimensions [29]. More recently, the most gen-
eral gaugings have been constructed and classified in [30]
using the embedding tensor formalism. From the results of
[30], there are two particularly interesting classes of gaug-
ings under GL(5) and SO(4, 4) subgroups of SO(5, 5). The
former contains gaugings obtained from an S1 reduction of
seven-dimensional maximal gauged supergravity while the
latter can be truncated to half-maximal N = (1, 1) gauged
supergravity.

We will consider only gaugings in the first class with

the embedding tensor in 15−1 and 40
−1

representations
of GL(5). These gaugings have known seven-dimensional
origins via an S1 reduction and can also be embedded in
string/M-theory using the truncations to maximal gauged
supergravity in seven dimensions. The fact that there does
not exist an N = 4 superconformal symmetry in five dimen-
sions [31] is in agreement with the recent classification of
maximally supersymmetric AdS vacua given in [32]. This
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implies that there is no AdS6/CFT5 duality in the case of
32 supercharges. Therefore, maximally supersymmetric vac-
uum solutions of the N = (2, 2) gauged supergravity are
expected to be half-supersymmetric domain walls. In this
work, we will systematically study this type of solutions and
give a large number of them including 1

4 -supersymmetric
solutions.

It has been shown recently that maximally supersymmet-
ric Yang–Mills theory in five dimensions plays an important
role in the dynamics of (conformal) field theories in both
higher and lower dimensions via a number of dualities, see
for example [33–38]. In particular, this theory could even be
used to define the less known N = (2, 0) superconformal
field theory in six dimensions compactified on S1. The latter
is well-known to describe the dynamics of strongly coupled
theory on M5-branes. Accordingly, we expect that supersym-
metric domain walls of the maximal gauged supergravity in
six dimensions could be useful in studying various aspects of
the maximal super Yang–Mills theory in five dimensions via
the DW/QFT correspondence. A simple domain wall solu-
tion with SO(5) symmetry has already been given in [28]
for SO(5) gauging, see [39,40] for the holographic inter-
pretation of this solution. In this paper, we extend this study
by including a large class of supersymmetric domain walls
with different unbroken symmetries in N = (2, 2) gauged
supergravity with various gauge groups.

The paper is organized as follows. In Sect. 2, the con-
struction of six-dimensional maximal gauged supergravity
in the embedding tensor formalism is reviewed. Supersym-

metric domain wall solutions from gaugings in 15−1, 40
−1

,
and (15 + 40)−1 representations are respectively given in
Sects. 3, 4, and 5. Conclusions and discussions are given
in Sect. 6. Branching rules for relevant SO(5, 5) repre-
sentations under GL(5) are given in Appendix A. The
conventions on symplectic-Majorana–Weyl Spinors in six-
dimensional space-time used throughout this work are col-
lected in Appendix B. Finally, consistent truncation ansatze
for seven-dimensional SO(5) gauged supergravity on S1 giv-
ing rise to SO(5) maximal gauged supergravity in six dimen-
sions are reviewed in Appendix C.

2 N = (2, 2) gauged supergravity in six dimensions

We begin by giving a brief review of six-dimensional N =
(2, 2) gauged supergravity in the embedding tensor formal-
ism constructed in [30]. We will mainly collect relevant for-
mulae for constructing the embedding tensor and finding
supersymmetric domain wall solutions. For more details, we
refer the reader to the original construction in [30].

As in other dimensions, N = (2, 2) maximal supersym-
metry in six dimensions allows only a unique graviton super-

multiplet with the following field content

(
eμ̂
μ, Bμνm, AA

μ, VA
αα̇, ψ+μα,ψ−μα̇, χ+aα̇, χ−ȧα

)
. (2.1)

Most of the conventions are the same as in [30]. Curved
and flat space-time indices are respectively denoted by
μ, ν, . . . = 0, 1, . . . , 5 and μ̂, ν̂, . . . = 0, 1, . . . , 5. Lower
and upper m, n, . . . = 1, . . . , 5 indices label fundamental
and anti-fundamental representations of GL(5) ⊂ SO(5, 5),
respectively. Indices A, B, . . . = 1, . . . , 16 describe
Majorana–Weyl spinors of the SO(5, 5) duality symmetry.
We also note that according to this convention, the electric
two-form potentials Bμνm transform as 5 under GL(5) while
the vector fields AA

μ transform as 16c under SO(5, 5).
Fermionic fields, transforming under the local SO(5) ×

SO(5) symmetry, are symplectic-Majorana–Weyl (SMW)
spinors, see Appendix B for more detail on the convention.
Indices α, . . . = 1, . . . , 4 and α̇, . . . = 1̇, . . . , 4̇ are respec-
tively two sets of SO(5) spinor indices in SO(5) × SO(5).
Similarly, vector indices of the two SO(5) factors are denoted
by a, . . . = 1, . . . , 5 and ȧ, . . . = 1̇, . . . , 5̇. We use ± to
indicate space-time chiralities of the spinors. Under the local
SO(5) × SO(5) symmetry, the two sets of gravitini ψ+μα

and ψ−μα̇ transform as (4, 1) and (1, 4) while the spin- 1
2

fields χ+aα̇ and χ−ȧα transform as (5, 4) and (4, 5).
In ungauged supergravity, only the electric two-forms

Bμνm appear in the Lagrangian while the magnetic duals
Bμν

m transforming in 5 representation of GL(5) are intro-
duced on-shell. The electric and magnetic two-forms are
combined into a vector representation 10 of the full global
symmetry group SO(5, 5) denoted by BμνM = (Bμνm,

Bμν
m). Therefore, only the subgroup GL(5) ⊂ SO(5, 5)

is a manifest off-shell symmetry of the theory. On the other
hand, the full SO(5, 5) duality symmetry is the on-shell sym-
metry interchanging field equations and Bianchi identities of
the two-form potentials. However, the most general gaugings
of the ungauged supergravity can involve a symmetry that
is not a subgroup of the off-shell GL(5) symmetry. More-
over, the magnetic two-forms can also appear in the gauged
Lagrangian via topological terms.

In N = (2, 2) supergravity, there are 25 scalar fields
parametrizing the coset space SO(5, 5)/ (SO(5) × SO(5)).
In chiral spinor representation, we can describe the coset
manifold by a coset representative VA

αβ̇ transforming under
the global SO(5, 5) and local SO(5) × SO(5) by left
and right multiplications, respectively. The inverse elements

(V−1)αβ̇

A
will be denoted by V A

αβ̇ satisfying the relations

VA
αβ̇V B

αβ̇ = δBA and VA
αβ̇V A

γ δ̇ = δα
γ δ

β̇

δ̇
. (2.2)

In vector representation, the coset representative is given by
a 10 × 10 matrix VM

A = (VM
a,VM

ȧ) with A = (a, ȧ).
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This is related to the coset representative in chiral spinor
representation by the following relations

VM
a = 1

16
V Aαα̇(	M )AB(γ a)αα̇

ββ̇V B
ββ̇ , (2.3)

VM
ȧ = − 1

16
V Aαα̇(	M )AB(γ ȧ)αα̇

ββ̇
V B

ββ̇ . (2.4)

In these equations, (	M )AB and (	A)αα̇
ββ̇ = ((γa)αα̇

ββ̇ ,

(γȧ)αα̇
ββ̇ ) are respectively SO(5, 5) gamma matrices in non-

diagonal ηMN and diagonal ηAB bases, see Appendix A.3 for
more detail.

The inverse will be denoted by VMA satisfying the fol-
lowing relations

VMaVM
b = δab, VMȧVM

ḃ = δȧḃ, VMaVM
ȧ = 0 (2.5)

and

VM
aVNa − VM

ȧVNȧ = δNM . (2.6)

In these equations, we have explicitly raised the SO(5) ×
SO(5) vector index A = (a, ȧ) resulting in a minus sign in
Eq. (2.6).

The most general gaugings of six-dimensional N = (2, 2)

supergravity can be efficiently described by using the embed-
ding tensor �A

MN . This tensor introduces the minimal cou-
pling of various fields via the covariant derivative

Dμ = ∂μ − gAA
μ �A

MN tMN (2.7)

where g is a gauge coupling constant. The embedding ten-
sor identifies generators XA = �A

MN tMN of the gauge
group G0 ⊂ SO(5, 5) with particular linear combinations
of the SO(5, 5) generators tMN . Supersymmetry requires
the embedding tensor to transform as 144c representation of
SO(5, 5). Accordingly, �A

MN can be parametrized in term
of a vector-spinor θ AM of SO(5, 5) as

�A
MN = −θ B[M (	N ])BA ≡

(
	[MθN ])

A
(2.8)

with θ AM subject to the constraint

(	M )AB θ BM = 0. (2.9)

With the SO(5, 5) generators in vector and spinor repre-
sentations given by

(tMN )P
Q = 4ηP[Mδ

Q
N ] and (tMN )A

B = (	MN )A
B

(2.10)

in which ηMN is the off-diagonal SO(5, 5) invariant tensor
given in (A.1), the corresponding gauge generators take the
forms

(XA)M
N = 2

(
	MθN

)
A

+ 2
(
	N θM

)
A

and

(XA)B
C =

(
	MθN

)
A

(	MN )B
C . (2.11)

For consistency, the gauge generators must form a closed
subalgebra of SO(5, 5), so the embedding tensor needs to
satisfy the quadratic constraint

[XA, XB] = −(XA)B
C XC . (2.12)

In terms of θ AM , the quadratic constraint reduces to the fol-
lowing two conditions

θ AMθ BNηMN = 0, θ AMθ B[N (	P])AB = 0. (2.13)

It follows that any θ AM ∈ 144c satisfying this quadratic
constraint defines a consistent gauging of the theory.

To identify possible gaugings, we first decompose θ AM

under a given subgroup of SO(5, 5). As pointed out before,
theGL(5) subgroup of SO(5, 5) is of particular interest since
this is the symmetry of the ungauged Lagrangian. As given
in [30], θ AM ∈ 144c decomposes under GL(5) ⊂ SO(5, 5)

as

144c → 5
+3 ⊕ 5+7 ⊕ 10−1 ⊕ 15−1

⊕ 24−5 ⊕ 40
−1 ⊕ 45

+3
. (2.14)

The explicit form of all the seven irreducible components can
be found in Appendix A.4. In this case, determining consis-
tent gaugings is to find the irreducible components satisfying
the quadratic constraint (2.13).

By decomposing the SO(5, 5) vector index under GL(5),
we can write θ AM = (θ Am, θ A

m ) with θ Am and θ A
m containing

the following irreducible components

θ Am = 5
+3 ⊕ 10−1 ⊕ 24−5 ⊕ 40

−1
, (2.15)

θ A
m = 5

+3 ⊕ 5+7 ⊕ 10−1 ⊕ 15−1 ⊕ 45
+3

. (2.16)

It is easily seen that the first equation in (2.13) is automat-
ically satisfied for purely electric or purely magnetic gaug-
ings that involve only θ Am or θ A

m components. We note that
as pointed out in [30], gaugings triggered by θ Am are electric
in the sense that only electric two-forms participate in the
resulting gauged theory while magnetic gaugings triggered
by θ A

m involve magnetic two-forms together with additional
three-form tensor fields. Comparing (2.15) and (2.16) to

(2.14), we immediately see that gaugings in 24−5 ⊕ 40
−1

and

5+7 ⊕ 15−1 ⊕ 45
+3

representations are respectively purely

electric and purely magnetic whereas those in 5
+3 ⊕ 10−1

representation correspond to dyonic gaugings involving both
electric and magnetic two-forms. Other dyonic gaugings can
also arise from combinations of various electric and magnetic
components leading to many possible gauge groups.
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Apart from the minimal coupling implemented by the
covariant derivative (2.7), gaugings also lead to hierarchies of
non-abelian vector and tensor fields of various ranks. How-
ever, since we are only interested in domain wall solutions
which only involve the metric and scalar fields, we will, from
now on, set all vector and tensor fields to zero. It is straight-
forward to verify that this is indeed a consistent truncation.
With only the metric and scalars non-vanishing, the bosonic
Lagrangian of the maximal N = (2, 2) gauged supergravity
takes the form

e−1L = 1

4
R − 1

16
Paȧ

μ Pμ
aȧ − V, (2.17)

and supersymmetry transformations of fermionic fields are
given by

δψ+μα = Dμε+α + g

4
γ̂μTα

β̇ε−β̇ , (2.18)

δψ−μα̇ = Dμε−α̇ − g

4
γ̂μT

β
α̇ε+β, (2.19)

δχ+aα̇ = 1

4
Pμ
aȧ γ̂μ(γ ȧ)α̇

β̇
ε−β̇ + 2g(Ta)

β
α̇ε+β

−g

2
T α

α̇(γa)α
βε+β, (2.20)

δχ−ȧα = 1

4
Pμ
aȧ γ̂μ(γ a)α

β
ε+β + 2g(Tȧ)α

β̇ε−β̇

+g

2
Tα

α̇(γȧ)α̇
β̇ε−β̇ . (2.21)

The covariant derivatives of supersymmetry parameters,
ε+α and ε−α̇ , are defined by

Dμε+α = ∂με+α + 1

4
ωμ

νργ̂νρε+α + 1

4
Qab

μ (γab)α
βε+β,

(2.22)

Dμε−α̇ = ∂με−α̇ + 1

4
ωμ

νργ̂νρε−α̇ + 1

4
Qȧḃ

μ (γȧḃ)α̇
β̇ε−β̇

(2.23)

with γ̂μ = eμ̂
μγ̂μ̂. Matrices γ̂μ̂ are space-time gamma matri-

ces, see the convention in Appendix B. For simplicity, we
will suppress all space-time spinor indices.

The scalar vielbein Paȧ
μ and SO(5) × SO(5) composite

connections, Qab
μ and Qȧḃ

μ , are given by

Paȧ
μ = 1

4
(γ a)

αβ
(γ ȧ)

α̇β̇
V A

αα̇∂μVAββ̇ , (2.24)

Qab
μ = 1

8
(γ ab)

αβ
�α̇β̇V A

αα̇∂μVAββ̇ , (2.25)

Qȧḃ
μ = 1

8
�αβ(γ ȧḃ)

α̇β̇
V A

αα̇∂μVAββ̇ (2.26)

in which �αβ and �α̇β̇ are the twoUSp(4) symplectic forms
whose explicit forms can be found in (A.23). These defini-
tions can be derived from the following relation

V A
αα̇∂μVAββ̇ = 1

4
Paȧ

μ (γa)αβ(γȧ)α̇β̇

+1

4
Qab

μ (γab)αβ�α̇β̇ + 1

4
Qȧḃ

μ �αβ(γȧḃ)α̇β̇ .

(2.27)

The scalar potential is given by

V = g2

2
θ AMθ BNVM

aVN
b
[
V αα̇
A (γa)α

β(γb)β
γ VBγ α̇

]

= −g2

2

[
T αα̇Tαα̇ − 2(T a)αα̇(Ta)αα̇

]
(2.28)

where we have introduced the T-tensors defined by

(T a)αα̇ = VM
aθ AMVA

αα̇, (T ȧ)αα̇ = −VM
ȧθ AMVA

αα̇

(2.29)

with

T αα̇ ≡ (T a)βα̇(γa)β
α = −(T ȧ)αβ̇ (γȧ)β̇

α̇ . (2.30)

3 Supersymmetric domain walls from gaugings in 15−1

representation

In this section, we consider gauge groups arising from the
embedding tensor in 15−1 representation. These are purely
magnetic gaugings with the corresponding embedding tensor
given by

θ A
m = T

AnYnm . (3.1)

The matrix T
An is the inverse of the transformation matrix

TAn given in (A.59) and Ymn is a symmetric 5 × 5 matrix.
As previously mentioned, for θ Am = 0, the embed-

ding tensor θ AM = (0, T
AnYnm) automatically satisfies the

quadratic constraint (2.13). Therefore, every symmetric ten-
sor Ymn defines a viable gauging in 15−1 representation. As
in [41], we can use SL(5) ⊂ GL(5) symmetry to bring Ymn

to the form

Ymn = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
r

) (3.2)

where p + q + r = 5.
Under GL(5), the gauge generators transforming as a

spinor 16s of SO(5, 5) decompose as follows

XA = TAm Xm + T
mn
A Xmn + TA∗X∗. (3.3)

For the embedding tensor in 15−1 representation, the only
non-vanishing gauge generators are given by

Xmn = 2Yp[m t pn] (3.4)
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with tmn being GL(5) generators. In vector representation,
the explicit form of Xmn is given by

(Xmn)P
Q = −4(δ

Q
[mYn]pδ pP + ηP[mYn]qηqQ). (3.5)

These generators satisfy the commutation relations

[Xmn, X pq ] = (Xmn)pq
rs Xrs (3.6)

in which (Xmn)pq
rs = 2(Xmn)[p[rδs]q]. Therefore, the corre-

sponding gauge group is determined to be

G0 = CSO(p, q, r) = SO(p, q) � R
(p+q)·r . (3.7)

These gaugings arise from an S1 reduction of seven-
dimensional maximal gauged supergravity with the same
gauge groups. In the case of SO(5) gauge group (p = 5
and q = r = 0), the complete reduction ansatz has already
been constructed in [28].

