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Abstract Inthe present article, the solution of the Einstein—
Maxwell field equations in the presence of a massive scalar
field under the Brans-Dicke (BD) gravity is obtained via
embedding approach, which describes a charged anisotropic
strange star model. The interior spacetime is described by
a spherically symmetric static metric of embedding class 1.
This reduces the problem to a single-generating function of
the metric potential which is chosen by appealing to physics
based on regularity at each interior point of the stellar inte-
rior. The resulting model is subjected to rigorous physical
checks based on stability, causality and regularity for partic-
ular object PSR J1903+327. We also show that our solutions
describe compact objects such as PSR J1903+327; Cen X-3;
EXO 1785-248 and LMC X-4 to an excellent approximation.
Novel results of our investigation reveal that the scalar field
leads to higher surface charge densities which in turn affects
the compactness and upper and lower values imposed by the
modified Buchdahl limit for charged stars. Our results also
show that the electric field and scalar field which originate
from entirely different sources couple to alter physical char-
acteristics such as mass-radius relation and surface redshift
of compact objects. This superposition of the electric and
scalar fields is enhanced by an increase in the BD coupling
constant, wgp.
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1 Introduction

Einstein’s general relativity (GR) has been fruitful in describ-
ing gravitational phenomena on both cosmological and astro-
physical scales. The predictions of GR has gone beyond the
realms of theory and has been successfully confirmed through
a plethora of experiments. With the advancement of tech-
nology these predictions have been refined. The perihelion
precession of Mercury, one of the first solar system tests
of GR has been drastically improved by the collection of
data from Mercury MESSENGER which orbited Mercury in
2011 [1]. The joint European-Japanese Mercury spacecraft
BepiColombo project which launched in 2018 is expected to
reveal more precise measurements of the peculiarities of Mer-
cury’s orbit. The first gravitational wave events were detected
in September 2015 by the LIGO and Virgo collaborations
thus reinforcing the prediction of classical GR. There is no
more greater signalling of the Golden Age of astrophysical
observations than the 2019 capturing of the image of the
black hole at the center of galaxy M87 by the Event Horizon
Telescope [2].

Despite these confirmations of GR there are still many
observations that leave Einstein’s classical gravity theory
short. In cosmology researchers are still faced with vari-
ous problems including the late-time acceleration of the Uni-
verse, dark matter and dark energy conundrums, baryon sym-
metry and the horizon problem, just to name a few [3]. On
the other hand there are outstanding problems in astrophysics
some of which include the origin of large surface redshifts
in compact objects, the behaviour of matter at extreme den-
sities such as in the core of neutron stars and the end-states
of continued gravitational collapse, amongst others.

To this end researchers in gravitational physics have
appealed to modified theories of gravitation in the hope of
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finding mechanisms that will account for the observations
which cannot be resolved by GR. These modified theories
must have as their weak field limit Einstein’s general rela-
tivity. A simple modification to the standard 4D theory is to
accommodate more than just the linear forms of the Rie-
mann tensor, the Ricci tensor and the Ricci scalar in the
action principle. It is well-known that incorporation of just
linear tensorial quantities produces second order equations
of motion which are compatible with the 4D equations [4].
The so-called Einstein—-Gauss—Bonnet (EGB) gravity arises
from the more general class of theories called the Lovelock
polynomial Lagrangians which incorporates tensorial quan-
tities to be of quadratic order. The beauty associated with
the EGB Lagrangian is that the equations of motion continue
to be second order quasi-linear. There has been widespread
interest in modeling compact objects within the framework
of EGB gravity. Several exact solutions of the modified pres-
sure isotropy condition have been derived and these models
were shown to obey the stability, regularity and causality
conditions required for stellar configurations. More ever, it
was shown that higher order corrections alter physical prop-
erties such as compactness, stability and surface redshifts of
stellar models. Recent work by Chakraborty and Dadhich on
charged compact objects showed that for a given spacetime
dimension, 4D stellar models are more compact than their
pure Lovelock counterparts [5]. They further showed that an
increase in the intensity of the electromagnetic field results
in a greater compactification of the stellar object. They also
demonstrated that within the context of 4D EGB gravity an
increase in the strength of the Gauss-Bonnet coupling (behav-
ing as an effective electric charge), leads to an increase in the
compactness of the stellar object.

Besides the Lovelock gravity and the popular EGB gravity
theory there are a wide spectrum of other modified gravity
theories which are being frequently utilised within both cos-
mological and astrophysical contexts. Unimodular gravity
which is based on the trace-free Einstein equations was con-
jured to solve the magnitude of the vacuum energy density
conundrum. A hugely popular modified theory of gravitation
is the so-called f(R; T') theory proposed by Harko et al. [6]
in which the action is the Ricci scalar R and the the trace of
the energy-momentum tensor 7. The Rastall theory is cen-
tered on the notion that divergence of the energy-momentum
tensor is proportional to the divergence of the Ricci scalar.
This has implications for the conservation of energy momen-
tum [7]. Starobinsky in his attempt to explain the accelerated
expansion of the universe put forth a theory of gravitation
whose action is quadratic in the Ricci scalar. This modified
theory has come to be known as the f(R) theory of grav-
ity. Stellar modeling in f(R) gravity has received interest in
the recent past which produced models which are compatible
with observational data, see [8] and references therein. How-
ever, some recent works onthe f(R; T') theory, Rastall theory
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and Starobinsky f(R; T)-function can be seen in the follow-
ing Refs. [9—13]. The Brans—Dicke (BD) gravitational theory
was the first of many scalar-tensor theories of gravitation in
which the non-minimally coupled scalar field represents the
spacetime-varying gravitational “constant”. The BD gravity
theory successfully incorporated Mach’s principle. The BD
gravity theory of gravitation is also called the Jordan—Brans—
Dicke gravity theory which is a theoretical framework that
can be represented in Jordan—Brans—Dicke gravity as well
as Einstein’s frame. It continues to be one of the more pop-
ular theories of modified classical GR and has been widely
utilised in cosmological models. BD gravity has elegantly
explained the inflationary epoch of the universe and the cur-
rent accelerated phase of the universe without invoking any
exotic matter fields or dissipative processes [14]. An emer-
gent universe via quantum tunneling within a Jordan—Brans—
Dicke framework has been recently proposed by Labrana
and Cossi [15]. The initial static universe is supported by a
scalar field contained within a false vacuum. The staticity
of the model is broken via quantum tunneling in which the
scalar field decays into a true vacuum and the universe begins
to evolve dynamically. In a recent study within the Brans—
Dicke framework motivated by a f(R) = R+«aR" — SR
modified Starobinsky model inflation and a nonzero resid-
ual value for the Ricci scalar was obtained. More impor-
tantly, it was shown in the high energy limit (BD theory
with a Jordan framework) predictions are consistent with data
obtained by PLANCK or BICEP2 [16]. On the astrophysical
front recent work by several authors using the BD formalism
have successfully generated models of anisotropic compact
objects [17,18]. Sharif and Majid [19] obtained models of
anisotropic bounded configurations via gravitational decou-
pling through MGD approach. They show that the stability
of the model is affected by the anisotropy parameter which
is inherently linked to the decoupling constant.

We have seen a virtual explosion of exact solutions
describing compact objects in classical GR and modified
gravity theories. The past decade in particular has seen a pro-
liferation of realistic stellar models which have catapulted
the search for solutions of the field equations into main-
stream astrophysics. Solution-generating methods have been
inherently linked to physical viability tests which are backed
by observational data. The Karmarkar condition has been
extensively utilised to generate compact objects in which the
radial and transverse stresses are unequal at each interior
point of the stellar fluid [20-22]. In classical GR the Kar-
markar condition is immediately integrated to give a relation
between the two metric potentials. This reduces the problem
of finding exact solutions of the field equations to a singe-
generating function [23-29]. In a recent paper, Hansraj and
Moodly demonstrated that nonexistence of conformally flat
charged isotropic fluid sphere of embedding Class one [30].
The embedding of the generalized Vaidya (GV) solution via
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the Karmarkar solution shows that embedding does not allow
the interpretation of the generalized Vaidya spacetime as a
diffusive medium. In other words, the Karmarkar condition
prohibits the GV solution to be interpreted as an atmosphere
composed of radiation and diffusive strings of a star undergo-
ing dissipative collapse in the form of a radial heat flux [31].
The Karmarkar condition has been extended to incorporate
time-dependent systems which include modelling shear-free,
dissipative collapse [32-35]. The Karmarkar condition has
been successfully used in modified gravity theories to investi-
gate contributions from the inclusion of quadratic terms of the
tensorial quantities and higher dimensional effects on com-
pactness, stability and surface redshifts of compact objects
residing in these exotic spacetimes.

