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Abstract Jet tagging has become an essential tool for new
physics searches at the high-energy frontier. For jets that con-
tain energetic charged leptons we introduce Feature Extended
Supervised Tagging (FEST) which, in addition to jet sub-
structure, considers the features of the charged lepton within
the jet. With this method we build dedicated taggers to dis-
criminate among boosted H → �νqq̄ , t → �νb, and QCD
jets (with � an electron or muon). The taggers have an impres-
sive performance, allowing for overall light jet rejection fac-
tors of 104 − 105, for top quark/Higgs boson efficiencies of
0.5. The taggers are also excellent in the discrimination of
Higgs bosons from top quarks and vice versa, for example
rejecting top quarks by factors of 100–300 for Higgs boson
efficiencies of 0.5. We demonstrate the potential of these
taggers to improve the sensitivity to new physics by using as
example a search for a new Z ′ boson decaying into ZH , in
the fully-hadronic final state.

1 Introduction

From the last decade the Large Hadron Collider (LHC) is
probing the high-energy frontier of particle interactions. With
the high luminosity achieved, it has been possible to explore
the multi-TeV scales not only in the search for new reso-
nances, but also to test the SM production mechanisms at
high energy, looking for possible deviations from the pre-
dictions of the Standard Model (SM). Being the two most
massive SM particles, the Higgs boson and the top quark
play a unique role in the search for physics beyond the SM,
in particular to probe the electroweak symmetry breaking.
The Higgs boson mainly decays hadronically or semilepton-
ically (fully leptonic and diphoton decay modes are rare)
while the top quark always produces a b quark in its decay.
Therefore, when they are produced with a large boost, their
decay products merge into a single jet J .
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Jet tagging has witnessed a tremendous progress in the
last decade [1–5] (see Ref. [6] for a review). The goal of
the different tagging methods is to distinguish a ‘signal’ jet
resulting from the hadronic decay of a boosted heavy par-
ticle, such as a weak W/Z boson, a Higgs boson, or a top
quark, from a ‘background’ quark or gluon jet. The discrim-
ination is done by the analysis of the jet substructure: while
the former jets are multi-pronged (containing two or three
quarks, depending on the decaying particle) the latter only
have one prong. Jet tagging methods have been extensively
used, for instance, in searches for new gauge bosons, scalar
and spin-2 particles [7–16], vector-like quarks [17–20] and
dark matter [21], as well as in SM measurements [22,23].

Generic supervised taggers have also been developed [24–
26] aiming to distinguish arbitrary multi-pronged jets from
QCD jets. They have been found capable of separating jets
containing ‘prompt’ (produced in the hard process) non-
isolated leptons from QCD jets in which the leptons result
from the decay of b, c quarks. However, to the best of our
knowledge, no tagger has been specifically developed for jets
containing such leptons. (Notice, however, that non-isolated
leptons are routinely used as one of the ingredients for b-
tagging of jets.) This paper aims to fill that gap. We build
up on the previously introduced Mass Unspecific Supervised
Tagging (MUST) [26] to develop neural network (NN) tag-
gers which, in addition to jet mass, transverse momentum
(pT ) and substructure variables, use as input the charged
lepton energy fraction z = E�/EJ and the distance from
the jet axis in the plane of pseudorapidity (η) and azimuthal
angle (φ), �R = (�η2

�J + �φ2
�J )

1/2. The method hereby
introduced is dubbed as Feature Extended Supervised Tag-
ging (FEST). We build dedicated taggers that can discrimi-
nate among H → �νqq̄ , t → �νb and QCD jets, treating
the � = e, μ cases separately. These two examples have the
highest interest, since there are numerous measurements and
searches by the ATLAS and CMS experiments involving top
quarks or Higgs bosons in the boosted regime. We note that
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early work [27,28] pointed out the usefulness of non-isolated
leptons for the identification of t → μνb. The related lep-
ton pT fraction ẑ = pT �/pT J has been shown [29–31] very
useful to discriminate boosted top quarks from QCD jets. A
variant, using the lepton pT fraction with respect to a sub-jet,
was explored in Ref. [32], where a detailed study on lepton
isolation was also performed. The electron energy fraction
has also been indirectly used in Ref. [33].

