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Abstract Today we have a solid, if incomplete, physical
picture of how inertia is created in the standard model. We
know that most of the visible baryonic ‘mass’ in the Universe
is due to gluonic back-reaction on accelerated quarks, the lat-
ter of which attribute their own inertia to a coupling with the
Higgs field – a process that elegantly and self-consistently
also assigns inertia to several other particles. But we have
never had a physically viable explanation for the origin of
rest-mass energy, in spite of many attempts at understanding
it towards the end of the nineteenth century, culminating with
Einstein’s own landmark contribution in his Annus Mirabilis.
Here, we introduce to this discussion some of the insights
we have garnered from the latest cosmological observations
and theoretical modeling to calculate our gravitational bind-
ing energy with that portion of the Universe to which we
are causally connected, and demonstrate that this energy is
indeed equal to mc2 when the inertia m is viewed as a surro-
gate for gravitational mass.

1 A brief history of E = mc2

Today we take it for granted that a particle with inertia, mi ,
carries an irreducible amount of energy – even when at rest
with respect to the observer – given by Einstein’s famous
formula, E = mic2. Every object gains kinetic energy, K ,
under the accelerating influence of an external force, and it
loses potential energy, �, when allowed to fall freely in a
region where it experiences an attraction to something else.
No matter how K and � change, however, the rest-mass
energy E = mic2 is an immutable feature of mi. So why
should inertia, which has no obvious connection to K and �,
be associated with energy, and why is it possible for E to be

John Woodruff Simpson Fellow.

a e-mail: fmelia@email.arizona.edu (corresponding author)

converted back and forth into K and/or � whenmi is allowed
to change, e.g., via the annihilation of a particle-antiparticle
pair?

Contrary to conventional wisdom, Einstein was not the
first to consider the possible conversion of ‘mass energy’ into
other forms of energy, and actually did not formally prove
their equivalence either. In 1881, the future Nobel laureate
Thomson realized that – when viewed as a charged sphere –
an electron moving through an ‘aether’ resists being acceler-
ated more than a similarly uncharged object [1]. Much earlier,
Stokes had drawn similar conclusions in the context of hydro-
dynamics, showing in 1844 that a body’s inertia increases
when moving through an incompressible perfect fluid [2].
Quite remarkably, both of these explanations for the origin
of inertia would eventually constitute a historical echo of the
Higgs mechanism (see Sect. 3), proposed more than a century
later, though based on a surprisingly similar idea [3,4].

Thomson viewed this effect as arising from the electro-
magnetic field carried by the charge itself, so he assigned to
it an effective momentum and an apparent electromagnetic
mass. At least part of the mass of the electron could thus
be viewed as arising from its electromagnetic self-energy
– requiring some sort of equivalence between inertia and
energy. Over the next two decades, this idea was fleshed out
in considerable detail by Heaviside [5], Searle [6], Abraham
[7] and Lorentz [8,9]. Its development proceeded to the point
where the radiation reaction force, Fem, acting on a charged
particle due to the momentum and energy carried away by
the radiation it produces, could be formally incorporated into
the Abraham-Lorentz equation [10].

It had been known since 1884, when Poynting published
[11] his now famous theorem on the conservation of energy
in an electromagnetic field, that Maxwell’s equations con-
tained the ingredients necessary to calculate both the energy
and momentum density carried by a radiation field. The rela-
tionship between these two dynamical attributes, together
with the Larmor equation yielding the rate of energy loss by
an accelerated charge, could therefore be used to infer the
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particle’s momentum loss rate, from which one could see
that [10]

Fem ≡ 2q2

3c3 v̈, (1)

where q is the particle’s electric charge. One could thus inter-
pret from this that the field has an effective mass

mem ≡ 2q2

3c3

1

τ
, (2)

yielding Fem ≡ memv̇, if one identifies τ ≡ rq/c as the light
travel-time across the radius rq of the charge – a reasonable
estimate of the time associated with dynamical changes in v̇.
And given that the electric self-energy of a charge q spread
evenly across the surface of a sphere of radius rq is

Eem = 1

2

q2

rq
, (3)

one immediately infers the implied equivalence of the field’s
energy and effective mass:

Eem ≡ 3

4
memc

2. (4)

Of course, this electromagnetic mass requires a particle to
be charged, so it could not apply to everything. Neverthe-
less, one cannot but marvel at the strong similarity between
Eq. (4) and Einstein’s formula E = mic2. And this first for-
mal attempt to find an equivalence between mass and energy
preceded special relativity by several decades.

Following other developments in finding the ‘correct’ rela-
tionship between mass and energy, Hasenöhrl created in
1904 a thought experiment involving the heat (i.e., ‘black-
body’) energy inside a moving cavity [12,13]. As we shall
see shortly, Einstein’s own derivation of the relationship
between inertia and energy was based on very similar
physics. Hasenöhrl published several different versions of
his argument, but one can appreciate the gist of his thought
experiment by simply considering the first [12]. He imagined
filling a perfectly reflecting cavity with ‘heat,’ i.e., black-
body radiation, emitted symmetrically at the two ends of a
cylindrical container. Since identical radiation (or photons,
in modern parlance) is emitted at each end according to an
observer sitting inside, the external forces applied to counter
the radiative reaction forces (analogous to Eq. 1) are equal
and opposite.

But to an observer sitting in the laboratory, watching the
same cavity moving past them at constant velocity,v, the radi-
ation emitted in the direction of v is Doppler blue-shifted,
while that emitted in the opposite direction is red-shifted.
And since blue-shifted photons carry more momentum than
their red-shifted counterparts, the two external forces seen
in the laboratory must now be different in order to maintain
the cavity moving at constant velocity. Hasenöhrl applied

the classical work-energy theorem, equating the net differ-
ence in work exerted by the external forces to the change
in the cavity’s kinetic energy, to show that the blackbody
radiation has an equivalent mass mbb = (4/3)Ebb/c2. Actu-
ally, his first publication erroneously quoted this result as
mbb = (8/3)Ebb/c2, but he corrected his algebraic mistake
in a subsequent paper after receiving communication from
M. Abraham.

The importance of this step was Hasenöhrl’s extension of
the result in Eq. (4) to non-charged particles. Indeed, as we
shall see shortly, his thought experiment was very similar to
that of Einstein, which was published the following year. One
may thus wonder why his expression contained the factor 4/3
instead of simply 1. As it turns out, this was not due to his
use of classical physics, as one might suspect but, rather, to
the fact that he incorrectly ignored the mass being lost by the
cylinder’s caps while they are emitting heat [14].