The role of an equation of state (EoS) in modeling com-
pact objects has been highlighted in several recent studies.
The simple linear EoS which expresses the pressure as a
linear function of the fluid density (p, = ap) where o >
is a constant has been extended to include « < 0 used in
modeling so-called dark stars and phantom fields. The MIT
Bag model EoS has gained popularity amongst researchers
and has been successfully utilised to model compact objects
in classical GR and modified gravity theories [36,37]. The
quadratic EoS, polytropic EoS and Chaplygin gas EoS have
also led to physically reasonable models of static stars [38—
40]. By appealing to results in quantum chromodynamics
and quark interactions within the stellar core, the so-called
colour-flavoured-Locked (CFL) EoS has been recently used
in obtaining models of compact objects which approximate
realistic neutron stars, pulsars and strange stars to a very
good degree [41,42]. The CFL EoS has also been employed
to study the surface tension of neutron stars. This study shows
that the surface tension is sensitive to the magnitude of the
Bag constant [43]. It was observed that larger values of the
Bag constant led to stellar models with lower tangential pres-
sures and surface tensions.

The role of the electromagnetic field in the (in)stability
of compact objects has occupied the interest of researchers
since the discovery of the Schwarzschild solution. The study
of charged objects in general relativity has taken a differ-
ent and refreshing trajectory compared to the early attempts
at just finding exact solutions to the Einstein-Maxwell sys-
tem. The theoretical possibility of celestial models endowed
with an electric field has been studied by several researchers
[44-48]. As early as 1924 Rosseland [49] (see also Edding-
ton [50]), investigated the possibility that a self-gravitating
stellar structure within the framework of Eddington’s theory,
where the stellar structure is treated as a ball of hot ionized
gases containing a considerable quantity of charge. In such
a system, the large number of lighter particles (electrons) as
compared to positive heavier particles (ions) escape from its
surface due to their higher kinetic energy and this migration
of electrons continues resulting in an induced electric field

within the core of the compact stellar structure. In this respect,
equilibrium is achieved after a certain amount of electrons
escape and the net electric charge approaches to about 100
Coulombs per solar mass. As shown by the authors [51], this
result applies to any bounded system whose size is smaller
than the Debye length of the surrounding media. In his semi-
nal paper addressing hydrostatic equilibrium and the gravita-
tional collapse of charged bodies, Bekenstein argues that the
densities within neutron star cores may lead to electric fields
whose magnitudes may exceed the critical field required for
pair creation, 10!® V/cm, and hence annihilate themselves.
On the other hand, the possibility of a collapsing charged stel-
lar structure to a point singularity might be avoided by the
presence of charge. Ghezzi’s work on charged neutron stars
showed that the outcome of gravitational collapse is sensitive
to the charge to mass ratio, Q/ VG u. Simulations based on
various values of this ratio predict several possible outcomes
of collapse which include the formation of black holes, naked
singularities or exploding remnants. An interesting outcome
of this study is that extremal black holes cannot form from the
collapse of a charged fluid sphere. This huge body of work on
static, charged stellar objects has provided us with more ques-
tions than answers and has prompted an invigorated interest
in studying the effect of charge on the hyrdostatic equilibrium
or dynamical collapse of such configurations. Herein lies the
motivation for our study of charged compact objects within
the BD framework with a massive scalar field. It is impor-
tant to note that these toy models play an important role in
checking numerical results and simulations. In this way, it is
clear that stellar objects can be endowed with nonzero charge
which can give rise to high intensity electric fields [52-54].
The Einstein-Maxwell system can be interpreted as repre-
senting an anisotropic fluid with the pressure isotropy con-
dition becoming the definition of the electric field. A recent
paper by Maurya and Tello-Ortiz [55] highlighted an inter-
esting interplay between the anisotropy parameter and the
electric field intensity which provides a mechanism for main-
taining stability of the stellar configuration. They found that
the force due to the pressure anisotropy initially dominates
the Coulombic repulsion closer to the center of the star with
the anisotropic force out-growing the Coulombic repulsion
towards the surface layers of the star. A similar phenomenon
was discovered in a charged compact star of embedding Class
one [56]. The effect of charge on stellar characteristics within
the framework of Einstein—Gauss—Bonnet (EGB) gravity has
been investigated. It is found that mass-radius relation and
surface redshifts are modified by the presence of the EGB
coupling constant [57].

This paper is structured as follows: In Sect. 2. we provide
the necessary equations within the BD formalism necessary
to model a charged compact object. The Class one embed-
ding condition is derived for the BD framework in Sect. 3.
The junction conditions required for the smooth matching
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of the interior spacetime to the Reissner-Nordstrom-de Sitter
(RNdS) exterior is presented in Sect. 4. In Sect. 5 we discuss
the regularity of the metric functions and thermodynamical
quantities at the center of the stellar configuration and we
derive the modified TOV equation in the presence of a mas-
sive scalar field. The nonzero charge density and pressure
anisotropy together with mass-radius relation and moment of
inertia thorough M — R and M —I curves have been discussed
in Sect. 5. A detailed discussion of the physical attributes
together with the conclusion of our model follows in Sect. 6.

2 The background of Brans—Dicke gravity theory and
field equations

The action of scalar-tensor theory in Brans—Dicke frame in
relativistic units G = ¢ = 1 is defined as,

S=1f [%rp — 2BV — $(¢)]¢Tg d*x

- lém
+ [ Ln/—g d*x + [ Lo/—g d*x, (1)

where Z, g, £, and £, describe the Ricci scalar, deter-
minant of metric tensor, matter Lagrangian density, and
Lagrangian electromagnetic field respectively, while wpp is
a dimensionless Dicke coupling constant and @ is a Brans—
Dicke scalar field. Here the function .Z(®) depends com-
pletely on the scalar field @. In the present case we define
this scalar field function .Z(®) as,

L(@) = %médﬂ )

Now by varying of the action (1) with respect to the metric
tensor g’/ and scalar field @ provides the following field
equations and evaluation equation, respectively, which can
be written as,

Gij = —%[SnTifim) + 87 E;j +Ti§."”], 3)
where, Tlgm) and E;; denote the energy-momentum tensor for
matter distribution and electromagnetic field tensor, respec-
tively while Tl.;d)) represents a scalar tensor appearing in the
system due to the scalar field @. All the field tensors can be
written as,

Té’") = (p + poujuj — p:&ij + (pr — pvivj, “)
1 1

Eij = E(—Fi"an-i-ZgiijnFy"), 5
s
(@) WBD 8ijP s
Tl] =q§,,,]—g,/D<D+7<<D,,(D’j—T

L(P) gii
_ ( )gl]. (6)
2
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Here, [] denotes the d’ Alembert operator, then [1® can be
given as,

T 1
o = + @
34+2wpp 3+4+2wpp

dZ(P)
do

- zz@)), ™

Here, p, p, and p; denote the energy density, radial pres-
sure and transverse pressure, respectively with 70" being
the trace of the energy tensor Ti;m). Since we are interested
in spherically symmetric stellar structure, then we assume a
static spherically symmetric line element which can be cast
as,

ds? = &0 dr? — Mg _ 12(de% +sin20de?),  (8)

where £(r) and 5 (r) are metric potentials and rely just upon
the radial distance r that ensures the static nature of the space-
time. Also, u' = e=5/2§] and v’ = e~"/28}, given in Eq. (5),
are denoting the four-velocity and the unit space like vector
respectively, which are specified as, u’u; = landviv; = —1,
and 00 = & = (—g)"2[(—g) "2 &) ;.

