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Abstract We examine various methods of constructing
conserved quantities in the Teleparallel Equivalent of General
Relativity (TEGR). We demonstrate that in the covariant for-
mulation the preferred method are the Noether charges that
are true invariant quantities. The Noether charges depend on
the vector field ξ and we consider two different options where
ξ is chosen as either a Killing vector or a four-velocity of the
observer. We discuss the physical meaning of each choice
on the example of the Schwarzschild solution in different
frames: static, freely falling Lemaitre frame, and a newly
obtained generalised freely falling frame with an arbitrary
initial velocity. We also demonstrate how to determine an
inertial spin connection for various tetrads used in our calcu-
lations, and find a certain ambiguity in the “switching-off”
gravity method where different tetrads can share the same
inertial spin connection.

1 Introduction

Teleparallel theories of gravity became increasingly popular
subject in recent years. This includes the case of reformu-
lation of general relativity itself, known as the teleparallel
equivalent of general relativity (TEGR) [1–3], as well as
various modified gravity models like the f (T ) gravity [4–
8] and other models [9–13]. One of the most attractive fea-
tures of TEGR is the possibility of constructing various new
conserved quantities and address the problem of definition
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of energy–momentum known to be difficult in the standard
general relativity [14,15].

Our primary goal is to clarify the situation with con-
served quantities in teleparallel gravity where two distinct
approaches to their definition exist. The first approach fol-
lows from direct integration of the field equations that yield
the quantity Pa identified as the total energy–momentum
[1,16,17]. The second approach is based on the applica-
tion of the Noether theorem that lead to the Noether con-
served charges [18,19]. The total energy–momentum Pa is
not an invariant quantity, and there exists, at least in principle,
an ambiguity whether to consider its Lorentz or spacetime
indexed version. The Noether conserved charges P(ξ), on
the other hand, are true invariant quantities but depend on
the additional vector field ξ characterizing the observer that
needs to be specified.

We demonstrate that the first approach can be understood
as a special case of the Noether approach where the vector
field ξ is chosen to coincide with a certain tetrad vector and
obtain the physical interpretation of this result. However, to
our surprise, we find that Pa defines the energy–momentum
uniquely only in the case of the non-covariant formulation of
TEGR where the spin connection is assumed to be zero. This
follows from the fact that in the non-covariant formulation,
we can uniquely identify the vector field ξ characterizing the
observer with the tetrad variable in the field equations. In
the covariant formulation, on the other hand, the freedom to
use an arbitrary tetrad in the field equations forces us to treat
the vector field ξ independently and hence use the Noether
conserved charges in order to obtain meaningful results.

We apply both approaches on the example of the
Schwarzschild solution, where we consider both the static
and the free-falling observers. This follows the logic of pre-
vious works by Maluf et al. [16] and Lucas et al. [17],
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where the conserved quantities for the free-falling observer
were considered. However, both [16,17], calculated only
the zeroth component of Pa identified as the energy, in the
non-covariant and covariant formulations, respectively. The
Noether conserved charges, on the other hand, were intro-
duced in works of Obukhov et al. [18–20], but, in the case of
the Schwarzschild solution, these were calculated only in the
case of the static observer. We argue that while in the static
case both notions of the conserved quantities coincide, the
free-falling case clearly reveals important differences.

Our second goal is to illustrate the problem of determin-
ing the inertial spin connection in the covariant formulation
of teleparallel gravity that we encounter in our calculations.
In the covariant formulation, both the tetrad and inertial spin
connection are fundamental variables. While the field equa-
tions determine the tetrad up to a local Lorentz transforma-
tion, the purely inertial spin connection is not determined by
any field equations. Nevertheless, the choice of a spin con-
nection and the local Lorentz degrees of freedom in the tetrad
do influence some physically relevant quantities, including
the conserved charges that we are interested in here.

The idea of the covariant formulation is that the inertial
spin connection must be chosen according to the tetrad to
remove divergences of the relevant physical quantities. This
was first introduced as an ansatz in [21] and later it was
argued to be equivalent to “switching-off” gravity by taking
the r → ∞ limit of the Levi-Civita connection correspond-
ing to the tetrad ansatz [17–20]. It was then advocated that
the underlying principle can be altered to choosing the spin
connection in a such way that the teleparallel Lagrangian
vanishes asymptotically [3,22,23]. In [24,25], the idea of
“switching-off” gravity was further formalized in order to
be less dependent on the asymptotic behaviour. Neverthe-
less, at least for the asymptotically Minkowski spacetimes,
all these various approaches reduce to the original principle
of “switching-off” gravity, and the inertial spin connection is
determined from the Levi-Civita spin connection by taking
a parameter that controls the strength of gravity to zero or
considering the limit r → ∞.

However, we encounter a problem with this approach
when we try to apply it in the case of both the static and
free-falling observers. Our starting points are spacetime met-
rics for the Schwarzschild solution written in both the static
and Lemaitre coordinate systems. In each case, we choose
the diagonal tetrad and determine the spin connection by
“switching-off” gravity. Despite these tetrads representing
two different physical observers, i.e. the static one and the
free-falling one, we obtain the same expression for the iner-
tial spin connection. This demonstrates an ambiguity of the
above procedure and we argue that it is related to the problem
of the so-called remnant symmetries discovered initially in
f (T ) gravity [26–28].

Our third result is a generalization of the situation with
free-falling observers to the case of observers with an arbi-
trary initial velocity. This leads us to define a new gauge that
we name the generalized Lemaitre gauge or e-gauge. We
demonstrate that in the case when the vector field ξ is identi-
fied with the observer velocity, we find the vanishing Noether
current and charge, analogously to the ordinary Lemaitre
gauge. However, in the case when we identify the vector
field ξ with the time-like Killing field, we find curiously the
same Noether charge as in the Schwarzschild static gauge.
This is in contrast with the ordinary Lemaitre gauge where
an analogous calculation leads to an unphysical result.

As the last point, we consider the most popular modified
teleparallel model known as the f (T ) gravity model [4–8].
Here we face a similar situation as in TEGR since we have to
determine the spin connection corresponding to the tetrads
in the covariant formulation [3,29], or find the special class
of tetrads, nick-named as good tetrads, with corresponding
vanishing inertial spin connection [30]. The problem of deter-
mining the spin connection is then even more pressing than in
TEGR since it affects the field equations and hence becomes
the problem of the dynamics. We show that the analogous
construction of the Lemaitre gauge does not work for a gen-
eral spherically symmetric spacetime as it does not yield a
new good tetrad. However, we show that it is possible to find
a specific boost that makes the torsion scalar vanish. While
this does not lead to any new f (T ) gravity solutions since
the theory reduces to TEGR, these vanishing torsion scalar
solutions are interesting since they can be used to demon-
strate that GR solutions stay solutions in the f (T ) gravity as
well [31–33].

The paper is organized as follows. In Sect. 2, we briefly
review some basic elements of teleparallel gravity. In Sect. 3,
we introduce various conserved currents introduced in the
literature previously and we discuss their relations.

In Sect. 4, we apply these definitions to the Schwarzschild
case, where our starting point is the Schwarzschild metric
in the spherical coordinate system and we choose the static
tetrad. We illustrate the principle of determining the iner-
tial spin connection and find the so-called proper tetrad, and
introduce a notion of the Schwarzschild static gauge, where
different combinations of tetrads and corresponding spin con-
nections represent the same physical situation. We calculate
the conserved charges and obtain the physically expected
result for the Noether charge that can be identified with the
total energy of the black hole.

In Sect. 5, we follow the same logic and calculate the same
conserved quantities but we start with the metric written in the
free-falling Lemaitre coordinates and the free-falling tetrad.
This leads us to define in the analogous fashion the so-called
Lemaitre gauge. We show that we obtain naturally the zero
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energy density measured by the freely falling observer in this
case.

In Sect. 6, we express all quantities from the Lemaitre
gauge in the standard static Schwarzschild coordinates. Then
we compare them with quantities in the Schwarzschild
static gauge and analyse how the conserved charges depend
on the gauge. On the one hand, in the framework of the
Schwarzschild static gauge we obtain the correct total mass,
but we have a problem with a description of the freely falling
observer. On the other hand, we demonstrate that while the
Lemaitre gauge offers a correct description of the freely
falling observer, if we try to recover calculation of the total
energy by choosing ξ to be the time-like Killing vector, we
obtain a problematic result. We provide the detailed compar-
ison of our results with the previous results by other authors
as well.

In Sect. 7, we generalize the Lemaitre gauge by consider-
ing an arbitrary initial velocity, leading us to the generalized
Lemaitre gauge that we call the e-gauge. We demonstrate
that the generalized e-gauge leads to either vanishing con-
served currents and charges or the result corresponding to the
total black hole mass, depending on the choice of the field ξ .
These results are compared with the result from the Lemaitre
gauge.

In Sect. 8, we consider accelerated tetrads in f (T ) grav-
ity. We demonstrate that the analogue of the Lemaitre gauge
does not lead to any new good tetrads and we show how to
construct a solution with a vanishing torsion scalar.

In Sect. 9, we summarize our results and draw some final
conclusions. All the lengthy expressions for the inertial spin
connections corresponding to various tetrads are summarized
in Appendix A. In appendix B, we solve the symmetric field
equations in f (T ) gravity for the case A = 1 that appeared in
Sect. 8 and demonstrate that it is indeed trivial, i.e. equivalent
to the Minkowski case.

Notation: We mostly follow here the notation used in the
book [1], but we work in the mostly positive convention
(−,+,+,+). By Latin indices we denote the tangent space
coordinates and Greek indices represent the spacetime coor-
dinates. When we work with the particular components we

distinguish tangent indices by a hat, e.g. in
◦
A1̂

2̂1
two first

indices are tangent space components and 1 is a spacetime
component. Teleparallel quantities are denoted with “•” over
them and those with “◦” are related to the Levi-Civita connec-
tion. For example,

•
T a

μν and
◦
T a

μν , represent the torsion ten-
sors of the teleparallel and Levi-Civita connections, respec-
tively. For the sake of simplicity, we do omit “•” when we
make reference to f (T ) gravity in the text, although accord-

ing to our notation it should be f (
•
T ) gravity.