Such was the impact of Hasenöhrl’s argument, however,
that even as late as 1909, Max Planck [15] included in one
of his lectures the statement “that the blackbody radiation
possesses inertia was first pointed out by F. Hasenöhrl.” But
the correct answer, of course, was published by A. Einstein
[16] in one of his four Annus Mirabilis papers of 1905.
Couched in the language of special relativity, Einstein’s argu-
ment was – in retrospect – remarkably simple though, in the
end, he approximated away the relativistic parts anyway, so
his answer is derivable purely from classical physics, based
on the Doppler effect.

Einstein considered a single point particle, moving with
velocity v in the laboratory frame, radiating away a quan-
tity of energy �E ′ with front-back symmetry in its own
rest frame. For simplicity, he assumed that �E ′/2 is radi-
ated in a direction parallel to and anti-parallel to v. Accord-
ing to the relativistic Doppler-shift formula, an observer in
the laboratory sees the radiation carrying away an energy
(�E ′/2)γ (1 + β cos θ ′), where θ ′ is the angle between
v and the direction of propagation of the radiation, and
γ ≡ 1/

√
1 − β2 is the Lorentz factor in terms of β ≡ |v|/c.

Thus, the difference in kinetic energy of the particle between
the laboratory and rest frames is simply

�K − �K ′ = �E ′(γ − 1). (5)

In the low-velocity limit, where the relativistic parts are
approximated away, this equation becomes

�K − �K ′ = 1

2

�E ′

c2 v2. (6)

He then argued that since the particle is giving away an
amount of energy �E ′, its mass must have diminished by
�mi = �E ′/c2.

It is important to note, however, that Einstein made sev-
eral sweeping conclusions from this result, including (i) that
it applies to all bodies and all forms of energy, and (ii) that it
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remains true even at higher velocities (where relativity would
indeed introduce corrections to the classical outcome). But
he never actually proved any of these claims, even in the
subsequent handful of papers he published on this topic over
the next several decades. Today we know this result is cor-
rect because it has been verified experimentally to incredible
accuracy. It has never been proven theoretically, however, and
the fundamental reason why inertia ought to be associated
with energy has remained a complete mystery to this day.

2 Inertia and gravitational mass

To properly address the question of why a ‘rest mass’ mi

represents an energy mic2, we first need to refine and clar-
ify our concepts of inertia and gravitational charge, which
we shall call mg to properly distinguish it from mi. Newton
viewed inertia to be a conserved and irreducible property of
matter, and did not consider mi and mg to be distinct [17].
By ‘inertia’ we shall strictly refer to the proportionality con-
stant between an applied force and an object’s consequent
acceleration, according to Newton’s second law of motion,

F = mia. (7)

The quantity mi retains this meaning in relativity, where it is
considered to be the inertial mass in the object’s rest frame.
Since an observer in this frame can reduce their equation of
motion to the classical limit shown in Eq. (7), they could
with equal validity refer to mi as either the object’s inertia or
its ‘rest mass’ m. No doubt, this is a very basic concept, but
we need to be clear that ‘inertial mass’ strictly represents an
object’s resistance to acceleration when a force is applied to
it in the classical limit.

Gravitational charge, on the other hand, arises in the con-
text of Newton’s universal law of gravitation,

F1 = −Gmg1mg2

r2 r̂, (8)

expressing the forceF1 experienced by particle 1 (with gravi-
tational chargemg1) due to the gravitational influence exerted
by particle 2 (with gravitational charge mg2). The radius vec-
tor r = r r̂ points from 2 to 1, and we have explicitly included
a negative sign in this equation, arising from the fact that grav-
ity is always attractive – a feature that will shortly become
highly relevant to our discussion concerning the relationship
between mi and mg. The quantity G is the ‘gravitational’
constant, whose numerical value and physical units depend
on how we choose to define mg, say in terms of the (dimen-
sionless) number of atoms in an object, or its inertial mass
mi in kilograms. The conventional value of G that we are all
familiar with arises when we force the equality mi = mg.

The latter possibility – that mi and mg might be related,
perhaps even equal – arises from the observation that they

both represent the amount of ‘something’ in the object. Cer-
tainly, at the time of Newton, there weren’t too many options
to consider. If one were to double the quantity of matter, as
Newton would have put it, one would reasonably expect from
simple experimentation that its inertia would also double.
Likewise, doubling the quantity of matter in object 1 would
double the gravitational force in Eq. (8). Today we know
much more and realize at a very fundamental level that these
two ‘quantities’ need not be the same physically. For exam-
ple, if we were to naively stick two identical objects together,
we could double the attribute that gives rise to inertia, while
also doubling the analogous (but different) attribute responsi-
ble for the gravitational charge. In both cases,mi → 2mi and
mg → 2mg, even thoughmi andmg might have nothing to do
with each other. In the absence of any more definitive infor-
mation, the best one could argue is therefore that mi ∝ mg,
certainly not thatmi = mg. But even this statement is fraught
with peril given what we now know about the ‘equivalence’
of mass and energy and the fact that, in general relativity,
the spacetime curvature really responds to energy, not mass,
as we shall discuss later in this paper. Nonlinear effects that
increase the self- (or binding) energy of an object as its grav-
itational charge increases may therefore destroy the simple
constancy of mi/mg if inertia is unrelated to gravity [18].

But at least in this regard, experimentation does provide
us with a very firm indication that mi remains proportional to
mg over all the scales that have been tested thus far. Most of
the experiments attempt to compare the acceleration of two
laboratory-sized objects of different composition in the pres-
ence of an external gravitational field. Many high-precision
Eötvös-type of measurements have been made, starting with
the pendulum experiments of Newton and Bessel, to the clas-
sic torsion-balance version of Eötvös [19], Dicke [20] and
others. In the latest version of these torsion-balance experi-
ments, two objects of different composition are rested on a
tray and suspended horizontally by a fine wire. For exam-
ple, the ‘Eöt-Wash’ experiments have used such devices at
the University of Washington to compare the accelerations of
various materials toward movable laboratory masses, the Sun
and the galaxy [21,22], reaching a relative precision [23] of
2×10−13. (For a recent review, see Tino et al. [24].) Another
way to say this is that, as far as we can tell, everything in an
object that gives rise to inertia also contributes proportion-
ately to its gravitational charge.