In addition, the anti-symmetric electromagnetic field ten-
sor F;; given in Eq. (5) is characterized as

F,'j:ViAj—Vin “

for which Maxwell’s equations have been satisfied,

Fijx+ Fjri+ Fri,j=0 (10)
with
Fik =4nJ (11)

where, J' is the electromagnetic 4-current vector. This can
be expressed as

Jim O A (12)

- V8o dx0

where 0 = €5/2 JO(r) representing the charge density. It
turns out that for a static matter distribution with spherical
symmetry, there is only one non-zero component of the elec-
tromagnetic 4-current J I which is J©, a function of the radial
distance, r. The F% and F10 components are the only non-
zero components of electromagnetic field tensor expressed
in (5) and they are connected by the formula FO! = —F10,
which characterizes the radial constituent of the electric field.
The constituent of the electric field is determined through
Egs. (11) and (12) as follows

01 _ _ 10 _ 94 —¢E+np)2
F' =—-F"= okl (13)
The quantity g (r) represents the effective charge of a spheri-
cal system of radial coordinate, r, subsequently, this electric
charge can be characterized by the relativistic Gauss law and
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corresponding electric field E explicitly as,

,
q(r) :47‘[/ orte"?dr =/ —Fj F10 (14)
0

2

E*=—FoF0="L

T (15)

It is noted that Doneva et al. [58] and Yazadjiev et al. [59]
have already discussed both slowly and rapidly rotating neu-

tron stars by using the above potential function (2). By using
Egs. (2)—(8), we obtain the following field equations,

(1 1 1 q* 0(®)
en(7—r—2)+r—2:5 8np+r—4+T0 s (16)

L(E 1y 11 @ i@
en(7+r_2 -~ = (8 =L -1/ ). an

1 3 q* T2(®) 18
—5 7Tp;+r—4— 2 5 ( )

where prime denotes differentiation with respect to 7. On the

other hand, the scalar tensor components TOO@), Tll(q)), and
Tzz@) in terms of £ and 7 are given as,
TO@) _ | g + g _ 77_/ @ + WBD @2
0 ro 2 20
Z(®
o Y )}, (19)
2 ! A
7@ _ o _+$_ o _ @B g g ZL(®P) 7
r 2 20 2
(20)
2(®) — ” 1 ’7/ 5/ ;, WBD .
T. =e @ —— =4+ = |+ —
2 = [ * <r 272)% T 20
L(D
—e'l ; )] 21

However, from Eqgs. (7) and (8) we obtain,

B 2 77/ g/
—_ n =_ 2 !/ "
0o = —e |:<r > + 2>(15 r)+o (r):|

1 o L dLD)
S S— KO
(3+2wsp) do

- 23@)]. (22)

It has been argued that extreme temperatures and pressures
at the core of massive neutron stars can transform into quark
stars with up (u), down (d) and strange (s) quark flavors.
In this regard, we suppose that the MIT Bag model rules
the matter variables (density and pressure) in the interior of
these relativistic massive stars. In addition, we assume that
non-interacting and massless quarks occupy the inside of the
stellar structures. According to the MIT Bag model the quark

pressure p, can be cast as

pr=Y pl =% f=ud s (23)
f

where p/ describes the individual pressures due to each
quark flavor which is balanced by the Bag constant (or total
external Bag pressure) Z. The deconfined quarks inside the
MIT Bag model have the accompanying total energy density

p= 0l +2 24)
f

where p/ indicates the matter density due to each flavor
which is connected to the corresponding pressure by the for-
mula given as p/ = 3 p/. Consequently, Egs. (23) and (24)
are consolidated to express the following simplified MIT Bag
model,

1
pr=30- 48B), (25)

It should be mentioned here that this specific linear form of
the MIT Bag model EoS has been applied for portraying the
stellar systems made of the strange quark matter distribution
in pure GR and modified gravity theories.

Now using the Egs. (16) and (17) along with EoS (25), we
obtain the expression for the electric field as,

2 /_ / o
b o[ (25 0

r4 r r2

(BT + 1)) - 3272 (26)

3 Basic formulation of Class one condition and its
solution in Brans-Dicke gravity

It is well-known that the embedding of n-dimensional space
V™ in a pseudo-Euclidean space E” attracted much consid-
eration as inferred by Eisland [60] and Eisenhart [61]. In the
case where a n-dimensional space V" can be isometrically
immersed in (n 4+ m)-dimensional space, where m is a min-
imum number of supplementary dimensions, at this stage
V" is said to be m-Class embedding. Habitually, the metric
expressed in (8) provides the four-dimensional spherically
symmetric space-time which describes a space-time of Class
two i.e, when m = 2, which shows that it is embedded in a
six-dimensional pseudo-Euclidean space. On the other hand,
it should be noted that one can reveal a possible parametriza-
tion in order to incorporate the space-time expressed in (8)
into a five-dimensional pseudo-Euclidean space which leads
to Class m = 1 known as embedding Class one [60—62].
For a spherically symmetric space-time in both cases static
or non-static to be Class-one, the system has to be consistent
with the following necessary and suitable conditions:

@ Springer
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— For a stellar system, the symmetric tensor b;; should be
determined under the associated Gauss conditions:

Kijnk = €<bihbjk - bikbjh)a (27)

where € = %1 is everywhere normal to the manifold is
time-like (+1) or space-like (-1).

— The symmetric tensor b;; must fulfill the following dif-
ferential equation, known as Codazzi equation, as:

Vibij — Vibyj = 0. (28)

Now the non-vanishing Riemann components for the line
element (8) can be expressed as follows,

" /et ”
Roro1= — €° <§——£ + é—)

’

2 4 g
Fi313 = —gn’ sin” 0
2.2
6
P33 = &(1 - 6'7); Tz = —=E'é sin? 6 ;
el 2
r _ r
Ror02 = —55/65 Ty P = _E"/' (29)
Substituting these Riemann components into Gauss’s equa-
tion (27) leads to
boi1b3zz = #1303 = 0; bo1byn = Z1212 =0;
boob3z = Z0303;
boobay = X025 b11b33 = Z1313;  baob3zz = H2323;
b11by = Z1212; boob11 = Zoio1.- (30

These relations expressed in (30) lead immediately to the
following expressions

B, 2 R 2
(boo)? = ﬂ sin6; (b11)* = (lﬂ sinZ @:
2323 2323
2 Foms s .o
(b2)” = lg (b33)” = sin” 6 A2323. (3D

By combining the last term of the relation (30) together with
the components of Eq. (31), we found the following relation-
ship in terms of the Riemann components

H002%1313 = Z0101%2323, (32)

subject to Z»323 # 0 (Pandey and Sharma condition [63]).
It ought to be noticed that all the components are given in
(31) fulfill the Codazzi equation (28). On the other hand, in
the case of a general non-static spherically symmetric space-
time, the relation between components for symmetric tensor
b;j and Riemann tensor R;;; can be given as follows

bo1by = #1212 and  boobi1 — (bo1)* = Zoio1, (33)
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where (bg1)? = sin? 0 (Z1202)* /%323 In this situation, the
embedding Class-one condition known as Karmarkar condi-
tion [60,62] takes the following form

H002%1313 = R0101%2323 + £1200%1303- (34)

Although in our circumstance, the relation (32) between Rie-
mann components under the static spherically symmetric line
element (8) will be equivalent to relation (34). The condition
(34) plays a fundamental role for describing the space-time
(8) to be a Class-one, which is also well-known as a neces-
sary and sufficient condition. At this point, by incorporating
the Riemann components in expression (34), we obtain the
following differential equation,

26", _ e
?+E_e’7—l

. (35)

with e # 1. By integrating equation (35), we find the rela-
tionship amongst the gravitational potentials in the following
form

E(r) =2In |:A+B/«/e’7 — 1dri|. (36)