2 Generating the event samples

The Monte Carlo samples used to train and test the NNs
are obtained as follows. Boosted Higgs bosons are generated
with MadGraph [34], in the SM process pp → ZH , with
Z → νν̄ and H → �νqq̄ . For boosted top (anti-)quarks we
use pp → Zt + Zt̄ mediated by a vector flavour-changing
tcZ coupling [35], with Z → νν̄ and t → �νb. For these
processes the top flavour-changing neutral interactions are
implemented in Feynrules [36] and interfaced to Mad-
Graph5 using the universal Feynrules output [37]. QCD jets
are generated in the inclusive process pp → j j , with j a
light jet (not including b quarks). A possible extension could
include bb̄ in the training too; however, the tagger trained
on light jets has excellent performance for b jets, as it is
explicitly seen in the example presented in Section 6.

Event samples are generated in 100 GeV bins of pT start-
ing at [300, 400] GeV, and up to to [2.1, 2.2] TeV in the case
of QCD samples. For Higgs bosons and top quarks the jet
pT is actually smaller than the pT of the decaying heavy
particle, due to the missing neutrino. Therefore, we extend
the generation up to the [2.9, 3.0] TeV and [3.4, 3.5] TeV
bins, respectively. This guarantees coverage of the entire jet
pT range up to 2.2 TeV. Even though within each bin the
events mainly populate the lower end of the interval, the bins
are narrow enough to adequately parameterise the pT depen-
dence. For testing purposes, bb̄ samples are generated using
the same pT binning.

The parton-level event samples so generated are passed
through Pythia [38] for hadronisation and Delphes [39]
for a fast detector simulation, using the CMS card. Jets are
reconstructed with FastJet [40] applying the anti-kT algo-
rithm [41] with radius R = 0.8, and groomed with Recursive
Soft Drop [42]. In the subsequent analysis we only keep jets
with groomed massmJ ∈ [40, 170]GeV and pT ≥ 400 GeV.
The chosen mass range encompasses the jet mass distribu-
tions for top quark and Higgs boson jets, and the latter cut
is imposed in order to have a sufficient boost for top quarks,
so that its decay products are contained within a R = 0.8
jet. We also ask that the jets contain a charged lepton with
pT ≥ 10 GeV within a distance �R = 0.8 of the jet axis.
As discussed in the Appendix, the overall selection efficien-
cies for jet preselection plus tagging are quite independent

of this mild lower cut. For top and Higgs high-pT jets, the
leptons are already very energetic and the lepton pT thresh-
old has little influence. On the other hand, for QCD jets a
higher threshold at preselection significantly lowers the effi-
ciency. However, the NNs eventually learn that leptons are
much softer for QCD jets, and a lower preselection efficiency
is compensated by a higher mistag rate by the tagger.

We note that the requirement to contain a lepton, even
with a threshold as low as pT ≥ 10 GeV, has a very low
efficiency for the QCD jet samples. With our simulation we
find that, for example, for the sample with pT ∈ [1, 1.1] TeV
at the partonic level the efficiencies to find an electron or a
muon above this threshold are 0.041 and 0.020, respectively.
Therefore, huge samples of dijet events are needed to have
sufficient statistics: 4×105 events per pT bin for NN training
and validation, and 6 × 105 for testing, totaling 19 million
j j pairs.

3 Building the taggers

Jet substructure is characterised by the set of N -subjettiness
variables proposed in [5],
{
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computed for the ungroomed jets.1 By means of a principal
component analysis, it can be seen that the number of physi-
cally relevant combinations is actually smaller. Still, because
the computational speed is not a serious issue, we keep the
above set. As done in Ref. [26], we include as NN inputs the
jet mass, but varying on a narrower range mJ ∈ [40, 170]
GeV, and the jet pT ∈ [0.4, 2.2] TeV. Moreover, as pre-
viously pointed out, for these taggers we also include the
lepton energy fraction z and �R with respect to the jet. A
standardisation of the 21 inputs, based on the SM background
distributions, is performed to improve the NN learning.