As is well known, this proportionality between mi and
mg is the basis for Einstein’s principle of equivalence. One
can easily understand this from Eqs. (7) and (8), which show
that particles ( j = 1...n) – much closer to each other than
the scale over which a gravitational field is changing – are
all accelerated at an equal rate proportional to the constant
mg j/mi j . An observer could therefore not distinguish this
situation from an analogous one in which they were being
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observed in a local, non-inertial frame accelerating uniformly
in the opposite direction.

So why couldn’t this equivalence apply to other forces as
well? For example, why couldn’t we argue that the amount
of charge in an object is proportional to its matter content?
Then the Coulomb force acting on it analogously to Eq. (8)
would be proportional to its net charge, q1. Doubling the
quantity of matter would result in q → 2q and mi → 2mi,
so that the ratio q/mi would always remain the same. In
this case, we would see an equivalence between inertia and
the electric charge, perhaps leading us to propose an alterna-
tive equivalence principle based on the notion that we could
not distinguish between charges accelerated in an electro-
magnetic field and the analogous situation of charges being
viewed in a non-inertial frame uniformly accelerated in the
opposite direction.

The answer, of course, is that the other forces all lack
the unique combination of properties that allow gravity to
function in this way. Gravity has a single charge, unlike elec-
tromagnetism which has two, or quantum chromodynamics
which has three (red, green and blue) and the corresponding
antiquark colors. So gravity is always attractive, while the
others can vary depending on the charge balance. In addi-
tion, gravitational charge cannot be annihilated, so that all
forms of energy have an effective mg that accumulates, as
does inertia, while electric charge can be completely removed
from an object. In other words, gravity is the only force for
which the proportionality between its charge and mi is guar-
anteed. And equally important, it is the only force for which
one may reasonably expect its charge to extend its influence
over a vast volume of space (i.e., the cosmos). In spite of
the fact that the Coulomb force is itself an inverse-square
law, it is energetically prohibitive to maintain a separation of
charges over distances extending beyond the laboratory or, in
the most extreme situation, beyond the magnetosphere of a
pulsar, smaller than a typical city here on Earth. The Universe
is therefore neutral on large scales – specifically because the
electromagnetic force contains more than one charge. So the
equivalence principle could only work for gravity, and we
are led to the conclusion that inertial mass must therefore
be proportional to the gravitational charge, which we shall
henceforth sometimes call the ‘gravitational mass.’ And to
simplify the discussion even further, we shall often ‘choose’
the relevant constants (such asG) to have values and units that
allow us to set the inertial mass and gravitational charge equal
to each other, thereby defining the rest mass, m ≡ mi = mg.

3 The Higgs and QCD inertia

Without unduly preempting our discussion in Sect. 5, the
obvious question arising from the conclusion in the previ-
ous section centers on the issue of whether rest-mass energy,

mc2, can really be associated with the object’s inertia, mi,
or whether it is in fact an energy due to a physical influ-
ence involving its gravitational charge, mg. We would not be
able to tell the difference since mi/mg = constant, which
permits inertia to act as a surrogate for mg. In that case, it
wouldn’t even matter what the origin of inertia were, as long
as we could identify the physics that generates an energy
mgc2 → mc2 (which we shall do in Sect. 5). Nevertheless,
for the sake of clarity and completeness, we shall here first
summarize the current situation concerning the origin of mi.

In Newton’s view of the world, inertia was an intrinsic
property of matter, manifested by objects moving relative
to an absolute space. But several early thinkers following
Newton, notably Berkeley [25] and Mach [26], already ques-
tioned an independently defined absolute space, and instead
proposed that inertial frames are those that are unaccelerated
relative to the ‘fixed stars’ or, more accurately, relative to
a carefully defined mean of all the matter in the Universe.
Einstein called this ‘Mach’s principle’ and considered it to
be foundational in the development of his general relativity
theory, but he eventually realized that these two are actually
incompatible with each other [27,28]. Though the equiva-
lence principle had suggested to him that inertia must be due
to the gravitational influence of the whole Universe, Ein-
stein eventually realized that this influence disappears com-
pletely for a particle in free-fall. While the particle experi-
ences zero gravity in this frame, it nevertheless still exhibits
inertial properties.

Mach himself never explicitly stated how or why his view
of inertia ought to be formalized as some kind of new physical
law, so he never provided a physical mechanism describing
how the distant matter in the Universe affects the motion
of a local particle. But Mach’s principle has been invoked
many times in the development of alternative gravity the-
ories. For example, Dennis Sciama attempted in 1953 [29]
to express Mach’s principle in more quantitative terms by
proposing the addition of an acceleration-dependent contri-
bution to Newton’s law of gravity (Eq. 8). Sciama called this
effect an ‘inertial induction.’ Later, Brans and Dicke [30]
incorporated Mach’s principle into an alternative theory to
general relativity, by setting up a framework in which the
gravitational constant G is determined by the structure of the
Universe. In their approach, the unit of inertial mass is taken
to be the Planck mass (i.e., m2

P ≡ h̄c/G), so that a changing
mass results from a changing G, which in turn can be viewed
as the Machian consequence of a changing Universe.

But in spite of these attempts at physically interpreting
inertia as an effect due to distant matter in the Universe, the
situation today regarding Mach’s principle is perhaps best
summarized by Abraham Pais [31]: “It must be said that, as
far as I can see, to this day, Mach’s principle has not brought
physics decisively farther. It must also be said that the origin
of inertia is and remains the most obscure subject in the theory

123



Eur. Phys. J. C (2021) 81 :707 Page 5 of 12 707

of particles and fields.” Quite remarkably, though, at least a
partial answer appears to have been found in the intervening
period.

In ordinary matter, ignoring for brevity and simplicity
other possible issues associated with dark matter and dark
energy in a cosmological context, inertia is overwhelmingly
dominated by the nuclei, mi ∼ mN, specifically, protons and
neutrons. Electrons are far smaller (me < mN/1000) and –
if we take the liberty of borrowing the E = mc2 result to
convert the nuclear binding energy into an effective inertial
mass – other contributions to the mass of the nucleus are
but a small fraction of mN (typically less than 1%). Thus,
to understand the origin of atomic inertia and, by extension,
most of the inertia of ordinary matter in the Universe, one
must uncover the origin of proton and neutron masses and,
to a lesser extent, the origin of electron mass.