Here A and B are integration constants. Moreover, the solu-
tion determined by the relation (36) is called a embedding
Class one solution for the line element (8). It is mentioned
that the above method has been utilized to model compact
stellar objects in various contexts. In order to find the solu-
tion of the field Egs. (16)—(18) in Brans—Dicke gravity under
Class I condition (36), we need to find the metric potentials
admitting Karmarkar condition with Pandey—Sharma con-
dition [63] (%2323 # 0). As it is well-known in general, the
invariance of the Ricci tensor necessitates that the matter vari-
ables viz., energy density p, radial pressure p, and transverse
pressure p; ought to be finite at the center. The regularity of
the Weyl invariant necessitates that the following two quan-
tities: mass m(r) and electric charge ¢ (r) must satisfy the
following conditions: m(0) = ¢(0) = 0 and m(0) = O,
m'(r) > 0 and ¢g(0) = 0, ¢’(r) > 0 i.e., both said quanti-
ties reach their minimum and maximum values at the center
as well as at the surface of the celestial body, respectively.
In this regard, Maurya and collaborators [84] have already
demonstrated that the gravitational potential £(0) is equal to
a finite constant value, g(0) = 0, £/(0) = 0 and £”(0) > 0
according to the modelling of charged anisotropic compact
celestial bodies. Since both physical quantities viz., energy
density p and radial pressure p, are positive finite and contin-
uous and also pursue the condition r > 2m(r) [85,86]. From
pr(r) = 0 with the help of the condition r > 2m(r), we can
obtain & # 0, which implies that the general function & (r)
is regular minimum at the center and a monotonic increasing
function of the radial coordinate r. Consequently, the general
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function & (r) should conserve the said physical characteris-
tics. Moreover, the gravitational potential function e” should
fulfill the accompanying form ¢’ = 1 + O(r?) to ensure
the regularity and stability of the compact stellar object. In
this way by keeping all the attributes in our mind, we have
assumed the e as follow:

17 =1+ ar? e (37)

Using (37) in (36), we get

£(r) =21In [A s ebrz/z] . (38)
where, C = “/EB. Furthermore, the explicit expression for

energy density and pressure can be given as,

1
8rmp =
P= 40 A+ C2) (1 + achr2)?

X (C 2 [6aebr2 @

+32BPw + 3a®/ebr2<1>r + (2 + arzebrz)ae@ebrz(b
xrr? — 30" d (1 + ae? 1) + 3bd 2D + &'r)(1 + 2a
e r?) = 30 2wpp — 3a®e” r2wgp]| + A[32%
P +32a> B @t —30"d(1 + ae r?)
30 wpp + ae (60%(1 + br?) + dr(3®’ + 642

x7Tr + 3b®'r?) — 3¢’2r2a)30}]>, (39)
8
8rpr = 7(,0_4%)7 (40)
1 2
87'[ — Cebr /2 ¢/ )]
Pr=4e r (A + Ceb™2) (1 + aebr2)? < [

x(12+7br +Tae” 2 +2abe" 1) + @ r (50"
+14b® — 10a e & —2m3®> 4 3287 +5a "
xe?’ 12+ 4b dr2 + dab e @ 12 — 442 2 g 2
—4a ehrzmédf’z P2+ 64a Bt — 2a%
Xmi@z r* 43242 %’eZbrz T r4) +@7%r(1 + aehrzrz)
xwpp]+ Al — &' D[—12 + ae” (=7 + 5brD)] + & r
x {5 (1 +ae”’r?) — 20m}®> — 1627 + ae”” (50
+3b@r? + 2m3 0% — 287r%) + > 22
+my®?r? — 16%8mr?)] + @ (1 +aeb’2r2)a)BD}>.

(41)

Consequently, the expression for the electric field intensity
can be obtained from the Eq. (26) as,

E? !

= Cebr2/2 —®r (D
4® 1 (A + Cebr®/2) (1 + aebrr2)? ( [ (

+6b® — 6ae’” d — mé,d52 +32Br +ad" e 1 + dab
xe? @r? — 42 or? — Zaebrzmdz)(ﬁzr2 + 64aBe”
x> —a® eZb’Zmé 2+ 32a2<@62h’2nr4) — ' DB+
xTae? 12 +br¥3 + Zaeb"zrz)) +@72r(1 + aebrzrz)wBD]
+A[® D=8+ ae” (=T + b)) + & r [mld? — 32
xBrw —®"(1 + aebrzrz) + a2 2 4o + mi@zrz - 32

x Brr?) +2ae"” 3@ + b®r + mid%? — 32Bgnr?)]

+0%r(1 +a62br2r2)w31)}). 42)

4 Junction conditions

To describe the complete structure of the self gravitat-
ing anisotropic compact object, the interior spacetime must
be matched smoothly with the exterior spacetime at the
pressure-free boundary X. The exterior spacetime is consid-
ered to be the Reissner—Nordstrom—de Sitter (RNdS) space-
time given by,

5 _
dsi:—(l—%—i-Q—z—érz)

r r 3

1

dr?® — }’2(d02
A

—sin29d¢2) + <1 -5 -3 r2) dr,

(43)

where, . is the total mass, Q the total charge and A the
cosmological constant. In order to satisfy the smoothness
and continuity of internal spacetime metric ds> and the
external spacetime dsi at the boundary surface X, the fol-
lowing conditions must be fulfilled at the hypersurface X
(f =r — R =0, where R is aradius).

[ds®_x = [ds*}]s,
[@() -]z =[P 1],

[Kij_ls = [Kij Iz, (44)
[@'(r)-1x = [®'(r)+]s.
(45)

Here, as usual — and + denote the interior and exterior space-
times, respectively while K;; represents the curvature. By
using the continuity of the first fundamental form ([d $215=0),
we will always get

[Flgy=F(r — RY)—F
(r— R7)=F"(R)— F~(R).

(46)
for any function F(r). This condition provides us g,,.(R) =
g5 (R) and g;; (R) = g;’,'(R). On the other hand, the space-
time (8) must satisfy the second fundamental form (K;;) at

the surface ¥ which is equivalent to the O’Brien and Synge
[64] junction condition. This condition says that radial pres-
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sure must be zero at boundary » = ry, which leads to

pr(R) =0. (47)

In addition to above, the BD scalar field @ corresponding
to the vacuum Schwarzschild solution is derived using the
technique in [72]. We consider 7~ and t™ as the inner and
outer space, respectively. Then the hypersurface is defined
by the following line element

ds® = dy? — R*(d6* + sin® 0 d¢?). (48)
where y defines the proper time boundary. The extrinsic cur-
vature of this boundary X can be written as,
9y Lok OV %

+ +
K> =-m — —m - -
1 k dni ni k2l oni and

(49)

Here the symbol ' defines the coordinates in the boundary
%, while m,jf denotes the four-velocity normal to X. The
components of this four-velocity are given in the coordinates
(y}) of * as

-1/2

d
i_i_f

df df
l .
m} - wh =22 27

dy

with mgm* = 1. (50)
dyt dy!

Then the unit normal vectors for inner and outer regions can
be cast as

(S

In view of line elements (8) and (48) together with the
Reisner—Nordstrom spacetime (43), we can write

dt B 24 QF A L\ V2
ar |\ ey (27 L Ao
A (- -5 )

(52)

where [r]x = R. The non-zero components of the curvature
(K;j) can be obtained from Eq. (51) as,

£’ - 1 - -y
Z[_m . K22=-_29K33=[re "5

—1/2
)L
b

1 24 Q0 A
KH=——K= 1=, 2 =2
2T G2t [r< PR

r r2 3

2
x(l—%-i-g A

1/2
rZ) ] .
b

@ Springer

Then the junction condition [K, ]y = [K2+2]2 together with
[r]x provides,

(12 BN )

53
R+R23 (53)

Plugging the above expression into the matching condition
[Koolx = [Kgpls yields,

2
24 20 2A R)

(54)

Therefore, the matching conditions given by Eqgs. (52)—-(54)
leads to the following relations at the hypersurface,

2 1/2
A+Ce —<I—T+F—§R , (55)
> 24 QF A -1
1 +aR?* PR =<1—T+ﬁ—§R2> . (56)
scpre®r o (LA R
~\R? R 3
Q.M Q2 A 2—1/2

After solving the relations (55)—(57), we obtain expressions
for the constants,
e PR (6.4 R —30% + ARY)

“TTR[R(64 + AR —3R) —307] %)

1 902 18/ b2
A=£[b\/7_——3AR2+9—3¢ECe 2 }

R
(59)
C =
(30?+AR* —3.4R) R (6.#4+AR> —3R) —30?]
18b ROePR?/2 '
(60)

As per the current observational evidences the value of the
cosmological constant Ag ~ 1074 /km? at the present uni-
verse. Hence, its effects on the local structures will be negli-
gibly small, and then its numerical value does not affect the
numerical solution and it can be ignored.