2 Overview of teleparallel gravity

In this section, we briefly introduce the teleparallel equivalent
of general relativity (TEGR). The Lagrangian of TEGR is
given by [1]

•
L= h

2κ

•
T ≡ h

2κ

(
1

4

•
T ρ

μν

•
T ρ

μν + 1

2

•
T ρ

μν

•
T νμ

ρ − •
T ρ

μρ

•
T νμ

ν

)
,

(2.1)

where
•
T is the torsion scalar and

•
T a

μν is the torsion tensor
defined as

•
T a

μν = ∂μh
a
ν − ∂νh

a
μ + •

Aa
cμh

c
ν − •

Aa
cνh

c
μ, (2.2)

with the tetrad components haν , h = det haν , κ = 8πG (in

c = 1 units), and the inertial spin connection
•
Aa

cν given by

•
Aa

cν = �a
b∂ν(�

−1)bc, (2.3)

where �a
c is a matrix of a local Lorentz transformation.

We can define the contortion tensor

•
K ρ

μν = 1

2
(

•
Tμ

ρ
ν + •

T ν
ρ

μ − •
T ρ

μν) (2.4)

that directly relates the inertial spin connection (2.3) with the
Levi-Civita spin connection of general relativity
•
Ka

bρ = •
Aa

bρ − ◦
Aa

bρ, (2.5)

where
◦
Aa

bρ is the usual Levi-Civita spin connection defined
by

◦
Aa

bμ = −hb
ν

◦∇μ haν . (2.6)

In addition, we define the superpotential

•
Sa

ρσ = •
K ρσ

a + ha
σ

•
K θρ

θ − ha
ρ

•
K θσ

θ , (2.7)

which is antisymmetric in the last two indices and is used to
define the torsion scalar in (2.1) as

•
T = 1

2

•
Sa

ρσ
•
T a

ρσ . (2.8)

All tensors
•
T a

μν ,
•
K ρσ

a , and
•
Saρσ , are true tensors with

respect to both coordinate transformations and local Lorentz

transformations, while the torsion scalar
•
T is a scalar. Note
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that working in the covariant formulation of teleparallel
gravity, the local Lorentz covariance means that the tenso-
rial quantities transform covariantly under the simultaneous
transformation of both the tetrad h′a

μ = �a
bhbμ and the

inertial spin connection

•
A′a

bμ = �a
c

•
Ac

dμ�b
d + �a

c∂μ�b
c. (2.9)

The inertial spin connection
•
Aa

bρ is not determined by
the field equations but, as we have discussed in Introduction,
it can be chosen by the principle of “switching-off” gravity
[3,17,22,23]. According to [24,25], this means that for the
tetrad haμ we calculate the Levi-Civita connection (2.6) and

the Riemann tensor
◦
R a

bμν . Then, we find some parameters
that allow us to continuously “switch off” gravity, i.e. to
obtain

◦
R a

bμν = 0. (2.10)

In practice, for the asymptotically Minkowski spacetimes,
this means that we consider either r → ∞ or M → 0 limit
of the Levi-Civita connection that leads to (2.10).

Applying the variational principle one obtains the field
equations in the form

Ea
ρ = hκ�a

ρ, (2.11)

where on the LHS we have defined the Euler-Lagrange
expression

Ea
ρ ≡ ∂

•
L

∂haρ

− ∂σ

⎛
⎝ ∂

•
L

∂haρ,σ

⎞
⎠ = ∂σ

(
h

•
Sa

ρσ
)

− κ h
•
ja

ρ,

(2.12)

where

•
ja

ρ = 1

κ
ha

μ
•
Sc

νρ
•
T c

νμ − haρ

h

•
L + 1

κ

•
Ac

aσ

•
Sc

ρσ , (2.13)

is the gravitational energy–momentum current, and on the
RHS we have defined the matter energy–momentum tensor
corresponding to the matter Lagrangian Lm as

�a
ρ = − 1

h

δLm

δhaρ

. (2.14)

3 Total energy–momentum and Noether conserved
charges

The central point of this paper is calculation of the conserved
quantities in TEGR, and as we have mentioned in Intro-

duction, there are two distinct definitions of the conserved
charges that we will introduce now and discuss in detail.

The first definition is based on the field equations (2.11),
since, as we can observe, they naturally define the conserved
quantities by taking an ordinary derivative

∂ρ(h
•
ja

ρ + h�a
ρ) = 0, (3.1)

on the account of the superpotential being antisymmetric in
the last two indices and partial derivatives commuting. The
term in the bracket defines a conserved quantity

Pa = −
∫



d3x(h
•
ja

0 + h�a
0), (3.2)

where  is a hypersurface of t = const and the sign is chosen
to produce a positive P0̂ in order to be identified with the
energy.

Using the Stokes theorem and the field equations (2.11),
it can be written in the standard spherical coordinates as

Pa = − lim
r→∞

1

κ

∫
∂

d2x h
•
S 01
a . (3.3)

This is the definition discussed in the book [1], or refer-
ences [16] or [17], where it is identified as the total energy–
momentum, and hence in the absence of matter as the gravi-
tational energy–momentum.

However, there are two subtle points that we would like
to highlight here. The first one is that it does not behave
as a vector under local Lorentz transformations. As it was
noted in [20], this quantity is invariant only under global
Lorentz transformations and local Lorentz transformations
that vanish at the infinity. However, this is not enough to
make it a true invariant conserved charge.

The second point is that there is an ambiguity in this defini-
tion that stems from which form of the field equations we start
with. We can write the field equations (2.11) in a fully space-
time form, and, analogously to the procedure above, define
the spacetime indexed total energy–momentum as [22]

Pμ = − lim
r→∞

1

κ

∫
∂

d2x h
•
S 01

μ . (3.4)

While being superficially similar to (3.3), this quantity is
different. Most obviously, it is invariant with respect to all
local Lorentz transformations (in our covariant formulation).

We will demonstrate that both of these points can be under-
stood by considering the second definition based on the dif-
feomorphism invariance and the Noether theorem. This is the
definition first introduced by Obukhov et al. [18–20] in the
language of differential forms and derived in a more common
tensorial language in the recent papers [24,25]. Here we will
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only refer to the main result and briefly outline the general
idea, while all the details can be found in [24,25].

We start by considering the invariance under diffeomor-
phisms induced by an arbitrary smooth vector field ξ from
where one can derive the Noether current

•
J α(ξ) = ∂β

•
J αβ(ξ), (3.5)

where

•
J αβ(ξ) = h

κ
ξσ

•
Sσ

αβ, (3.6)

is the Noether current superpotential for the TEGR.

By construction, the current
•
J α(ξ) is a vector density, the

superpotential
•
J αβ(ξ) is an antisymmetric tensor density,

and both
•
J α(ξ) and

•
J αβ(ξ) are locally Lorentz invariant.

The Noether current is conserved in both the ordinary and
covariant sense, i.e.

∂α

•
J α(ξ) = ◦∇α

•
J α(ξ) = 0, (3.7)

where
◦∇α is the Levi-Civita covariant derivative, what allows

us to define the Noether conserved charge as

P(ξ) =
∫



d3x
•
J 0(ξ) =

∮
∂

d2x
•
J 01(ξ) , (3.8)

which can be written in the spherical coordinate system
explicitly as

P(ξ) = lim
r→∞

1

κ

∫
∂

d2x h ξσ
•
S 01

σ . (3.9)

In particular case when ξ is time-like, we would like to
identify the corresponding conserved charge with the energy
measured by a set of observers at spatial infinity with their
four-vectors ξ

E(ξ) = P(ξ), ξ : time-like. (3.10)

Unlike the previous quantities (3.3) and (3.4), the Noether
charges (3.9) are invariant under local Lorentz transforma-
tions and behave as a scalar with respect to diffeomorphisms.

The price for this invariance is that the Noether charges
(3.9) depend on the vector field ξ that is not fixed a priori and
needs to be determined. In principle, we have many possible
ways to choose ξ , but naturally some of these choices are
more physically meaningful. In the standard metric formula-
tion of GR, it was argued that the physically preferred choice
is to choose ξ to be a Killing field of the reference geometry
[34].

However, in the case of a tetrad theory, as is the case of
TEGR, we have additional freedom due to the fact that the

tetrad is not fully determined by the field equations. This nat-
urally provides us with another possibility to choose ξ to be
identified with the tetrad itself that allows us to understand the
energy–momentum (3.3) within the context of the Noether
charges. To illustrate this, let us first identify the time-like
vector ξμ with the zeroth tetrad vector, i.e. ξμ = −h0̂

μ,
which naturally leads to P(ξ) = P0̂. We can then generalize
this to four vector fields labelled as ξ(a) and identify them
with the tetrad as ξ(a) = haμ to obtain

P(ξ(a)) = Pa . (3.11)

Therefore, the total energy–momentum Pa defined by (3.3)
indeed represents a physically interesting quantity, i.e. these
are the Noether charges for the diffeomorphisms generated
by the tetrad vectors themselves. We can then understand Pa
as the total energy–momentum of the whole spacetime as
measured by the observer represented by the tetrad.

It is interesting to observe that applying the same logic
to (3.4), we find that Pμ are the Noether charges for the set
of vector fields ξ(μ) = δ(μ)

ν∂ν , i.e. diffeomorphisms gener-
ated by the coordinates. This makes the physical meaning of
Pμ rather unclear, unless one provides a further information
how to attach some meaning to the coordinates. One could
in principle argue that Pμ represents the energy–momentum
of the spacetime itself since the quantity is Lorentz scalar
in the covariant formulation. However, as we demonstrate
shortly, the problem is that there exist various gauges and
hence the superpotential can have different values for differ-
ent observers.

4 Black hole mass and Schwarzschild static gauge

Let us demonstrate calculation of some of these quantities
related to determining the mass of the Schwarzschild black
hole. The standard metric for the Schwarzschild black hole
is

ds2 = − f dt2 + f −1dr2 + r2(dθ2 + sin2 θdϕ2), (4.1)

where

f = f (r) = 1 − 2M

r
. (4.2)

The tetrad is not defined by the field equations [1], so we can
choose the most convenient diagonal tetrad as

B
haμ ≡ diag

(
f

1
2 , f − 1

2 , r, r sin θ
)

. (4.3)
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The Levi-Civita spin connection for the tetrad (4.3),
defined by (2.6), has non-zero components

◦
A0̂

1̂0 = ◦
A1̂

0̂0 = M
r2 ,

◦
A1̂

2̂2 = −◦
A2̂

1̂2 = − f
1
2 ,

◦
A1̂

3̂3 = −◦
A3̂

1̂3 = − f
1
2 sin θ,

◦
A2̂

3̂3 = −◦
A3̂

2̂3 = − cos θ.