Today, the standard model of particle physics is well estab-
lished and experimentally confirmed. It encompasses elec-
tromagnetism, the weak force and strong interactions, and
provides a self-consistent classification of all the known ele-
mentary particles. It is nevertheless still incomplete because it
does not (i) include gravity, (ii) account for baryon asymme-
try and dark matter and (iii) allow for the inclusion of dark
energy, if the latter turns out to be something other than a
cosmological constant, �. Some of the key steps in its devel-
opment have been (i) the unification of the electromagnetic
and weak interactions by Glashow [32], (ii) the incorporation
by Weinberg and Salam of the Higgs mechanism to generate
inertial masses for some of its particles [3,4,33,34] (more on
this below), and (iii) the discovery of various new particles it
predicted, such as the W±, Z0 and Higgs bosons (see, e.g.,
Oerter [35] for a detailed review).

Its structure contains six quarks (fermions that carry color
charge), which are used in various combinations to form the
meson and baryon hierarchy; six leptons (including electrons
and neutrinos); twelve spin-1 gauge bosons that mediate the
strong, weak, and electromagnetic interactions; and one spin-
0 scalar boson, i.e., the recently discovered Higgs particle.
The gauge bosons include the aforementioned W± and Z0

carriers of the weak force, as well as the massless photon
responsible for the electromagnetic interaction. The remain-
ing eight gauge bosons are various color combinations of glu-
ons that mediate the strong force inside mesons and baryons,
such as the proton and neutron.

The quark, electron, W± and Z0 inertial masses are gener-
ated via the Higgs mechanism that we shall discuss shortly.
The proton and neutron masses, however, are much larger
than the mere sum of their enclosed quark and gluon fields.
As surprising as it may seem, it is actually possible to measure
individual quark masses based on the reconstruction of jets
they induce in high-energy collisions. This is the method used
to measure the top quark mass, while the bottom and charm
masses may also be inferred from the mass of meson reso-

nances, such as bottomonium and charmonium, since these
appear to be non-relativistic quark-antiquark bound states.
The other three light quark masses (strange, down, up) may
be inferred from the spectroscopy of low-lying pseudoscalar
mesons, such as π , K , and η, whose inertial masses depend
sensitively on the light-quark masses.

As noted earlier, however, this beautiful, self-consistent
picture does not yet explain why the nucleon mass is ∼ 20
times larger than the sum of the quark masses within it. Iron-
ically, this is where the highly original development con-
cerning the electromagnetic mass in the nineteenth century
resurfaces (see Sect. 1 above), notably via arguments of the
form expressed in Eqs. (1) and (2). That proposal was based
on the idea that energy and momentum carried away by the
electromagnetic field provided a back-reaction on the radi-
ating particle being accelerated, thereby generating inertia.
There are several fundamental reasons from quantum electro-
dynamics why this mechanism cannot work for the electron,
in part because this mechanism produces infinite multiplica-
tive factors representing the mass. Remarkably, however, a
very similar approach does work in quantum chromodynam-
ics. Detailed calculations from first principles have shown
that most (∼ 95%) of the nucleon’s inertia is generated by
the back-reaction of color gluon fields resisting the acceler-
ation of quarks and (the similarly colored) gluons inside the
baryons [36]. Actually, this process accounts very well for
most of the inertia in the entire low-lying meson and baryon
distribution.

Most of the inertial mass in ordinary matter can therefore
be understood as arising from the back reaction of gluons
on the quarks that radiate them in response to the accel-
eration they are subjected to by external forces. This is a
rather profound statement because it tells us that inertia origi-
nates dynamically, principally to conserve momentum, rather
than from some Newtonian definition of irreducible inter-
nal ‘mass.’ It should now become clearer why the statement
made at the beginning of this section is so essential to this
whole discussion. Attempting to assign ‘rest energy’ to iner-
tia – when viewed as an emergent property – doesn’t make
much physical sense. Instead, interpreting inertia as a surro-
gate for how much ‘mg’ a quark (say) possesses allows us
to pursue a more physically meaningful investigation of how
gravitational charge is involved in the generation of energy.

The story is not yet complete, however, because individual
quarks and some of the leptons and gauge bosons also have
inertial mass, which must be due to something else. Conven-
tional wisdom today has it that this type of inertia, distinct
from the one generated by the QCD interactions discussed
above, is due to a coupling of these particles to a perva-
sive spin-0 scalar field [3,4] known as ‘Higgs.’ Much has
been written about this mechanism [37], and the discovery
of the Higgs boson itself appears to have cemented our basic
understanding of how inertia is generated for particles in the
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standard model that would otherwise have to remain mass-
less in order to satisfy several required symmetries. The way
this mechanism works is rather easy to explain, but it also
contains an important caveat that will leave us wondering
whether we have actually uncovered the whole truth.

All of the particles in the standard model (in the absence
of a Higgs field, �) must have zero mass in order to com-
ply with various (presumed) symmetries. The Lagrangian
density representing gauge bosons, for example, cannot con-
tain ‘mass’ terms, such as mwW±

μ W±μ, which would vio-
late gauge invariance. In physics, we measure distances and
times, velocities and acceleration in order to infer the particle
dynamics. But the latter results from ‘forces,’ not potentials
from which the forces are derived. As long as one can shift
the gauge of the potentials without affecting the forces, the
description of the system should remain the same. But the
mass term for the W± gauge bosons, for example, would
not remain invariant if the gauge of W±

μ were shifted, unless
mw = 0. Similarly, a mass term for fermions must necessar-
ily mix left-handed and right-handed fermions, but these have
different gauge quantum numbers, so a shift in gauge would
not allow such a term in the Lagrangian density to remain
invariant. The latter requirement is commonly referred to
as chiral symmetry, meaning that the Dirac action ought to
remain invariant under a chiral rotation.

The addition of a spin-0 scalar field to the standard model
introduces an additional interaction for the fermions and
gauge bosons, regulated by a unique coupling constant g j

for each particle species “j”, chosen to produce consistency
with the observed masses. The term associated with each
particle-Higgs interaction appearing in the Lagrangian den-
sity is represented as a product g jξ j�, written in terms of
g j , the particle field ξ j , and the Higgs field. But still noth-
ing interesting would happen with this in terms of generating
inertia if all the fields retained a zero expectation value in vac-
uum. This interaction term would then merely vary stochas-
tically as the fields fluctuated about zero, and could in no
way be linked to the highly stable masses we measure for the
standard-model particles. To overcome this deficiency, the
Higgs field is instead assigned a potential, V (�†�), tuned
to prevent its lowest-energy state from having � = 0. This
is done by postulating that

V (�†�) = −μ2�†� + 1

2
λ(�†�)2, (9)

with μ2 > 0. Does the Higgs field have some as yet unknown
‘internal’ property or ‘structure’ that produces such a poten-
tial? No one knows, but it is not difficult to see that, instead
of being minimized at � = 0, V attains its lowest value for
the modulus

�†� = v2 ≡ μ2

λ
. (10)

The quantity v is known at the Higgs vacuum expectation
value. In other words, if we insist on vacuum corresponding
to the lowest energy state for such a potential, � cannot be
zero; it must have a vacuum expectation value consistent with
Eq. (10).