3.1 Supersymmetric domain walls

In order to find supersymmetric domain wall solutions, we
take the space-time metric to be the standard domain wall
ansatz

ds2
6 = e2A(r)ημ̄ν̄dx

μ̄dx ν̄ + dr2 (3.8)

where μ̄, ν̄ = 0, 1, . . . , 4, and A(r) is a warped factor
depending only on the radial coordinate r . To parametrize
the coset representative of SO(5, 5)/(SO(5) × SO(5)), we
first identify the corresponding non-compact generators of
SO(5, 5) in the basis with diagonal SO(5, 5) metric ηAB .
These are given by

t̂aḃ = Ma
M

Mḃ
N tMN (3.9)

where MA
M = (Ma

M , Mȧ
M ) is the inverse of the transfor-

mation matrix M given in (A.50).
We then split these generators into two parts that are sym-

metric and antisymmetric in a and ḃ indices as follows

t̂aḃ = t̂
+
aḃ + t̂

−
aḃ (3.10)

with

t̂
+
aḃ = 1

2

(
t̂aḃ + t̂bȧ

)
and t̂

−
aḃ = 1

2

(
t̂aḃ − t̂bȧ

)
. (3.11)

It is now straightforward to check that symmetric gen-
erators t̂

+
aḃ are given by 1

2 (tmn + tnm) which are non-
compact generators of GL(5). Accordingly, the scalars cor-
responding to these generators parametrize the submani-
fold GL(5)/SO(5). The antisymmetric generators t̂

−
aḃ cor-

respond to the shift generators smn . Therefore, the 25 non-
compact generators decompose into

25︸︷︷︸
t̂aḃ

→ 1 + 14︸ ︷︷ ︸
t̂
+
aḃ

+ 10︸︷︷︸
smn

. (3.12)

We can also separate the trace part of t̂
+
aḃ, correspond-

ing to the dilaton scalar field ϕ in GL(5)/SO(5) ∼ R
+ ×

SL(5)/SO(5) scalar coset. This generator is the R
+ ∼

SO(1, 1) generator defined in (A.4). In terms of t̂
+
aḃ, this

is given by

d = t̂
+
11̇ + t̂

+
22̇ + t̂

+
33̇ + t̂

+
44̇ + t̂

+
55̇. (3.13)

The remaining generators can be identified as the four-
teen non-compact generators corresponding to scalar fields
{φ1, . . . , φ14} in the SL(5)/SO(5) coset. These generators
are given by the symmetric traceless part

t̃aḃ = t̂
+
aḃ − 1

5
d δaḃ (3.14)

satisfying δaḃ t̃aḃ = 0.
The other ten scalars denoted by {ς1, . . . , ς10} correspond

to the shift generators smn . These will be called the axions
or shift scalars in this work. The decomposition in equation
(3.12) is in agreement with that in [28] in which the con-
sistent circle reduction of seven-dimensional SO(5) gauged
supergravity giving rise to SO(5)gauged theory in six dimen-
sions is performed. From a higher-dimensional perspective,
the fourteen scalars are the seven-dimensional scalars param-
eterizing the SL(5)/SO(5) coset in seven dimensions while
the dilaton and shift scalars descend from the reduction of
seven-dimensional metric and vector fields, respectively, see
Appendix C for more detail.

By this decomposition of the scalar fields, we can rewrite
the kinetic terms of the scalars in (2.17) and obtain the fol-
lowing bosonic Lagrangian

e−1L = 1

4
R − GI J ∂μ�I ∂μ�J − V (3.15)

in which GI J is a symmetric matrix depending on scalar
fields denoted by �I = {ϕ, φ1, . . . , φ14, ς1, . . . , ς10} with
I, J = 1, . . . , 25.

In order to find supersymmetric solutions, we consider
first-order BPS equations derived from the supersymmetry
transformations of fermionic fields in the background with
vanishing fermionic fields. In this section, we only discuss
a general structure of the procedure leaving a more detailed
analysis and explicit results in subsequent sections. We begin
with the variations of the gravitini which are given by
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δψ+μ̄α : A′γ̂rε+α + 1

2
gTαα̇εα̇− = 0, (3.16)

δψ−μ̄α̇ : A′γ̂rε−α̇ − 1

2
gTα̇αεα+ = 0. (3.17)

In these equations, we have used the notation A′ = d A
dr . We

will use a prime to denote an r -derivative throughout the
paper.

Multiply the first equation by A′γ̂r and use the second
equation or vice-versa, we find the following consistency
conditions

A′2δα
β = 1

4
g2Tαα̇�α̇β̇Tγ β̇�βγ = W2δα

β, (3.18)

A′2δα̇
β̇ = 1

4
g2Tα̇α�αβTβγ̇ �β̇γ̇ = W2δα̇

β̇ (3.19)

in which we have introduced the “superpotential” W . We
then obtain the BPS equations for the warped factor

A′ = ±W. (3.20)

Using this result in Eqs. (3.16) and (3.17) leads to the fol-
lowing projectors on the Killing spinors

γ̂rε+α = Pαα̇εα̇− and γ̂rε−α̇ = Pα̇αεα+ (3.21)

with

Pαα̇ = −1

2
g
Tαα̇

A′ and Pα̇α = 1

2
g
Tα̇α

A′ (3.22)

satisfying Pα
α̇Pα̇

β = δα
β and Pα̇

αPα
β̇ = δα̇

β̇ . The con-
ditions δψ+rα = 0 and δψ−r α̇ = 0 determine the Killing
spinors as functions of the radial coordinate r as usual.

Using these projectors in δχ+aα̇ = 0 and δχ−ȧα = 0 equa-
tions, we eventually obtain the BPS equations for scalars.
These equations are of the form

�I ′ = ∓2GI J ∂W
∂�J

(3.23)

in which GI J is the inverse of the scalar metric GI J defined
in (3.15).

In addition, the scalar potential can also be written in term
of W as

V = 2GI J ∂W
∂�I

∂W
∂�J

− 5W2. (3.24)

It is well-known that the BPS equations of the form (3.20)
and (3.23) satisfy the second-order field equations derived
from the bosonic Lagrangian (3.15) with the scalar potential
given by (3.24), see [42–47] for more detail.

As in other dimensions, we will follow the approach intro-
duced in [48] to explicitly find supersymmetric domain wall
solutions involving only a subset of the 25 scalars that is

invariant under a particular subgroup H0 ⊂ G0 to make the
analysis more traceable.

3.2 SO(5) symmetric domain walls

We first consider supersymmetric domain walls with the
maximal unbroken symmetry SO(5) ⊂ CSO(p, q, 5 − p−
q). The only gauge group containing SO(5) as a subgroup is
SO(5) with Ymn = δmn . In this case, only the dilaton ϕ cor-
responding to the non-compact generator (3.13) is invariant
under SO(5). Thus, the coset representative can be written
as

V = eϕd . (3.25)

We recall that this coset representative is a 16 × 16 matrix
with an index structure VA

B . To compute the T-tensor, we
need to write the SO(5) × SO(5) index as a pair of SO(5)

spinor indices resulting in the coset representative of the form
VA

αα̇ . To achieve this, we use the transformation matrices p
introduced in (A.35) so that VA

αα̇ and its inverse V A
αα̇ are

given by

VA
αα̇ = VA

B pB
αα̇ and V A

αα̇ = (V−1)B
A
pBαα̇. (3.26)

With all these, it is now straightforward to find the T-tensor

T αβ̇ = 5

2
√

2
eϕ �αβδ

β̇
β = 2

g
W �αβδ

β̇
β (3.27)

from which the superpotential is given by

W = 5g

4
√

2
eϕ. (3.28)

The resulting scalar potential reads

V = −15g2

4
e2ϕ (3.29)

which does not admit any stationary points.
The general analysis given above leads to the BPS equa-

tion for the warped factor

A′ = 5g

4
√

2
eϕ (3.30)

and the following projector

γ̂rε± = ε∓. (3.31)

For definiteness, we have chosen a particular sign choice in
the A′ equation and the γ̂r projector. The condition δψ±r = 0
gives the standard solution for the Killing spinors
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ε± = e
A(r)

2 ε0± (3.32)

with the constant spinors ε0± satisfying γ̂rε
0± = ε0∓. Accord-

ingly, the solution is half-supersymmetric.
The BPS equation for the dilaton can be found from the

condition δχ± = 0 with the projector (3.31). This results in
a simple equation

ϕ′ = − g

4
√

2
eϕ. (3.33)

All of these equations can be readily solved to obtain the
solution

A = 5 ln

(
gr

4
√

2
− C

)
and ϕ = − ln

(
gr

4
√

2
− C

)
.

(3.34)

The integration constant C can be removed by shifting
the radial coordinate r . We have also neglected an addi-
tive integration constant for A since it can be absorbed by
rescaling the coordinates x μ̄. This is the SO(5) domain
wall originally found in [28]. In order to recover the same
form of the solution, we redefine the radial coordinate as
r → 4

√
2

g

[
C + (3

√
2gr + C)− 1

24

]
and set ϕ = 1

2
√

10
σ .

3.3 SO(4) symmetric domain walls

We now look for more complicated solutions with SO(4)

symmetry. The gauge groups that contain SO(4) as a sub-
group are SO(5), SO(4, 1), and CSO(4, 0, 1). To incorpo-
rate all of these gauge groups within a single framework, we
write the embedding tensor in the form

Ymn = diag(1, 1, 1, 1, κ) (3.35)

with κ = 1, 0,−1 corresponding to SO(5), CSO(4, 0, 1),
and SO(4, 1) gauge groups, respectively.

There are two SO(4) singlet scalars. The first one is the
dilaton corresponding to the non-compact generator (3.13),
and the other one comes from the SL(5)/SO(5) coset cor-
responding to the non-compact generator

Y = t̂
+
11̇ + t̂

+
22̇ + t̂

+
33̇ + t̂

+
44̇ − 4 t̂

+
55̇. (3.36)

Using the coset representative

V = eϕd+φY , (3.37)

we find that the T-tensor is given by

T αβ̇ = 1

2
√

2
eϕ−4φ(4 + κe20φ)�αβδ

β̇
β

= 2

g
W �αβδ

β̇
β . (3.38)

This leads to the superpotential and the scalar potential of
the form

W = g

4
√

2
eϕ−4φ(4 + κe20φ), (3.39)

V = −g2

4
e2ϕ−8φ

(
8 + 8κe20φ − κ2e40φ

)
. (3.40)

Using the projector (3.31), we find the BPS equations

A′ = g

4
√

2
eϕ−4φ(4 + κe20φ), (3.41)

ϕ′ = − g

20
√

2
eϕ−4φ(4 + κe20φ), (3.42)

φ′ = g

5
√

2
eϕ−4φ(1 − κe20φ). (3.43)

The resulting solutions for the dilation ϕ and the warped
factor A as functions of φ are given by

ϕ = −φ + C + 1

16
ln

(
1 − κe20φ

)
, (3.44)

A = −5ϕ = 5φ − 5C − 5

16
ln

(
1 − κe20φ

)
. (3.45)

To obtain the solution for φ, we change r to a new radial
coordinate ρ defined by dρ

dr = eϕ+6φ . The solution for φ is
then given by

e10φ = 1√
κ

tanh
[√

κ(
√

2gρ + C1)
]

(3.46)

for an integration constant C1. It is useful to note that for
κ = −1, the solution for φ can be written as

e10φ = tan
[√

2gρ + C1

]
. (3.47)

For κ = 0, the solution is simply given by

e10φ = √
2gρ + C1. (3.48)

3.4 SO(3) × SO(2) symmetric domain walls

We now consider SO(3)× SO(2) residual symmetry, which
is possible only for SO(5) and SO(3, 2) gauge groups. In
this case, we write the embedding tensor as

Ymn = diag(1, 1, 1, κ, κ) (3.49)

with κ = 1 and κ = −1 corresponding to SO(5) and
SO(3, 2), respectively. The SO(3) × SO(2) symmetry is
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generated by Xi j , i, j = 1, 2, 3, and X45. There are three
singlet scalars corresponding to the dilaton and the follow-
ing non-compact generators

Y1 = 2 t̂
+
11̇ + 2 t̂

+
22̇ + 2 t̂

+
33̇ − 3 t̂

+
44̇ − 3 t̂

+
55̇, Y2 = s45.

(3.50)

With the coset representative

V = eϕd+φY1+ςY2 , (3.51)

we find the scalar potential

V = −3g2

4
e2(ϕ−8φ)(1 + 4κe20φ). (3.52)

The superpotential reads

W = g

4
√

2
eϕ−8φ

√
(3 + 2κe20φ)2 + 8κ2ς2e40φ (3.53)

which can be found from the T-tensor given by

T αβ̇ = 1

2
√

2
eϕ−8φ(3 + 2κe20φ)�αβδ

β̇
β

−√
2κςeϕ+12φδαβ̇ . (3.54)

In this case, it turns out that consistency of the supersym-
metry conditions from δχ± requires ς = 0. Therefore, in
order to find a consistent set of BPS equations, we need to
truncate the axion out. With ς = 0, the superpotential is
given by

W = g

4
√

2
eϕ−8φ(3 + 2κe20φ). (3.55)

With the projector (3.31), we find the following BPS equa-
tions

A′ = g

4
√

2
eϕ−8φ(3 + 2κe20φ), (3.56)

ϕ′ = − g

20
√

2
eϕ−8φ(3 + 2κe20φ), (3.57)

φ′ = g

5
√

2
eϕ−8φ(1 − κe20φ). (3.58)

It can be verified that all these equations satisfy the corre-
sponding field equations as expected.

With a new radial coordinate ρ given by dρ
dr = eϕ+2φ , we

obtain the domain wall solution

ϕ = −3φ

4
+ C + 1

16
ln

(
1 − κe20φ

)
, (3.59)

A = −5ϕ = 15φ

4
− 5C − 5

16
ln

(
1 − κe20φ

)
, (3.60)

e10φ = 1√
κ

tanh
[√

κ(
√

2gρ + C1)
]
. (3.61)

3.5 SO(3) symmetric domain walls

We now move to domain wall solutions with SO(3) symme-
try. Many gauge groups contain SO(3) as a subgroup with
the embedding tensor parameterized by

Ymn = diag(1, 1, 1, κ, λ) (3.62)

for κ, λ = 0,±1. With this embedding tensor, the SO(3)

symmetry is generated by Xmn , m, n = 1, 2, 3. In addition
to the dilaton, there are four singlet scalars corresponding to
the following non-compact generators

Y1 = 2 t̂
+
11̇ + 2 t̂

+
22̇ + 2 t̂

+
33̇ − 3 t̂

+
44̇ − 3 t̂

+
55̇, Y2 = t̂

+
45̇,

Y3 = t̂
+
44̇ − t̂

+
55̇, Y4 = s45. (3.63)

With the only exception for κ = λ = 0 corresponding to
CSO(3, 0, 2) gauge group, we need to truncate out the scalar
corresponding to s45 generator in order to find a consistent
set of BPS equations as in the previous case. For the moment,
we will set this shift scalar to zero and consider the particular
case of κ = λ = 0 afterward.