5 Physical viability of the model

We have adopted the numerical approach to obtain the solu-
tion of the wave equation which leads to the expression for
the Brans—Dicke scalar field @. To do this, we chose the
initial condition @ (0) = &y = 1.001134 and ®'(0) = 0.
Before embarking on a discussion of the physical viabil-
ity of our model we like to comment on the magnitude of
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the BD coupling constant, wpp. A review of the literature
reveals that lower bound on the Brans—Dicke parameter is
lwpp| > 40, 000. This bound arises from the Doppler track-
ing data of the Cassini spacecraft. However, the shortcom-
ing of such experiments is that they are restricted to “weak-
field” limits and cannot reveal spatial or temporal deviations
of the gravitational constant on significantly larger scales.
First year data from WMAP restricted the BD constant to
wpp > 1000 with further refinements coming through an
array of observational data pinning wpp > 120. A more
recent attempt in refining the bounds on wp p uses data from
CMB (WMAP 5 yr, ACBAR 2007, CBI polarization, the
BOOMERANG 2003 ) and the LSS data (galaxy clustering
power spectrum from SDSS DR4 LRG data). This puts a
restriction of wgp < —120.0 or wgp > 97.8 which differs
in at least two orders of magnitude from |wpp| > 40000
[65,66]. The range of wpp (5; 20) chosen in this work is in
agreement with the solar system constraints of the Brans—
Dicke (BD) gravity presented by Perivolaropoulos [67],
where wpp > —3/2forallmy > 2 x 1070 =2 x 10?m 4y,
where m sy = 10727 GeV. The mass of the scalar particle
mg is taken to be 0.002 = 2 x 10°m oy and is within the
predicted range for neutron stars according to Popchev et
al. [68] i.e. 10%my < my S 10%m 4y or in dimensionless
unit 107% < my < 10. Therefore, the range of Brans-Dicke
parameter wpp used in this work is physically motivated for
the chosen scalar particle mass mg = 0.002.

5.1 Central values of the physical parameters

In the interior of the compact star, the central values of all the
physical parameters must be finite and non-singular. Firstly,
we find the central values for both metric functions at r = 0
as: "9 = 1and £(r) = 2In[A + /aB/b]. Sincer = Oisa
zeros for the function @’(r), then by the factor theorem we
can write: @' (r) = r ¥ (r), where ¥ (r) is any function of r.
We then obtain values for density and pressures at the centre
r=0

6bCDPy+6a(A+C)Dy—3(A+C) Yo

PO = 27 (A+C) + %,
(61)
o (0) — 2bC<D0+2a3(2A+C)q§0 — (4O
7 (A+C)
(62)
p:(0)
_14bC P~ 10a(A+ OBy~ (A+C) puo |
- 27 (A+0C) '
(63)

where, @(0) = ®g, W(0) = Wy, and p;1o = 2m}®; —
17v9). Now we observe that p,(0) # p;(0) which leads
to A(0) # 0. This situation may create certain problems in

stellar modeling as the TOV will be unable to balance at the
center. In order to nullify the anisotropy at r = 0, we must
have p,(0) = p;(0), which leads to

, (A+C)(6a Do+ my f — 3287 — 9 ) o
B 6C @ &)
Now the central value of E? is given by

—6bCPy+6a(A+C)Py+ (A+C)Ey
(A+0O) ’

E%(0) =
(65)

where Ejg = (qu5 cbg —32% 71 — 9yp). As we can see
from above Eq. (65) that E2(0) is nonvanishing. However,
incorporating Eq. (64) into Eq. (65), we obtain EZ(0) = 0,
as required. We will now discuss the regularity of these phys-

ical parameters throughout the stellar interior for particular
compact object PSR J1903+327.

5.2 Regularity

(i) Metric functions at the centre, r = 0: we observe from
Fig. 1 (Ieft panel) that the metric functions at the centre r = 0
assume finite values and are smooth and continuous through-
out the interior of the stellar configuration. We conclude that
the metric functions are free from singularity and positive at
the centre.

(i1) The density as a function as the radial coordinate is dis-
played in Fig. 1 (right panel). We observe that the density
assumes a finite value at the centre and decreases monoton-
ically towards the stellar surface. Furthermore, we observe
that a higher value for @( leads to a higher density at each
point of the stellar interior.

(iii) Pressure at the centre r = 0: Figure 2 (left panel) shows
us that both the radial and tangential pressure are regular
at the centre of the star and decrease smoothly towards the
boundary. The vanishing of the radial pressure at some finite
value, r = ry defines the boundary of the fluid sphere. It
is widely acknowledged that while the radial pressure van-
ishes at the boundary the tangential pressure need not. A
phenomenological explanation is provided in the work by
Boonserm et al. [78]. They point out that if the tangential
pressure does not vanish at the boundary of the star then
matching to the Schwarzschild exterior would imply that
the electric field is discontinuous at the stellar surface. This
would point to the existence of a nonzero surface charge den-
sity. To avoid this peculiarity the interior spacetime can be
matched to a Reissner-Nordstrom-de Sitter (RNdS) exterior
implying that the stellar object is electrically charged. The
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nonzero transverse pressure at the boundary is then balanced
by the transverse stress of the electric field in the exterior.

(iv) The anisotropy parameter is presented in Fig. 2 (right
panel) and it is clear that A > 0 at each interior point of the
stellar configuration. The anisotropy parameter vanishes at
the center of the star and increases to a maximum for some
finite radius, r < ry where ¥ denotes the boundary of the
star. A positive value for A (p; > p,) signifies a repulsive
force due to anisotropy. It is clear that the increase in the
anisotropy parameter especially towards the surface layers
lead to greater stability in these regions. It is interesting to
observe that a larger value for @( leads to increased values
for the anisotropy parameter thus stabilising the fluid even
further.

5.3 Equation of state

The role of the equation of state (EoS) has been demon-
strated in many models of compact objects within the frame-
work of classical general relativity and modified theories of
gravitation. A barotropic EoS of the form p = p(p) points
strongly to the type of matter making up the star. Recently, the
colour-flavoured locked-in EoS was utilised to model com-
pact objects. This particular EoS is a generalisation of the
MIT bag model and attempts to connect the microphysics to
macrophysics of the fluid configuration. Figure 3 (left panel)
shows the variation of the ratio p/p with r/R. We note that
the pressure is less than the density at each interior point
of the configuration. This ratio is also positive everywhere
inside the star.

5.4 Electric field

The trend in the electric field and the charge density are shown
in Fig. 3 (right panel). We observe that the electric field van-
ishes at the centre of the star and increases monotonically
towards the surface. It is well-known that intense electric
fields can lead to instabilities within the stellar core. The
presence of charge as high as 10%° coulombs can generate
quasi-static equilibrium states. These high charge densities
are linked to very intense electric fields which in turn induce
pair production within the star thus leading to an unstable
core.

5.5 Energy conditions

In order for physical admissibility of our models the solution
should satisfy the following energy conditions, viz., (i) null
energy condition (NEC), (ii) weak energy condition (WEC)
and (iii) strong energy condition (SEC). In order to satisfy
the above energy conditions, the following inequalities must
be hold simultaneously at each interior point of the charged

@ Springer

fluid sphere:
E? E?
NEC:p+_— >0, WEC:p+pi+_— 20,
81 8w
E2
SEC : i+ — >0. 66
p+2i:pl + (66)

It is clear from Fig. 4. (left panel) that all three energy condi-
tions are satisfied at each interior point of the configuration.