This changes the nature of the interaction term completely,
because now we may write g jξ j (v +φ1) = g jξ jv + g jξ jφ1,
in terms of the real part of �, given as v+φ1. Here, φ1 repre-
sents a fluctuation of the Higgs field away from its otherwise
constant vacuum expectation value v. This achieves the prin-
cipal result because g jξ jv is a mass term for ξ j , dependent
only on g j , μ and λ. We interpret this result to mean that
a fermion or gauge boson (with g j �= 0) plowing through
the pervasive Higgs field attracts Higgs bosons to itself, and
its inertia increases in proportion to the mass carried by the
latter [38].

But therein lies the crucial caveat. This mechanism is
quite different from the QCD interaction we described ear-
lier. Whereas the latter results from conservation of momen-
tum and the back-reaction of gluons radiated by accelerated
quarks, the Higgs interaction creates inertia for the standard-
model particles by attracting them to massive Higgs bosons.
To make this work, a potential of the form in Eq. (9) is essen-
tial, but we don’t know where it comes from. With it, a non-
zero Higgs field pervades all of space, very much like the
aether proposed to mediate the propagation of electromag-
netic waves back in the nineteenth century. More seriously,
though, this ansatz for the Higgs potential includes a quantity
μ with dimensions of mass. Indeed, the mass of the Higgs
boson in this model is m2

H = 2λv2 = 2μ2, and it appears as
a free parameter. There is no elucidation or explanation for
where it comes from. Yet clearly all of the standard-model
masses derived with this mechanism are critically dependent
on it.

To summarize, the Higgs mechanism endows standard-
model particles with inertia, yet allows them to still satisfy
all of the essential invariances arising from gauge and chiral
symmetry. But to do so, the Higgs boson must itself already
have inertial mass, and we have no idea where that comes
from. And we should not forget that none of these features
provide us with any elucidation of the complicated structure
of quark and fermion masses and mixings. Why should the
particles all have different couplings g j to the Higgs field?
And where do these values come from? It is fair to say that
we have come a long way exploring the origin of inertia
since the nineteenth century, but no one would claim that
we fully understand it yet. And then there’s the question
of why inertia (or, more likely mg) ought to be associated
with an energy E = mgc2 (= mc2), which we shall address
next.
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4 The gravitational horizon in cosmology

If we believe the argument that rest-mass energy is more
likely to be associated with mg than some kind of emergent
inertia, the next important factor to consider is the source of
gravity that couples with the particle to produce this energy.
Is it other nearby particles, the laboratory, galaxy or some-
thing even bigger? Certainly, no other force can be involved
in this process because, as we have seen, the equivalence prin-
ciple works only for gravity. And quite simply, no other force
extends meaningfully to large enough distances to contribute
non-negligibly to rest-mass energy. Thus, since the effects of
gravity are cumulative, one should reasonably expect that all
of the cosmic energy density in causal contact with the parti-
cle must be coupling gravitationally with it and contributing
to its ‘rest-mass’ energy. But what fraction of the Universe
should we include in this ‘causally connected’ region? For-
tunately, recent work in cosmology provides us with several
indispensable clues to answer this question, notably the role
played by the so-called apparent (or gravitational) horizon
in both the interpretation of observational measurements and
their theoretical foundation [39].

To avoid any possible confusion, we should reiterate at
this stage that the question of energy is entirely independent
of how inertia arises. In Sect. 3 we described early attempts
at explaining inertia based on the influence of distant matter
in the Universe and found that Mach’s principle has never
been successfully incorporated into any working theory of
gravity. Here, we are again invoking an interaction between
local particles and the rest of the Universe, though it will now
become clear that this interaction must be a gravitational one.
And this gravitational influence is not at all responsible for
creating inertia but, as we shall see shortly, it appears to be
the origin of rest-mass energy.

Standard cosmology is based on the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric, describing a spatially
homogeneous and isotropic three-dimensional space, expand-
ing or contracting as a function of time:

ds2 = c2 dt2 − a2(t)

[
dr2

(1 − kr2)
+ r2(dθ2 + sin2 θ dφ2)

]
.

(11)

This metric is written in terms of the cosmic time, t , and
and comoving spherical coordinates (r, θ, φ), representing
the perspective of a free-falling observer, analogous to their
free-falling counterparts in the Schwarzschild and Kerr met-
rics. The expansion factor, a(t), is independent of position,
and the geometric constant k is +1 for a closed universe, 0
for a flat universe, and −1 for an open universe. The latest
observations [40] are telling us that the Universe is flat (with
k = 0), so we shall assume this condition throughout this
paper.

It is also helpful to introduce the proper radius, R(t) ≡
a(t)r , which is often used to express changing (or ‘physical’)
distances as the Universe expands. Sometimes, R is called
the areal radius – the radius of two-spheres of symmetry –
defined in a coordinate-independent way as R ≡ √

A/4π ,
where A is the area of the two-sphere in the given geometry
[41,42].

In a cosmology based on the FLRW metric, the term ‘hori-
zon’ may refer to (i) the ‘particle horizon,’ characterizing the
distance particles have traveled towards an observer since
the big bang, (ii) the ‘event horizon,’ a membrane that sep-
arates causally connected spacetime events from those that
are not, or (iii) several other constructs, each with its own
customized application [43]. These all have their purpose,
but as the measurements continue to improve, it is becoming
quite clear that one particular definition is emerging as the
most relevant for interpreting the observations – the (imagi-
nary) surface separating all null geodesics receding from the
observer from those that are approaching. This is how we
formally define the apparent horizon, Rh, in general relativ-
ity. It turns out, however, that for an isotropic Universe (as
described by Eq. 11), the apparent horizon coincides with the
better known gravitational horizon [39,66] first identified in
the Schwarzschild metric,

Rh = 2GMMS

c2 , (12)

in terms of the Misner-Sharp mass [44],

MMS ≡ 4π

3
R3

h
ρ

c2 , (13)

where ρ is the total energy density in the cosmic fluid.
We must be very clear about what this definition actu-

ally means, so let us take a moment to carefully dissect it. It
follows the standard practice in general relativity of consider-
ing the source of gravity (or, more accurately, the spacetime
‘curvature’) to be the energy (in this case ρ). But this expres-
sion also redefines it in terms of a ‘gravitational mass den-
sity’ (ρ/c2) by tacitly assuming the E = mc2 relation. All
the equations that follow then have this ab initio assumption
built into them. One can see, however, that this conversion
is merely one of convenience, for Rh can be re-written inde-
pendently of ρ. Introducing the Friedmann equation,