Our goal is to simultaneously discriminate among jets cor-
responding to Higgs bosons, top quarks and light quarks / glu-
ons. Therefore, we build NNs whose input are the aforemen-
tioned variables for jets corresponding to the three classes (H ,
t , j). The NN output is a list of three numbers (p1, p2, p0),
with p1 + p2 + p0 = 1, giving the probabilities that a jet
corresponds to the H , t or j class, respectively. The NNs
contain two hidden layers of 512 and 64 nodes, with Recti-
fied Linear Unit (ReLU) activation for the hidden layers and a
softmax function for the outputs. The NNs are optimised with
the categorical cross-entropy loss function, using the Adam
[44] optimiser. Two independent NNs are built, for � = e

1 We note that the performance might be improved by using low-level
jet substructure variables. For top quarks decaying hadronically, it has
been shown [43] that taggers using low-level variables achieve a back-
ground rejection ∼ 1.4 times larger than taggers using N -subjettiness.
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and � = μ, using Keras [45] with a TensorFlow backend
[46]. The training sets for the e (μ) NN contain 6000 (5000)
events from each class (H , t , j) and pT slice, totaling around
3 × 105 training events. The validation sets used to monitor
the NN performance have similar size and composition as
the training ones.

For testing, we build additional two-class NNs to discrim-
inate between (i) H and j ; (ii) t and j ; (iii) H and t , using the
same architecture except for the loss function, for which we
use the (binary) cross-entropy, and the output layer, which
only contains one node with a sigmoid activation function.
These NNs are trained only using the events corresponding
to the two classes (H , j), (t , j) or (H , t), respectively. Fur-
thermore, we also build NNs only using the jet mass and pT ,
and the charged lepton z and �R as input, to investigate to
which extent the jet substructure variables contribute to the
discrimination.

Let us finally mention here some checks concerning
the NN architecture. We have not found any performance
improvement when duplicating the size of the first hidden
layer. In previous work [26] we also verified that including
higher-order τ

(β)
n does not improve the tagger discrimination.

We also investigated the possibility of using unbalanced sam-
ples in the training, or other generalised loss functions such as
the one proposed in [47], without noticeable improvements.

4 Tagger performance

We test the ability of our taggers to discriminate between
different pairs of classes, marginalising over the third one.
Figure 1 shows the receiver operating characteristic (ROC)
curves for H versus j (top), t versus j (middle) and H versus
t (bottom). In all plots, the horizontal axis gives the tagging
efficiency ε for a given type of jet, and the vertical axis the
tagging rejection ε−1 for another type of jet. In H versus
t we consider t as ‘background’ because Higgs boson pro-
duction is not usually a background for top quark measure-
ments, but the discrimination can be performed in either way.
The ROCs are shown for jets in four pT intervals: [0.4, 0.6],
[0.85, 1.15], [1.35, 1.65] and [1.8, 2] TeV.2 The area under
the ROC curve (AUC) is very high in all cases, reaching val-
ues around 0.998 for H versus j , 0.995 for t versus j and
0.98 for H versus t , for transverse momenta around 2 TeV.

Figure 2 shows the rejection factors ε−1 for fixed efficien-
cies of 0.7, as a function of the jet pT . The efficiencies are
evaluated within intervals of pT ∈ [〈pT 〉−200, 〈pT 〉+200]
GeV and plotted as a function of 〈pT 〉. We also include here
lines corresponding to the discrimination against b-quark

2 The test samples have a few tens of thousands of events, therefore for
rejection factors above 5 × 103 the statistical fluctuations may become
important, especially at high transverse momentum.

Fig. 1 ROC curves for the separation between different jet classes (for
details see the legends and the main text)

jets, which have not been used in the NN training. As it can
be readily seen, the discrimination of both H and t jets from
b jets is excellent, and likely sufficient to reject backgrounds
involving b quarks.

The tagger rejection for QCD jets is impressive. Further-
more, let us remind the reader that the test samples, for which
the ROC curves in Fig. 1 and rejection factors in Fig. 2 are
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Fig. 2 Rejection factors for H versus j (red), t versus j (blue) and H
versus t (green) as a function of transverse momentum for fixed tagging
efficiencies of 0.7 (see the text for details)

computed, are composed of jets that already pass the prese-
lection requirement of a charged lepton with pT ≥ 10 GeV.
And for QCD jets, the efficiency of this lepton requirement
is quite small (see the Appendix). For a given overall H
efficiency ε̄H , the overall QCD jet rejection ε̄−1

j is straight-

forwardly calculated as follows3:

• By dividing the selected overall efficiency ε̄H by the pre-
selection efficiency (either for electrons or for muons) we
get a H tagging efficiency εH , to which corresponds a j
rejection ε−1

j .

• Then, dividing ε−1
j by the preselection efficiency for

QCD jets (either for electrons or muons), we obtain the
overall QCD jet rejection factor ε̄−1

j .