For vanishing shift scalars, the coset representative is
given by

V = eϕd+φ1Y1+φ2Y2+φ3Y3 (3.64)

giving rise to the superpotential and the scalar potential of
the form

W = geϕ−8φ1

4
√

2

[
3 + e20φ1 ((κ + λ) cosh 2φ2 cosh 4φ3

−(κ − λ) sinh 4φ3)
]
, (3.65)

V = −g2e2(ϕ−8φ1)

4

[
3 + 6e20φ1 ((κ + λ) cosh 2φ2 cosh 4φ3

−(κ − λ) sinh 4φ3) + e40φ1

4

(
κ2 + 10κλ + λ2

−(3κ2 − 2κλ + 3λ2) cosh 8φ3

−2(κ + λ)2 cosh 4φ2 cosh2 4φ3

+4(κ2 − λ2) cosh 2φ2 sinh 8φ3

)]
. (3.66)

We also note the matrix GI J in this case

GI J = 1

60
diag(6, 1, 60sech24φ3, 15) (3.67)

for �I = {ϕ, φ1, φ2, φ3} with I, J = 1, 2, 3, 4.
In this case, the Killing spinors are different from the

ansatz given in (3.32) due to the non-vanishing composite
connections Q45

r and Q4̇5̇
r appearing in δψ±r = 0 condi-

tions. In more detail, there are additional terms involving
(γ45)α

βε+β and (γ4̇5̇)α̇
β̇ε−β̇ in the covariant derivative of

the supersymmetry parameters, see Eqs. (2.22) and (2.23).
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According to this, we modify the ansatz for the Killing
spinors to

ε+ = e
A(r)

2 +B(r)γ45ε0+ and ε− = e
A(r)

2 +B(r)γ4̇5̇ε0− (3.68)

where B(r) is an r -dependent function, and ε0± are constant
symplectic-Majorana–Weyl spinors satisfying γ̂rε

0± = ε0∓.
Using this ansatz for the Killing spinors satisfying the

projector (3.31), we find the following set of BPS equations
from the supersymmetry transformations of fermions

A′ = geϕ−8φ1

4
√

2

[
3 + e20φ1 ((κ + λ) cosh 2φ2 cosh 4φ3

−(κ − λ) sinh 4φ3)] , (3.69)

ϕ′ = −geϕ−8φ1

20
√

2

[
3 + e20φ1 ((κ + λ) cosh 2φ2 cosh 4φ3

−(κ − λ) sinh 4φ3)] , (3.70)

φ′
1 = geϕ−8φ1

10
√

2

[
2 − e20φ1 ((κ + λ) cosh 2φ2 cosh 4φ3

−(κ − λ) sinh 4φ3)] , (3.71)

φ′
2 = − g√

2
eϕ+12φ1(κ + λ) sinh 2φ2 sech 4φ3, (3.72)

φ′
3 = geϕ+12φ1

2
√

2
((κ − λ) cosh 4φ3

−(κ + λ) cosh 2φ2 sinh 4φ3) (3.73)

together with

B ′ = − g

2
√

2
eϕ+12φ1(κ + λ) sinh 2φ2 tanh 4φ3. (3.74)

To find explicit solutions, we will separately discuss various
possible values of κ and λ.

3.5.1 Domain walls in CSO(4, 0, 1) and CSO(3, 1, 1)

gauge groups

For λ = 0 and κ �= 0, the gauge groups are given by
CSO(4, 0, 1) and CSO(3, 1, 1) for κ = 1 and κ = −1,
respectively. Using a new radial coordinate ρ defined by
dρ
dr = eϕ+12φ1 , a domain wall solution to the BPS equations
can be obtained

φ2 = 1

4
ln

[
g2ρ2(1 + 2C3)

2 + 2(1 + C3)
2

g2ρ2(1 + 2C3)2 + 2C2
3

]
, (3.75)

φ3 = 1

8
ln

[
e2φ2 − C3e4φ2 + C3 + 1

e2φ2 + C3e4φ2 − C3 − 1

]
, (3.76)

φ1 = 1

20
ln

⎡
⎣ κ

(
2 + C1(e4φ2 − 1)

)
√

(1 − e4φ2)
(
C2

3e
4φ2 − (C3 + 1)2

)

⎤
⎦ ,

(3.77)

ϕ = φ1

2
+ C − 1

16
ln

[
C1(e4φ2 − 1) + 2

e4φ2 − 1

]
, (3.78)

A = −5ϕ = −5φ1

2
− 5C

+ 5

16
ln

[
C1(e4φ2 − 1) + 2

e4φ2 − 1

]
(3.79)

together with

B = 1

4
sin−1

⎡
⎣C3

√
e4φ2 − 1

2C3 + 1

⎤
⎦

+1

4
tan−1

[√
(1 − e4φ2)(C3 + 1)2

C2
3e

4φ2 − (C3 + 1)2

]
. (3.80)

We have chosen integration constants for φ2 and B to be zero
for simplicity.

3.5.2 Domain walls in SO(4, 1) gauge group

In SO(4, 1) gauge group with κ = −λ = 1, the BPS equa-
tions give φ′

2 = B ′ = 0. Accordingly, we can set B = 0 and
φ2 = 0. We can readily verify that this is a consistent trun-
cation. Taking φ2 = 0 and redefining the radial coordinate r
to ρ as given in the CSO(4, 0, 1) and CSO(3, 1, 1) gauge
groups, we obtain a domain wall solution

φ3 = 1

2
tanh−1

[
tan

[√
2gρ + C3

]]
, (3.81)

φ1 = 1

20
ln

[
e4φ3(C1 + 1) + C1e

−4φ3
]
, (3.82)

ϕ = φ1

2
+ C + 1

16
ln

[
e8φ3 + 1

2
(
C1 + e8φ3(C1 + 1)

)
]

, (3.83)

A = −5ϕ = −5φ1

2
− 5C

− 5

16
ln

[
e8φ3 + 1

2
(
C1 + e8φ3(C1 + 1)

)
]

. (3.84)

3.5.3 Domain walls in SO(5) and CSO(3, 2) gauge groups

For κ = λ = ±1 corresponding to SO(5) and SO(3, 2)

gauge groups. we find the following domain wall solution
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φ2 = 1

4
ln

[
1 − 2e2

√
2gκρ + e4

√
2gκρ + e4

√
2gκρ+2C3

1 + 2e2
√

2gκρ + e4
√

2gκρ + e4
√

2gκρ+2C3

]
,

(3.85)

φ3 = 1

8
ln

[
2e2φ2 + e4φ2+C3 − eC3

2e2φ2 − e4φ2+C3 + eC3

]
, (3.86)

φ1 = φ2

10
+ 1

20
ln

[
κe−2φ2

(
C1(e4φ2 − 1) − 2

)
√

4e4φ2 − e2C3(e4φ2 − 1)2

]
, (3.87)

ϕ = φ1

2
+ C − 1

16
ln

[
e4φ2 − 1

]

+ 1

16
ln[C1(e

4φ2 − 1) − 2], (3.88)

A = −5ϕ = −5φ1

2
− 5C + 5

16
ln

[
e4φ2 − 1

]

+ 1

16
ln[C1(e

4φ2 − 1) − 2] (3.89)

in terms of the new radial coordinate ρ defined previously.
The function B(r) appearing in the Killing spinors is given
in term of φ2 as

B = −1

8
tan−1

[
1 − e4φ2 + 2e−2C3

√
4e4φ2−2C3 − (e4φ2 − 1)2

]

−1

8
tan−1

[
e4φ2(1 + 2e−2C3) − 1√
4e4φ2−2C3 − (e4φ2 − 1)2

]
(3.90)

in which the integration constant has been set to zero.

3.5.4 Domain walls in CSO(3, 0, 2) gauge group

In the case of CSO(3, 0, 2) gauge group with κ = λ = 0,
supersymmetry allows a non-vanishing axion corresponding
to Y4 generator. We write the coset representative as

V = eϕd+φ1Y1+φ2Y2+φ3Y3+ςY4 (3.91)

and find a simple scalar potential

V = −3g2

4
e2(ϕ−8φ1). (3.92)

We also note that this potential does not depend on ς and can
be obtained from (3.66) by setting κ = λ = 0. This potential
can also be written in the form (3.24) using the superpotential

W = 3g

4
√

2
eϕ−8φ1 (3.93)

and the symmetric matrix

GI J =

⎛
⎜⎜⎜⎜⎜⎝

1
10 0 0 0 2ς

5
0 1

60 0 0 − ς
5

0 0 sech24φ3 0 0
0 0 0 1

4 0
2ς
5 − ς

5 0 0 1 + 4ς2

⎞
⎟⎟⎟⎟⎟⎠

(3.94)

for �I = {ϕ, φ1, φ2, φ3, ς}, I, J = 1, 2, 3, 4, 5.
With all these and the usual ansatz for the Killing spinors

(3.32) together with the projector (3.31), we find the BPS
equations

A′ = 3g

4
√

2
eϕ−8φ1 , ϕ′ = − 3g

20
√

2
eϕ−8φ1 ,

φ′
1 = g

5
√

2
eϕ−8φ1 ,

φ′
2 = φ′

3 = 0, ς ′ = − 3g√
2
eϕ−8φ1ς. (3.95)

Except for an additional equation for ς , these are the BPS
equations obtained from (3.69)–(3.73) by setting κ = λ = 0.
Furthermore, φ2 and φ3 can be consistently truncated out
since the scalar potential (3.92) is independent of φ2 and φ3.

With all these, we find a domain wall solution

φ1 = 1

4
ln

[
2

5
(
√

2gρ + C1)

]
, (3.96)

ϕ = C − 1

8
ln

[
2

5
(
√

2gρ + C1)

]
, (3.97)

ς = C4e
−15φ1 = C4

(
2
5 (

√
2gρ + C1)

) 15
4

, (3.98)

A = −5ϕ = −5C + 5

8
ln

[
2

5
(
√

2gρ + C1)

]
(3.99)

in which ρ is a new radial coordinate defined by dρ
dr = eϕ−4φ1 .

It should also be noted that the axion ς can also be truncated
out.

3.6 SO(2) × SO(2) symmetric domain walls

As a final example of domain wall solutions in 15−1 repre-
sentation, we consider an SO(2)× SO(2) unbroken symme-
try. In this case, the embedding tensor for all possible gauge
groups takes the form

Ymn = diag(1, 1, κ, κ, λ) (3.100)

for λ = 0,±1 and κ = ±1. These gauge groups are SO(5)

(κ = λ = 1), SO(4, 1) (κ = −λ = 1), SO(3, 2) (κ =
−λ = −1), CSO(4, 0, 1) (κ = 1, λ = 0), and CSO(2, 2, 1)

(κ = −1, λ = 0).
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There are five scalars invariant under SO(2) × SO(2)

generated by X12 and X34. As usual, one of these is the
dilaton and the other four are associated with the following
non-compact generators

Y1 = t̂
+
11̇ + t̂

+
22̇ − 2 t̂

+
55̇,Y2 = t̂

+
33̇ + t̂

+
44̇ − 2 t̂

+
55̇,

Y3 = s12, Y4 = s34. (3.101)

As in many previous cases, we need to truncate out the axions
corresponding to the shift generators s12 and s34 in order to
find a consistent set of BPS equations that are compatible with
the field equations. We then take the coset representative of
the form

V = eϕd+φ1Y1+φ2Y2 . (3.102)

The resulting scalar potential reads

V = −g2

4
e2(ϕ−2(φ1+φ2))

[
4κ(2 + λe12φ1+8φ2)

+λe8φ1+12φ2(4 − λe12φ1+8φ2)
]

(3.103)

which can be written in terms of the superpotential

W = g

4
√

2
eϕ(2e−4φ1 + 2κe−4φ2 + λe8(φ1+φ2)) (3.104)

using

GI J =
⎛
⎝

1
10 0 0
0 3

20 − 1
10

0 − 1
10

3
20

⎞
⎠ (3.105)

for �I = {ϕ, φ1, φ2}, I, J = 1, 2, 3.
Using the projector (3.31) together with the Killing

spinors (3.32), we find the following BPS equations

A′ = g

4
√

2
eϕ(2e−4φ1 + 2κe−4φ2 + λe8(φ1+φ2)), (3.106)

ϕ′ = − g

20
√

2
eϕ(2e−4φ1 + 2κe−4φ2 + λe8(φ1+φ2)),

(3.107)

φ′
1 = g

5
√

2
eϕ(3e−4φ1 − 2κe−4φ2 − λe8(φ1+φ2)), (3.108)

φ′
2 = g

5
√

2
eϕ(3κe−4φ2 − 2e−4φ1 − λe8(φ1+φ2)). (3.109)

Solving these BPS equations gives a domain wall solution

φ2 = −3
√

2gρ

10
+ 3

20
ln

[
κe2

√
2gρ + C2

]

− 1

20
ln

[
C1e

−2
√

2gρ + λ
]
, (3.110)

φ1 = −2φ2

3
− 1

12
ln

[
C1e

−2
√

2gρ + λ
]
, (3.111)

ϕ = −φ2

6
− 3

√
2gρ

24
+ C − 1

48
ln

[
C1e

−2
√

2gρ + λ
]
,

(3.112)

A = −5ϕ = 5φ2

6
+ 15

√
2gρ

24

−5C + 5

48
ln

[
C1e

−2
√

2gρ + λ
]

(3.113)

in which ρ is the new radial coordinate defined by the relation
dρ
dr = eϕ−4φ1 .

For domain walls preserving smaller residual symmetries
such as SO(2)diag ⊂ SO(2) × SO(2) and SO(2), there are
many more scalars, and the analysis is much more involved
without any possibility for complete analytic solutions. We
will not consider these cases in this work.

4 Domain walls from gaugings in 40
−1

representation

In this section, we consider gaugings in which the irre-

ducible part of the embedding tensor transforms in 40
−1

representation. These gauged theories are obtained from a
consistent circle reduction of the maximal seven-dimensional
CSO(p, q, 4 − p − q) gauged supergravity constructed in
[41].

In six dimensions, gaugings in 40
−1

representation are
purely electric and triggered by

θ Am = T
A
npU

np,m (4.1)

where Umn,p = U [mn],p satisfying U [mn,p] = 0. With
θ AM = ( T

A
npU

np,m, 0), the second condition from the
quadratic constraint (2.13) reduces to

Umn,rU pq,sεmnpqt = 0. (4.2)

This condition can be solved by setting

Umn,p = v[mwn]p (4.3)

in which vm is aGL(5) vector and wmn is a symmetric tensor,
wmn = w(mn).

To classify possible gauge groups, we follow [41] by using
the SL(5) symmetry to further fix vm = δm5 and split the
index m = (i, 5), i = 1, . . . , 4. For simplicity, we also
restrict to cases with wi5 = w55 = 0. The remaining SL(4)
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residual symmetry can be used to diagonalize the 4×4 block
corresponding to wi j as

wi j = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
r

) (4.4)

with p + q + r = 4. From the decomposition in (3.3), we
find that in this case, only Xi j and Xi gauge generators are
non-vanishing. The generators Xi j are given in terms of the
GL(5) generators while Xi only involve the shift generators.
Explicitly, these generators are given by

Xi j = 1√
2
εi jkmwkl tml and Xi = wi j s5 j . (4.5)

It is now straightforward to show that the gauge generators
satisfy the following commutation relations

[Xi , X j ] = 0, [Xi j , X
k] = (Xi j )l

k Xl ,

[Xi j , Xkl ] = (Xi j )kl
mn Xmn (4.6)

in which (Xi j )kl
mn = 2(Xi j )[k [mδ

n]
l] . This implies that the

corresponding gauge group is of the form

G0 = CSO(p, q, 4 − p − q) � R
4
s

= SO(p, q) �

(
R

(p+q)(4−p−q) × R
4
s

)
. (4.7)

The CSO(p, q, 4 − p − q) factor and the four-dimensional
translation group from the shift symmetries R

4
s are respec-

tively generated by Xi j and Xi .
We should note here that the corresponding gauge group

in seven dimensions is justCSO(p, q, 4− p−q). After an S1

reduction, this gauge group is accompanied by a translation
group R

4
s . As pointed out in [30], the complete off-shell sym-

metry group of the maximal six-dimensional gauged super-
gravity is GL(5) � 10−4, with 10−4 being shift symmetries
of scalar fields. The gauge group given in (4.7) is embedded
in GL(5) � 10−4 as CSO(p, q, 4 − p − q) ⊂ GL(5) and
R

4
s ⊂ 10−4. We also note that in vector representation of

SO(5, 5), the gauge generators are given by

(Xi )P
Q = 4ηP[ jδQk]δ

j
5wki ,

(Xi j )P
Q = √

2εi jkmwkl(δmP δ
Q
l − ηmPηl P). (4.8)

By splitting the SO(5) × SO(5) vector indices as a =
(i, 5) and ȧ = (i̇, 5̇), we find the following decomposition
for non-compact generators of SL(5) ⊂ GL(5) ⊂ SO(5, 5)

under SL(5) → SL(4) × SO(1, 1)

t̃aḃ →
(
t̃ i j̇ , t̃ i 5̇, t̃55̇

)
. (4.9)

Since the SL(5) generators t̃aḃ are traceless, the generator
t̃55̇ is related to the trace part of t̃ i j̇ according to t̃11̇ + t̃22̇ +

t̃33̇ + t̃44̇ = − t̃55̇. It is then convenience to define new non-
compact generators t i j̇ as

t i j̇ = t̃ i j̇ + 1

4
t̃55̇δi j̇ (4.10)

which are symmetric traceless. The nine scalar fields cor-
responding to these generators then parametrize an SL(4)/

SO(4) coset. The other four scalars associated with t̃ i 5̇ = t̂
+
i 5̇

are nilpotent scalars and will be denoted by bi as in seven
dimensions. In addition, there are also ten axions correspond-
ing to the antisymmetric shift generators as in the previous
section.