H2 = 8πG

3c2 ρ, (14)

obtained by putting k = 0, absorbing the cosmological con-
stant � into ρ (if necessary), and inserting the FLRW met-
ric coefficients into Einstein’s equations [46], one can easily
combine it with Eqs. (12) and (13) to show that Rh = c/H ,
the more familiar expression for the Hubble radius, written
in terms of the Hubble parameter H ≡ ȧ/a. Yes, quite inter-
estingly, the empirically derived Hubble radius in a cosmic
setting turns out to be the apparent, or gravitational, radius.
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The physical nature of MMS first emerged from the pio-
neering work of Misner and Sharp [44] on spherical collapse
problems in general relativity. It is sometimes also referred
to as the Misner–Sharp–Hernandez mass, to include the sub-
sequent contribution by Hernandez and Misner [45]. In the
cosmic framework, however, Rh – and therefore MMS – is
not static. Unlike the situation with Schwarzschild, in which
Rh is in fact the event horizon, Rh in cosmology continues to
grow as the Universe expands, and may eventually turn into
a cosmic event horizon, depending on the equation-of-state
in the cosmic fluid, i.e., it depends on whether or not H(t)
eventually approaches a constant. In the next section, we shall
demonstrate that a particle’s rest-mass energy is none other
than its gravitational binding energy to the Misner–Sharp
‘mass’ MMS. Though MMS grows as the Universe expands,
it is the ratio MMS/Rh (see Eq. 12) that sets the conversion
factor from mg to mgc2 (= mc2), and this ratio remains con-
stant as the Universe expands.

For the reader with a deeper understanding of general rel-
ativity, it may also be helpful to mention that the Misner-
Sharp-Hernandez mass may not be the only definition one
may use to specify a ‘global’ mass, though there are several
good reasons for choosing it in the context of FLRW. First
and foremost, it is not at all arbitrary, in the sense that only
this definition is consistent with the grr metric coefficient.
As a result, MMS is the only mass that provides an apparent
horizon allowing us to write the FLRW metric in terms of
the proper radius, R = a(t)r , and the ratio R/Rh, signalling
how far the observer is from the gravitational horizon (see
Eq. 18 below).

In general relativity, it is generally non-trivial to identify a
‘physical mass-energy’ in a non-asymptotically flat geometry
[47]. But when the spacetime is spherically symmetric, as
we have with FLRW, other possible definitions, such as the
Hawking–Hayward quasilocal mass [48], reduce exactly to
the Misner–Sharp–Hernandez construct. The same happens
with another example, known as the Brown–York energy,
which is defined as a two dimensional surface integral of
the extrinsic curvature on the two-boundary of a spacelike
hypersurface referenced to flat spacetime [49].

It is important to emphasize that our derivation of the
radius Rh is fully self-consistent with the established under-
standing of apparent horizons in general relativity, which are
generally defined – even for non-spherical spacetimes – by
the subdivision of the congruences of outgoing and ingo-
ing null geodesics relative to the observer. For the simpler
case of a spherically-symmetric spacetime, these reduce to
the outgoing and ingoing radial null geodesics from a two-
sphere of symmetry [47,50–52]. Of course, the FLRW met-
ric is always spherically symmetric, so the Misner–Sharp–
Hernandez mass and apparent horizons are simply related
via the Birkhoff theorem and its corollary. With spherical
symmetry, the general definition of an apparent horizon thus

always reduces exactly to Eq. (12) [47,51]. Another way to
put this is that Birkhoff’s theorem and its corollary allow us
to define a ‘gravitational horizon’ in cosmology which, how-
ever, is simply identified as the ‘apparent horizon’ even in
non-spherically-symmetric systems.

It is clear, therefore, that the apparent horizon Rh directly
tells us which portion of the Universe is gravitationally cou-
pled to the observer. Its observational and theoretical impli-
cations have been discussed extensively in both the pri-
mary [39] and secondary [46,47] literature, though there
is still some confusion concerning its properties. The time-
dependent gravitational horizon is not necessarily a null sur-
face, but is sometimes confused with one. Some [53–56] have
suggested that objects beyond Rh(t0) ≡ c/H0 are observable
today (at time t0), which is not correct [57–59]. Almost cer-
tainly some of this discourse is due to a confusion between
coordinate and proper speeds in general relativity. The for-
mer may exceed the speed of light c, but there is an absolute
limit to the latter, whose value must be calculated using the
curvature-dependent metric coefficients. A misunderstand-
ing of this distinction can lead to claims of recessional speeds
exceeding c, even within the observer’s particle horizon [60].

An indication of Rh’s relevance to our interpretation of the
data is provided by the many cosmological observations [61]
now pointing to what could only be called a very curious
coincidence: the data are telling us that Ṙh(t) = c [46].
Those familiar with the Schwarzschild horizon might at first
find this similar to what they would see in free-fall towards
a black hole as they cross its event horizon, which would
also at that moment appear to be approaching them at speed
c. But as we have pointed out, Rh in the cosmic context is
not yet an event horizon (and may never turn into one), so it
evolves in time at a rate dependent on the equation-of-state
in the medium. Yet somehow, the observations are telling us
that Rh = ct as a function of cosmic time t .

From a theoretical perspective, we know that the gravi-
tational horizon in the cosmic setting expands linearly with
time only if the cosmic fluid satisfies the zero active mass
condition from general relativity, i.e., if its total energy den-
sity, ρ, and pressure, p, satisfy the constraint ρ + 3p = 0.
One can easily understand this from the second Friedmann
equation, more commonly referred to as the Raychaudhuri
equation [62],

ä

a
= −4πG

3c2 (ρ + 3p) , (15)

from which one finds that ä = 0 as long as p = −ρ/3.
A considerable amount of work has been expended over

the past decade trying to understand why the Universe would
evolve in this manner, and there are now clues – both obser-
vational and theoretical – pointing to some possible expla-
nations [46,63]. Insofar as the topic of this paper is con-
cerned, it is not essential for us to dwell on the details right
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now, but it turns out that whether or not Rh equals ct is of
utmost importance to the identification of rest-mass energy
as a gravitational binding energy. As we shall see shortly, this
interpretation works only if Rh is indeed expanding linearly
with time.