5.6 TOV equation

It is well known that in the absence of any dissipative effects
such as heat flow the equilibrium of a gravitationally bounded
charged fluid configuration is characterised by the resultant
of the gravitational force, F,, the hydrostatic F}, force, the
force due to anisotropy, F, and the electrostatic interaction,
F, vanishing at each interior point of the star. The modified
TOV equation in Brans—Dicke gravity is given by

&' 2 1
=Pl = S0+ (= p) + (T @y’
g’ 10 0P 2 e 20 qq’
(1! —T (r)? -t L
+2(1 0 )—i_r(1 2 )+471r4
(67)
where,
FPP = =l + (1)’
/
BD § 19 0D).
Fy =—E(pr+,0—T1 + T%);
2 qq’
BD _ 19 20\. pBD _
F, _;(pt_pr+Tl -1; )’ F, e

We note the contribution of the scalar field to the hydrostatic,
gravitational and anisotropic forces respectively. In a recent
study, Herrera [79] pointed out an interesting observation
regarding the nonappearance of the tangential pressure in the
gravitational force term. In the case of p; > p,, anisotropic
spheres are more compact than their isotropic counterparts.
In Fig. 4 (right panel), we can see that the combined forces
of electric, hydrostatic and anisotropic counter-balanced the
gravity so that the configuration is under equilibrium. It can
also be seen that when changing the scalar field contribution
(by changing the initial condition of the Brans—Dicke scalar
field @) all the forces also change proportionally. This con-
tribution from the scalar field is a mechanism which enables
the system to support a larger mass within each concentric
shell i.e. the equation of state will be stiffened.

5.7 Causality

In order to prevent superluminal speeds within the stellar
fluid we require that the speed of sound be less than that
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Fig. 1 The metric potentials and matter density for PSR J1903+327 plotted against r/R by taking @9 = 1.001134, w =5, my = 0.002, B =
0.0381, B = —0.0092819, b = 0.0035/km?, & = 0.9951, B = 99.54 MeV /fm?

120 ~~o

100} < 1

~
60f ~

p MeV/fm?3
/

40f ~

r/R

r/R

Fig. 2 The pressure and A = (p; — py)/p: are plotted against r/R by taking the same values as in Fig. 1 for PSR J1903+327

of light everywhere inside the star. The speed of sound for
the charged fluid sphere should be monotonically decreasing
from centre to the boundary of the star (v = /dp/dp < 1).1t
is clear from Fig. 5 (left panel) that the speed of sound is less
than 1 throughout the interior of the matter distribution. This
implies that our fluid model fulfills causality requirements
throughout its interior.

5.8 Stability factor

We observe from Fig. 5 (right panel) that our model satisfies
the Herrera cracking condition —1 < v? — v? < 0. Abreu
et al. [80] showed that stable and unstable patches can arise
within the stellar fluid and their existence depends on the
relative sound speeds in the radial and tangential directions.
In particular, potential unstable regions occur when the tan-
gential component of the speed of sound exceeds the radial

component.

5.9 Stability through adiabatic index

Within the Newtonian formalism of gravitation, it is also well
known that there has no upper mass limit if the EoS has an
adiabatic index I" > 4/3 where

d
r=pPtedr

68
o dp (68)

the definition of which arises from an assumption within the
Harrison-Wheeler formalism [81]. A perturbative study of
dissipative collapse by Chan et al. [82] in which gravita-
tional collapse proceeds from an initially static configura-
tion Eq. (68) follows from the EoS of the unperturbed, static
matter distribution. Equation (68) is modified in the presence
anisotropic fluids (radial and transverse stresses are unequal)
and we can write

r-4_ [iu}
max

69
3 3 rp. (69)

It is well-known that a bounded charged configuration can
be treated as an anisotropic system. In the special case of
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Fig. 5 The speed of sound and stability factor are plotted against »/ R by taking the same values as in Fig. 1 for PSR J1903+327

isotropic pressure (p, = py) the classical Newtonian result
holds from Eq. (69). Observations of Eq. (69) indicate that
instability is increased when p, < p; and decreases when
pr > p;. Figure 6 (left panel) confirms that our model is sta-
ble against radial perturbations at each interior point within
the stellar fluid.
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5.10 Stability through Mass-central density (M — p.) curve

Now, we focus on the M — p. function dubbed as static
stability criterion which is a noteworthy thermodynamically
quantity in order to give more insight into the stability of the
compact celestial structure. This static stability criterion has
been developed and made more accessible by Harrison and
co-workers [88] and Zeldovich and Novikov [89] after sug-
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gestions by Chandrashekhar [90,91] in order to portray the
stability of gaseous celestial configuration according to radial
pulsations. In this respect, the formula associated between the
gravitational mass M and the central density p. is given as
follows,

IM(pc)

> 0, (70
9pc

which must be satisfied in order to describe the solutions of
static and stable celestial configurations or otherwise unsta-
ble if

IM (pc
M (pc) <0, (71)
9pc

under radial perturbation. We present the variation of the
gravitational mass M with respect to central density p. in
Fig. 6 (right panel). It shows that in the present study the
gravitational mass M is an increasing function with regard
to central density for the initial condition values of the BD
scalar field @ i.e., 9 = 1.001134, by tuning wgp to 5.
This confirms the static stability criterion of the stellar system
against radial perturbations. We can see that the solution takes
its stability with this specific choice of the initial condition
of @¢ and we also find that the celestial bodies become more
massive according to increasing central density.

5.11 Effective mass and compactness parameter for the
charged compact star

As a starting point we recall that the maximal absolute limit
of mass-to-radius (M/R) ratio for a static spherically sym-
metric isotropic fluid model is given by 2M /R < 8/9 [73].
In the case of charged fluid spheres [74] showed that there
exists a lower bound for the mass-radius ratio

0% (18R% + 0% _M
2R2(12R2+ Q2 — R’

(72)

for the constraint Q < M.

However this upper bound of the mass-radius ratio for
charged compact star was generalized by [75] who proved
that

M [2R?+30%> 2
— < | /= 4+ = VR24+30?]|. 73
R_[ Y +Q] (73)
The Eqgs. (72) and (73) imply that

0% (18R* + Q%)

2R2 (12R? + Q?)

2 2
<M [M + i\/R2+3Q2} (74)

R 9R2 9R

The effective mass of the charged fluid sphere can be deter-
mined as:

R E? R
Meff = 47rf0 (,0 + G) ridr = 5[1 - e_”(R)] (75)

where e~ is given by the equation (37) and compactness
u(r) is defined as:

u(R) = me%@ = %[1 — e_"(R)]. (76)

5.12 Redshift

The maximum possible surface redshift for a bounded con-
figuration with isotropic pressure is Z; = 4.77. In the work
of Bowers and Liang they showed that this upper bound can
be exceeded when the radial and transverse pressures are dif-
ferent [76]. In particular, when A > O (p; > p,) the surface
redshift is greater than its isotropic counterpart. Studies show
that for strange quark stars the surface redshift is higher in low
mass stars with the difference being as high as 30% for a 0.5
solar mass star and 15% for a 1.4 solar mass star. It appears
that higher redshift predictions in low mass stars appear to
be an anomaly. In a recent study Chandra et al. [77] have
used gravitational redshift measurements to determine the
mass-radius ratio of white dwarfs. Using data of over three
thousand catalogued white dwarfs they were able to deter-
mine the mass-radius relation over a wide range of stellar
masses. Their improved technique entailed the cancelling of
random Doppler shifts by averaging out the apparent radial
velocities of white dwarfs with similar radii enabling them
to measure the associated gravitational redshift.
The gravitational surface red-shift (Zy) is given as:

Zo=(1—-2u)""2 -1, (77)

From Eq. (77), we note that the surface redshift depends upon
the compactness u, which implies that the surface redshift for
any star cannot be arbitrarily large because compactness u
satisfies the Buchdhal maximal allowable mass-radius ratio.
However, the value for the surface redshift for the different
compact objects have been calculated when @y = 1.001134
with wgp = (5, 50) are as follows: (i) 0.466 and 0.467 for
PSR J1903+327, (ii) 0.418 and 0.419 for Cen X-3, (iii) 0.384
and 0.384 for EXO 1785-248, (iv) 0.350 and 0.350 for LMC
X-4.The graphical behavior for gravitational redshift for PSR
J1903+327 is shown by Fig. 7 (left panel). Furthermore, the
behavior of the scalar field @ (r) with respect to r is shown
in Fig. 7 (right panel). From this graph, it is clear that the
functional form of the scalar field @ (r) is well-fitted with
numerical data which also approves the validity of our new
solutions.