For example, the preselection efficiencies for H → �νqq̄
jets with pT ∈ [1, 1.1] TeV are 0.61 and 0.91 in the electron
and muon channel, respectively. For QCD jets, they are 0.041
and 0.020. Therefore, considering jets with pT ∼ 1 TeV, for
an overall efficiency ε̄H = 0.5, the corresponding light jet
rejection factors are

e : εH = 0.61 → ε−1
j = 3000 → ε̄−1

j = 7.4 × 104

μ : εH = 0.55 → ε−1
j = 4400 → ε̄−1

j = 2.2 × 105

These overall rejection factors of the order of 105 for QCD
jets make the tagger quite useful, even if the decays H →
�νqq̄ are subdominant.

3 We use a bar to distinguish the overall efficiencies, including prese-
lection, from the tagger efficiencies ε. The overall efficiency for H and
t jets is defined relative to the full H → �νqq̄ and t → �νb samples
(within some pT range) before preselection, not summing over lep-
ton flavours. Likewise, the overall efficiency for QCD jets is computed
relative to the full sample within some pT range.

Similar comments can be made regarding the top jet dis-
crimination from QCD jets. The preselection efficiencies for
t jets with pT ∈ [1, 1.1] TeV are 0.73 and 0.80 in the electron
and muon channel, respectively. Therefore, for an overall t
efficiency ε̄t = 0.5, the corresponding light jet rejection fac-
tors ε̄−1

j are

e : εt = 0.68 → ε−1
j = 2000 → ε̄−1

j = 4.8 × 104

μ : εt = 0.62 → ε−1
j = 11,000 → ε̄−1

j = 5.5 × 105

As expected, the QCD jet rejection is much larger than for the
top fully-hadronic decay. For reference, NN taggers for the
hadronic top quark decay mode have a light jet rejection fac-
tor of 500 for a top tagging efficiency of 0.5, working in the
same pT range [48,49]. (Note that neither of these taggers,
nor the FEST tagger presented here, use b tagging to iden-
tify top quarks.) Of course, the figures are not comparable
because they refer to different decay modes. A meaningful
comparison can be made considering the improvement on
the S/

√
B ratio (with S standing for signal and B for back-

ground) brought by the different taggers, also taking into
account the branching ratio for the hadronic and leptonic
modes,

t → qq̄b : Br(t → qq̄b)
εt√
ε j

= 7.5 ,

t → eνb : Br(t → eνb)
εt√
ε j

= 12 ,

t → μνb : Br(t → μνb)
εt√
ε j

= 40 . (2)

With this figure of merit, one can see that tagging the top
semileptonic decays with FEST offers much better prospects
to probe for new physics.

The discrimination between H and t jets is also excel-
lent, as seen in the lower panel of Fig. 1, and this is of high
importance because top quark production may constitute a
background to Higgs boson measurements, as will be seen
in the Z ′ → ZH example presented in the following.

5 Comparison with two-class taggers

We restrict ourselves to the electron channel and the test inter-
val pT ∈ [0.85, 1.15] TeV to compare the three-class tagger
discriminating among H , t and j , with less general two-class
taggers. The results are shown in Fig. 3. Interestingly, the
discrimination power is the same for the three-class and the
two-class taggers, with minor differences that may well have
a statistical nature. This fact shows that the discrimination
power between two given classes is not degraded when build-
ing a tagger that simultaneously tries to distinguish among
H , t and j .
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Fig. 3 Comparison of ROC curves for different taggers (for details see
the legends)

Because the lepton energy (or pT ) fraction has previously
been used as a simple discriminating variable between top
quarks decaying semileptonically and QCD jets [27–33], it
is worth exploring to which extent the jet substructure vari-
ables add to the discrimination. With this purpose, we build
two-class taggers that only use as input the jet mass and pT ,
as well as z and �R. As expected, for H → �νqq (with two
quarks) the jet substructure significantly enhances the dis-
crimination with respect to light jets. For t → �νb, jet sub-
structure variables help but are less important. For H versus
t discrimination the analysis of the jet substructure is crucial,
as expected, because the former jets have two quarks and the
latter only one.

Conversely, as seen in Refs. [25,26], generic taggers only
using substructure variables have a poorer discrimination
between jets with leptons and QCD jets. The tests in those
references are performed using as signal jets from boosted
heavy neutrinos decaying N → eqq̄ , but the conclusion is
expected to be general.