5 Gravitational ‘binding energy’ and the origin of
E = mc2

The notion that an influence in cosmology ought to be
restricted by a gravitational horizon is not easy to grasp
because spatial flatness in the FLRW metric (Eq. 11) suggests
the Universe is infinite. But we have to remember that the
relative gravitational acceleration between two given space-
time points in the cosmic setting is due solely to the energy in
the intervening medium. The Birkhoff theorem [64] and its
corollary [65,66] help us to understand why every observer or
particle – no matter where they are in the presumably infinite
cosmos – is surrounded by a gravitational horizon a proper
distance Rh = c/H away. Isotropy ensures that the rest of the
Universe outside of a ‘spherical shell’ at Rh has zero influ-
ence on the interior. To be clear, this does not mean that the
Universe possesses just a single spherical region bounded by
Rh. There exists such a horizon centered on every observer,
and every particle within the cosmic fluid. One should there-
fore expect such a restriction on the size of a causal region to
have a significant impact on fundamental physics, especially
the question concerning the origin of rest-mass energy. All
of our discussion thus far points to the gravitational inter-
action between mg and the gravitating energy lying within
the particle’s horizon Rh as the likely source of rest-mass
energy. In this section, we prove this to be true so long as Rh

is expanding linearly with time – which appears to be what
the observations are telling us.

For reasons that will become clearer shortly, it will be help-
ful for us to complement the FLRW metric in Eq. (11) with its
alternative form written in terms of the observer’s ‘physical’
coordinates, which include the proper radius R(t) = a(t)r .
The distinction between these two descriptions is that fixing
the comoving radius r nevertheless still permits the proper
distance a(t)r to change, whereas the observer may choose
to keep the physical distance fixed by setting R equal to a
constant. It is not difficult to show that [39,67]

c2 dt2 − a2 dr2 = �
[
c2 dt2 − �−1 dR2

+ 2c dt

(
R

Rh

)
�−1 dR

]

= �

[
c dt +

(
R

Rh

)
�−1 dR

]2

− �−1dR2

(16)

where, for convenience, we have introduced the function

� ≡ 1 −
(

R

Rh

)2

, (17)

which signals the dependence of the metric coefficients gtt
and gRR on the proximity of R to the apparent horizon Rh.

If we now consider the worldlines of observers that have t
as their proper time from one location to the next – essentially,
the comoving observers – then we may introduce the proper
speed Ṙ ≡ dR/dt in the line element and complete the
square in Eq. (16). The FLRW metric thus becomes

ds2 = �

[
1 +

(
R

Rh

)
�−1 Ṙ

c

]2

c2dt2

−�−1dR2 − R2d�2. (18)

The expert reader will see a similarity of this equation with
that used to derive the Oppenheimer-Volkoff equations for
the interior of a star [44,68]. The latter is static, however,
whereas both R(t) and Rh(t) vary with t in FLRW.

Written in this form, the FLRW metric allows us to see
how its coefficients vary as a function of R, but even more
importantly, in terms of the ratio R/Rh. In principle, we can
use it to determine the variation of a particle’s characteristics,
such as its energy, with distance from the observer – all the
way up to the gravitational horizon [69]. Let us define the
4-momentum of a particle

pμ ≡ (E/c, pR, pθ , pφ), (19)

written so that the quantity E has units of energy, and p j

( j = 1, 2, 3) represent the usual spatial components. We do
not assume a priori the relationship between E and the vector
p, but insist on pμ being a 4-vector. Then, the actual physical
connection between E and p must be given by the invari-
ance of the contraction pμ pμ in the spacetime described by
Eq. (18). For the metric coefficients in this line element, one
has

�

[
1 +

(
R

Rh

)
�−1 Ṙ

c

]2 (
E

c

)2

− �−1 (
mṘ

)2 = κ2, (20)

where the invariant contraction κ2 is a scalar that we must
now uncover. Notice that for simplicity and clarity, we have
assumed in this expression that the particle’s motion is
restricted to the Hubble flow, i.e., that its velocity is purely
radial, with pθ = pφ = 0 and

pR = mṘ, (21)

in terms of the particle’s rest mass, m.
One accustomed to the language of relativity might be

tempted to include a time dilation factor in Eq. (21), which
simply reduces to the Lorentz factor γ in Minkowski space,
but that would be incorrect here, because the cosmic time t ,
used to infer the speed Ṙ, also happens to be the local proper
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time at every spacetime point in the medium. Eq. (20) there-
fore correctly yields the dependence of E on the particle’s
momentum mṘ – everywhere in the FLRW spacetime, start-
ing at the origin (R = 0), where the observer is situated, all
the way to the gravitational horizon at R = Rh.

To bring out this physical connection between E and p
more explicitly, let us re-write Eq. (20) in the form

E2 = (cκ)2� + (mc)2 Ṙ2

[
� +

(
R
Rh

)
Ṙ
c

]2 . (22)

We interpret this expression to mean that the particle’s energy,
E , is a function of both its momentum, mṘ, and its distance
from the observer in the gravitating medium within Rh. We
first consider what happens at the horizon, where R = Rh

and Ṙ = c, while � = 0. Clearly,

E(Rh) = mc2. (23)

We might find this hardly surprising, except for two criti-
cal facts. First of all, the particle’s momentum at R = Rh

is not zero, yet this expression appears to be giving us just
the rest-mass energy. Second, notice that the value of E in
Eq. (23) does not come from κ , which one would naively
have assumed ab initio if we had set pμ pμ = (mc)2. Instead,
this energy comes from the momentum pR transitioning to
its relativistic limit, pR → mc, so that E → pRc = (mc)c
in Eq. (22). The contribution from κ itself actually gets red-
shifted away completely because � → 0 when R → Rh.

The limit pR → mc when R → Rh follows directly
from the Hubble law, which says that the expansion velocity
is v = HR, in terms of the Hubble parameter H ≡ ȧ/a
and proper distance R. Thus one may write v = c(H/c)R,
which simply reduces to v = cR/Rh, leading to the final
result given in Eq. (24) with the definition pR ≡ mv.

This remarkable result tells us that the observer sees the
particle’s energy approach what they can only interpret as
an ‘escape energy’ upon reaching the gravitational horizon,
and this quantity is exactly what they would normally con-
sider to be its rest-mass energy mc2. One must emphasize
the phrase ‘escape energy’ in this conclusion, because this E
is entirely due to the momentum pR = mc the particle needs
to overcome its gravitational confinement within Rh. There
is no contribution at all to E from κ at R = Rh.