(4.4)

We find that all components of the Riemannian curvature
are proportional to M and hence the limit M → 0 of (4.4)

defines the inertial spin connection
•
A a

cμ related to (4.3),
non-zero components of which are

•
A 1̂

2̂2 = − •
A 2̂

1̂2 = −1,
•
A 1̂

3̂3 = − •
A 3̂

1̂3 = − sin θ,

•
A 2̂

3̂3 = − •
A 3̂

2̂3 = − cos θ. (4.5)

Using (2.7) we find that the non-vanishing components of
the superpotential are

•
S0

01 = −•
S0

10 = 2
r

(
f − f

1
2

)
,

•
S2

12 = •
S3

13 =−•
S2

21 =−•
S3

31 = − 1
r

(
(1 + f )/2 − f

1
2

)
.

(4.6)

In the limit r → ∞, the only non-vanishing components of
the corresponding superpotential density are given by

lim
r→∞ h

•
S0

01 = − lim
r→∞ h

•
S0

10 = −2M sin θ. (4.7)

Then, choosing the ξ vector to be the time-like Killing
vector

ξμ = (−1, 0, 0, 0), (4.8)

and using the expressions (3.9), (3.10), and (3.6), we find the
Noether charge to be equal to the total mass of the black hole

P(ξ) = M. (4.9)

Applying the Lorentz rotation

(�−1
(Sch))

a
b =

⎡
⎢⎢⎣

1 0 0 0
0 sin θ cos ϕ cos θ cos ϕ − sin ϕ

0 sin θ sin ϕ cos θ sin ϕ cos ϕ

0 cos θ − sin θ 0

⎤
⎥⎥⎦ , (4.10)

to diagonal tetrad (4.3) one finds that the tetrad components
become

A
haμ ≡

⎡
⎢⎢⎢⎣

f
1
2 0 0 0

0 f − 1
2 sin θ cos ϕ r cos θ cos ϕ −r sin θ sin ϕ

0 f − 1
2 sin θ sin ϕ r cos θ sin ϕ r sin θ cos ϕ

0 f − 1
2 cos θ −r sin θ 0

⎤
⎥⎥⎥⎦ ,

(4.11)

and the inertial spin connection vanishes. This special class
of tetrads is called the proper tetrads, see [17].

We denote the static diagonal tetrad (4.3) and the related
inertial spin connection (4.5) as the Schwarzschild static
gauge. Any tetrad with the related inertial spin connection
obtained from (4.3) and (4.5) by arbitrary coordinate trans-
formations or arbitrary local Lorentz rotations represents the
Schwarzschild static gauge as well. Therefore, the proper
tetrad (4.11) with vanishing inertial spin connection is in the
Schwarzschild static gauge as well.

5 Free-falling observers and Lemaitre gauge

In the present section we study conserved charges in the
frame of a freely and radially falling observer into the
Schwarzschild black hole. It is natural and reasonable to start
the study in the coordinates of the freely falling observer. The
most known and popular such coordinates are the Lemaitre
ones [35].

After applying the coordinate transformations from the
Schwarzschild static coordinates (t, r, θ, ϕ) to Lemaitre
freely falling coordinates (τ, ρ, θ, ϕ)

dρ = dt + dr
f
√

1− f
,

dτ = dt + dr
f

√
1 − f ,

(5.1)

with f (r) defined in (4.2), the Schwarzschild metric (4.1)
transforms to

ds2 = −dτ 2 + (1 − f )dρ2 + r2dθ2 + r2 sin2 θdϕ2, (5.2)

where

r = r(τ, ρ) =
[

3

2
(ρ − τ)

]2/3

(2M)1/3.

Now, it is convenient to take the diagonal tetrad related to the
metric (5.2):

C
haμ = diag

(
1,

√
1 − f (r(τ, ρ)), r(τ, ρ), r(τ, ρ) sin θ

)
.

(5.3)
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The non-zero Levi-Civita spin connection components
(2.6), corresponding to the tetrad (5.3), are given by

◦
A0̂

1̂1 = ◦
A1̂

0̂1 = 1

3(ρ − τ)

(
4
3 M

ρ − τ

) 1
3

,

◦
A0̂

2̂2 = ◦
A2̂

0̂2 = −
(

4
3 M

ρ − τ

) 1
3

,

◦
A0̂

3̂3 = ◦
A3̂

0̂3 = −
(

4
3 M

ρ − τ

) 1
3

sin θ,

◦
A1̂

2̂2 = − ◦
A2̂

1̂2 = −1,
◦
A1

3̂3 = − ◦
A3̂

1̂3 = − sin θ,

◦
A2̂

3̂3 = − ◦
A3̂

2̂3 = − cos θ. (5.4)

All components of the Riemann tensor
◦
R a

bμν calculated
from (5.4) are proportional to M and hence vanish in the

limit M → 0. Then the inertial spin connection
•
Aa

bμ can be
taken as the M → 0 limit of the Lemaitre Levi-Civita spin
connection (5.4), i.e.

•
A 1̂

2̂2 = − •
A 2̂

1̂2 = −1,
•
A 1̂

3̂3 = − •
A 3̂

1̂3 = − sin θ,

•
A 2̂

3̂3 = − •
A 3̂

2̂3 = − cos θ. (5.5)

Now we have to address the issue of choosing the vector
ξ generating the Noether charge. We can consider ξ as a
four-velocity of a freely falling observer in the form

ξ̃ μ = (−1, 0, 0, 0), (5.6)

which corresponds to identification of ξ with the zeroth com-

ponent of the tetrad, i.e. ξ̃ = − C
h 0̂. While this is formally the

same as (4.8), we must be cautious here since this vector is in
the Lemaitre coordinates and hence it is not a Killing vector.

We then proceed to calculate the superpotential for the
tetrad (5.3) and the inertial spin connection (5.5). Based on

(5.6) it is sufficient to calculate
•
S0

μν and we find that
•
S0

μν =
0, and hence we obtain a vanishing Noether current

•
J α(ξ̃ ) = (0, 0, 0, 0) . (5.7)

This result can be understood as a consequence of the equiva-
lence principle, i.e. the free-falling observer measures a van-
ishing Noether energy–momentum current. Consequently we
obtain a zero Noether conserved charge

P(ξ̃ ) = 0, (5.8)

i.e. the free-falling observer measures a vanishing total mass
of the black hole, which is the same result as obtained in
references [16] and [17].

We can also define a new proper frame from (5.3) by
applying a local Lorentz transformation (4.10). The inertial

spin connection becomes zero and the corresponding proper
tetrad takes the form

D
haμ ≡

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 sin θ cos ϕ
( 2M

r

)− 1
2 r cos θ cos ϕ −r sin θ sin ϕ

0 sin θ sin ϕ
( 2M

r

)− 1
2 r cos θ sin ϕ r sin θ cos ϕ

0 cos θ
( 2M

r

)− 1
2 −r sin θ 0

⎤
⎥⎥⎥⎥⎦ .

(5.9)

Because our formalism is Lorentz covariant, applying it in
the framework of the proper tetrad (5.9), we obtain again the
vanishing current (5.7).

Following the logic of the previous section we denote
the diagonal tetrad (5.3) corresponding the Lemaitre metric
(5.2) with the inertial spin connection (5.5) as the Lemaitre
gauge. After any coordinate transformations or local Lorentz
transformations applied simultaneously to (5.3) and (5.5), the
resulting tetrad and the related inertial spin connection will
represent the Lemaitre gauge as well.

6 Comparison of Schwarzschild static and Lemaitre
gauges

The tetrads (5.3) and (5.9) obtained in the Lemaitre gauge
are written in the Lemaitre coordinates. In order to make a
direct comparison with the tetrads (4.3) and (4.11) obtained
in the Schwarzschild static gauge, let us write all formulae
from the Lemaitre gauge in the same Schwarzschild static
coordinates. Applying the transformations (5.1) to the tetrad
(5.3), we can write (5.3) in the Schwarzschild coordinates as

C
haμ ≡

⎛
⎜⎜⎜⎝

1
√

2Mr
r−2M 0 0√

2M
r

r
r−2M 0 0

0 0 r 0
0 0 0 r sin θ

⎞
⎟⎟⎟⎠ . (6.1)

The related inertial spin connection (5.5) is not changed
because the transformations (5.1) affect 0 and 1 coordinates
only. Moreover, we can write the Lemaitre proper tetrad (5.9)
in the Schwarzschild coordinates as

D
haμ =

⎛
⎜⎜⎜⎜⎜⎝

1
√

2Mr
r−2M 0 0√

2M
r cos ϕ sin θ

r cos ϕ sin θ
r−2M r cos θ cos ϕ −r sin θ sin ϕ√

2M
r sin θ sin ϕ

r sin θ sin ϕ
r−2M r cos θ sin ϕ r cos ϕ sin θ√

2M
r cos θ r cos θ

r−2M −r sin θ 0

⎞
⎟⎟⎟⎟⎟⎠

.

(6.2)

Of course, the vanishing inertial spin connection related to
(6.2) in the Lemaitre gauge is zero as well.
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Thus, we have now all four tetrads
A
h (4.11),

B
h (4.3),

C
h (6.1)

and
D
h (6.2), written in the same Schwarzschild coordinates.

It turns out that all of these tetrads are connected directly.

The tetrad
B
h in (4.3) can be transformed to the tetrad

C
h in

(6.1)

C
haμ = (�(boost))

a
b
B
hbμ, (6.3)

by making a radial boost

(�(boost))
a
b =

⎛
⎜⎜⎝

γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (6.4)

where γ = 1/
√

1 − β2 and β is a rapidity given by

β =
√

2M

r
. (6.5)

Finally, we conclude that the tetrads in Schwarzschild coor-

dinates named as
A
h,

B
h,

C
h,

D
h are connected by a series of local

Lorentz transformations

A
h

�(Sch)−→ B
h

�(boost)−→ C
h

�−1
(Sch)−→ D

h, (6.6)

or written explicitly

B
h a

μ = (�(Sch))
a
b

A
h b

μ,
C
h a

μ = (�(boost))
a
b

B
h b

μ,
D
h a

μ = (�−1
(Sch))

a
b
C
h b

μ.