6 Example: Z′ → ZH

We investigate here the usefulness of the taggers here intro-
duced to improve the sensitivity of LHC measurements. Tag-
ging of boosted H → bb̄ is performed both by the ATLAS
and CMS Collaborations by looking at b-tagged subjets of
a large-radius jet containing the H → bb̄ decay products.
Namely, the ATLAS Collaboration uses R = 0.2 subjets
in earlier searches [50] and variable radius jets in the most
recent one [51] with the full Run 2 dataset. The CMS Collab-
oration uses subjets of R = 0.4 [52]. Requiring one or two b-
tagged subjets significantly suppresses the QCD background,
especially in the latter case. The ATLAS Collaboration has
considered the decay H → �νqq̄ in a search for HH reso-

Fig. 4 �R separation between the charged lepton and the Higgs jet
produced in the Z ′ → ZH decay

nances [53] in the resolved case, where this decay produces
two narrow R = 0.4 jets and a charged lepton that can be
independently reconstructed. As the Higgs bosons are more
boosted, the efficiency of the resolved final state decreases
and the final state where all H decay products are merged into
a single jet becomes more sensitive. This can be seen in Fig. 4,
where we show the �R separation between the charged lep-
ton and the axis of the jet containing the H decay products in
Z ′ → ZH , H → �νqq̄ . We select three different Z ′ masses
to illustrate the dependence on the heavy resonance mass.
Because the lepton isolation criterion requires the absence
of significant energy in a cone of radius �R ∼ 0.1 around
the charged lepton, the resolved channel is disfavoured for
resonances beyond the TeV scale. Future studies are required
to compare the sensitivity of the resolved and merged final
states for boosted H → �νqq̄ .

Our goal here is to evaluate the potential sensitivity of
new physics searches targeting the H → �νqq̄ decay in
the merged final state, tagged using FEST. The branching
ratio Br(H → �νqq̄) = 0.13 (summing over � = e, μ
and lepton charges) is much smaller than Br(H → bb̄) =
0.58 [54] but the excellent performance of the FEST tagger
makes the decay mode competitive for large luminosities,
and especially in final states where the background is large.
Otherwise, the large background rejection achieved by FEST
is less useful.

We investigate the sensitivity of ZH resonance searches in
the decay modes Z → qq̄ , H → �νqq̄ . This fully-hadronic
final state also allows to show the usefulness of the tagger
to simultaneously suppress backgrounds with light jets and
top quarks – at the end the latter turn out to be the dominant
ones. We take as our reference for comparison the search for
ZH resonances in the fully-hadronic channel by the ATLAS
Collaboration with the full Run 2 dataset [51], focusing on
the Z → qq̄ , H → bb̄ decay modes. Because our results
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are obtained with fast simulation, the comparison with the
sensitivity achieved in Ref. [51] has the caveat of a possible
degradation of the tagger performance in the environment of
a real experiment, therefore the comparison has to be taken
with a grain of salt.

We perform a simulation including the backgrounds from
j j , t t̄ , W j j and tW production. Potential backgrounds with
fake leptons cannot be handled with the fast simulation, but
we expect them not to be dominant. In any case, in an exper-
imental analysis they must be included. The dijet sample is
the same one used to test the NN performance, and t t̄ , W j j
and tW samples are also generated in the same 100 GeV
slices of pT . Samples with pT ≥ 2.2 TeV are also gener-
ated, and the different samples are combined with weight
proportional to the cross section. A 2 TeV Z ′ → ZH sig-
nal is generated with Z → qq̄ , H → �νqq̄ . For MZ ′ = 2
TeV, the 95% confidence level upper limit on the produc-
tion cross section times decay branching ratio from Ref. [51]
is σ(pp → Z ′ → ZH) ≤ 5.3 fb. We use this cross sec-
tion as reference for comparison between the two H decay
channels. Events are passed through the simulation chain
described before. In addition to R = 0.8 jets, we use a col-
lection of ‘track jets’ of radius R = 0.2, reconstructed using
only tracks. A jet is considered as b-tagged if a b-tagged
track jet (using the 70% efficiency working point) within the
R = 0.8 jet is found.