As in the previous section, we will systematically find
supersymmetric domain walls invariant under some residual
symmetries of the CSO(p, q, 4 − p−q) factor in the gauge
group.

4.1 SO(4) symmetric domain walls

We first consider domain walls with the largest possible
unbroken symmetry namely SO(4). The only gauge group
containing SO(4) as a subgroup is SO(4) � R

4
s with the

embedding tensor parametrized by wi j = δi j . The SO(4)

symmetry is generated by Xi j , i, j = 1, 2, 3, 4, generators.
There are two SO(4) singlet scalars given by the dilaton

ϕ and another dilatonic scalar corresponding to the SO(1, 1)

factor in SL(4) × SO(1, 1) ⊂ SL(5). The latter is given by
the non-compact generator

Ỹ0 = t̂
+
11̇ + t̂

+
22̇ + t̂

+
33̇ + t̂

+
44̇ − 4 t̂

+
55̇ (4.11)

and will be denoted by φ0.
The coset representative can be written as

V = eϕd+φ0Ỹ0 (4.12)

leading to the T-tensor given by

T αβ̇ = eϕ−4φ0 (γ 5)αβδ
β̇
β = 2

g
W (γ 5)αβδ

β̇
β (4.13)

with the superpotential

W = g

2
eϕ−4φ0 . (4.14)

The appearance of γ 5 rather than other SO(5) gamma matri-
ces is due to the specific choice of vm = δm5 for the tensor
Umn,p. The scalar potential can also be directly computed
and is given by

V = −g2e2ϕ−8φ0 . (4.15)
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The Killing spinors are given by the same ansatz as in
(3.32) but in this case subject to the following projector

γ̂rε± = γ 5ε∓. (4.16)

because of the appearance of γ 5 in the T-tensor. With this new
projector, it is now straightforward to derive the following
BPS equations

A′ = g

2
eϕ−4φ0 , ϕ′ = − g

10
eϕ−4φ0 , φ′

0 = g

10
eϕ−4φ0 .

(4.17)

These equations are solved by the solution

ϕ = 4C − 1

5
ln

[gr
2

+ C0

]
, (4.18)

φ0 = C + 1

5
ln

[gr
2

+ C0

]
, (4.19)

A = −5ϕ = ln
[gr

2
+ C0

]
− 20C. (4.20)

4.2 SO(3) symmetric domain walls

We now look for more complicated solutions with SO(3)

symmetry. Gauge groups with an SO(3) subgroup are
SO(4) � R

4
s , SO(3, 1) � R

4
s , and CSO(3, 0, 1) � R

4
s which

are collectively described by the symmetric tensor

wi j = diag(1, 1, 1, κ) (4.21)

for κ = 1,−1, 0, respectively.
The residual symmetry SO(3) is generated by the gen-

erators Xî4 with î = 1, 2, 3. Apart from the two dilatons,
there are three additional SO(3) singlet scalars, one from
the SL(4)/SO(4) coset and the other two from symmetric
and antisymmetric axions denoted by b and ς . These three
singlets correspond to the following SO(5, 5) non-compact
generators

Ỹ1 = t̂
+
11̇ + t̂

+
22̇ + t̂

+
33̇ − 3 t̂

+
44̇,

Ỹ2 = t̂
+
45̇, Ỹ3 = s45. (4.22)

Using the coset representative of the form

V = eϕd+φ0Ỹ0+φỸ1+bỸ2+ςỸ3 , (4.23)

we find the scalar potential and the T-tensor given by

V = −g2

16
e2(ϕ−4(φ0+3φ))

(
6κe16φ + (9e32φ + κ2) cosh 2b

)

(4.24)

and

T αβ̇ = 1

4
eϕ−4(φ0+3φ)

[
(3e16φ + κ) cosh b (γ 5)αβδ

β̇
β

+(3e16φ − κ) sinh b (γ 4)αβδ
β̇
β

]
. (4.25)

It turns out that consistency of the BPS equations from δχ±
conditions requires vanishing symmetric axion b unless κ =
0 corresponding to CSO(3, 0, 1) � R

4
s gauge group.

4.2.1 Domain walls without the symmetric axion

With b = 0, the scalar potential and superpotential read

V = −g2

8
e2(ϕ−4(φ0+3φ))(3e32φ + 6κe16φ − κ2), (4.26)

W = g

8
eϕ−4(φ0+3φ)(3e16φ + κ). (4.27)

Imposing the projector (4.16) on the Killing spinors
(3.32), we can derive the following set of BPS equations

A′ = g

8
eϕ−4(φ0+3φ)(3e16φ + κ), (4.28)

ϕ′ = − g

40
eϕ−4(φ0+3φ)(3e16φ + κ), (4.29)

φ′
0 = g

40
eϕ−4(φ0+3φ)(3e16φ + κ), (4.30)

φ′ = −g

8
eϕ−4(φ0+3φ)(3e16φ − κ), (4.31)

ς ′ = −geϕ−4(φ0+3φ)ς. (4.32)

From these equations, we can find the solutions for A, ϕ, and
φ0 as functions of φ of the form

φ0 = φ

5
+ C0 − 1

20
ln(e16φ − κ), (4.33)

ϕ = −φ

5
+ C − C0 + 1

20
ln(e16φ − κ), (4.34)

A = −5ϕ = φ − 5C + 5C0 − 1

4
ln(e16φ − κ). (4.35)

With the new radial coordinateρ defined by dρ
dr = eϕ−4(φ0+φ),

the solutions for φ and ς are given by

e8φ = √
κ tanh

[√
κ(gρ + C1)

]
and

ς = C2 csch
[√

κ(gρ + C1)
]
. (4.36)

In particular, for κ = −1 and κ = 0, we find respectively

e8φ = − tan
[√

κ(gρ + C1)
]
, ς = C2 csc (gρ + C1)

(4.37)

and

e8φ = 1

(gρ + C1)
, ς = C2. (4.38)
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4.2.2 Domain walls with the symmetric axion

For κ = 0 corresponding toCSO(3, 0, 1)�R
4
s gauge group,

it is possible to find solutions with the symmetric axion b non-
vanishing. With κ = 0, the scalar potential and the T-tensor
are given by

V = −3g2

8
e2(ϕ−4φ0+4φ) cosh 2b (4.39)

and

T αβ̇ = 3

4
eϕ−4(φ0−φ)

[
cosh b (γ 5)αβδ

β̇
β + sinh b (γ 4)αβδ

β̇
β

]
.

(4.40)

By the general procedure given in Sect. 3.1, we find the super-
potential and γ̂r projectors on the Killing spinors

W = 3g

8
eϕ−4φ0+4φ

√
cosh 2b (4.41)

and

γ̂rε+α = �αβ√
cosh 2b

[
cosh b (γ 5)βγ δα̇

γ + sinh b (γ 4)βγ δα̇
γ

]

ε−α̇, (4.42)

γ̂rε−α̇ = − �α̇β̇√
cosh 2b

[
cosh b (γ 5)αβδ

β̇
β + sinh b (γ 4)αβδ

β̇
β

]

ε+α. (4.43)

It should be noted that these projectors are not independent.
Therefore, the resulting solutions will preserve half of the
supersymmetry. Moreover, we can easily see that these pro-
jectors reduce to that given in (4.16) for b = 0.

With all these, we find the following set of BPS equations

A′ = 3g

8
eϕ−4φ0+4φ

√
cosh 2b,

B ′ = −3geϕ−4φ0+4φ tanh 2b

8
√

cosh 2b
, (4.44)

ϕ′ = −3g

40
eϕ−4φ0+4φ

√
cosh 2b,

φ′
0 = −3geϕ−4φ0+4φ(cosh 4b − 9)

320 cosh3/2 2b
, (4.45)

φ′ = −geϕ−4φ0+4φ(cosh 4b + 7)

64 cosh3/2 2b
,

b′ = −3geϕ−4φ0+4φ sinh 2b

4
√

cosh 2b
(4.46)

together with ς ′ = 0. Since the scalar potential does not
depend on ς , we can consistently truncate ς out by setting
ς = 0. The domain wall solution to the above BPS equations
is then given by

√
sinh 2b

(
3gρ

4
+ Cb

)
= 2F1

(
1

4
,

1

4
,

5

4
,− 1

sinh2 2b

)
,

(4.47)

ϕ = C − b

10
+ 1

20
ln(1 − e4b), (4.48)

φ0 = C0 − b

40
− 1

20
ln(1 − e4b) + 1

16
ln(1 + e4b),

(4.49)

φ = C1 − b

24
+ 1

12
ln(1 − e4b) − 1

16
ln(1 + e4b), (4.50)

A = −5ϕ = −5C + b

2
− 1

4
ln(1 − e4b), (4.51)

B = 1

2
tan−1

(
e2b

)
+ CB (4.52)

in which the new radial coordinate ρ is defined by dρ
dr =

eϕ−4φ0+4φ , and 2F1 is the hypergeometric function.

4.3 SO(2) × SO(2) symmetric domain walls

Domain walls preserving SO(2) × SO(2) symmetry can
be found in SO(4) � R

4
s and SO(2, 2) � R

4
s gauge groups

described by the embedding tensor with

wi j = diag(1, 1, κ, κ), κ = 1,−1. (4.53)

In addition to the two dilatons, there are three SO(2) ×
SO(2) singlet scalars corresponding to the following SO(5, 5)

non-compact generators

Ŷ1 = t̂
+
11̇ + t̂

+
22̇ − t̂

+
33̇ − t̂

+
44̇,

Ŷ2 = s12, Ŷ3 = s34. (4.54)

In this case, a consistent set of BPS equations can be found
only when the scalars corresponding to Ŷ2 and Ŷ3 generators
vanish.

With the coset representative

V = eϕd+φ0Ỹ0+φŶ1 , (4.55)

the scalar potential and superpotential are given by

V = −g2κe2ϕ−8φ0 and W = g

4
eϕ−4(φ0+φ)(e8φ + κ).

(4.56)

With all these and the usual Killing spinors (3.32) subject
to the projector (4.16), the resulting BPS equations read

A′ = g

4
eϕ−4(φ0+φ)(e8φ + κ), (4.57)

ϕ′ = − g

20
eϕ−4(φ0+φ)(e8φ + κ), (4.58)

φ′
0 = g

20
eϕ−4(φ0+φ)(e8φ + κ), (4.59)

φ′ = −g

4
eϕ−4(φ0+φ)(e8φ − κ). (4.60)
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Using a new radial coordinate ρ defined by dρ
dr = eϕ−2φ0 , we

find a domain wall solution

φ0 = φ

5
+ C0 − 1

20
ln

(
e8φ − κ

)
, (4.61)

ϕ = −φ

5
+ C − C0 + 1

20
ln

(
e8φ − κ

)
, (4.62)

A = −5ϕ = φ − 5C + 5C0 − 1

4
ln

(
e8φ − κ

)
, (4.63)

e4φ = √
κ tanh

[√
κ(gρ + C1)

]
. (4.64)

4.4 SO(2) symmetric domain walls

As a final example in this case, we consider SO(2) symmetric
domain walls. There are many gauge groups admitting an
SO(2) subgroup. They are collectively characterized by the
following component of the embedding tensor

wi j = diag(1, 1, κ, λ). (4.65)

Together with the two dilatons, there are additional nine
SO(2) singlet scalars. Three of them are in the SL(4)/SO(4)

coset corresponding to non-compact generators

Y1 = t̂
+
11̇ + t̂

+
22̇ − t̂

+
33̇ − t̂

+
44̇,

Y2 = t̂
+
34̇, Y3 = t̂

+
33̇ − t̂

+
44̇. (4.66)

The remaining ones consist of two nilpotent scalars associ-
ated with

Y4 = t̂
+
35̇, Y5 = t̂

+
45̇ (4.67)

and four shift scalars corresponding to

Y6 = s12, Y7 = s35, Y8 = s45, Y9 = s34. (4.68)

However, dealing with all eleven scalars turns out to be highly
complicated, so we perform a subtruncation by setting the
shift scalar corresponding to s12 and the two nilpotent scalars
to zero. It is straightforward to verify that this is a consistent
truncation and still gives interesting solutions. We now end
up with eight singlet scalars with the coset representative

V = eϕd+φ0Ỹ0+φ1Y1+φ2Y2+φ3Y3+ς1Y7+ς2Y8+ς3Y9 . (4.69)

Consistency of the resulting BPS equations requires vanish-
ing of the shift scalar ς3 unless κ = λ = 0 correspond-
ing to CSO(2, 0, 2) � R

4
s gauge group. In what follows, we

will for the moment set ς3 = 0 and separately consider the
CSO(2, 0, 2) � R

4
s gauge group with ς3 �= 0.

With ς3 = 0, we can compute the scalar potential and the
superpotential of the form

V = −g2

32
e2(ϕ−4(φ0+φ1))

[
κ2 + 10κλ + λ2

−2(κ + λ)2 cosh 4φ2 cosh2 4φ3

−(3κ2 − 2κλ + 3λ2) cosh 8φ3

+16(κ − λ)e8φ1 sinh 4φ3

+4(κ + λ) cosh 2φ2(4e
8φ1 cosh 4φ3

−(κ − λ) sinh 8φ3)] , (4.70)

W = g

8
eϕ−4(φ0+φ1)[2e8φ1 + (κ + λ)

cosh 2φ2 cosh 4φ3 + (κ − λ) sinh 4φ3].
(4.71)

This scalar potential can be written in term of the superpo-
tential according to (3.24) using

GI J =
(
Gi j Giy

Gx j Gxy

)
(4.72)

where

Gi j = 1

40
diag(4, 1, 5, 40sech24φ3, 10),

Gx j =
⎛
⎝

2ς1
5 − 3ς1

20 − ς1
4

4ς2e12φ3

(1+e8φ3 )2
ς1
2

2ς2
5 − 3ς2

20 − ς2
4

4ς1e12φ3

(1+e8φ3 )2
ς2
2

⎞
⎠ , (4.73)

and

Gxy =
⎛
⎝1 + 4ς2

1 + ς2
2 e

8φ3 sech24φ3
2ς1ς2(1+4e8φ3 +e16φ3 )

(1+e8φ3 )2

2ς1ς2(1+4e8φ3 +e16φ3 )

(1+e8φ3 )2 1 + 4ς2
2 + ς2

1 e
8φ3 sech24φ3

⎞
⎠ .

(4.74)

Here, we have denoted �I = {ϕ, φ0, φ1, φ2, φ3, ς1, ς2} =
{�i ,�x } for i, j = 1, 2, . . . , 5 and x, y = 6, 7. Note also
that the scalar potential for CSO(2, 0, 2) � R

4
s gauge group

with κ = λ = 0 vanishes identically leading to a family of
Minkowski vacua.

Imposing the projector (4.16) on the Killing spinors of the
form

ε+ = e
A(r)

2 +B(r)γ34ε0+ and ε− = e
A(r)

2 +B(r)γ3̇4̇ε0−, (4.75)

we obtain the following set of BPS equations

A′ = g

8
eϕ−4(φ0+φ1)[2e8φ1 + (κ + λ)

× cosh 2φ2 cosh 4φ3 + (κ − λ) sinh 4φ3] , (4.76)

ϕ′ = − g

40
eϕ−4(φ0+φ1)[2e8φ1 + (κ + λ)

× cosh 2φ2 cosh 4φ3 + (κ − λ) sinh 4φ3], (4.77)

123



764 Page 16 of 31 Eur. Phys. J. C (2021) 81 :764

φ′
0 = g

40
eϕ−4(φ0+φ1)[2e8φ1 + (κ + λ)

× cosh 2φ2 cosh 4φ3 + (κ − λ) sinh 4φ3], (4.78)

φ′
1 = −g

8
eϕ−4(φ0+φ1)[2e8φ1 − (κ + λ)

× cosh 2φ2 cosh 4φ3 − (κ − λ) sinh 4φ3], (4.79)

φ′
2 = −g

2
eφ0−4(φ0+φ1)(κ + λ) sinh 2φ2 sech 4φ3, (4.80)

φ′
3 = −g

4
eφ0−4(φ0+φ1)((κ + λ)

× cosh 2φ2 sinh 3φ3 + (κ − λ) cosh 4φ3) (4.81)

together with

B ′ = −g

4
eφ0−4(φ0+φ1)(κ + λ) sinh 2φ2 tanh 4φ3, (4.82)

ς ′
1=− geϕ+4φ3

2e4(φ0+φ1)
[ς1 (κ − λ + (κ + λ) cosh 2φ2)

+ς2(κ + λ) sinh 2φ2 sech 4φ3] , (4.83)

ς ′
2=− geϕ−4φ3

2e4(φ0+φ1)
[ς1(κ + λ) sinh 2φ2 sech 4φ3

−ς2 (κ − λ − (κ + λ) cosh 2φ2)] . (4.84)

We are unable to completely solve these equations for arbi-
trary values of the parameters κ and λ. However, the solutions
can be separately found for each value of κ and λ.