(6.7)

Inverse relations are given by the scheme

D
h

�(Sch)−→ C
h

�−1
(boost)−→ B

h
�−1

(Sch)−→ A
h . (6.8)

Moreover, we can consider a velocity of the free-falling
observer to the black hole. In the Lemaitre coordinates it was
ξ̃ μ = (−1, 0, 0, 0). In the Schwarzschild coordinates, using
(5.1), it becomes

ξ̃ μ =
(

− 1

f
,
√

1 − f , 0, 0

)
=

(
− 1

1 − 2M/r
,

√
2M

r
, 0, 0

)
.

(6.9)

6.1 Different forms of the Schwarzschild static gauge

We could see that all four considered tetrads are related
as (6.6). Starting with a tetrad and the corresponding spin

C

B A

D

A(proper)Λ−1
(Sch)

Λ(boost)

Λ−1
(Sch)

Fig. 1 A schematic representation of various pairs of the tetrad and
spin connection in the static gauge. The bold dot represents the initial
tetrad (4.3) in which we “switch off” gravity

connection in the Schwarzschild static gauge, i.e. (4.3) and
(4.5), and transforming simultaneously both variables we can
obtain different representations of the Schwarzschild static
gauge. We can schematically represent this as in the Fig. 1,
where the dots represent the tetrads and arrows mean the
Lorentz rotations applied to both the tetrad and the spin con-
nection, the bold dot represents the initial tetrad in which we
“switch off” gravity.
Thus, the pairs of tetrads and their related inertial spin con-
nections in the Schwarzschild static gauge are as follows:

(a) The tetrad
A
h is a proper tetrad with zero inertial spin

connection.

(b) The tetrad
B
h and the inertial spin connection (4.5).

(c) The tetrad
C
h and the inertial spin connection obtained by

a composite local Lorentz transformation consisting of
the rotation (4.10) and boost (6.4), i.e.

•
Aa

bμ = (�(AC))
a
c∂μ(�−1

(AC))
c
b, (6.10)

(�(AC))
a
b ≡ (�(boost))

a
c(�(Sch))

c
b.

Non-zero components of (6.10) are given in Appendix A,
see (A.1).

(d) The tetrad
D
h and inertial spin connection obtained from

the composite local Lorentz transformation consisting of
the boost (6.4), the rotation (4.10) and its inverse, i.e.

•
Aa

bμ = (�(AD))
a
c∂μ(�−1

(AD))
c
b;

(�(AD))
a
b ≡ (�−1

(Sch))
a
c(�(boost))

c
d(�(Sch))

d
b. (6.11)

Non-zero components of (6.11) are given in Appendix A,
see (A.2).

For all pairs of the tetrads
A
h,

B
h,

C
h,

D
h , and their corre-

sponding inertial spin connections in the Schwarzschild static
gauge (see Fig. 1) the corresponding superpotential is given
by the same expression (4.6) due to Lorentz invariance.
Using the time-like Killing vector (4.8) in (3.10), we find
the Noether charge that can be identified as the total black
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C

B A

D(proper)

AΛ−1
(Sch)

Λ−1
(boost)

Λ−1
(Sch)

Fig. 2 A schematic representation of various pairs of the tetrad and
spin connection in the Lemaitre gauge. The bold dot represents the
initial tetrad (6.1) in which we “switch off” gravity

hole mass is given by (4.9), i.e.

P(ξ) = M. (6.12)

Interestingly, if we consider ξ to be the velocity vector of
the free-falling observer (6.9) and use it to calculate the total
energy in the Schwarzschild static gauge, we still obtain the
same result P = M . However, this is just a coincidence on
the account of Schwarzschild static gauge being very unique
and highly symmetric, where the asymptotic expansion of the
superpotential takes the simple form (4.7). We will discuss
this in Sect. 6.3.

6.2 Different forms of the Lemaitre gauge

In a similar fashion, we can obtain different forms of the
Lemaitre gauge. We start with one form of the Lemaitre
gauge, i.e. (6.1) and (5.5), and apply transformations in (6.6)
simultaneously to both the tetrad and inertial spin connec-
tion. This can be represented schematically by Fig. 2, where
again the dots mean the tetrads and arrows mean the Lorentz
rotations, the bold dot means the initial tetrad in which we
“switch off” gravity:
In the Fig. 2, the pairs of tetrads and their related inertial spin
connections in the Lemaitre gauge are as follows:

(a) The tetrad
D
h is a proper one with the vanishing inertial

spin connection.

(b) The tetrad
C
h and the inertial spin connection given by

(5.5).

(c) The tetrad
B
h and the inertial spin connection calculated

from a composite local Lorentz transformation consisting
of the rotation (4.10) and the inverse boost (6.4), i.e.

•
Aa

bμ = (�(DB))
a
c∂μ(�−1

(DB))
c
b,

(�(DB))
a
b ≡ (�−1

(boost))
a
c(�(Sch))

c
b. (6.13)

Non-zero components of (6.13) are given in Appendix A,
see (A.3).

(d) The tetrad
A
h and the inertial spin connection obtained

from a composite local Lorentz transformation consisting
of the rotation (4.10), boost (6.4), and the inverse rotation
(4.10), i.e.

•
Aa

bμ = (�(DA))
a
c∂μ(�−1

(DA))
c
b,

(�(DA))
a
b ≡ (�−1

(Sch))
a
c(�

−1
(boost))

c
d(�(Sch))

d
b. (6.14)

Non-zero components of (6.14) are given in Appendix A,
see (A.4).

All pairs of the tetrads
D
h,

C
h,

B
h,

A
h with their related iner-

tial spin connections, as listed a) to d) above, represent the
Lemaitre gauge and hence lead to the same superpotential
that in the static coordinates reads

•
S0

01 = −•
S0

10 = − 4M
r2 ,

•
S1

01 = −•
S1

10 = − 2
r f

√
2M
r ,

•
S2

02 = •
S3

03 = −•
S2

20 = −•
S3

30 = − 1
2r f

√
2M
r ,

•
S2

12 = •
S3

13 = −•
S2

21 = −•
S3

31 = M
r2 .

(6.15)

Let us now discuss the choice of the vector ξ and calcu-
lation of the Noether charges. If we choose ξ to be given
by (6.9) we find that both the Noether current (5.7) and con-
served charge (5.8) vanish for all combinations of tetrads and
inertial spin connections in points a) to d) above.

All of the tetrads listed above correspond to the same
Schwarzschild metric (4.1), despite being in the Lemaitre
gauge. Therefore, we can also consider a time-like Killing
vector of the metric (4.1) given by (4.8) and calculate the
corresponding Noether charge

P(ξ) = 2M. (6.16)

Surprisingly, we obtain a finite value, which is twice of the
result in the Schwarzschild static gauge (4.9). We discuss this
result in the following section.

6.3 Discussion

Let us first compare our results with the previous works by
Maluf et al. [16] and Lucas et al. [17] in which the same
situation with free-falling observers was considered. Both
these works have calculated the total energy P0̂ = 0 rather
than the Noether charges. However, as we have discussed at
the end of Sect. 3, these coincide under certain conditions.
In [16], the authors work in the non-covariant formulation of
TEGR where the spin connection is assumed to be identically
zero and hence they work only with what we call the proper
tetrads. Their tetrad (27) in [16] is identical to our tetrad (6.2)
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Table 1 Noether charges in the Schwarzschild static and Lemaitre
gauges for different choices of the vector field ξ

Gauge P(ξ) P(ξ̃ )

Schwarzschild static M M

Lemaitre 2M 0

and they find P0̂ = 0 for the zeroth component of the energy–
momentum (3.3) and identify this correctly as a consequence
of the equivalence principle. In [17], the same situation is
considered in the framework of the covariant formulation and
the authors show that the spin connection “regularizes”, i.e.
leads to the finite, total energy using arbitrary tetrads. While
in [16], the authors claim that in the case of a freely falling
frame a possibility to calculate the total mass is lost, the paper
[17] shows that it is possible to obtain M using the free-falling
tetrads in the covariant formulation. In our formalism, this is
equivalent to using a spin connection corresponding to the

tetrad
D
h in the Schwarzschild static gauge, i.e. the case d) in

Sect. 6.1. On the other hand, references [18–20] calculate the
Noether charges, but for the Schwarzschild solution, only in
the Schwarzschild static gauge, leading always to the same
answer M .

We have calculated the Noether charges for both the
Schwarzschild static and Lemaitre gauges and considered
various choices for the vector field ξ . Our results can be
summarized in Table 1.

Let us now explain the meaning of each result in the table
above. The Schwarzschild static gauge represents the physi-
cal configuration of the physical fields corresponding to the
static observers. The choice of the vector ξ as (4.8) is a very
special one due to the fact that (4.8) is both a Killing vector
as well as a velocity of the static observer at infinity

ξ = − lim
r→∞

B
h 0̂, (6.17)

and hence we obtain the same P(ξ) = M . Therefore, based
on this example, we cannot decide whether ξ should be cho-
sen as a Killing vector or as a velocity of the observer.

On the other hand, the Lemaitre gauge represents the phys-
ical configuration of the physical fields corresponding to the
free-falling observers. The choice of the vector ξ̃ as (6.9) rep-
resents the velocity of the observer associated with the tetrad

(6.1), i.e. ξ̃ = − C
h 0̂, but it is not a Killing vector. In this case,

we obtain the physically expected result that the free-falling
observer measures the vanishing Noether current and charge.
This supports the suggestion to choose ξ to coincide with the
observer velocity and hence to associate it with the zeroth
component of the tetrad. Therefore, we highlight these two
results in the bold face in the table above, in order to stress
this fact.

What about the other two results in the table? We can now
understand the calculation of P(ξ) in the Lemaitre gauge
as the case when we choose ξ to be a Killing vector of the
spacetime metric (4.8) and not a velocity of the observer. As
we have shown, this leads to a rather strange result where
we obtain the value to be twice of the physical one. This
motivates us to conclude that the preferred choice for the
vector field ξ is to be a velocity of the observer and not a
Killing vector of the spacetime. However, as we show in the
following section, it is possible to recover a correct physical
value when we introduce a non-vanishing initial velocity for
the observer.