As event preselection we require two jets with mJ ≥ 40
GeV, pT ≥ 400 GeV and |η| ≤ 2.5. At least one of them
is required to have a charged lepton inside the jet. That jet
is labeled as the ‘H ’ jet; if both jets have charged leptons,
the one having the lepton with highest z is selected. The
remaining jet is labeled as ‘Z ’. As a proxy for the Z ′ mass we
use the invariant mass of the two jets plus the neutrino,mJ Jν .
The neutrino three-momentum is taken parallel to the one of
the charged lepton, with its transverse component equal to the
missing energy in the event.4 The mJ Jν distribution for the
background (overwhelmingly j j) at preselection is shown in
Fig. 5, normalised to a luminosity of 139 fb−1.

Before jet tagging, we require a separation |�η| ≤ 1.5
among the two jets, jet masses mJ ≤ 110 GeV, and per-
form a b-tag veto on the H jet. These simple cuts reduce the
background (which still is dominated by j j production) by
a factor of 10 − 100, as shown in Fig. 5.

Finally, tagging of both jets is performed. For the H jet
we require probabilities p0 ≤ 0.01, p2 ≤ 0.9 that the jet
corresponds to the j and t class, respectively. For the Z jet we

4 We have also explored an alternative neutrino momentum reconstruc-
tion, with the longitudinal component and energy determined by requir-
ing that the invariant mass of the neutrino and the H jet equal the Higgs
boson mass. This constraint yields a second degree equation; among
the two solutions we choose the one that gives smaller longitudinal
momentum. The results with this alternative reconstruction are slightly
worse.

Fig. 5 Reconstructed Z ′ mass at different levels of event selection, for
the background plus an injected signal

use the two-pronged MUST-based tagger T2P developed in
Ref. [26], requiring a NN score (quantifying the probability
that the jet is two-pronged) X ≥ 0.8. Tagging the H jet
reduces the dijet background by a factor of 2.8 × 10−3, and
tagging the Z jet reduces it by an additional factor of 0.04.
Thus, the tagging reduces the background by 3 − 4 orders
of magnitude, as shown in Fig. 5, and allows the injected Z ′
signal to be seen as a bump in the falling mJ Jν distribution.
For clarity, the background-only distributions after tagging
are shown as thin lines.

After tagging, the expected number of events for the signal
and the different backgrounds near 2 TeV is given in Table 1.
Other backgrounds from Z j and W j production, with Z/W
hadronic decay, are less important, and bb̄ is even smaller.
At the region near 2 TeV, the former two amount to 1/7 and
1/3 of the j j background in the electron and muon channel,
respectively, and the latter to 1/20 and 1/9, with the final
event selection.

The expected significance of the Z ′ signal can be com-
puted by performing likelihood tests for the presence of nar-
row resonances over the expected background, using the CLs
method [55] with the asymptotic approximation of Ref. [56].
The local significance at mJ Jν = 1.95 TeV is of 2.2σ in
the e channel and 2.4σ in the μ channel, neglecting system-
atic uncertainties.5 Combining both, the local significance
reaches 3.2σ . Therefore, even having in mind that the com-
parison with full simulation is not fair, it seems likely that
the sensitivity to Z ′ → ZH may be improved, or at least
matched, by the H → �νqq̄ decay mode.

5 Because the background after event selection at the signal region
amounts to a handful of events, we expect background systematic uncer-
tainties to be much smaller than the statistical uncertainty itself. On the
other hand, for the signal it is in principle possible to calibrate the tag-
ging efficiency in samples involving boosted Higgs bosons.
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Table 1 Expected number of events for the signal and backgrounds in
the bins with mJ Jν ∈ [1.9, 2.1] TeV, for a luminosity of 139 fb−1

e μ

Z ′ 3.5 3.9

t t̄ 0.75 1.12

W j j 0.87 0.87

j j 0.51 0.17

tW 0.18 0.19

7 Concluding remarks

We have developed a three-class tagger to discriminate
among boosted H → �νqq̄ , t → �νb, and light jets, with
an impressive rejection rate for the latter, and excellent dis-
crimination between top quarks and Higgs bosons. For top
quarks, its possible applications are numerous, because the
huge rejection factor for light jets overly compensates the
smaller semileptonic decay branching ratio. Using as figure
of merit the branching ratio times significance improvement,
c.f. (2), tagging top quarks in the electron and muon channels
improves over the hadronic decay mode previously consid-
ered by factors of 1.6 and 5, respectively. For Higgs boson the
prospects are quite good too, despite the smaller branching
fraction for H → �νqq̄ .