4.4.1 Domain walls in SO(3, 1) � R
4
s gauge group

In this case, we set κ = −λ = 1, and the BPS equations
give B ′ = φ′

2 = 0. We can again truncate φ2 out and set the
constant B = 0. As a result, we find a domain wall solution

φ1 = 1

2
φ3 − 1

8
ln

[
1 + C1(1 + e8φ3)

]
, (4.85)

φ0 = C0 + 1

10
φ3 − 1

20
ln(1 + e8φ3)

+ 1

40
ln

[
1 + C1(1 + e8φ3)

]
, (4.86)

ϕ = C − C0 − 1

10
φ3 + 1

20
ln(1 + e8φ3)

− 1

40
ln

[
1 + C1(1 + e8φ3)

]
, (4.87)

A = −5ϕ = 5(C0 − C) + 1

2
φ3

−1

4
ln(1 + e8φ3) + 1

8
ln

[
1 + C1(1 + e8φ3)

]
, (4.88)

φ3 = 1

4
ln tan(C3 − gρ), (4.89)

ς1 = C4 sec(C3 − gρ), (4.90)

ς2 = C5 csc(C3 − gρ) (4.91)

with ρ defined by dρ
dr = eϕ−4(φ0+φ1).

4.4.2 Domain walls in CSO(3, 0, 1) � R
4
s and

CSO(2, 1, 1) � R
4
s gauge groups

For λ = 0 and κ = ±1 corresponding to CSO(3, 0, 1) �

R
4
s and CSO(2, 1, 1) � R

4
s gauge groups, the domain wall

solution is given by

φ1 = 1

16
ln

[
(e4φ2 − 1)(1 + 2eC3

+e2C3 − e2C3+4φ2)
]

− 1

8
ln(4 − 2e4φ2), (4.92)

φ2 = 1

4
ln

[
4(1 + eC3)2 + (1 + 2eC3)2g2ρ2

4e2C3 + (1 + 2eC3)2g2ρ2

]
, (4.93)

φ3 = 1

8
ln

[
(e2φ2 − 1)(1 + eC3 + eC3+2φ2)

1 + eC3 + e2φ2 − eC3+4φ2

]
, (4.94)

φ0 = C0 − 1

5
φ1 + 1

40
ln(1 − e4φ2)

− 1

40
ln

[
1 + 2eC3 + e2C3 − e2C3+4φ2

]
, (4.95)

ϕ = C − φ0, (4.96)

A = −5ϕ (4.97)

together with

B = CB + 1

4
sin−1

⎡
⎣eC3

√
e4φ2 − 1

1 + 2eC3

⎤
⎦

+1

4
tan−1

⎡
⎣
√

(e4φ2 − 1)(1 + eC3)2

1 + 2eC3 + e2C3 − e2C3+4φ2

⎤
⎦ . (4.98)

In this solution, we have defined the coordinate ρ by dρ
dr =

e−2φ0−2φ1 and set the integration constant for φ2 solution to
be C2 = 1

16(1+2eC3 )2 in order to simplify the expression for
the solution. We also note that the two gauge groups have
exactly the same domain wall solution since the parameter
κ does not appear anywhere in the solution. In more detail,
κ2 appears in φ2 solution as g2κ2ρ2, but this term is simply
given by g2ρ2 for κ = ±1.

For the remaining scalars ς1 and ς2, we are not able to
analytically find their solutions. We can instead perform a
numerical analysis to find these solutions, but we will not
pursue any further along this direction. In any case, these
scalars can be consistently truncated out since they do not
appear in the scalar potential.

4.4.3 Domain walls in SO(4) � R
4
s and SO(2, 2) � R

4
s

gauge groups

In this case, we setκ = λ = ±1 corresponding to SO(4)�R
4
s

and SO(2, 2)�R
4
s gauge groups. As in the previous case, the

resulting BPS equations are very complicated to find explicit
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solutions. Therefore, we will set ς1 = ς2 = 0 and find the
domain wall solution for the remaining fields as follows

φ1= 1

16
ln

[
e4φ2 − e2C3 (e4φ2 − 1)2

]
− 1

8
ln(2 − e4φ2 ), (4.99)

φ2= 1

4
ln

[
1 − 2e2gκρ + e4gκρ + 4e2C3

1 + 2e2gκρ + e4gκρ + 4e2C3

]
, (4.100)

φ3= 1

8
ln

[
e2φ2 − eC3 + eC3+4φ2

e2φ2 + eC3 − eC3+4φ2

]
, (4.101)

φ0=C0 − φ1

5
− 1

20
ln(e4φ2 − 1)

+1

4
ln

[
e4φ2 − e2C3 + e4φ2+2C3 (2 − e4φ2 )

]
, (4.102)

ϕ=C − φ0, (4.103)

B = CB − 1

8
tan−1

[
e−C3 (e4φ2 − 2e2C3 + 2e2C3+4φ2 )

2
√
e4φ2 − e2C3 + 2e2C3+4φ2 − e2C3+8φ2

]

−1

8
tan−1

[
e−C3 (1 + 2e2C3 + 2e2C3+4φ2 )

2
√
e4φ2 (1 + 2e2C3 ) − 2e2C3 − e2C3+8φ2

]
,

(4.104)
A=−5ϕ (4.105)

with dρ
dr = eϕ−4(φ0+φ1).

4.4.4 Domain walls in CSO(2, 0, 2) � R
4
s gauge group

Finally, we consider the case of κ = λ = 0 corresponding to
CSO(2, 0, 2) � R

4
s gauge group. Using the coset represen-

tative (4.69), we find the T-tensor given by

T αβ̇ = 1

2
eϕ−4(φ0−φ1)

[
(γ 5)αβδ

β̇
β + 2ς3 (γ 12)αβδ

β̇
β

]
.

(4.106)

By the general procedure given in Sect. 3.1, we find the super-
potential

W = g

4
eϕ−4(φ0−φ1)

√
ς2

3 + 1 (4.107)

and the following projectors

γ̂rε+α = �αβ

[
(γ 5)βγ δ

β̇
γ + 2ς3 (γ 12)βγ δ

β̇
γ

]
√

ς2
3 + 1

ε−β̇ , (4.108)

γ̂rε−α̇ = −�α̇β̇

[
(γ 5)αγ δ

β̇
γ + 2ς3 (γ 12)αγ δ

β̇
γ̇

]
√

ς2
3 + 1

ε+α.

(4.109)

As expected for half-supersymmetric solutions, these pro-
jectors are not independent. In addition, for ς3 = 0, they
reduce to a simpler projector given in (4.16). At this point, it
is useful to note that for this gauge group, the scalar poten-
tial vanishes as previously mentioned, so there exists a six-

dimensional Minkowski vacuum for this gauge group. How-
ever, the superpotential (4.107) does not have any stationary
points, so this Minkowski vacuum is not supersymmetric.

With the following ansatz for the Killing spinors

ε+ = e
A(r)

2 +B(r)γ34ε0+ and ε− = e
A(r)

2 −B(r)γ3̇4̇ε0−,

(4.110)

we obtain the BPS equations

A′ = g

4
eϕ−4(φ0−φ1)

√
ς2

3 + 1, ϕ′ = − geϕ−4(φ0−φ1)(1 + 20ς2
3 )

20
√

ς2
3 + 1

,

φ′
0 = geϕ−4(φ0−φ1)

20
√

ς2
3 + 1

, φ′
1 = − geϕ−4(φ0−φ1)

4
√

ς2
3 + 1

, φ′
2 = φ′

3 = 0,

ς ′
1 = −4geϕ−4(φ0−φ1)ς2

3 ς1√
ς2

3 + 1
, ς ′

2 = −4geϕ−4(φ0−φ1)ς2
3 ς2√

ς2
3 + 1

,

ς ′
3 = −geϕ−4(φ0−φ1)ς3

√
ς2

3 + 1, B ′ = geϕ−4(φ0−φ1)

20
√

ς2
3 + 1

. (4.111)

With a new radial coordinate ρ defined by dρ
dr = eϕ−4φ0 , the

corresponding solution is given by

A = −1

4
ln ς3, B = CB − 1

2
tan−1 2ς3, (4.112)

ϕ = C + 1

20
ln ς3 + 1

10
ln(1 + 4ς2

3 ), (4.113)

φ0 = C0 + 1

20
ln ς3 − 1

40
ln(1 + 4ς2

3 ), (4.114)

φ1 = C1 + 1

4
ln ς3 − 1

8
ln(1 + 4ς2

3 ), (4.115)

ς1 = C4

√
1 + 4ς2

3 , ς2 = C5

√
1 + 4ς2

3 , (4.116)

ς3 = 1

gρe4C1 + C6
. (4.117)

5 Domain walls from gaugings in (15+ 40)−1

representation

We now consider gaugings with non-vanishing components

of the embedding tensor in both 15−1 and 40
−1

representa-
tions. These gaugings are dyonic with the embedding tensor
containing both electric and magnetic parts. The full embed-
ding tensor is given by θ AM = (θ Am, θ A

m ) with

θ Am = T
A
npU

np,m and θ A
m = T

AnYnm (5.1)

for Ymn = Y(mn) andUmn,p = U [mn],p satisfyingU [mn,p] =
0.

However, for dyonic gaugings, the first condition in the
quadratic constraint (2.13) is not automatically satisfied. For
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the embedding tensor given in (5.1), we find that this con-
straint imposes the following condition

Unp,mYqm = 0. (5.2)

To solve this condition, we follow [41] and split the GL(5)

index as m = (i, x). By choosing a suitable basis, we can
take Ymn to be

Yi j = diag(+1, . . . ,+1,−1, . . . ,−1) and Yxy = 0.

(5.3)

The constraint (5.2) then implies that only the components
Uxy,z andUix,y = Ui(x,y) are non-vanishing. As a result, the
embedding tensor is parametrized by the following tensors

Yi j , Ui(x,y), Uxy,z . (5.4)

We now consider different possible gauge groups with
rankY = 0, 1, . . . , 5. There are two trivial cases for rankY =
5 with Umn,p = 0 and rankY = 0 with all Ymn = 0. These
correspond respectively to gaugings in 15−1 and 40

−1
repre-

sentations and have already been considered in the previous
two sections.

For rankY = 4, only Ui5,5 can be non-vanishing,
but another condition from the quadratic constraint (2.13)
requires Ui5,5 = 0. Accordingly, the corresponding gauge
groups are given by CSO(4, 0, 1), CSO(3, 1, 1) and CSO
(2, 2, 1) which again have been considered in Sect. 3.

In the following, we will study supersymmetric domain
walls in the two non-trivial cases with rankY = 3 and
rankY = 2. Gaugings in these cases are expected to
arise from a circle reduction of seven-dimensional maxi-
mal gauged supergravity with the embedding tensor in both
15 and 40 representations of SL(5). Similar to the seven-
dimensional solutions given in [15], we will find that in
these gaugings, the domain walls are 1

4 -BPS preserving eight
supercharges. For the case of rankY = 1, the second condi-
tion from the quadratic constraint (2.13) is much more com-
plicated to find a non-trivial solution for Ui(x,y) and Uxy,z .
We refrain from discussing this case here.

5.1 1
4 -BPS domain walls for rankY = 3

We first consider the case of rankY = 3 with i, j = 1, 2, 3.
The second condition from the quadratic constraint (2.13)
becomes

εi jkU
jx,zεzwU

kw,y = 1√
2
Yi jU

jx,y (5.5)

which can be solved by Uix,y of the form

Uix,y = − 1

2
√

2
εxz(�i )z

y
(5.6)

where (�i )x
y

are 2 × 2 matrices. In terms of these �i , the
quadratic constraint (5.5) can be rewritten as

[�i , � j ] = 2εi jkYkl�
l . (5.7)

As pointed out in [41], a real, non-vanishing solution for
Uix,y is possible only for

Yi j = diag(1, 1,−1) (5.8)

with the explicit form of �i given in terms of Pauli matrices
as

�1 = σ1, �2 = σ3, �3 = iσ2. (5.9)

The constraint (5.7) is then the Lie algebra of a non-compact
group SO(2, 1). It should also be noted that the tensor Uxy,z

is not constrained by this condition, so it can be parametrized
by an arbitrary two-component vector ux as

Uxy,z = εxyuz . (5.10)

We now consider the corresponding gauge algebra spanned
by the following gauge generators

Xx = − 1

2
√

2
εyz(�i )z

x
siy + εyzux syz, (5.11)

Xi j = 2Yk[i tk j] + 2
√

2εi jku
x tk x

−1

2
εi jk(�

k)z
x
t z x , (5.12)

Xix = Yik tk x + 1

2
εi jk(�

j )x
z
tk z . (5.13)

To determine the form of the corresponding gauge group, we
explicitly evaluate these generators in vector representation
and find the following commutation relations
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[
Xx , X y] = 0,[
Xi j , X

x ] = (Xi j )y
x X y,

[
Xix , X

y] = 0, (5.14)[
Xix , X jy

] = 0,
[
Xi j , Xkx

] = −2(Xi j )kx
ly Xly, (5.15)[

Xi j , Xkl
] = −(Xi j )kl

pq X pq − 2(Xi j )kl
px X px . (5.16)

Redefining the Xi j generators as

X̃i j = Xi j − 2
√

2

3
εi jkη

kl Xlxu
x (5.17)

with ηi j = diag(+1,+1,−1), we find that X̃i j generate an
SO(2, 1) subgroup with the Lie algebra

[
X̃i j , X̃kl

] = −(X̃i j )kl
pq
X̃ pq . (5.18)

The remaining generators Xix and Xx , which transform non-
trivially under SO(2, 1), generate two translation groups.
Note also that there are only four independent Xix generators.
With all these, the resulting gauge group is then given by

G0 = SO(2, 1) �

(
R

4 × R
2
s

)
(5.19)

in which R
2
s is the translation group from the shift symmetries

generated by Xx . As also pointed out in [41], we see that the
vector ux does not change the gauge algebra, so we can set
ux = 0 for simplicity.

We now look for supersymmetric domain wall solutions
invariant under SO(2) ⊂ SO(2, 1) generated by X12. There
are five SO(2) singlet scalars corresponding to the non-
compact generators

Yd = t̂
+
11̇ + t̂

+
22̇ + t̂

+
33̇ + t̂

+
44̇ + t̂

+
55̇, (5.20)

Y1 = 2 t̂
+
11̇ + 2 t̂

+
22̇ + 2 t̂

+
33̇ − 3 t̂

+
44̇ − 3 t̂

+
55̇, (5.21)

Y2 = t̂
+
11̇ + t̂

+
22̇ − 2 t̂

+
33̇, (5.22)

Y3 = s12, (5.23)

Y4 = s45. (5.24)

Using the coset representative of the form

V = eϕYd+φ1Y1+φ2Y2+ς1Y3+ς2Y4 , (5.25)

we find the scalar potential

V = −g2

4
e2(ϕ−8φ1+2φ2)(e12φ2 + 6). (5.26)

Consistency of the BPS equations from δχ± conditions
requires ς1 = 0. After truncating out ς1, we find the T-tensor

T αβ̇ = 2

g
eϕ−8φ1−4φ2

[
W1(δ

α
1 δ

β̇
3 − δα

3 δ
β̇
1 )

+W2(δ
α
2 δ

β̇
4 − δα

4 δ
β̇
2 )

]
(5.27)

with

W1 = g

4
√

2
eϕ−8φ1−4φ2(3 − e12φ2),

W2 = g

4
√

2
eϕ−8φ1−4φ2(1 − e12φ2). (5.28)

It turns out that only W1 gives rise to the superpotential in
term of which the scalar potential can be written.