For the sake of completeness, we have also considered
P(ξ̃ ) in the Schwarzschild static gauge as well. However,
here we should be very cautious because ξ̃ is not a Killing
vector of the metric (4.1), nor it represent the velocity of
the static observer. It is rather an example of an inconsis-
tent choice of the vector ξ where we attempt to calculate
the Noether charge in the static gauge using the velocity of
the free-falling observer. While this is obviously not a mean-
ingful choice, it still leads to the “correct” answer for the
conserved charge. However, this is only a coincidence and
produces the correct result only accidentally.

To understand these results from the mathematical view-
point, let us recall that all conserved quantities are given by
the r → ∞ limit of the superpotential density. In the case
of the Schwarzschild static gauge, this has a very special
form (4.7) that explains why we uniquely obtain the result
M , even in the case when we choose the vector field ξ incon-
sistently, as we have discussed above. On the other hand, in
the Lemaitre gauge the leading term expansion of the super-
potential (6.15) is given by

•
S0

01 = −•
S0

10 = −4M

r2 ,

•
S1

01 = −•
S1

10 = −
√

2M

r3 + O
(

1

r
5
2

)
,

•
S2

02 = •
S3

03 = −•
S2

20 = −•
S3

30 = −
√

M

2r3 + O
(

1

r
5
2

)
,

•
S2

12 = •
S3

13 = −•
S2

21 = −•
S3

31 = M

r2 , (6.18)

and hence we have more freedom to contract the superpo-
tential with the components of the vector field ξ and obtain
different values for the Noether charges.

The consequence of the problem above is the difficulty of
interpreting the total energy–momentum Pa in the covariant
formulation. Let us recall that in the Lemaitre gauge both the
proper tetrad (6.2) and the tetrad (6.1) with the correspond-
ing inertial spin connection (5.5) should represent the same
physical situation, and hence we would naively expect the
same answer for the energy–momentum. This turns out to be
not the case. For example, in our case of the Lemaitre gauge,
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we do obtain the same vanishing zeroth component of Pa ,
but if we consider all components of Pa , we obtain different
results for the other components, i.e.

Pa(
D
haμ, 0) = (0, 0, 0, 0), Pa(

C
haμ,

•
Aa

bμ) = (0,∞, 0, 0).

(6.19)

We can understand this result as a consequence of iden-
tifying the vector field ξ with the tetrad in the definitions of
Pa discussed at the end of Sect. 3. While ξ is a priori arbi-
trary vector field, in order the Noether charge (3.9) to rep-
resent a physically meaningful quantity, we need to identify
it with the motion of the observer. In the covariant formula-
tion, this poses a problem since the physical configuration of
the fields (our gauge) is determined by both the tetrad and
the corresponding inertial spin connection, but the motion
of the observer is fully given by the tetrad only. Therefore,
when we consider different representations of the Lemaitre
gauge discussed in Sect. 6.2, each tetrad represents a different
observer. We then encounter the situations where the vector
ξ and the tetrad represent two different observers in the same
expression for Pa , what makes the whole expression unphys-
ical. This is analogous to our unphysical calculation of P(ξ̃ )

in the Schwarzschild static gauge discussed above.
Therefore, for the covariant formulation of the theory, it

is more meaningful to consider the Noether charges with
the vector field ξ and the tetrad kept independent. In such
a setting, the tetrad and inertial spin connection represent
the physical configuration of the gravitational field, while
the vector field ξ represents an observer measuring the grav-
itational energy–momentum. We can argue that physically
meaningful results are obtained when both the physical con-
figuration of physical fields and the vector field ξ representing
the observer correspond to the same situation. For example, in
our case, we choose ξ to be a velocity of the static observer
when working in the static gauge, or ξ to be a velocity of
the free-falling observer when working in the free-falling
Lemaitre gauge.

Note that this is not a problem in the non-covariant formu-
lation where the tetrad used in the field equations represents
the same observer as the vector field ξ in the Noether con-
served charge. These can be identified uniquely with each
other and there is no freedom to transform them indepen-
dently. Therefore, in the non-covariant formulation Pa indeed
represents energy–momentum in a meaningful way.

7 A generalized free-falling observer

So far we have considered only the case of observers falling
to the Schwarzschild black hole from the infinity with the
zero initial velocity. So far, at least to our best knowledge,

this was the only case considered in the previous works, e.g.
[16] and [17]. In this section, we generalize this scheme to
the case of an arbitrarily free-falling observer, i.e. an observer
that starts his/her fall to the black hole not from infinity or
with a non-vanishing initial velocity.

Solving the geodesic equation in general form for a radi-
ally freely falling observer towards the Schwarzschild black
hole in the Schwarzschild coordinates (4.1), one obtains

˜̃
ξα =

(
− e

f
,

√
e2 − f , 0, 0

)

=
(

− e

1 − 2M/r
,

√
e2 − (1 − 2M/r), 0, 0

)
, (7.1)

where e is some number characterizing the initial state of
the in-falling particle. The case when e > 1 corresponds to
a nonzero velocity directed to the black hole at r → ∞,
whereas e < 1 corresponds to a zero velocity at any finite
r0. The observer with e = 1 has a zero velocity at r →
∞, and the expression (7.1) reduces to the (6.9) considered
previously.

7.1 The case e > 1

In this subsection, considering a generalized free-falling
observer, we restrict ourselves to the case e > 1. We con-
struct the new proper coordinates that are the generalisa-
tion of the Lemaitre coordinates (5.2). We then consider a
diagonal tetrad and turn off gravity, like in the previous sec-
tions, and find the corresponding inertial spin connection.
We then create a new gauge and calculate the corresponding
conserved charges.

Keeping in mind (7.1), let us introduce the coordinate
transformation

dτe = edt +
√
e2 − 1 + 2M

r

1 − 2M
r

dr,

dρe = dt + e(
1 − 2M

r

)√
e2 − 1 + 2M

r

dr, (7.2)

using which, one transforms the Schwarzschild metric (4.1)
to the form

ds2 =−dτ 2
e+

(
e2 − 1+ 2M

r

)
dρ2

e +r2
(
dθ2 + sin2 θdϕ2

)
,

(7.3)

where r = r(τe, ρe). Using (7.2), the 4-velocity (7.1) trans-
forms to the form

˜̃
ξμ = (−1, 0, 0, 0), (7.4)
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in the new coordinates (7.2). Formally it is the same as (5.6)
in the coordinates (5.2), but, of course, in the Schwarzschild
static coordinates the form of (7.4) changes to (7.1).

The most natural choice for the tetrad corresponding to
the metric (7.3) is to take the simplest diagonal tetrad

E
haμ =

⎛
⎜⎜⎜⎝

1 0 0 0

0
√
e2 + 2M

r − 1 0 0

0 0 r 0
0 0 0 r sin θ

⎞
⎟⎟⎟⎠ . (7.5)

To derive the inertial spin connection corresponding to (7.5)
we follow the Lemaitre case discussed in Sect. 5, i.e. we
calculate the Levi-Civita spin connection and “switch off”
gravity by M → 0. We find the non-vanishing components
of the inertial spin connection to be

•
A0̂

2̂2 = •
A2̂

0̂2 = −
√
e2 − 1,

•
A1̂

2̂2 = −•
A2̂

1̂2 = −e,

•
A0̂

3̂3 = •
A3̂

0̂3 = − sin θ
√
e2 − 1,

•
A1̂

3̂3 = −•
A3̂

1̂3 = −e sin θ,
•
A2̂

3̂3 = −•
A3̂

2̂3 = − cos θ.

(7.6)

Analogously to the situation in the Lemaitre case, the
tetrad (7.5) and the inertial spin connection (7.6) are in
the new coordinates (7.2). We can transform them to the
Schwarzschild coordinates that allows us more convenient
comparison with the previous results.

We can observe that since the inertial spin connection (7.6)
has 2,3-vector components only, it will have the same form,
i.e. (7.6), in the Schwarzschild coordinates. Applying the
coordinate transformation (7.2) to the diagonal tetrad (7.5)
we find that in the Schwarzschild coordinates it will take the
form

E
haμ =

⎛
⎜⎜⎜⎜⎜⎝

e

√
e2+ 2M

r −1

1− 2M
r

0 0√
e2 + 2M

r − 1 e
1− 2M

r
0 0

0 0 r 0
0 0 0 r sin θ

⎞
⎟⎟⎟⎟⎟⎠

. (7.7)

We can also derive a proper tetrad that we denote
F
h by

finding a local Lorentz transformation that transforms (7.6)
to zero. We find that this is achieved by

(�(EF))
a
b = (�(Sch))

a
c(�

−1
(boost ′))

c
b, (7.8)

where

(�(boost ′))
a
b =

⎛
⎜⎜⎝

e −√
e2 − 1 0 0

−√
e2 − 1 e 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (7.9)

Applying the Lorentz transformation (7.8) to (7.7),
F
haμ =

�(EF)
a
b(

E
h)bμ, we find the proper tetrad to be

F
haμ =

⎛
⎜⎜⎜⎜⎜⎝

Ae
Be

1−2M/r 0 0

sin θ cos ϕBe
sin θ cos ϕAe

1−2M/r r cos θ cos ϕ −r sin θ sin ϕ

sin θ sin ϕBe
sin θ sin ϕAe

1−2M/r r cos θ sin ϕ r sin θ cos ϕ

cos θBe
cos θAe
1−2M/r −r sin θ 0

⎞
⎟⎟⎟⎟⎟⎠

,

(7.10)

where we have introduced

Ae ≡ e2 −
√
e2 − 1

√
e2 + 2M

r
− 1, Ae=1 = 1, (7.11)

Be ≡ e

(√
e2 + 2M

r
− 1 −

√
e2 − 1

)
, Be=1 =

√
2M

r
.

(7.12)

In the spirit of our previous results, we call the tetrad
(7.7) and the corresponding inertial spin connection (7.6),
or alternatively the new proper tetrad (7.10), a generalized
Lemaitre gauge, or e-gauge. Moreover, analogously to (6.6),

we can relate new tetrads
E
h and

F
h with the tetrads

B
h and

A
h as

A
h

�(Sch)−→ B
h

�−1
(booste)−→ E

h
�(EF)−→ F

h, (7.13)

where we have introduced the boost

(�(booste))
a
b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

e√
1− 2M

r

√
e2+ 2M

r −1√
1− 2M

r

0 0

√
e2+ 2M

r −1√
1− 2M

r

e√
1− 2M

r

0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.14)

Taking the tetrad (7.7) and the corresponding inertial spin
connection (7.6), and simultaneously transforming both the
tetrad and inertial spin connection using the above transfor-
mations, we obtain different forms of the e-gauge. This can
be illustrated by the following scheme (Fig. 3).