At any other radius R < Rh, the particle’s momentum
may be written

mṘ = mc

(
R

Rh

)
. (24)

Equation (22) may thus be re-written as

E(R)2 = (mc2)2

[

1 −
(

R

Rh

)2
] ( κ

mc

)2

+(mc2)2
(

R

Rh

)2

. (25)

For most FLRW cosmologies, R/Rh would be a function of
time. Thus, E in Eq. (25) could not remain constant at any
fixed radius R, regardless of what value κ has. Even so, this
energy has the very interesting limit E → cκ when R → 0,
but gives no indication of what κ should be. Our argument
relating rest-mass energy to the gravitational binding energy
within Rh therefore does not appear to work very well for
arbitrary FLRW metrics.

The situation changes dramatically for a gravitational
horizon expanding at lightspeed, however, which is what the
observations seem to be telling us today. In that case, both R
and Rh scale linearly with t , and the righthand side of Eq. (25)
is entirely independent of time. This is also true of the gtt and
gRR coefficients in Eq. (18), which means that energy is con-
served along the worldlines of these particular (comoving)
observers [65,70]. An easy way to understand this is that a
Universe with a linearly expanding Rh has zero active mass
(see Sect. 4), so that everything within the gravitational hori-
zon experiences zero net acceleration. The particle therefore
cannot gain or lose energy from the background as the Uni-
verse expands. For this special case – and only this one – the
energy E in Eq. (25) must thus be constant, which therefore
means that κ = mc. Then we see that

E = mc2 (26)

everywhere and at all times.
This is a second remarkable result. It tells us that the par-

ticle’s total energy E remains constant, independent of R,
even though its momentum pR transitions from zero at the
origin to a maximum mc at Rh. According to the observer
at the origin, the particle thus appears to have a gravitational
binding energy mc2 at their location, which gradually con-
verts into kinetic energy as R increases, and E eventually
becomes completely kinetic, equal to (mc)c, when R → Rh.
No matter where the particle happens to be, however, its
energy never deviates from the fixed value mc2.

A particle with a peculiar velocity, i.e., a non-zero velocity
relative to the Hubble flow, may have non-zero components
pθ and pφ in Eq. (19), and its radial velocity – which we shall
now call Ṙpart to distinguish it from the Hubble velocity Ṙ
in the denominator – is not necessarily given by Eq. (24). It
is easy to see that, in this more general case, Eq. (22) may
instead be written

E2 = (cκ)2� + (mc)2 Ṙ2
part + (cR)2�[p2

θ + sin2 θ p2
φ]

[
� +

(
R
Rh

)
Ṙ
c

]2 .

(27)
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But again � → 0 and Ṙpart → c as R → Rh, no matter
the peculiar velocity, so that we recover the same limiting
form of the ‘escape’ energy, E → (mc)c at the apparent (or
gravitational) horizon.

Near the origin, however, � → 1 and Eq. (27) reduces to

E2 → (cκ)2 + p2c2, (28)

where p2 → (mṘpart)
2 + R2[p2

θ + sin2 θp2
φ]2. We already

showed that κ = mc leading up to Eq. (26), which must
be preserved no matter the momentum, since the contrac-
tion pμ pμ is invariant. And so we recover the well-known
Lorentz invariant form of the energy-momentum equation,

E2 = (mc2)2 + (pc)2, (29)

near the observer. The cosmological principle then ensures
that this relation is the same for every observer throughout
the FLRW spacetime.

6 Conclusion

It is important to emphasize the caveat raised above follow-
ing Eq. (25), that the argument we are making in this paper
for the origin of rest-mass energy works only if R/Rh has
been independent of time throughout the Universe’s history.
That means that Ṙh has been constant at the value c from
the Big Bang to today. Among the strange coincidences in
cosmology, the worst of them is the fact that the acceleration
of the Universe, averaged over a Hubble time, is zero within
the measurement error. Of course, this does not mean that
Ṙh = c from one moment to the next, but if this speed varied
according to the prescription of the standard model without
the zero active mass condition, the probability of seeing an
average 〈Ṙh〉 = c today is ‘astronomically’ small, effectively
zero. In addition, there is some evidence that the inclusion
of zero active mass in �CDM may improve its consistency
with the data [46].

Moreover adopting the zero active mass condition appears
to eliminate all horizon problems [71,72], eliminate the stan-
dard model’s initial entropy problem [73], and provide an
explanation for how initial quantum fluctuations created in
the early Universe might have classicalized to produce the
large-scale structure we see today [74]. If the argument we
are making here for the origin of rest-mass energy survives
the test of time, perhaps it too may be used to argue in favour
of zero active mass in the real Universe.

We are justified in calling mc2 the particle’s gravitational
binding energy because the observer at the origin infers this
to be the energy it needs to reach ‘escape’ velocity at Rh and
free itself from its gravitational coupling to that portion of
the Universe contained within this horizon. According to the
Birkhoff theorem and its corollary, the rest of the Universe
outside of Rh does not contribute to this interaction and is

therefore not relevant to the question of rest-mass energy.
Ironically, this interpretation suggests that all particles, those
with inertia and those without, behave equivalently at R →
Rh, in the sense that their energy there may be written as
E = pRc in all cases. But whereas the momentum of massive
particles drops to zero from its maximum value, mc, at the
horizon, that of massless particles does not change. So while
E = pc always represents an energy associated purely with
momentum for the latter, regardless of location, it gradually
transitions to a ‘rest’ energy associated with mg (= m) for
the former when viewed by the observer in their vicinity.

One may wonder how we reached this result without
actually having ‘calculated’ the gravitational binding energy
directly. This would be a non-trivial task to carry out, given
that energy in general relativity is not an invariant quantity
from one frame to the next, and would be very difficult to
track non-locally. Instead, we have used the invariance of a
contracted 4-vector to do this, which allowed us to measure
the change in the particle’s energy (as viewed from the ori-
gin) in terms of its momentum within the Hubble flow. The
actual influence of gravity in this approach is represented by
the factor �(R) in the metric. As we have seen, the redshift
effect associated with �(R) accounts for the gravitational
attraction the particle experiences to the rest of the cosmic
fluid contained within Rh.

A successful interpretation of rest-mass energy as a gravi-
tational binding energy would lend some support to evidence
emerging from cosmological observations that the equation-
of-state in the cosmic fluid is apparently consistent with the
zero active mass condition in general relativity. Significant
effort is currently being expended addressing this issue, and
the results of this investigation will be reported elsewhere.
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