@ Springer



729 Page 14 of 19

Eur. Phys. J. C (2021) 81:729

10

0.0 0.2 0.4 0.6 0.8 1.0
r/R

3.0 T T T T

25F 1

20 b

15+ 9

1.0 b

m (pc) [ Solar Mass]

0.5+ 9

0.0
0.000

0.002 0.004 0.006 0.008 0.010

pe | km?

Fig. 6 The adiabatic index and mass-central density curves are plotted against /R and p. by taking the same values as in Fig. 1 for PSR J1903+327
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Fig. 7 The gravitational redshift profile and scalar field @ () are plotted against r/R by taking the same values as in Fig. 1 for PSR J1903+327

5.13 The effect of BD scalar field @, and BD-parameter
wpp onthe M—R and M —1I curves

In this section, we examine the M —R and M —1I diagrams
resulted from our stellar model in the background of BD
gravity with a massive field via the embedding approach.
In this respect, we provide an instructive explanation of the
influences included by the choices made on different param-
eters viz., the initial condition of the BD scalar field &g,
BD-parameter wpp and the total external bag pressure %
(or bag constant), in order to give a more achievable scenario
and efficient astrophysical stellar system. On the other hand,
for determining the stiffness of an EoS, we can analyze the
moment of inertia I associated with a static celestial solu-
tion which could give a precise instrument via adopting the
Bejger and Haensel concept [87], given by,

I= % (1 + M) MR2. (78)

Mo

@ Springer

Our survey on M — R and M — I curves is highly significant
for the stellar systems which clearly show the state (more or
less) of compact celestial bodies via the maximum bound of
the total mass as well as the efficacy and the sensitivity to the
stiffness of an EoS. In this regard, from Fig. 8, we show the
variation of the total mass M in [M] versus the total radial
coordinate R in [km] and the maximum moment of inertia
I in [x 104 g cm2], for all chosen values of the parameters
@g, wpp and A. In the present BD gravity stellar model via
the embedding approach, we observe from M — R curves fea-
tured in Fig. 8 (left panel) the contributions due to wp p where
we have set @ to 1.001134 and % t0 99.54 MeV /fm>. We
note that as the parameter wpp decreases from 20 to 5, the
most extreme value of mass M increases with an increase
in the total radial coordinate R, which culminates in more
massive compact celestial bodies. We can conclude that as
wpp increases the corresponding radius R decreases and
the most extreme value of mass M also decreases, which
gives us also a celestial system less compact and less mas-
sive. This shows that the parameters @, % and wpp will
affect the maximum mass limit as well as compactness of
the objects. On the other hand, the variation of the maximum
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Fig. 8 The M—R and M —1 curves are plotted by taking the same values as in Fig. 1 for different values of wpp

moment of inertia / with respect to the total mass M due
to the impact of @, Z and wpp has been featured in Fig. 8
(right panel). From these plots, we can see that the maximum
moment of inertia / is always increasing with increasing the
mass until up to the most extreme value of mass and decreas-
ing rapidly with decreasing the mass. The generated M —R
curve in Fig. 8 (left) is in agreement with the recent gravi-
tational waves observation from GW 170817. This neutron
stars merger predicted a strong constraint on mass-radius
relationship. For a neutron stars of mass 1.4Mg and 1.6 M,
must have atleast 11.070¢ [92] and 10.687033 [93]. The radii
ranges for 1.4M¢ is 10.55-11.29 km and 1.6M, is 11.07-
11.90 km implying that the predicted radii from the solution
is in agreement with stringent constraints from GW 170817
observations. Finally, we would like to mention here that we
have discovered a good agreement with observational data
for four compact celestial objects namely, PSR J1903+327,
Cen X-3, EXO 1785-248, LMC X-4 in our resulting M —R
and M —1 curves. It is clear that all parameters introduced
by the BD gravity stellar model with the massive field via
the embedding approach have a large effect on the various
physical parameters of the celestial configuration.

«
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= pe(r <R)
~  0.00010 4
w
L]
z 0.00005 N
VIR [ i
= S ET@a>PR
- ~
LY S~o
0.00000 . . . PR s
0.0 0.5 1.0 15 2.0 2.5 3.0
r/R
Fig. 9 Matching of p;(r < R) with E%(r > R) at the surface of the
star

6 Discussion and conclusion

It is clear from the graphical analyses of our solution that the
model of charged anisotropic strange star within the frame-
work of Brans-Dicke gravity with a massive scalar field
describes realistic stellar objects. The stellar model presented
here obeys all the conditions required for hydrostatic equi-
librium, stability and causality. Of particular interest is the
contribution of the scalar field to the thermodynamical and
gravitational properties of the stellar model. The graphical

Table 1 Comparative study of lower bound, Mass-radius ratio, upper bound, compactness (u = Mg/ R) and surface red-shift of the star for fixed
values of & = 0.9951, 8 = —0.0092819, &y = 1.001134, b = 0.0035/km>, B = 0.0381/km and wpp =5

Objects O(R) Lower bound Mass-radius Upper bound Zs a A
2 (18R?+Q? . 2R*+30%+2R+/R2+30? _
x1019C 72%2((11826321%2)) ratio (Mef/R) 130 +9R2 +30 km—2
PSR J1903+327 1.262 0.0099 0.267 0.453 0.466 0.00896 -0.5127
Cen X-3 0.784 0.0038 0.251 0.448 0.418 0.00814 -0.4168
EXO 1785-248 0.542 0.0018 0.239 0.446 0.384 0.00744 -0.3245
LMC X-4 0.499 0.0016 0.226 0.445 0.350 0.00670 -0.2112
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Table 2 Comparative study of lower bound, Mass-radius ratio, upper bound, compactness (1 = Mcfr/R) and surface red-shift of the star for fixed
values of @ = 0.9951, 8 = —0.0092819, &y = 1.001134, b = 0.0035/km?, B = 0.0381/km and wgp = 50

Objects O(R) Lower bound Mass-radius Upper bound Zs a A
2 2402 . 2R?4+30%+2R+/R>+30? _
x1019C T Ty ratio (M/R) T km~2
PSR J1903+327 1.288 0.0103 0.268 0.454 0.467 0.00896 -0.5127
Cen X-3 0.815 0.0041 0.252 0.448 0.419 0.00814 -0.4168
EXO 1785-248 0.574 0.0021 0.239 0.446 0.384 0.00744 -0.3245
LMC X-4 0.520 0.0017 0.226 0.445 0.350 0.00670 -0.2112

analysis of physical attributes of the compact object indicates
that radial pressure, tangential pressure, and energy density
are finite and maximum at » = 0 leading to a highly con-
centrated core. Moreover, the monotonic decreasing trend
of state variables away from the center describes a compact
profile. The anisotropy parameter is also strengthened in the
presence of larger scalar fields. Since A > 0 throughout the
stellar configuration, the repulsive force due to anisotropy
helps stabilise the more compact configurations. An interest-
ing observation is the increase in electric field intensity with
an increase in scalar field intensity. Although these fields
emanate from totally different sources there appears to be a
‘coupling’ which manifests in the formation of more com-
pact stellar configurations. It can also be seen from Fig. 9
that the tangential pressure at the interior of the stellar sys-
tem continues as electric field at the exterior. This was also
mentioned by Boonserm et al. [78] that for p; > p, the scalar
field satisfies [V@| = 0 and the scalar charge density van-
ishes. This leads to the non-vanishing electric field in such a
region which falls off as 1/r.