Or, explicitly we can write that the e-gauge is given by
following combinations of the tetrad and inertial spin con-
nection:
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E

B A

F (proper)

AΛ−1
(Sch)

Λ−1
(booste)

Λ(EF )

Fig. 3 A schematic representation of various pairs of the tetrad and
spin connection in the e-gauge. The bold dot represents the initial tetrad
(7.7) in which we “switch off” gravity

(a) The tetrad
F
h is a proper tetrad, i.e. with a zero inertial

spin connection.

(b) The tetrad
E
h and the inertial spin connection (7.6).

(c) The tetrad
B
h and the inertial spin connection obtained by

•
Aa

bμ = (�(FB))
a
c∂μ(�−1

(FB))
c
b;

(�(FB))
a
b ≡ (�−1

(booste)
)ac(�

−1
(boost ′))

c
d(�(Sch))

d
b.

(7.15)

The non-zero components of (7.15) are listed in
Appendix A, see (A.5).

(d) The tetrad
A
h and the inertial spin connection

•
Aa

bμ = (�(FA))
a
c∂μ(�−1

(FA))
c
b;

(�(FA))
a
b ≡ (�−1

(Sch))
a
e(�

−1
(booste)

)ec(�
−1
(boost ′))

c
d (�(Sch))

d
b.

(7.16)

The non-zero components of (7.16) are listed in
Appendix A, see (A.6).

Due to the Lorentz invariance, all the pairs
F
h,

E
h,

B
h,

A
h with

their related inertial spin connections listed above as a)-d)
lead to the same result for the superpotential

•
S0

01 = −•
S0

10 = − 2
r (Ae − 1 + 2M/r) ,

•
S1

01 = −•
S1

10 = − 2
r

Be
1−2M/r ,

•
S2

02 = •
S3

03 = −•
S2

20 = −•
S3

30 = e
r

1−M/r−Ae

(1−2M/r)
√

e2+2M/r−1)
,

•
S2

12 = •
S3

13 = −•
S2

21 = −•
S3

31 = 1
r (Ae − 1 + M/r) ,

(7.17)

where Ae and Be are defined in (7.11) and (7.12), respec-
tively.

Let us now calculate the Noether current (3.5) and the cor-
responding Noether charges (3.9) for different vector fields

ξ . For the vector field ˜̃
ξ chosen to represent the generalized

Table 2 Noether charges in the
e-gauge for different choices of
the vector field ξ

Gauge P(ξ) P(ξ̃ ) P(
˜̃
ξ)

e-gauge M M 0

free-falling observer (7.1) we find the vanishing Noether cur-
rent
•
J α(

˜̃
ξ) = (0, 0, 0, 0) (7.18)

and hence naturally leads to the vanishing Noether conserved
charge

P(
˜̃
ξ) = 0, (7.19)

what is analogous to the situation in the Lemaitre case and
is consistent with the expectations based on the equivalence
principle. However, an interesting new result is that if we
choose the vector ξ as the time-like Killing vector of the
metric (4.1) given by (4.8), we obtain

P(ξ) = M. (7.20)

We can summarize our results in the following table1:
This is indeed a surprising result since, unlike the Lemaitre

case where we found (6.16), we have now the same physical
outcome as in the Schwarzschild static gauge. This means
that introducing an initial velocity for the observer changes
the result from the curious 2M to a physically meaning-
ful value M . We will discuss this result in the following
section.

7.2 Discussion

The generalized Lemaitre gauge or e-gauge is a new result of
this paper that was not considered before. In the case when
we choose the vector field ξ to be associated with the veloc-

ity of the observer, i.e. ξ = − E
h 0̂, we find the vanishing

Noether current and charge. This is analogous to the ordinary
Lemaitre gauge and can be understood as a consequence of
the equivalence principle.

However, an interesting new result is that if we choose
the vector ξ to be the time-like Killing vector (4.8), we find
the same result as in the case of the Schwarzschild static
gauge. This means that introducing an initial velocity for

1 If we consider the vector field ξ to be the Lemaitre free-falling vector
(6.9), we obtain naively a good result P(ξ̃ ) = M as well. However, this
suffers from the same problem as the previous calculation of P(ξ̃ ) = M
in the static gauge discussed in Sect. 6.3, i.e. the vector ξ̃ is neither a
Killing vector nor a velocity of the observer in the e-gauge, what makes
the physical interpretation of this result rather unclear. Therefore, we
consider this result to be unphysical. We highlight the physical results
in the bold face in the Table 2.
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the observer regularizes the corresponding conserved charge
from (6.16) to (7.20). Even more intriguing is that the change
from (6.16) to (7.20) is discontinuous and occurs for an arbi-
trary small e.

While from the physical perspective it is rather unclear
how an inclusion of an arbitrary small velocity can reg-
ularize the total energy, on the purely mathematical level
this can be understood as a consequence of the regulariz-
ing property of the initial velocity e. Here we mean the
fact that for the standard Lemaitre gauge, the metric (5.2)
and the corresponding tetrad (5.3) are singular in the limit
M → 0 (or r → ∞) that is used to determine the iner-
tial spin connection (5.5). On the other hand, the metric
(7.3) and the corresponding tetrad (7.5) are regular in this
limit.

The result above is even more curious if we notice an
important role of the constant boost (7.9). Let us consider the

chain of transformations (7.13) from
A
h, which is the proper

tetrad in the Schwarzschild static gauge, to
F
h, which is the

proper tetrad in the e-gauge. The constant boost (7.9) is con-
tained in the last transformation in the term �(EF) given by
(7.8), and, as it turns out, is crucial for obtaining the con-
served charges discussed above.

The reason why we find this curious is that the con-
stant boost (7.9) is a global Lorentz transformation that
we would not expect to influence any relevant scalar con-
served quantities. We remark that this is not a ques-
tion of using the covariant or non-covariant formulations,
because the whole question of covariance traditionally con-
cerns local Lorentz transformations only, not the global
ones.

For the sake of completeness, let us briefly discuss the
case e < 1 when freely falling observers have “orbits” con-
strained by the finite radius r0 = 2M/(1 − e2). The prob-
lem here is that our formula for the Noether charges (3.9)
relies on taking the asymptotic limit and hence it is not pos-
sible to straightforwardly apply it to this case where we
have the maximum radius. It is formally possible to do an
analytic continuation to r > r0, leading to complex quan-

tities
•
T α

μν and
•
Sα

μν . It turns out that the
•
S0

01 compo-
nent of the superpotential is real at r > r0 and hence we
obtain the real Noether charge P = M . However, despite
the fact that one obtains formally acceptable real result in
this particular case, the occurrence of complex parameters in
intermediate calculations makes the physical interpretation
of the whole calculation rather unclear [24]. Nevertheless,
note that complex quantities in tetrad calculus do appear in
the literature, e.g., in [24,36] in the case of cosmological
models.

8 Free-falling tetrads in f (T ) gravity

While the primary objective of this paper was to understand
conserved charges in TEGR, it is interesting to make anal-
ogous calculations in the framework of f (T ) gravity. The
f (T ) gravity model is one of the most popular modified
gravity models where we take the Lagrangian to be an arbi-
trary function of the torsion scalar (2.8) from the TEGR
Lagrangian (2.1) [4–7]

•
L f = h

2κ
f (

•
T ). (8.1)

Much of the attention was dedicated to finding the solu-
tions of the antisymmetric part of the field equations. Those
tetrads that solve the antisymmetric field equations with a
vanishing spin connection are known as good tetrads [30] or
alternatively we can always calculate the corresponding spin
connection to arbitrary tetrads in the covariant formulation
[3,29].

To understand the importance of the antisymmetric part of
the field equations, let us consider the fully Lorentz-indexed
version of the field equations (2.11) in the f (T ) case, and
write the corresponding Euler-Lagrange expressions Eab =
ηbchcρEa

ρ as [3]

Eab = h

(
fT T

•
Sab

ν∂ν

•
T + fT

◦
Gab +1

2
ηab( f − •

T fT )

)
,

(8.2)

where
◦
Gab is the Levi-Civita Einstein tensor. From this form

of the field equations it is clear that the first term is crucial for
understanding the difference of the dynamics of the theory
compared to GR. It is also the only term that contributes to
the antisymmetric part of the field equations

E[ab] = fT T
•
S[ab]ν∂ν

•
T = 0. (8.3)

Therefore, the antisymmetric field equation (8.3) contain the
essential information about the genuine f (T ) dynamics what
motivates our interest in them. Moreover, it can be shown
in the covariant formulation that the variation with respect
to spin connection lead exactly to this antisymmetric part
of the tetrad field equations and hence contains the same
information [37].

We can observe that fT T = 0 trivially satisfies these equa-
tions, but this is on the account of reducing the theory to the

TEGR case. In a similar fashion, the case
•
T = const reduces

the theory to GR with an effective cosmological constant
[31,32]. We are primarily interested in the non-trivial solu-
tions of these antisymmetric equations since these represent
the potentially genuinely new solutions in f (T ) gravity.
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The general spherically symmetric spacetime is given by
the metric ansatz

gμν = diag(−A2, B2, r2, r2 sin2 θ), (8.4)

where A, B are some functions of r that in the case of TEGR
reduce to (4.1).

We can define various tetrads analogously to TEGR tetrads
discussed previously where we keep the same notation but
we add a bar above the quantity to distinguish it from the
TEGR case, i.e. the diagonal tetrad we denote as

B̄
h a

μ ≡ diag(A, B, r, r sin θ) . (8.5)

While in the case of TEGR the diagonal tetrad lead to diver-
gent conserved charges, in the f (T ) case we face the problem
of non-vanishing antisymmetric field equations that can be
satisfied only when fT T = 0 and hence reduce trivially to
TEGR, i.e. (8.5) is a bad tetrad [30].

The solution to this problem is that we have to either con-
sider a good tetrad [30]

Ā
h a

μ = (�−1
(Sch))

a
b

B̄
h b

μ (8.6)

where (�−1
(Sch))

a
b is given by (4.10) or use the tetrad (8.5)

with the corresponding spin connection, which turns out to
be given by (4.5) [3,29].