With the superpotential given by W1, the unbroken super-
symmetry corresponds to ε1± and ε3±. Therefore, we set
ε2± = ε4± = 0 in the following analysis. Alternatively, we
can implement this by imposing an additional projector of
the form

γ 3ε∓ = ε∓. (5.29)

By the same procedure as in the previous cases together
with the projector (3.31), we obtain the BPS equations, with
ς2 = ς ,

A′ = g

4
√

2
eϕ−8φ1−4φ2(3 − e12φ2), (5.30)

ϕ′ = − g

20
√

2
eϕ−8φ1−4φ2(3 − e12φ2), (5.31)

φ′
1 = g

15
√

2
eϕ−8φ1−4φ2(3 − e12φ2), (5.32)

φ′
2 = g

6
√

2
eϕ−8φ1−4φ2(3 + e12φ2), (5.33)

ς = − g√
2
eϕ−8φ1−4φ2(3 − e12φ2)ς. (5.34)

Introducing a new radial coordinate ρ via dρ
dr = eϕ−8φ1+2φ2 ,

we find a domain wall solution

e6φ2 =
√

3

2
tan(

√
3gρ + C2), (5.35)

φ1 = C1 + 2

5
φ2 − 1

20
ln(3 + 2e12φ2), (5.36)

ς = C3e
−6φ2(3 + 2e12φ2)

3
4 , (5.37)

ϕ = C − 3

4
C1 − 3

10
φ2 − 3

80
ln(3 + 2e12φ2), (5.38)

A = −5ϕ = −5C + 15

4
C1

+3

2
φ2 + 3

16
ln(3 + 2e12φ2). (5.39)

5.2 1
4 -BPS domain walls for rankY = 2

In this case, i, j = 1, 2, we have Yi j = diag(1,±1). The
second condition from the quadratic constraint (2.13) allows
only the componentsUxy,z , x, y, . . . = 3, 4, 5, which can be
parametrized by a 3 × 3 traceless matrix ux y as

Uxy,z = 1

2
√

2
εxyt ut

z (5.40)
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with ux x = 0. The non-vanishing gauge generators read

Xx = 1

2
√

2
ε yz,t ut

x syz, (5.41)

X12 = 2Yk[1 tk2] + 1

2
ux

y tx y, (5.42)

Xix = Yi j t j x − 1

2
εi j ux

y t j y (5.43)

with the commutation relations given by

[
Xx , X y] = 0,

[
Xx , Xiy

] = 0,
[
Xix , X jy

] = 0,

(5.44)[
X12, X

x] = (X12)y
x X y, [X12, Xix ] = −2(X12)i x

j y X jy .

(5.45)

Xx and Xix commute with each other and separately gener-
ate two translation groups R

3
s and R

6 which transform non-
trivially under X12. The single X12 generator in turn leads to a
compact SO(2) or a non-compact SO(1, 1) group for Yi j =
diag(1, 1) or Yi j = diag(1,−1), respectively. The corre-
sponding gauge groups are then given by SO(2)�

(
R

6 × R
3
s
)

or SO(1, 1) �
(
R

6 × R
3
s
)
.

5.2.1 Domain walls in SO(2) �
(
R

6 × R
2
s
)
gauge group

To find solutions with a non-trivial residual symmetry, we
will consider SO(2) �

(
R

6 × R
2
s
)

gauge group with Yi j =
δi j . In vector representation, the X12 generator is given by

(X12)m
n =

(
2i(σ2)i

j 02×6

02×6 ux y

)
. (5.46)

Accordingly, we choose the matrix ux y to be

ux
y =

⎛
⎝

0 0 0
0 0 −λ

0 λ 0

⎞
⎠ (5.47)

with λ ∈ R. The SO(2) subgroup is then embedded diag-
onally with only X4 and X5 non-vanishing. Thus, the cor-
responding gauge group, in this case, is given by SO(2) �(
R

6 × R
2
s
)
.

There are five SO(2) singlets corresponding to the fol-
lowing non-compact generators commuting with X12

Yd = t̂
+
11̇ + t̂

+
22̇ + t̂

+
33̇ + t̂

+
44̇ + t̂

+
55̇, (5.48)

Y1 = 3 t̂
+
11̇ + 3 t̂

+
22̇ − 2 t̂

+
33̇ − 2 t̂

+
44̇ − 2 t̂

+
55̇, (5.49)

Y2 = −2 t̂
+
33̇ + t̂

+
44̇ + t̂

+
55̇, (5.50)

Y3 = s12, (5.51)

Y4 = s45. (5.52)

With the coset representative

V = eϕYd+φ1Y1+φ2Y2+ς1Y3+ς2Y4 , (5.53)

it turns out that the scalar potential vanishes identically. On
the other hand, the T-tensor is given by

T αβ̇ = eϕ−12φ1

2
√

2

[
λ (γ 3)αβ

+2 �αβ + 2ς1

[
λ (γ 45)αβ − 2 (γ 12)αβ

]]
δ
β̇
β

(5.54)

or explicitly

T αβ̇ = eϕ−12φ1

2
√

2⎛
⎜⎜⎝

2(λ + 2)ς1 0 (λ + 2) 0
0 2(λ − 2)ς1 0 −(λ − 2)

−(λ + 2) 0 2(λ + 2)ς1 0
0 (λ − 2) 0 2(λ − 2)ς1

⎞
⎟⎟⎠ .

(5.55)

This leads to two superpotentials

W1 = g

4
√

2
eϕ−12φ1(λ + 2)

√
1 + 4ς2

1 , (5.56)

W2 = g

4
√

2
eϕ−12φ1(λ − 2)

√
1 + 4ς2

1 . (5.57)

Unlike the previous rankY = 3 case, both of these give a valid
superpotential in term of which the scalar potential can be
written. As in the previous case, half of the supersymmetry is
broken by choosing any one of these two possibilities which
again corresponds to imposing an additional γ 3 projector of
the form

γ 3ε± = ε± or γ 3ε± = −ε± (5.58)

for W = W1 or W = W2, respectively. Together with the
usual γ̂r projectors

γ̂rε+α = �αβ

T ββ̇

A′ ε−β̇ , γ̂rε−α̇ = −�α̇β̇

T αβ̇

A′ ε+α, (5.59)

the resulting solutions will preserve only eight supercharges
or 1

4 of the original supersymmetry.
With the following ansatz for the Killing spinors

ε+ = e
A(r)

2 +B(r)γ12ε0+ and ε− = e
A(r)

2 −B(r)γ1̇2̇ε0−, (5.60)
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for ε0± satisfying the projectors (5.58) and (5.59), we obtain
the following BPS equations

A′ = g

4
√

2
eϕ−12φ1(λ ± 2)

√
1 + 4ς2

1 ,

B ′ = gς1eϕ−12φ1(λ ± 2)√
2 + 8ς2

1

, (5.61)

ϕ′ = −geϕ−12φ1(λ ± 2)(1 + 20ς2
1 )

20
√

2 + 8ς2
1

,

φ′
1 = geϕ−12φ1(λ ± 2)

10
√

2 + 8ς2
1

, (5.62)

φ′
2 = 0, ς ′

1 = g√
2
ς1e

ϕ−12φ1(λ ± 2)

√
1 + 4ς2

1 , (5.63)

ς ′
2 = g√

2
ς2e

ϕ−12φ1(λ ± 2)

√
1 + 4ς2

1 . (5.64)

The choices of plus or minus signs in these equations are
correlated with the plus or minus signs of the two projectors
given in (5.58).

We can consistently set φ2 = 0 and find a domain wall
solution

A = −1

4
ln ς1, B = CB − 1

2
tan−1 2ς1, (5.65)

ϕ = C + 1

20
ln ς1 + 1

10
ln(1 + 4ς2

1 ), (5.66)

φ1 = C1 + 1

10
ln ς1 − 1

20
ln(1 + 4ς2

1 ), (5.67)

ς1 = 1

2
tan

[√
2e−10C1(λ ± 2)gρ + C3

]
, (5.68)

ς2 = C4ς1 (5.69)

where ρ is the new radial coordinate defined by dρ
dr = eϕ−2φ1 .

5.2.2 Domain walls in CSO(2, 0, 2) � R
2
s gauge group

From the previous result, there are special values of λ = ±2
at which the SO(2) �

(
R

6 × R
2
s
)

gauge group reduces to
SO(2)�

(
R

4 × R
2
s
) ∼ CSO(2, 0, 2)�R

2
s . The two choices

are equivalent, so we will choose λ = 2 for definiteness.
In this case, there are nine scalars invariant under the resid-

ual SO(2) symmetry generated by X12. They are given by
the five scalars associated with the non-compact generators
given in (5.48)–(5.52) together with additional two symmet-
ric and two shift scalars respectively corresponding to

Y6 = t̂
+
14̇ + t̂

+
25̇, Y7 = t̂

+
15̇ − t̂

+
24̇, (5.70)

Y8 = s14 + s25, Y9 = s15 − s24. (5.71)

However, with this large number of scalar fields, the analysis
is highly complicated. To make things more manageable,
we will further truncate the nine scalars to the previous five

singlets together with each of the two sets of axionic scalars
separately.

Turning on two shift scalars, denoted by ς3 and ς4, corre-
sponding to Y8 and Y9 generators, we find the solution given
in Eqs. (5.65)–(5.69) together with the solutions for ς3 and
ς4 of the form

ς3 = C5

√
1 + 4ς2

1 and ς4 = C6

√
1 + 4ς2

1 . (5.72)

More interesting solutions are obtained by including the
scalars corresponding toY6 andY7 generators. With the coset
representative

V = eϕYd+φ1Y1+φ2Y2+φ3Y6+φ4Y7+ς1Y3+ς2Y4 , (5.73)

we find that the scalar potential vanishes as in the previous
case. There are also two superpotentials. One of them van-
ishes identically while the non-trivial one is given by

W = g√
2
eϕ−12φ1

√
cosh2 2φ3 cosh2 2φ4 + (ς1 − ς2 + cosh 2φ3 cosh 2φ4(ς1 + ς2))

2 .

(5.74)

Unlike the previous case, the Minkowski vacuum in this case
is half-supersymmetric with the unbroken supersymmetry
corresponding to the vanishing superpotential. This is very
similar toCSO(2, 0, 2) gauged supergravity in seven dimen-
sions [41].

Only the supersymmetry corresponding to the superpo-
tential (5.74) is preserved by the domain wall. This again
amounts to imposing a γ 3 projector of the form (5.58).
Furthermore, consistency of the BPS equations from δχ±
requires ς1 = ς2 = ς . It is useful to note the explicit form
of the T-tensor for ς1 = ς2 = ς which is given by

T αβ̇ = eϕ−12φ1

√
2

cosh 2φ3 cosh 2φ4

[
(γ 3)αβ

+�αβ + 2ς
(
(γ 45)αβ − (γ 12)αβ

)]
δ
β̇
β . (5.75)

Using the Killing spinors (5.60) subject to the projectors
in (5.59) and the first projector in (5.58), we can derive the
following BPS equations

A′ = g√
2
eϕ−12φ1 cosh 2φ3 cosh 2φ4

√
1 + 4ς2, (5.76)

B ′ = 2geϕ−12φ1 cosh 2φ3 cosh 2φ4ς√
2 + 8ς2

, (5.77)
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ϕ′ = − geϕ−12φ1 cosh 2φ3 cosh 2φ4(1 + 20ς2)

5
√

2 + 8ς2
, (5.78)

φ′
1 = geϕ−12φ1 (cosh2 2φ3 cosh2 2φ4 + 5) sech 2φ3 sech 2φ4

15
√

2 + 8ς2
,

(5.79)

φ′
2 = geϕ−12φ1 (cosh2 2φ3 cosh2 2φ4 − 1) sech 2φ3 sech 2φ4

3
√

2 + 8ς2
,

(5.80)

φ′
3 = −

√
2geϕ−12φ1 sinh 2φ3 sech 2φ4√

1 + 4ς2
, (5.81)

φ′
4 = −

√
2geϕ−12φ1 cosh 2φ3 sinh 2φ4√

1 + 4ς2
, (5.82)

ς ′ = −2geϕ−12φ1 cosh 2φ3 cosh 2φ4ς
√

2 + 8ς2 . (5.83)

Introducing a new radial coordinate ρ via dρ
dr = eϕ−12φ1√

1+4ς2
, we

eventually find a domain wall solution

φ1 = C1 + φ2

5
− 1

10
ln(e4φ3 − 1)

+ 1

10
ln(e4φ3 + 1), (5.84)

φ2 = C2 − 1

12
ln

(
e4φ3 + 1

)

+ 1

24
ln

[
e2C4(1 − 2e4φ3 + e8φ3) − e4φ3

]
, (5.85)

φ3 = 1

4
ln

[
1 + 2e2

√
2gρ + e4

√
2gρ + 4e2C4

1 − 2e2
√

2gρ + e4
√

2gρ + 4e2C4

]
, (5.86)

φ4 = 1

4
ln

[
e2φ3 − eC4 + eC4+4φ3

e2φ3 + eC3 − eC3+4φ3

]
, (5.87)

ϕ = C + 1

20
ln(e4φ3 − 1)

+ 1

10
ln

[
e2C4(1 − 2e4φ3 + e8φ3) − e4φ3

]
(5.88)

−1

8
ln

[
e4φ3 − e2C4(1 − 2e4φ3 + e8φ3)

+4e2C5(1 − 2e4φ3 + e8φ3)
]
, (5.89)

A = 1

8
ln

[
e4φ3 − e2C4 (1 − 2e4φ3 + e8φ3 ) + 4e2C5 (1 − 2e4φ3 + e8φ3 )

(e4φ3 − 1)2

]
,

(5.90)

ς = eC5 (e4φ3 − 1)√
e2C4 (1 − 2e4φ3 + e8φ3 ) − 4e2C5 (1 − 2e4φ3 + e8φ3 ) − e4φ3

.

(5.91)

We end this section by noting that a domain wall solution
with ς = 0 can similarly be obtained with the coordinate ρ

defined by dρ
dr = eϕ−12φ1 . In this case, the solutions for the

dilaton and warped factor are given by

ϕ = C + 1

20
ln(e4φ3 − 1)

− 1

40
ln

[
e4φ3 − e2C4(1 − 2e4φ3 + e8φ3)

]
, (5.92)

A = −5ϕ (5.93)

while solutions for the remaining scalars are the same as
given above.

6 Conclusions and discussions

We have constructed the embedding tensors of six-dimensional
maximal N = (2, 2) gauged supergravity for various gauge
groups with known seven-dimensional origins via an S1

reduction. These gaugings are triggered by the embed-

ding tensor in 15−1 and 40
−1

representations of GL(5) ⊂
SO(5, 5) duality symmetry. In 15−1 representation, the cor-
responding gauge group is CSO(p, q, 5 − p − q) which
is the same as its seven-dimensional counterpart. On the

other hand, for gaugings in 40
−1

representation, additional
translation groups R

n
s associated with the shift symmetries

on the scalar fields appear in the gaugings resulting in
CSO(p, q, 4 − p − q) � R

4
s gauge group. This is also the

case for gaugings in (15 + 40)−1 representation with gauge
groups SO(2, 1) �

(
R

4 × R
2
s
)
, SO(2) �

(
R

6 × R
2
s
)
, and

CSO(2, 0, 2) � R
2
s .

We have also studied supersymmetric domain wall solu-
tions and found a large number of half-supersymmetric
domain walls from purely magnetic and purely electric gaug-

ings in 15−1 and 40
−1

representations, respectively. In addi-
tion, we have given 1

4 -supersymmetric domain walls for
dyonic gaugings involving the embedding tensor in both

15−1 and 40
−1

representations. These are similar to the
seven-dimensional solutions and in agreement with the gen-
eral classification of supersymmetric domain walls in [26] in
which the existence of 1

4 -BPS domain walls has been pointed
out.

Apart from solutions with seven-dimensional analogues,
we have also found solutions that are not uplifted to seven-
dimensional domain walls due to the presence of axionic
scalars leading to non-vanishing vector fields in seven dimen-
sions. This can be explicitly seen from the truncation ansatz
collected in Appendix C. Although this ansatz has originally
been given only for SO(5) gauge group, a similar ansatz
with possibly suitable modifications in the tensor field con-
tent is also applicable for other gauge groups. In particular,
the fact that a truncation of seven-dimensional vectors leads
to axionic scalars in six dimensions is still true. Therefore,
domain wall solutions with non-vanishing axionic scalars
obtained in this work cannot be obtained from an S1 reduction
of any domain wall solutions in seven dimensions. Accord-
ingly, these solutions are genuine six-dimensional domain
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walls without seven-dimensional analogues. As a final com-
ment, we note that there is no SO(5) symmetric domain wall
in seven dimensions since there is no SO(5) singlet scalar in
SL(5)/SO(5) coset. The six-dimensional SO(5) symmetric
domain wall, on the other hand, arises form an S1 reduction
of the supersymmetric AdS7 vacuum by the general result of
[49].