Our tagger has been built to work on a very wide range
of jet pT ∈ [0.4, 2.2] TeV. (In contrast, several hadronic top
taggers in the literature [48,49] are trained with jets within
a narrow pT range.) This interval is sufficiently large so as
to demonstrate that the tagger can correctly learn to distin-
guish the differences in jet substructure arising from differ-
ent pT regimes and from different jet prongness. Moreover,
it has been shown in Ref. [26] that the performance of a
tagger trained on wide intervals of jet mass and pT nearly
matches the performance of a tagger trained on narrow inter-
vals. Therefore, the arbitrarily chosen range pT ∈ [0.4, 2.2]
TeV can be further extended and we do not expect a perfor-
mance drop.

One possible caveat to the practical application of the tag-
ger is the possible difficulty and uncertainties in the measure-
ment of z and �R for electrons embedded within jets, and
the possible appearance of fakes. Reference [32] performed
a detailed study regarding electron isolation, and there are
good prospects that the measurements will be feasible. But
even in a worst-case scenario that measurements in the elec-
tron channel could not be performed – which, we stress again,
seems unlikely – the sensitivity in the muon channel alone
is better than in hadronic top decays, c.f. (2), and likewise is
expected for Higgs decays, as shown in the previous section.

Generally, one expects that H → �νqq̄ and t → �νb
with the taggers here introduced will provide the best sensi-
tivity for boosted Higgs boson and top quark measurements,

except at the kinematical end of the spectrum where the back-
ground is already quite small. Therefore, for large integrated
luminosities, and especially at the high-luminosity upgrade
of the LHC, tagging these decay modes may provide the best
sensitivity for boosted H , t measurements across a very wide
kinematical range.

Finally, let us comment that more generic taggers for jets
containing leptons can also be built, which could be sensitive
for example to boosted heavy neutrinos decaying N → �qq̄ ,
and may be presented elsewhere.
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Appendix A:Overall performance and event preselection

The tagger is built based on a sample of jets that already con-
tain a charged lepton, with a minimum transverse momentum
pT ≥ 10 GeV. As it has been argued, the overall perfor-
mance should have little dependence on this choice, within
reasonable limits. In this appendix we explicitly test this,
by restricting ourselves to the electron channel and using jet
samples that contain electrons with pT ≥ 20 GeV. The pres-
election efficiencies for jets of the three classes are collected
in Table 2. The same procedure is followed to train the NN,
and the results are compared in Fig. 6 with the results previ-

Table 2 Preselection efficiencies for Higgs (H ), top (t) and QCD ( j)
jets with pT ∈ [1, 1.1] TeV, with the requirement to contain an electron
with pT above the given threshold

H t j

pT ≥ 10 GeV 0.81 0.73 0.041

pT ≥ 20 GeV 0.80 0.72 0.023
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ously obtained. We denote by PT10 and PT20 the taggers
built using electron thresholds pT ≥ 10 GeV, pT ≥ 20 GeV,
respectively. As expected, the performance in H versus j and
t versus j jets in the ROC plots is degraded, since the higher
preselection threshold already makes part of the work of the
tagger in separating H and t (with energetic electrons) from

Fig. 6 Comparison of the ROC curves for the separation between dif-
ferent jet classes, for the samples with event preselection pT ≥ 10 GeV
(as used throughout the paper) and pT ≥ 20 GeV

j . Also as expected, the discrimination between H and t is
practically unaltered, up to small differences arising from the
use of different NNs.

Still, as argued in Sect. 2, the overall performance of the
tagger is nearly independent of the lepton pT threshold. Let
us calculate for example the j rejection for jets with pT ∼ 1
TeV, for an H overall efficiency ε̄H = 0.5, as done in Sect. 4.
For the two taggers, we have

PT10 : εH = 0.61 → ε−1
j = 3000 → ε̄−1

j = 7.4 × 104

PT20 : εH = 0.63 → ε−1
j = 1900 → ε̄−1

j = 8.3 × 104

The O(10%) difference in the overall light jet rejection factor
is due to statistical fluctuations in the jet samples, caused by
the high value of ε−1

j . Likewise, can test the light jet rejection
for an overall t efficiency ε̄t = 0.5,

PT10 : εt = 0.68 → ε−1
j = 2000 → ε̄−1

j = 4.8 × 104

PT10 : εt = 0.69 → ε−1
j = 1100 → ε̄−1

j = 4.9 × 104

and in this case the j rejection is nearly the same when using
either preselection threshold.
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