It has been shown that higher order gravity theories pre-
dict more compact objects compared to their 4D counter-
parts. The compactification is attributed to higher dimen-
sional effects rather than exotic matter states such as dark
matter. Our model provides an alternative mechanism for the
existence of more compact objects than their classical rel-
ativistic counterparts. Recent studies of observational data
obtained via gravitational redshifts have determined the the
mass-radius relation of white dwarfs to a higher degree of
accuracy. These results help constrain the equation of state
of these compact objects thus giving us an handle on the mat-
ter composition and microphysics at play within the stellar
fluid. Tables 1, 2 and 3 display the upper bound and lower
bound limits imposed by the modified Buchdahl limit for
charged compact objects in Brans—Dicke theory.

In Tables 1 and 2, we have generated values for the surface
charge for well-known compact objects PSR J1903+327; Cen
X-3; EXO 1785-248 and LMC X-4 when @9 = 1.001134
with wpp = 5 and wpp = 50 respectively. To see the effect
of the BD parameter we have included calculated values for
@ = 1.001134 corresponding to specific choice of wgp,

@ Springer

i.e., wgp = S5and 50. Itis clear from the data that an increase
inwp p is accompanied by an increase in the surface charge as
well as surface charge density. The increase in surface charge
density is higher in more compact objects. This is expected as
the charge contributes to the overall mass of the stellar body.
We observe that the upper and lower bounds arising from the
Buchdahl limit are modified by a change in wpp. Table 1
shows that a decrease in compactness of approximately 15%
(from PSR J1903+327 to LMC X-4) is accompanied by a
change in the lower bound as high as 40% for @y = 1.001134
and wpp = 5 while the upper bound changes by approxi-
mately 1%. In Table 2 we present model characteristics for
@9 = 1.001134 and wpp = 50. We observe a decrease in
20% in compactness is accompanied by a 60% decrease in
the lower bound and a 5% decrease in the upper bound of
the stellar configurations. A comparison of Tables 1 and 2
show the contributions attributed to the Brans—Dicke modifi-
cation to the classical Einstein gravity theory,i.e. a change in
wpp- Itis clear that surface charge density, lower and upper
bounds imposed by the Buchdhal limits are all affected by
an increase in the Brans—Dicke coupling constant. Let us
now turn our attention to the surface redshift for the different
parameter sets displayed in Tables 1 and 2. It is clear that the
surface redshift decreases as the compactness decreases. We
observe that surface redshift values obtained in Tables 1 and 2
for the stellar objects displayed here are consistent with the
acceptable upper bound for for relativistic stars (Z < 5.211)
[83]. Another well-known characteristic named as the static
stability criterion or M — p, function plays a crucial role in
ensuring the stability of spherically symmetric static celes-
tial systems under radial pulsation has been well-satisfied.
We can also notice from the data drawn in M — p. curve that
the celestial configurations become more massive according
to increasing central density.

Further, we tested the state of the compact celestial bodies
as well as the efficacy and the sensitivity to the stiffness of
an EoS by studying the M —R and M —I diagrams generated
from our celestial model. The M —R curves that due to @,
wpp and A have been investigated. From these curves, we
can see that when wpp increases from 5 to 20 by setting
®o and % to 1.001134 and 99.54 MeV /fm? respectively,
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Table 3 Predicted radii and MI

: M ; 45 2
for some compact stars for Objects g Predicted R km I x10™ gcm
different values of w with @BD WBD
@ = 09951, f — 20 15 10 5 20 15 10 5
—0.0092819, &y = 1.001134
correspond to Fig. 8 PSR J1903+327 1.667 11.21 11.52 11.81 12.09 1.83 1.92 2.02 2.11
Cen X-3 1.49 10.80 11.05 11.31 11.57 1.51 1.57 1.64 1.71
EXO 1785-248 1.3 10.27 10.49 10.72 10.94 1.17 1.22 1.27 1.32
SMC X-1 1.04 9.45 9.61 9.80 9.97 0.78 0.81 0.84 0.87
Table 4 Effects of @ and wgp 45 2 B 3
on mass, radius and moment of o @BD Minax /Mo Rkm I'x10™ gom # MeV/fm
inertia corresponds to Fig. 8 0.9951 20 223 11.78 2.84 99.54
15 2.31 12.39 3.25
10 2.39 13.05 3.69
5 2.45 13.70 4.14

the maximum value of mass M and corresponding radius R
decreases, which gives us a celestial system more compact
and less massive. Moreover, from M —1 curves, we can see
that the maximum moment of inertia / is always increasing
with an increase in the mass until up to the maximum value of
mass and decreasing rapidly with decreasing the mass under
the effect of @, wpp and A. In this respect, we can conclude
that the stiffness of EoS is better in the case of @9 = 1.001134
and wpp = 5 while compared to all other cases, i.e., when
wpp = 10, 15, and 20. We also found a good agreement
with observational data on M—R and M—1 diagrams for
four compact celestial bodies viz., PSR J1903+327, Cen X-
3,EX0 1785-248, LMC X-4 and many others can be adapted.
The Tables 3 and 4 display the values of physical parameters
such as maximum mass, predicted radius and momentum
of inertia corresponding the Fig. 8 for different values of
wpp with @y = 1.001134 and B = 99.54 MeV /fm>.
With the above rigorous analyses of the gravitational and
thermodynamical behaviour of our solution we ascertain that
our model meets the necessary requirements for a physically
realizable self-gravitating compact object.

In this study we have generated a model of a compact
charged stellar object within the Brans—Dicke gravity frame-
work in the presence of a massive scalar field. In addition,
the matter composition of the stellar interior obeys the MIT
Bag model equation of state. Our model satisfies all the cri-
teria for a genre of compact objects which include strange
stars. The highlight of our work is the interplay between the
electric and scalar fields which originate from completely
different sources combine to affect physical characteristics
of the model. The Brans—Dicke coupling constant also affects
stellar characteristics such as compactness, redshift and the
bounds required by the modified Buchdahl limit for charged
stars. In addition, we observed that M —R and M —1 curves
are sensitive to changes in wpp for fix values of @y and

Bag constant which in turn points to a change in stiffness
of the stellar fluid. We believe that this is a novel feature
in our model which inherently connects the macrophysics
(scalar field, electric field and BD coupling constant) to the
microphysics (Bag constant). It would be interesting to com-
pare and contrast our findings to phenomenological features
derived in other modified gravity theories such as f(R).
Motivated by the current achievements for anisotropic com-
pact objects in GR, the extensions of GR can have a substan-
tial impact on the macro-physical properties of a Neutron star
(NS) (see e.g. Ref. [94] for a broad review). In spite of that,
there is a growing interest not only in restricting the EoS
but also in considering viable theories of modified gravity
when we study compact stars. Modification of gravity can
affect a number of important physical characteristics of NSs
which can, in principle, be directly verified by observation. It
is obvious that the EoS and the modified gravity framework
must be constrained from astronomical observations, as for
instance from multi-messenger observations of the merger
GW170817 [95-98]. Since then, f(R) gravity theories have
been studied by many researchers who point out the possibil-
ity that modified gravity can really be adopted to address the
problem of strange stars over a wide span of years. In par-
ticular, Nashed and Capozziello [99,100] have investigated
the noteworthy solutions for anisotropic compact stars and
charged spherically symmetric black holes within the frame
of the f(R) gravity and their stability analysis. In view of the
f (R) gravity perspective for the secondary component of the
GW190814 event, strange stars possibilities are derived and
also discussed in [101,102]. In our work, we have chosen to
work in the Brans—Dicke formalism, since the Brans—Dicke
theory [105] is the prototypical alternative to GR and the sim-
plest representative of scalar-tensor gravity [109—111]. Also
in this formalism, the models are, on the one hand, easily
compatible with Solar System tests, and on the other hand
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the interior star solution can match the exterior solution of
the Reissner—Nordstrom—de Sitter (RNdS). Compared to the
results provided in [99-102], it is evident that the f(R) the-
ories are nothing but scalar-tensor theories in disguise with
vanishing Brans—Dicke coupling wpp and equipped with a
complicated potential for the scalar degree of freedom f "(R)
[109-111]. As a final comment, we say that our work using
the Brans—Dicke formalism has extended the space of solu-
tions describing compact stellar objects outside the realm of
4D Einstein gravity. Looking to the future, refined observa-
tional techniques and improved gravity probes, particularly
in strong gravitational fields, may elucidate the predictions
of modified theories.
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