The seven-dimensional origin of all the gaugings consid-
ered in this work can also be embedded in ten or eleven
dimensions, so the six-dimensional domain wall solutions
can be embedded in string/M-theory via the corresponding
seven-dimensional truncations. Accordingly, the solutions
given here are hopefully useful in the study of DW6/QFT5

duality for maximal supersymmetric Yang–Mills theory in
five dimensions from both six-dimensional framework and
string/M-theory context. It is interesting to explicitly uplift
the domain wall solutions to seven dimensions and subse-
quently to ten or eleven dimensions using the truncation
ansatze given in [50–54].

Constructing truncation ansatze of string/M-theory to six
dimensions using SO(5, 5) exceptional field theory given in
[55] is also of particular interest. This would allow uplifting
the six-dimensional solutions directly to ten or eleven dimen-
sions. In this paper, we have considered only gaugings with

the embedding tensor in 15−1 and 40
−1

representations. It is
natural to extend this study by performing a similar analysis
for the embedding tensors in other GL(5) representations
as well as finding supersymmetric domain walls. Unlike the
solutions obtained in this paper, these solutions will not have
seven-dimensional counterparts via an S1 reduction.

It is also interesting to construct the embedding tensors
for various gaugings under SO(4, 4) ⊂ SO(5, 5). These
gaugings can be truncated to gaugings in half-maximal
N = (1, 1) supergravity coupled to four vector multiplets
in which supersymmetric AdS6 vacua are known to exist
in the presence of both conventional gaugings and mas-
sive deformations [56–58]. Finding supersymmetric solu-
tions from these gauge groups could be useful in the study of
AdS6/CFT5 correspondence. Finally, finding supersymmet-
ric curved domain walls with non-vanishing vector and tensor
fields as in seven-dimensional maximal gauged supergravity
in [59,60] is worth considering. This type of solutions can
describe conformal defects or holographic RG flows from
five-dimensional N = 4 super Yang–Mills theories to lower
dimensions. Along this line, examples of solutions dual to
surface defects from N = (1, 1) gauged supergravity have
appeared recently in [61].
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A GL(5) branching rules

In this appendix, we collect all of the SO(5, 5) → GL(5)

branching rules used throughout the paper. Relevant decom-
positions have already been given in [30], but in order to
construct the embedding tensor, we need a concrete realiza-
tion. Therefore, we will determine the decompositions for
various representations of SO(5, 5) in terms of GL(5) rep-
resentations using explicit matrix forms.

A.1 Vector

A vector or fundamental representation of SO(5, 5) decom-
poses under GL(5) ⊂ SO(5, 5) as 5 and 5, i.e., VM =
(Vm, Vm). The SO(5, 5) vector index M = 1, . . . , 10 can be
raised and lowered through the following SO(5, 5) invariant
metric in the light cone or off-diagonal basis

ηMN = ηMN =
(

0 15

15 0

)
(A.1)

in which1n is an (n×n) identity matrix. For example, V M =
ηMNVN = (Vm, Vm).

In vector representation, the SO(5, 5) algebra

[
tMN , t PQ

] = 4(ηM[P tQ]N − ηN [P tQ]M ) (A.2)

is realized by SO(5, 5) generators , tMN = t [MN ], of the
form

(tMN )P
Q = 4ηP[Mδ

Q
N ] (A.3)

where δMN = 110. Defining an R
+ ∼ SO(1, 1) ⊂ GL(5) ∼

R
+ × SL(5) generator by

d = tmm = t11 + t22 + t33 + t44 + t55, (A.4)
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we find the explicit form of the R
+ generator in vector rep-

resentation given by

d = 2

(
15 0
0 −15

)
. (A.5)

With an SO(5, 5) vector decomposing as VM = (Vm, Vm),
we obtain the commutation relations

[d, Vm] = +2Vm and
[
d, Vm] = −2Vm . (A.6)

These imply that we can assign the R
+ weights ±2 to the

5 and 5 representations of SL(5) ⊂ GL(5). Therefore, the
branching rule for a vector representation reads

10︸︷︷︸
VM

→ 5+2︸︷︷︸
Vm

⊕ 5
−2

︸︷︷︸
Vm

. (A.7)

A.2 Adjoint

The decomposition of adjoint representation follows from
the branching rule of vector representations. Using (A.7), we
can decompose the SO(5, 5) generators as

tMN → (tmn, tmn, tmn) (A.8)

with tmn = −tnm . The 25 generators tmn ofGL(5) consist of
the R

+ generator defined in (A.4) and the SL(5) generators
given by

τm
n = tmn − 1

5
d δmn (A.9)

with τm
m = 0.

We denote the shift and hidden generators by smn = tmn

and hmn = tmn , respectively. In vector representation, the
SO(5, 5) generators can be written as

(tMN )P
Q =

(
tmn hmn

smn −tmn

)
. (A.10)

From the SO(5, 5) algebra, we can derive the following com-
mutation relations

[d, d] = 0,
[
d, τm

n
] = 0, (A.11)

[d, smn] = −4smn,
[
d, hmn] = +4hmn, (A.12)

[
smn, s pq

] = 0,
[
hmn, hpq] = 0, (A.13)[

τm
n, τ

p
q
] = 2(δ

p
n τm

q − δmq τ p
n), (A.14)

[
τm

n, s pq
] = 2(δmq snp − δmp snq + 2

5
δmn s pq), (A.15)

[
τm

n, hpq] = 2(δ
p
n h

mq − δ
q
n h

mp − 2

5
δmn hpq), (A.16)

[
smn, hpq] = 2(δ

p
mτ q

n − δ
q
mτ p

n

−δ
p
n τ q

m + δ
q
n τ p

m) − 2

5
d δ

[p
m δ

q]
n

= 2(δ
p
m t

q
n − δ

q
m t

p
n − δ

p
n t

q
m + δ

q
n t

p
m)

(A.17)

in which δ
[p
m δ

q]
n = 1

2 (δ
p
mδ

q
n − δ

q
mδ

p
n ). In the second line of

(A.17), we have used (A.9) to rewrite the commutation rela-
tion in terms of the GL(5) generators. Note also that (A.14)
is the SL(5) algebra. It follows that the GL(5) branching
rule for adjoint representation is given by

45︸︷︷︸
tMN

→ 10︸︷︷︸
d

⊕ 240︸︷︷︸
τm

n

⊕ 10−4︸︷︷︸
smn

⊕ 10
+4

︸︷︷︸
hmn

(A.18)

where the R
+ weights are determined from the relations

(A.11) and (A.12).

A.3 Spinor

Unlike the vector, decomposition of SO(5, 5) spinor repre-
sentation under GL(5) is not straightforward. To describe
this branching rule, we begin with the following two sets of
USp(4) ∼ SO(5) gamma matrices satisfying

{γa, γb} = 2δab14, δab = diag(+,+,+,+,+),

(A.19){
γȧ, γḃ

} = 2δȧḃ14, δȧḃ = diag(+,+,+,+,+)

(A.20)

where a, b, . . . = 1, . . . , 5 and ȧ, ḃ, . . . = 1̇, . . . , 5̇ are two
sets of SO(5) vector indices raised and lowered by δab and
δȧḃ, respectively. For both sets of SO(5) gamma matrices,
we will use the following explicit representation

γ1 = −σ2 ⊗ σ2, γ2 = 12 ⊗ σ1, γ3 = 12 ⊗ σ3,

γ4 = σ1 ⊗ σ2, γ5 = σ3 ⊗ σ2 (A.21)

where {σ1, σ2, σ3} are the usual Pauli matrices given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.22)

Each gamma matrix is a 4×4 matrix with the index struc-
ture (γa)α

β and (γȧ)α̇
β̇ . Indices α, β, . . . = 1, . . . , 4 and

α̇, β̇, . . . = 1̇, . . . , 4̇ are two sets of USp(4) fundamental or
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SO(5) spinor indices raised and lowered through two iden-
tical USp(4) symplectic forms

�αβ = �α̇β̇ = 12 ⊗ iσ2 (A.23)

satisfying

�βα = −�αβ, �αβ = (�αβ)∗, �αβ�βγ = −δγ
α ,

(A.24)

and similarly for �α̇β̇ . Therefore, the matrices (γa)αβ =
�βγ (γa)α

γ satisfy

(γa)βα = −(γa)αβ, �αβ(γa)αβ = 0,

((γa)αβ)∗ = �αγ �βδ(γa)γ δ, (A.25)

and similarly for (γȧ)α̇β̇ = �β̇γ̇ (γȧ)α̇
γ̇ .

The 32-dimensional SO(5, 5) gamma matrices, �̃A =
(�̃a, �̃ȧ) with A = 1, . . . , 10, satisfying the Clifford algebra

{
�̃A, �̃B

}
= 2ηAB132 (A.26)

with ηAB = diag(+,+,+,+,+,−,−,−,−,−) can be
constructed from the SO(5) gamma matrices as

�̃a = (σ1 ⊗14 ⊗γa) and �̃ȧ = (iσ2 ⊗γȧ ⊗14). (A.27)

The matrices A, B, and C, which respectively realize Dirac,
complex, and charge conjugation, have the following defin-
ing properties

(�̃A)† = −A�̃AA
−1, (�̃A)∗ = −B�̃AB

−1,

(�̃A)T = −C�̃AC
−1. (A.28)

In our explicit representation, the matricesA andB are given
by

A = �̃6�̃7�̃8�̃9�̃10 and B = 12 ⊗ � ⊗ �. (A.29)

The charge conjugation matrix C can be obtained from A

and B through the relation

C = BTA. (A.30)

The SO(5, 5) chirality matrix takes the following diagonal
form

�̃∗ = �̃1 . . . �̃10 = diag(116,−116). (A.31)

Therefore, as seen from the definition (A.27), SO(5, 5)

gamma matrices are chirally decomposed as

�̃a =
(

0 14 ⊗ γa
14 ⊗ γa 0

)
and

�̃ȧ =
(

0 γȧ ⊗ 14

−γȧ ⊗ 14 0

)
. (A.32)

Elements of the 16×16 SO(5) gamma matrices 14 ⊗γa and
γȧ ⊗ 14 are denoted by the following index structure

14 ⊗ γa = (γa)αα̇
ββ̇ = (γa)α

βδ
β̇
α̇ and

γȧ ⊗ 14 = (γȧ)αα̇
ββ̇ = δβ

α (γȧ)α̇
β̇ . (A.33)

On the other hand, we can split a 32-dimensional SO(5, 5)

spinor index intoA = (A, A′) for A, B, . . . = 1, . . . , 16 and
A′, B ′, . . . = 17, . . . , 32 so that

(�̃A)A
B =

(
0 (	A)A

B′

(	A)A′ B 0

)
. (A.34)

We can then relate these two decompositions of SO(5, 5)

spinor indices into A, A′ and a pair of USp(4) indices (αα̇)

by using the following transformation matrices

pαα̇
A = δα

Aδα̇
1 + δα+4

A δα̇
2 + δα+8

A δα̇
3 + δα+12

A δα̇
4 ,

pAαα̇ = δAα δ1
α̇ + δAα+4δ

2
α̇ + δAα+8δ

3
α̇ + δAα+12δ

4
α̇ . (A.35)

These matrices satisfy the relations

pαα̇
A pBαα̇ = δBA and pαα̇

A pA
ββ̇

= δα
βδα̇

β̇
. (A.36)

We can now write chiral SO(5, 5) gamma matrices in terms
of the SO(5) ones as

(	a)A
B′ = pαα̇

A (γa)αα̇
ββ̇ pB

′
ββ̇

,

(	ȧ)A
B′ = pαα̇

A (γȧ)αα̇
ββ̇ pB

′
ββ̇

, (A.37)

(	a)A′ B = pαα̇
A′ (γa)αα̇

ββ̇ pB
ββ̇

,

(	ȧ)A′ B = − pαα̇
A′ (γȧ)αα̇

ββ̇ pB
ββ̇

. (A.38)

To raise and lower the spinor indices A and A′, we use the
charge conjugation matrix which in this basis takes the form
of

C =
(

0 � ⊗ �

−� ⊗ � 0

)
. (A.39)

Its elements can be explicitly expressed as

CAB =
(

0 cAB′
cA′B 0

)
and CAB =

(
0 cAB

′

cA
′B 0

)
.

(A.40)
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The 16 × 16 matrix cA′B is antisymmetric, cA′B = −cBA′ .
Similarly, the matrix cAB

′
satisfying the relations

cAC ′ cC
′B = −δBA and cA′C c

CB′ = −δB
′

A′ (A.41)

is also antisymmetric cA
′B = −cBA′

.
By raising and lowering the SO(5, 5) spinor index, we

can define gamma matrices with all upper or lower indices

(�̃A)AB = CAC(�̃A)C
B =

(
(	A)AB 0

0 (	A)A
′B′

)
, (A.42)

(�̃A)AB = (�̃A)A
C
CCB =

(
(	A)AB 0

0 (	A)A′B′

)
(A.43)

in which

(	A)AB = cAC
′
(	A)C ′ B, (	A)A

′B′ = cA
′C (	A)C

B′
,

(	A)AB = (	A)A
C ′
cC ′B, (	A)A′B′ = (	A)A′C cCB′ .

(A.44)

In terms of theUSp(4) symplectic forms �αβ and �α̇β̇ which
can be used to raise or lower USp(4) fundamental indices,
we can write the matrices cA′B and cA

′B as

cA′B = pαα̇
A′ p

ββ̇
B �αβ�α̇β̇ and cA

′B = pA
′

αα̇ p
B
ββ̇

�αβ�α̇β̇ .

(A.45)

With all these, we can eventually find the following relations

(	a)
AB = pAαα̇ p

B
ββ̇

(γa)
αα̇,ββ̇ , (	ȧ)

AB = − pAαα̇ p
B
ββ̇

(γȧ)
αα̇,ββ̇ ,

(	a)
A′B′ = pA

′
αα̇ p

B′
ββ̇

(γa)
αα̇,ββ̇ , (	ȧ)

A′B′ = pA
′

αα̇ p
B′
ββ̇

(γȧ)
αα̇,ββ̇ ,

(	a)AB = pαα̇
A pββ̇

B (γa)αα̇,ββ̇ , (	ȧ)AB = pαα̇
A pββ̇

B (γȧ)αα̇,ββ̇ ,

(	a)A′B′ = pαα̇
A′ p

ββ̇

B′ (γa)αα̇,ββ̇ , (	ȧ)A′B′ = − pαα̇
A′ p

ββ̇

B′ (γȧ)αα̇,ββ̇

(A.46)

with

(γa)
αα̇,ββ̇ = �αδ�α̇δ̇(γa)δδ̇

ββ̇ = (γa)
αβ�α̇β̇ ,

(γȧ)
αα̇,ββ̇ = �αδ�α̇δ̇(γȧ)δδ̇

ββ̇ = �αβ(γȧ)
α̇β̇ ,

(γa)αα̇,ββ̇ = �βδ�β̇δ̇(γa)αα̇
δδ̇ = (γa)αβ�α̇β̇ ,

(γȧ)αα̇,ββ̇ = �βδ�β̇δ̇(γȧ)αα̇
δδ̇ = �αβ(γȧ)α̇β̇ . (A.47)

We now transform all these results to the basis with off-
diagonal ηMN given in (A.1). Denoting SO(5, 5) gamma
matrices in this basis by �̃M , we can write the corresponding
Clifford algebra as

{
�̃M , �̃N

}
= 2ηMN132. (A.48)

From [30], the relation between diagonal and off-diagonal η

is given by

ηMN = MM
A

MN
B ηAB (A.49)

with

M = 1√
2

(
15 15

15 −15

)
. (A.50)

We can then find the following relation between these two
sets of gamma matrices

�̃M = MM
A�̃A (A.51)

with the same chiral decomposition of the form

(�̃M )A
B =

(
0 (	M )A

B′

(	M )A′ B 0

)
. (A.52)

Moreover, we can still raise and lower the chirally decom-
posed spinor indices with the charge conjugation matrix
given in (A.39) such that

(�̃M )AB = (�̃M )A
C
CCB =

(
(	M )AB 0

0 (	M )A′B′

)

(A.53)

with (	M )AB = (	M )A
C ′
cC ′B and (	M )A′B′ = (	M )A′C cCB′ .

We will see in the following analysis that (	M )AB play an
important role in determining specific forms of the embed-
ding tensor.

In spinor representation, the SO(5, 5) generators satisfy-
ing (A.2) are given by

(tMN )A
B = (	MN )A

B . (A.54)

In 32 × 32 representation, we can write

(�̃MN )A
B = 1

2

(
(�̃M )A

C
(�̃N )C

B − (�̃N )A
C
(�̃M )C

B)

=
(

(	MN )A
B 0

0 (	MN )A′ B
′

)
(A.55)

with

(	MN )A
B = 1

2

[
(	M )A

C ′
(	N )C ′ B − (	N )A

C ′
(	M )C ′ B

]
,

(A.56)

(	MN )A′ B
′ = 1

2

[
(	M )A′C (	N )C

B′ − (	N )A′C (	M )C
B′]

.