We can observe that in this particular case the solution
of the problem of the antisymmetric field equations in f (T )

gravity seem to be equivalent to the problem of finding con-
served charges in TEGR.2 It is therefore interesting to con-
sider analogues of accelerated tetrads from the previous sec-
tions to demonstrate the differences between these two con-
cepts.

In particular, let us focus on a free-falling tetrad for a
general spherically symmetric spacetime (8.4). In the TEGR
case, we could consider a radial boost (6.4) with the rapidity
given by (6.5), but this requires knowledge of the solution

of the field equations A = 1/B = f
1
2 , which is a priori

unknown.
Therefore, in the f (T ) case, we must consider a free-

falling tetrad for the general spherically symmetric space-
time (8.4). To find it, let us define the generalized acceleration

object φa
b = ◦

Aâ
b̂0̂ [17]. For the diagonal tetrad (8.5), we find

that the only non-vanishing component is φ0
1 = A′/(AB)

and hence this diagonal tetrad represents a static observer. We
can then consider a boost in r -direction (6.4) with a general

2 Another interesting case where this happens is the case of spatially-
flat FRWL spacetime where the diagonal Cartesian tetrad is both the
proper and good tetrad.

rapidity β̄ and find the non-vanishing generalized accelera-
tion object is transformed as

φ0
1 = φ1

0 = γ̄ 2A′ + Aβ̄β̄ ′

ABγ̄ 3 , (8.7)

where the prime denotes the derivative with respect to the
radial coordinate.

Setting this to zero we find that the generalized acceler-
ation vanishes for the rapidity β = ±√

1 − c1A2. Without
loss of generality we can choose the solution with a plus sign
and choose c1 = 1, i.e.

β̄ =
√

1 − A2. (8.8)

We can define a free-falling tetrad for the spherically sym-
metric spacetime (8.4) by

C̄
h a

μ = �̄(boost)
a
b

B̄
h b

μ, (8.9)

where the �̄(boost)
a
b is the radial boost (6.4) with the rapidity

(8.8).
Let us then attempt to define a f (T ) analogue of the proper

Lemaitre tetrad (5.9) by combining this radial boost and the
proper local Lorentz transformation (4.10), i.e

D̄
h a

μ = (�−1
(Sch))

a
b
C̄
h b

μ = (�−1
(Sch))

a
b�̄(boost)

b
c
B̄
h c

μ.

(8.10)

We can then proceed to calculate the field equations for
(8.10) and the zero inertial spin connection and we find that
their antisymmetric part (8.3) is given by

E[0̂1̂] = −2 fT T β̄
•
T ′

r AB
cos ϕ sin θ. (8.11)

E[0̂2̂] = 2 fT T β̄
•
T ′

r AB
cos θ, (8.12)

E[0̂3̂] = −2 fT T β̄
•
T ′

r AB
sin ϕ sin θ, (8.13)

from where we can immediately identify the problem and
see why this construction does not work in the case of f (T )

gravity. These equations are satisfied only if fT T = 0, β̄ = 0

implying A = 1, or
•
T ′ = 0, each case reducing the theory to

its TEGR limit.3

To understand the origins of this result, let us consider
the torsion scalar for both the TEGR solution (5.9) and the

3 In principle, we could also consider the case A = 1 with arbitrary
B. However, as we show in Appendix B, the symmetric field equations
imply then B = 1 as well. Therefore, this case is indeed trivial and does
not produce any new sensible good tetrad for f (T ) gravity.
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generalized analogue (8.10). While in the former case we
have

•
T (

D
h a

μ, 0) = 0, (8.14)

in the latter case we find that

•
T (

D̃
h a

μ, 0) = −2
A(1 + B2) − 2B + 2r A′

r2AB2 , (8.15)

which is generally non-zero and reduces to (8.14) only in the

case of the TEGR solution A = 1/B = f
1
2 .

From here we can see that the radial boost (6.4) with (6.5)
in the TEGR case has a special role as it makes the tetrad both
free-falling and corresponding torsion scalar vanishing. On
the other hand, in the case of a general tetrad (8.5) the radial
boost with the rapidity (8.8) makes only the observer free-
falling but does not make the corresponding torsion scalar
vanishing, what makes the tetrad (8.10) a bad tetrad at the
end.

Let us now explain why this deserves our attention. In the
TEGR case, the free-falling tetrad (5.9) gives us a finite con-
served charge, either (5.8) or (6.16), and hence can be consid-
ered a proper tetrad. However, as we have just demonstrated,
an analogous construction of a generalized free-falling tetrad
(8.10) is not a good tetrad in f (T ) gravity. Therefore, this
is an interesting illustration of the fact that good tetrads in
f (T ) gravity are different from proper tetrads in TEGR, and
they cannot be always constructed as simple generalizations
of the TEGR situation.

For the sake of completeness of our analysis, we can con-
sider a boost that makes the torsion scalar to vanish by gen-
eralizing the approach introduced in [31,32]. We consider a
time-dependent radial boost with rapidity

β∗ = − tanh

(
c1 − t (A + 2r A′)

2r B

)
, (8.16)

and define

Ḡ
h a

μ = �̄(boost)
a
b(β

∗)
B̄
h b

μ, (8.17)

for which the torsion scalar vanishes

•
T (

Ḡ
h a

μ, 0) = 0. (8.18)

While we have not obtained here any new good tetrad, we
have demonstrated how to find the most general vanishing
torsion scalar solution for the general spherically symmetric
spacetime (8.4). In this sense, our result (8.17) is an interest-
ing new result in the line of previous works [31–33].

9 Concluding remarks

In the present paper we have considered several questions
related to the problem of local Lorentz degrees of freedom
and the concept of proper and good tetrads in TEGR and
f (T ) gravity. The main results concerning various defini-
tions of conserved charges for the static and variously free-
falling observers were discussed in length in Sects. 6.3 and
7.2, where we have demonstrated how to obtain some phys-
ical results and compared our calculations with the previous
results [16,17]. In particular, we would like to call attention
to our discussion of the relation between Noether charges
and other energy–momentum definitions used previously,
and generalization of the Lemaitre observers to the case with
arbitrary initial velocity named e-gauge introduced in Sect. 7.

In these concluding remarks, let us focus on other conse-
quences of our calculations. We recall that there are two for-
mulations of teleparallel theories: non-covariant and covari-
ant. In the non-covariant formulation of TEGR, the field
equations are locally Lorentz invariant but various quanti-
ties such as the conserved charges and energy–momentum
are not. There is then a class of “preferred” tetrads called
proper tetrads that lead to finite conserved charges. In the
covariant formulation, on the other hand, considering an iner-
tial spin connection, we are allowed to use an arbitrarily
Lorentz transformed tetrad and make the theory covariant.
However, we need to calculate the corresponding spin con-
nection and hence essentially we need to determine the same
local Lorentz degrees of freedom as when determining the
proper tetrad.

In f (T ) gravity, these local Lorentz degrees of free-
dom play even more important role since they affect the
field equations. In the original non-covariant formulation
of f (T ) gravity, the field equations are consistent only for
the peculiar class of tetrads known as good tetrads [30].
For the Schwarzschild and FRWL geometries we find that
good tetrads coincides with proper tetrad from TEGR. In the
covariant formulation, we consider a non-vanishing spin con-
nection that allows us to use arbitrarily Lorentz rotated tetrad
in the field equations and hence we can “restore” the local
Lorentz symmetry. However, this local Lorentz symmetry is
restored only after we determine the correct spin connection
corresponding to the tetrad. Therefore, same as in the case
of TEGR, there is need to determine the Lorentz degrees of
freedom in both formulations.

There are various approaches to determining these pre-
ferred tetrads, or alternatively the corresponding spin connec-
tions [30,36,38,39]. We have considered here the approach of
“switching-off” gravity introduced in [17] and further devel-
oped in [22–25,29]. While this was known to work very well
when starting with the standard static form of the spherically
symmetric metric, we have considered the situation where
the starting point is the metric in the Lemaitre coordinate
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system. Note that this is reasonable since the coordinate sys-
tem is not determined and hence we should be able to obtain
meaningful results using arbitrary coordinate systems as a
starting point.

An interesting observation from our calculations is the
coincidence between the spin connections calculated start-
ing from the Schwarzschild static coordinates (4.5) and the
spin connection calculated in the Lemaitre coordinates (5.5).
Both spin connections were constructed in the same way by
starting with the metric, taking the simplest diagonal tetrad,
and “switching off” gravity. The difference was that the start-
ing points were the metrics in different coordinate systems.
So, despite the obvious fact that in order to transform from the
diagonal Schwarzschild static tetrad to the diagonal Lemaitre
tetrad, it is necessary to apply a Lorentz boost, the spin con-
nection remain unchanged. The fact that both spin connec-
tions (4.5) and (5.5) are the same demonstrates that the pro-
cess of determination of the spin connection is not unique.

We can understand the origin of this situation in two ways.
First it can be viewed as a deficiency of the “switching-off”
gravity method used to determine the spin connection. Indeed
this method is completely insensitive to any local Lorentz
transformation that is proportional to the parameter that con-
trols the strength of gravity since it gets “switched off”. In
our case, the boost (6.5) is proportional to M and then we
take the limit M → 0 to determine the inertial spin con-
nection. Therefore, it is not a surprise that the resulting spin
connection is insensitive to this boost.

However, we would like to argue that this could be viewed
as a simple demonstration of the problem of the so-called
remnant symmetries discovered in f (T ) gravity. These were
first encountered in the FRWL spacetime in f (T ) gravity,
where it was noticed that there exists a class of local Lorentz
symmetries that transform a good tetrad into another good
tetrad [26,27]. This means that despite a manifest violation
of local Lorentz invariance in the non-covariant formulation,
not all symmetries are violated and some of them remain.
This means that good tetrads, and analogously proper tetrads
in TEGR, are not unique and are indeed an equivalence class
of tetrads related by remnant symmetries. In the covariant for-
mulation, this means that there can exist two tetrads related
by a remnant symmetry, and to both of them corresponds the
same spin connection, which is the situation we have encoun-
tered here. See the recent discussion of Kerr solution [40],
where it was demonstrated that two Kerr tetrads share the
same connection. For the use of these symmetries in analysis
of the problem of degrees of freedom in f (T ) gravity see
[41].4

From this follows that we need to pay closer attention to
the problem of local Lorentz degrees of freedom in TEGR
and the search for a more precise definition of a proper tetrad

4 For the detailed discussion see our upcoming paper [28].

should be continued. We should also try to understand the
relation between the concepts of a proper tetrad in TEGR
and a good tetrad in f (T ) theory. We have demonstrated that
when we attempt to construct a good tetrad in analogy with
the free-falling proper tetrad, we fail, indicating that proper
and good tetrads are in fact different.
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Appendix A: Inertial spin connections in various gauges

In this Appendix we derive components of inertial spin con-
nections in various gauges considered in the paper which are
rather lengthy and cumbersome.