(A.57)

It should be noted that the SO(5, 5) generators in spinor
representation given in (A.54) also decompose according to
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(A.18) and satisfy the same algebra given in (A.11)–(A.17)
for vector representation.

As pointed out in [30], the branching rules for spinor and
conjugate spinor representations of SO(5, 5) are respectively
given by

16s → 5
+3 ⊕ 10−1 ⊕ 1−5 and

16c → 5−3 ⊕ 10
+1 ⊕ 1+5. (A.58)

To find the corresponding decompositions of spinor indices,
we define the following transformation matrices

TAm = 1

2
√

2
(	m)AB pBαβ�αβ, (A.59)

T
mn
A = 1

4
√

2
(	mn)AB pαβ

B �αβ, (A.60)

TA∗ = 1

10
(	m

m)AB pαβ
B �αβ. (A.61)

In these equations, pAαβ matrices are defined in the same way

as pA
αβ̇

in (A.35).

We can now decompose an SO(5, 5) spinor in 16s repre-
sentation as

�A = TAm�m + T
mn
A �mn + TA∗�∗ (A.62)

with �mn = �[mn]. The commutation relations between
these components and the R

+ generator are given by
[
d, TAm�m] = +3TAm�m, (A.63)[
d, T

mn
A �mn

] = −T
mn
A �mn, (A.64)

[d, TA∗�∗] = −5TA∗�∗ (A.65)

in accord with the branching rule

16s︸︷︷︸
�A

→ 5
+3

︸︷︷︸
�m

⊕ 10−1︸︷︷︸
�[mn]

⊕ 1−5︸︷︷︸
�∗

. (A.66)

The inverse matrices of TA are simply given by their com-
plex conjugation T

A = (TA)−1 = (TA)∗ satisfying

T
Am

TAn = δmn , T
A
mnT

pq
A = δ

[p
m δ

q]
n , T

A∗ TA∗ = 1,

T
Am

TAnp = 0, T
Am

TA∗ = 0, T
A
mnTA∗ = 0

(A.67)

together with

T
Am

TBm + T
A
mnT

mn
B + T

A∗ TB∗ = δAB . (A.68)

In addition, we also note that a complex conjugation of the
SO(5, 5) gamma matrices is related to raising the indices
((	M )AB)∗ = (	M )AB . We can then similarly decompose a
conjugate spinor of SO(5, 5) transforming in 16c as follows

� A = T
Am�m + T

A
mn�

mn + T
A∗ �∗ . (A.69)

The following commutation relations
[
d, T

Am�m

]
= −3T

Am�m, (A.70)
[
d, T

A
mn�

mn
]

= +T
A
mn�

mn, (A.71)
[
d, T

A∗ �∗
]

= +5T
A∗ �∗ (A.72)

imply the branching rule

16c︸︷︷︸
� A

→ 5−3︸︷︷︸
�m

⊕ 10
+1

︸︷︷︸
�[mn]

⊕ 1+5︸︷︷︸
�∗

. (A.73)

A.4 Vector-spinor

The vector-spinor of SO(5, 5) we are interested in is given
by θ AM ∈ 144c, which parameterizes the embedding tensor.
It transforms according to

[
tMN , θ AP

]
= −(tMN )Q

Pθ AQ − (tMN )B
Aθ BP . (A.74)

Here, θ AM is a (16 × 10) matrix subject to

(	M )AB θ BM = 0 (A.75)

which is the linear constraint required by supersymmetry,
reducing 160 components of the θ AM to 144 in 144c repre-
sentation.

To determine the decomposition of the vector-spinor rep-
resentation under GL(5), we first split the SO(5, 5) vector
index M as θ AM = (θ Am, θ A

m ). Then, with the inverse of
the transformation matrices TA given in (A.59)–(A.61), θ Am

and θ A
m can be further decomposed into the following six

components

θ Am = T
An(ϑ1)n

m + T
A
np(ϑ3)

np,m + T
A∗ (ϑ5)

m, (A.76)

θ A
m = T

An(ϑ2)nm + T
A
np(ϑ4)

np
m + T

A∗ (ϑ6)m . (A.77)

It is straightforward to show that their commutation relations
with the R

+ generators in both vector and spinor represen-
tations are given by
[
d, T

An(ϑ1)n
m
]

= −5T
An(ϑ1)n

m,
[
d, T

An(ϑ2)nm

]
= −T

An(ϑ2)nm,
[
d, T

A
np(ϑ3)

np,m
]

= −T
A
np(ϑ3)

np,m,
[
d, T

A
np(ϑ4)

np
m

]
= +3T

A
np(ϑ4)

np
m ,

[
d, T

A∗ (ϑ5)
m
]

= +3T
A∗ (ϑ5)

m,
[
d, T

A∗ (ϑ6)m

]
= +7T

A∗ (ϑ6)m . (A.78)
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The branching rule for 144c representation is then given by

144c︸︷︷︸
θ AM

→ 5
+3

︸︷︷︸
Jm

⊕ 5+7︸︷︷︸
Km

⊕ 10−1︸︷︷︸
Zmn

⊕ 15−1︸︷︷︸
Ymn

⊕ 24−5︸︷︷︸
Smn

⊕ 40
−1

︸︷︷︸
Umn,p

⊕ 45
+3

︸︷︷︸
Wnp

m

(A.79)

in agreement with that given in [30]. We now explicitly con-
struct a number of possible embedding tensors arising from
various components of the above decomposition.

A.4.1 24−5 representation

With only ϑ1 �= 0, we have θ A
m = 0, and θ Am is parametrized

by a 5 × 5 matrix (ϑ1)n
m . Therefore, the embedding tensor

is given by

θ AM =
(

T
An(ϑ1)n

m, 0
)

. (A.80)

The linear constraint (A.75) implies that (ϑ1)n
m is traceless

or

(ϑ1)n
m = Sn

m (A.81)

for Smm = 0. This leads to an embedding tensor in 24−5

representation of GL(5) given by

θ AM
24−5 =

(
T
AnSn

m, 0
)

. (A.82)

A.4.2 15−1 representation

For θ Am = 0, θ A
m is parametrized by a 5 × 5 matrix (ϑ2)mn

which can further be decomposed in terms of symmetric and
antisymmetric parts, Ymn = Y(mn) and Zmn = Z[mn], as

θ A
m = T

An(ϑ2)nm = T
An(Ynm + Znm). (A.83)

The linear constraint (A.75) requires Zmn = 0, so the embed-
ding tensor is given by

θ AM
15−1 =

(
0, T

AnYnm
)

(A.84)

in 15−1 representation of GL(5).

A.4.3 40
−1

representation

With only (ϑ3)
np,m non-vanishing, we have θ A

m = 0 and θ Am

given by

θ Am = T
A
np(ϑ3)

np,m . (A.85)

The tensor (ϑ3)
np,m can in turn be parametrized as

(ϑ3)
np,m = Unp,m + 1

2
εmnpqrζqr . (A.86)

Umn,p = U [mn],p with U [mn,p] = 0 and ζmn = ζ[mn] cor-

respond to 40
−1

and 10−1 representations, respectively. The
condition (A.75) requires ζqr = 0 resulting in the embedding

tensor in 40
−1

representation of the form

θ AM
40

−1 =
(

T
A
npU

np,m, 0
)

. (A.87)

A.4.4 10−1 representation

Turning on 10−1 irreducible part of both (ϑ2)nm and (ϑ3)
np,m

by setting Ymn = 0 and Umn,p = 0, we find the embedding
tensor of the form

θ AM
10−1 =

(
1

2
T
A
npε

mnpqrζqr , T
An Znm

)
. (A.88)

The condition (A.75) is satisfied for

ζmn =
√

2

3
Zmn . (A.89)

Therefore, the embedding tensor in 10−1 representation is
given by

θ AM
10−1 =

(
1

3
√

2
T
A
npε

mnpqr Zqr , T
An Znm

)
. (A.90)

A.4.5 45
+3

representation

In this case, we consider non-vanishing (ϑ4)
np
m which can be

decomposed into 45
+3

and 5
+3

irreducible representations
of the form

(ϑ4)
np
m = Wnp

m + J [nδ p]m (A.91)

with Wnp
m = W [np]

m satisfying Wnm
m = 0. The linear con-

straint (A.75) requires Jm = 0 leading to the embedding

tensor in 45
+3

representation given by

θ AM
45

+3 =
(

0, T
A
npW

np
m

)
. (A.92)

A.4.6 5
+3

representation

We now consider non-vanishing 5
+3

components from both
(ϑ5)

m and (ϑ4)
m in terms of which the embedding tensor is

given by
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θ AM
5
+3 =

(
T
A∗ ξm, T

A
np J

[nδ p]m
)

. (A.93)

This satisfies the linear constraint (A.75) for

ξm = −2
√

2

5
Jm . (A.94)

Therefore, we find the embedding tensor in 5
+3

representa-
tion given by

θ AM
5
+3 =

(
−2

√
2

5
T
A∗ Jm, T

A
np J

[nδ p]m

)
. (A.95)

A.4.7 5+7 representation

Finally, we consider (ϑ6)m corresponding to 5+7 representa-
tion. This can be parameterized by an arbitrary GL(5) vector
of the form (ϑ6)m = Km . The corresponding embedding ten-
sor is also in 5+7 representation and takes the form

θ AM
5+7 =

(
0, T

A∗ Km

)
(A.96)

which automatically satisfies the condition (A.75).
We end this appendix by giving the full parametrization

of the embedding tensor θ AM = (θ Am, θ A
m ) under GL(5)

θ Am = T
AnSn

m + T
A
np

(
Unp,m + 1

3
√

2
εmnpqr Zqr

)

−2
√

2

5
T
A∗ Jm, (A.97)

θ A
m = T

An(Ynm + Znm) + T
A
np(W

np
m

+J [nδ p]m ) + T
A∗ Km . (A.98)

B Symplectic-Majorana–Weyl spinors in six dimensions

In this appendix, we collect conventions and fundamental
relations involving irreducible spinors in six-dimensional
space-time used throughout this work. In six dimensions,
there exist Dirac spinors with 16 real components. The Dirac
spinors are reducible and can be decomposed into two irre-
ducible Weyl spinors of opposite chirality with 8 real compo-
nents each. The six-dimensional Clifford algebra is defined
by the relation

{γ̂μ̂γ̂ν̂ + γ̂ν̂ γ̂μ̂} = 2ημ̂ν̂18. (B.1)

Here, γ̂μ̂ are 8 × 8 Dirac matrices and ημ̂ν̂ = diag(−1,+1,

+1,+1,+1,+1) with μ̂, ν̂, . . . = 0, 1, . . . , 5 being six-
dimensional flat space-time indices. We will use the follow-
ing explicit representation of the gamma matrices

γ̂0 = σ1 ⊗ iσ2 ⊗ 12, γ̂1 = σ2 ⊗ 12 ⊗ σ2,

γ̂2 = σ1 ⊗ σ1 ⊗ 12,

γ̂3 = σ2 ⊗ 12 ⊗ σ1, γ̂4 = σ2 ⊗ 12 ⊗ σ3,

γ̂5 = σ1 ⊗ σ3 ⊗ 12.

(B.2)

In this representation, the Dirac, complex, and charge conju-
gation matrices are respectively given by

Â = γ̂0, B̂ = −i γ̂3γ̂4, Ĉ = i γ̂0γ̂3γ̂4 . (B.3)

They satisfy the following relations

(γ̂μ̂)† = −Âγ̂μ̂Â
−1, (γ̂μ̂)∗ = −B̂γ̂μ̂B̂

−1,

(γ̂μ̂)T = −Ĉγ̂μ̂Ĉ
−1 (B.4)

together with the identities

B̂T = ĈÂ−1, B̂∗B̂ = −18, ĈT = −Ĉ−1 = −Ĉ† = Ĉ .

(B.5)

The chirality operator γ̂∗ can be defined as

γ̂∗ = γ̂0γ̂1γ̂2γ̂3γ̂4γ̂5 = diag(14,−14) with γ̂∗γ̂∗ = 18.

(B.6)

The diagonal form of γ̂∗ implies that a Dirac spinor � can
be chirally decomposed as

� = �+ + �− with P±�± = ±�± (B.7)

where the projection operators are given by

P± = 1

2
(18 ± γ̂∗). (B.8)

Therefore, we can define two irreducible Weyl spinors ψ+
and χ− from the Dirac spinor � by

� =
(

ψ+
χ−

)
, �+ =

(
ψ+
0

)
, �− =

(
0

χ−

)
. (B.9)

Although the second property in (B.5) implies that a reality
condition cannot be imposed on the Dirac or Weyl spinors, we
can define a symplectic-Majorana–Weyl spinor of the form

�+α =
(

ψ+α

0

)
and �−α̇ =

(
0

χ−α̇

)
(B.10)

with �+α and �−α̇ satisfying the pseudo-reality condition
given by

�α+ = (�+α)∗ = �αβB̂�+β and

�α̇− = (�−α̇)∗ = �α̇β̇B̂�−β̇ . (B.11)
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�αβ and �α̇β̇ are symplectic forms of the twoUSp(4) factors
in the R-symmetryUSp(4)×USp(4) under which �+α and
�−α̇ transform separately.

C Truncation ansatze

In this appendix, we collect some useful formulae for a
consistent truncation of seven-dimensional SO(5) gauged
supergravity on a circle (S1), giving rise to SO(5) gauged
supergravity in six dimensions. This truncation has been con-
structed in [28].

The truncation ansatze for the seven-dimensional metric,
scalar, vector, and tensor fields are respectively given by

dŝ2
7 = e

σ√
10 ds2

6 + e
− 4σ√

10 (dz + A(1))
2, (C.1)

�̂ i
I (xμ, z) = �I

i (xμ), (C.2)

B̂ J
(1)I = B(1)I

J + B(0)I
J (dz + A(1)), (C.3)

Ŝ(3)I = S(3)I + S(2)I (dz + A(1)) (C.4)

in which hatted quantities refer to seven-dimensional fields.
xμ are six-dimensional space-time coordinates, and z is the
coordinate on S1. Here, I, J, . . . = 1, . . . , 5 are vector
indices of the gauge group SO(5) while i, j, . . . = 1, . . . , 5
are vector indices for the local composite SO(5)c.

There are (1+14+10) scalars denoted by {σ, �I
i , B(0)I

J }
in the six-dimensional theory. These are given by the dila-
ton scalar field from the matric ansatz (C.1), fourteen scalars
parametrizing SL(5)/SO(5)c coset, and ten axionic scalar
fields from the truncation ansatz of vector fields (C.3). There
are also (10 + 1) vectors {B(1)I

J , A(1)} together with five
two-form potentials S(2)I . The five three-form potentials
S(3)I do not contribute to the Lagrangian of the SO(5)gauged
theory in six dimensions since the seven-dimensional self-
duality condition allows to eliminate them in favor of the
two-form potentials.

For supersymmetric domain wall solutions considered in
this work, we can set A(1) = B(1)I

J = S(2)I = 0. Using the
domain wall ansatz for the matric from (3.8) together with
ϕ = σ

2
√

10
, we find that (C.1) becomes

e2 Âdx2
1,5 + dr̂2

= e2A+2ϕdx2
1,4 + e−8ϕdz2 + e2ϕdr2

= e
8A
5 (dx2

1,4 + dz2) + e2ϕdr2 (C.5)

In the second line, we have substituted ϕ = − A
5 from the

domain wall solutions given here. This is also necessary
for dx2

1,4 and dz2 to form a six-dimensional flat space-time

matching dx2
1,5 on the left hand side. We can also see the

relations between the warped factors Â = 4A
5 and the radial

coordinates dr̂ = eϕdr .

The ansatz (C.2) implies that the scalars parametrizing
SL(5)/SO(5)c coset in seven- and six-dimensional super-
symmetric domain walls are the same since they are inde-
pendent of z and depend only on the corresponding radial
coordinates

�̂ i
I (r̂) = �I

i (r). (C.6)

For ten axionic scalars B(0)I
J , which are called shift scalars

in this work, we can see from (C.3) that they give rise to
non-vanishing vector fields in seven dimensions

B̂ J
(1)I = B(0)I

J dz. (C.7)

Therefore, domain wall solutions with non-vanishing axionic
scalars obtained in this work cannot be obtained from an S1

reduction of any domain wall solutions in seven dimensions.
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