A.1 The Schwarzschild static gauge

(1) The inertial spin connection corresponding to
C
h has non-

zero components

•
A0̂

1̂1 = •
A1̂

0̂1 = 1

2r f

√
2M

r
,

•
A0̂

3̂3 = sin θ
•
A0̂

2̂2

= •
A3̂

0̂3 = sin θ
•
A2̂

0̂2 = − 1

f

√
2M

r
sin θ,

•
A1̂

3̂3 = sin θ
•
A1̂

2̂2 = •
A3̂

1̂3 = sin θ
•
A2̂

1̂2 = − sin θ

f
1
2

,

•
A2̂

3̂3 = −•
A3̂

2̂3 = − cos θ. (A.1)

(2) To the tetrad
D
h corresponds an inertial spin connection

with the following non-zero components:

•
A0̂

1̂1 = •
A1̂

0̂1 = − •
A0̂

2̂3 = − •
A2̂

0̂3
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= 1

2r f

√
2M

r
sin θ cos ϕ,

•
A0̂

1̂2 = •
A1̂

0̂2 = − 1

2r f

√
2M

r
cos θ cos ϕ,

•
A0̂

1̂3 = •
A1̂

0̂3 = •
A0̂

2̂2 = •
A2̂

0̂2

= 1

2r f

√
2M

r
sin θ sin ϕ,

•
A0̂

2̂2 = •
A2̂

0̂2 = − 1

2r f

√
2M

r
cos θ sin ϕ,

•
A0̂

3̂1 = •
A3̂

0̂1 = 1

2r f

√
2M

r
cos θ,

•
A0̂

3̂2 = •
A3̂

0̂2 = 1

2r f

√
2M

r
sin θ,

•
A1̂

2̂3 = − •
A2̂

1̂3 =
(

1 − 1

f

)
sin2 θ,

•
A1̂

3̂2 = − •
A3̂

1̂2 = −
(

1 − 1

f

)
cos ϕ,

•
A1̂

3̂3 = − •
A3̂

1̂3 =
(

1 − 1

f

)
sin θ cos θ sin ϕ,

•
A2̂

3̂2 = − •
A3̂

2̂2 = −
(

1 − 1

f

)
sin ϕ,

•
A2̂

3̂3 = − •
A3̂

2̂3 = −
(

1 − 1

f

)
sin θ cos θ cos ϕ. (A.2)

A.2 The Lemaitre gauge

(1) To the tetrad
B
h corresponds an inertial spin connection

with the following non-zero components:

•
A0̂

1̂1 = •
A1̂

0̂1 = − 1

2r f

√
2M

r
,

•
A0̂

3̂3 = sin θ
•
A0̂

2̂2

= •
A3̂

0̂3 = sin θ
•
A2̂

0̂2 = 1

f

√
2M

r
sin θ,

•
A1̂

3̂3 = sin θ
•
A1̂

2̂2 = •
A3̂

1̂3 = sin θ
•
A2̂

1̂2

= − sin θ

f
1
2

,
•
A2̂

3̂3 = − •
A3̂

2̂3 = − cos θ, (A.3)

which we can recognize to be almost identical to (A.1),
but the components with 0̂ have a minus sign.

(2) To the tetrad
A
h corresponds an inertial spin connection

with the following non-zero components:

•
A0̂

1̂1 = •
A1̂

0̂1 = − •
A0̂

2̂3 = − •
A2̂

0̂3

= − 1

2r f

√
2M

r
sin θ cos ϕ,

•
A0̂

1̂2 = •
A1̂

0̂2 = 1

2r f

√
2M

r
cos θ cos ϕ,

•
A0̂

1̂3 = •
A1̂

0̂3 = •
A0̂

2̂2 = •
A2̂

0̂2

= − 1

2r f

√
2M

r
sin θ sin ϕ,

•
A0̂

2̂2 = •
A2̂

0̂2 = 1

2r f

√
2M

r
cos θ sin ϕ,

•
A0̂

3̂1 = •
A3̂

0̂1 = − 1

2r f

√
2M

r
cos θ,

•
A0̂

3̂2 = •
A3̂

0̂2 = − 1

2r f

√
2M

r
sin θ,

•
A1̂

2̂3 = − •
A2̂

1̂3 =
(

1 − 1

f

)
sin2 θ,

•
A1̂

3̂2 = − •
A3̂

1̂2 = −
(

1 − 1

f

)
cos ϕ,

•
A1̂

3̂3 = − •
A3̂

1̂3 =
(

1 − 1

f

)
sin θ cos θ sin ϕ,

•
A2̂

3̂2 = − •
A3̂

2̂2 = −
(

1 − 1

f

)
sin ϕ,

•
A2̂

3̂3 = − •
A3̂

2̂3

= −
(

1 − 1

f

)
sin θ cos θ cos ϕ. (A.4)

which we can again recognize to be almost identical to (A.2),
but the components with 0̂ have a minus sign.

A.3 The e-gauge

We use here the shorthand notation (7.11) and (7.12) for Ae

and Be, respectively.

(1) To the tetrad
B
h corresponds an inertial spin connection

with the following non-zero components:

•
A0̂

1̂1 = •
A1̂

0̂1 = − eM

f r2

(
e2 − f

)− 1
2
,

•
A0̂

3̂3 = sin θ
•
A0̂

2̂2 = •
A3̂

0̂3 = sin θ
•
A2̂

0̂2 = Be f
− 1

2 sin θ

•
A1̂

3̂3 = sin θ
•
A1̂

2̂2 = − •
A3̂

1̂3 = − sin θ
•
A2̂

1̂2

= −Ae f
− 1

2 sin θ,
•
A2̂

3̂3 = − •
A3̂

2̂3 = − cos θ.

(A.5)

(2) To the tetrad
A
h corresponds an inertial spin connection

with the following non-zero components:

•
A0̂

1̂1 = •
A1̂

0̂1 = − eM

f r2

(
e2 − f

)− 1
2

sin θ cos ϕ,
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•
A0̂

2̂1 = •
A2̂

0̂1 = − eM

f r2

(
e2 − f

)− 1
2

sin θ sin ϕ,

•
A0̂

3̂1 = •
A3̂

0̂1 = − eM

f r2

(
e2 − f

)− 1
2

cos θ,

•
A0̂

1̂2 = •
A1̂

0̂2 = Be f
− 1

2 cos θ cos ϕ,

•
A0̂

1̂3 = •
A1̂

0̂3 = −Be f
− 1

2 sin θ sin ϕ,

•
A0̂

2̂2 = •
A2̂

0̂2 = Be f
− 1

2 cos θ sin ϕ,

•
A0̂

2̂3 = •
A2̂

0̂3 = Be f
− 1

2 sin θ cos ϕ,

•
A0̂

3̂2 = •
A3̂

0̂2 = −Be f
− 1

2 sin θ,

•
A1̂

2̂3 = − •
A2̂

1̂3 = −
(
Ae f

− 1
2 − 1

)
sin2 θ,

•
A1̂

3̂2 = − •
A3̂

1̂2 =
(
Ae f

− 1
2 − 1

)
cos ϕ,

•
A2̂

3̂2 = − •
A3̂

2̂2 =
(
Ae f

− 1
2 − 1

)
sin ϕ,

•
A1̂

3̂3 = − •
A3̂

1̂3 = −
(
Ae f

− 1
2 − 1

)
sin θ cos θ sin ϕ,

•
A2̂

3̂3 = − •
A3̂

2̂3

=
(
Ae f

− 1
2 − 1

)
sin θ cos θ cos ϕ. (A.6)

B Triviality of β̄ = 0 free-falling tetrad in f (T ) gravity

In Sect. 8, we have found that the antisymmetric field equa-
tions for the tetrad (8.10), which was constructed in analogy
with the Lemaitre case (6.2) as a Lorentz boosted free-falling
tetrad in the general spherically symmetric spacetime, are
given by (8.11)–(8.13). These antisymmetric field equations

are satisfied only in three cases: fT T = 0,
•
T ′ = 0, and β̄ = 0.

While the first case restrict the theory to TEGR identically,
the second case reduces to TEGR with an effective cosmo-
logical constant. The last case of β̄ = 0 implies A = 1, but
in principle leaves us with an option of having a nontrivial B.
Let us show that this not the case, and the remaining symmet-
ric field equations enforce B = 1 as well, and hence make
this case trivial.

We consider a tetrad (8.10), find the antisymmetric field
equations (8.11)–(8.13), and consider the case β̄ = 1 that
implies A = 1. We then find that the remaining field equa-
tions in their mixed form to be

E0
0 = −4( fT + fT T

•
T ′r)B2 − 4( fT + fT T

•
T ′r)B + f r2B3 + 4 fT B ′r

2r2B3 , (B.1)

E1
1 = − f

2
+ 2 fT

r2B2 − 2 fT
r2B

, (B.2)

E2
2 = −2(2 fT + fT T

•
T ′r)B2 − 2( fT + fT T

•
T ′r)B + (−2 fT + f r2)B3 + 2 fT B ′r

2r2B3 , (B.3)

E3
3 = E2

2. (B.4)

We can then subtract the first and third equations to find

2E2
2 − E0

0 = − f

2
+ 2 fT

r2 − 2 fT
r2B

. (B.5)

Comparing this with the second equation we see that we must
have

B = 1. (B.6)

Therefore, the case β̄ = 0 is indeed trivial and there is
no “hidden” non-trivial solution. Naturally we could have
guessed this right away since β̄ = 0 corresponds to no boost
at all and is just a special case of the good tetrad (8.6) with
A = 1. However, we are not aware of demonstrating the
triviality of A = 1 solution in the f (T ) literature.
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