
Eur. Phys. J. C (2021) 81:662
https://doi.org/10.1140/epjc/s10052-021-09469-y

Special Article - Tools for Experiment and Theory

Mixture density network estimation of continuous variable
maximum likelihood using discrete training samples

Charles Burton1,a , Spencer Stubbs1,2,b, Peter Onyisi1,c

1 Department of Physics, University of Texas, Austin, TX, USA
2 Present address: Physics Department, Rutgers University, New Brunswick, NJ, USA

Received: 26 March 2021 / Accepted: 20 July 2021 / Published online: 28 July 2021
© The Author(s) 2021

Abstract Mixture density networks (MDNs) can be used
to generate posterior density functions of model parameters
θ given a set of observables x. In some applications, training
data are available only for discrete values of a continuous
parameter θ . In such situations, a number of performance-
limiting issues arise which can result in biased estimates. We
demonstrate the usage of MDNs for parameter estimation,
discuss the origins of the biases, and propose a corrective
method for each issue.

1 Introduction

A frequent goal in the analysis of particle physics data is
the estimation of an underlying physical parameter from
observed data, in situations where the parameter is not itself
observable, but its value alters the distribution of observables.
One typical approach is to use maximum likelihood estima-
tion (MLE) to extract values of the underlying parameters and
their statistical uncertainties from experimental distributions
in the observed data. In order to do this, a statistical model
p (x|θ) of the observable(s), as a function of the underlying
parameters, must be available. These are frequently available
only from Monte Carlo simulation, not from analytic predic-
tions. In typical usage, the value of a parameter is varied
across a range of possible values; the derived models (deter-
mined from histograms or other kernel density estimators, or
approximated with analytic functions) are then compared to
the distributions in the observed data to estimate the param-
eter.

A number of methods to perform this type of infer-
ence have been discussed in the literature. See, for exam-
ple, Refs. [1–6]. Some of these also use machine-learning

a e-mail: burton@utexas.edu (corresponding author)
b e-mail: f.spencer.stubbs@gmail.com
c e-mail: ponyisi@utexas.edu

approaches, and many support the use of multiple observ-
ables in order to improve statistical power.

If one has a complete statistical model p (x|θ) for the
observables available for any given value of the parameter,
the MLE can be computed. Unfortunately, this is usually dif-
ficult to determine analytically, especially if there are mul-
tiple observables with correlations, detector effects, or other
complications. An alternative procedure is to directly approx-
imate the likelihood function of the parameter, L (θ |x).

Mixture density networks [7] solve a closely-related task.
They are used to approximate a posterior density function
p (θ |x) of parameters θ from input features x as a sum of
basis probability density functions (PDFs). More specifically,
the neural network predicts the coefficients/parameters of
the posterior density. With Bayes’ theorem, we will relate
the posterior density, which is output by the network, to
the desired parameter likelihood function. Notably, because
of the flexibility of network structure, MDNs permit the
straightforward use of multidimensional observables, as well
as approximating the posterior density function with any
desired set of basis PDFs.

When training MDNs, one typically assumes that all input
parameter values are equally likely to be sampled in the train-
ing dataset, and that the parameter is continuous. In essence,
this is equivalent to specifying a flat prior for the application
of Bayes’ theorem that translates the posterior density that
the MDN learns into the likelihood function.

However, such datasets may not be readily available for
various reasons: one may share Monte Carlo samples with
analyses using other estimation techniques which use his-
tograms at specific parameter values to build up templates,
or there may be computational difficulties with changing
the parameter values in the Monte Carlo generator for every
event. For example, in a top quark mass measurement, Monte
Carlo event generators do not efficiently support the case of
simulating events along a continuum of possible top mass
values. Rather, events are generated where the top mass has

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09469-y&domain=pdf
http://orcid.org/0000-0002-3427-6537
mailto:burton@utexas.edu
mailto:f.spencer.stubbs@gmail.com
mailto:ponyisi@utexas.edu

662 Page 2 of 9 Eur. Phys. J. C (2021) 81 :662

been set to one value on a grid of possible parameter val-
ues. In this work, we discuss issues which arise when using
training samples with discrete parameter values, rather than
a continuous parameter distribution, to estimate parameters
with MDNs.

A related issue arises when a restricted range of parameter
values is used in the training, in which the trained network is
reluctant to predict values near the boundaries of the range
due to the relative lack of training events in that vicinity.
This occurs even when training with a continuous parameter
distribution and affects tasks other than likelihood estimation,
such as simple regression. Since this issue will appear in
any practical application of an MDN to estimate a physical
parameter, we will discuss it.

The aim of the paper is to demonstrate the construction of
MDNs for estimating continuous parameters from datasets
populated only with discrete parameter values, and to discuss
pitfalls that can occur in the training. This paper is struc-
tured as follows. The basic concept of mixture density net-
works is introduced and the application to likelihood estima-
tion is discussed. Potential biases in the network training are
explained, and procedures to mitigate them are proposed, in
the context of specific examples. The performance of trained
MDNs is demonstrated. Finally, limitations of the technique
and avenues for future improvement are discussed.

2 Mixture density networks as likelihood approximators

A mixture density network is a neural network where the
output is a set of parameters of a function, defined to be a
properly normalized PDF. The outputs of the MDN can be,
for example, the mean, width, and relative contributions of
a (fixed) number of Gaussian distributions. But, generally
speaking, the goal of MDN usage is to obtain an estimate of
a posterior density function p (θ |x) of a data set that includes
parameters θ and observations x.

The MDN represents the target posterior density with a
weighted sum of n generic basis PDF functions Bn ,

p̃ (θ |x;Z) =
n∑

i=1

ci (x) · Bi (θ; zi (x)), (1)

where ci (x) and zi (x) are the x-dependent coefficients and
parameters of the basis functions, which are predicted by
the network, and Z = {ci } ∪ {zi } is shorthand to repre-
sent all of the coefficients of the learned model. Typically,
the conditions ci ∈ [0, 1] and

∑
i ci = 1 are imposed, for

example through the softmax function. In principle, the basis
functions can be any set of basis PDFs. A useful choice
for many applications is a mixture of n Gaussian functions.
(Since we are estimating a posterior density function of a

continuous parameter, we might expect a minimum in the
negative logarithm of this function. The minimum would
be quadratic to leading order, making Gaussians a natural
choice for PDF basis functions.) For that choice, the neural
network’s output is a set of 3n − 1 independent coefficients
Z (x) = {ci (x) , μi (x) , σi (x)} (with one softmax normal-
ization condition).

To train the network, in each epoch, the output function
of the network p̃ (θ |x;Z) is evaluated for each point in the
training data set

{(
θ j , x j

)}
. The cost function,

C (Z) = − log

⎡

⎣
m∏

j=0

p̃
(
θ j |x j ;Z

(
x j

))
⎤

⎦ , (2)

is the negative logarithm of the product of these values. The
error is backpropagated through the network in the standard
way, and the cost is minimized to determine the ideal coeffi-
cients,

Ẑ = arg maxZ {C (Z)} . (3)

From the physics standpoint of parameter estimation with
discretized data, we are not actually interested in using the
network to model the true posterior density, as one might
typically do in MDN applications. (With discrete training
samples, the true posterior of the training data set involves
delta functions at the various values of θ where each template

lies.) Instead, we convert p̃
(
θ |x; Ẑ

)
created by the MDN

into an estimate of the likelihood function L(θ |x). Using
Bayes’ theorem,

L(θ |x) = p̃
(
x|θ; Ẑ

)
=

p̃
(
θ |x; Ẑ

)
p (x)

p (θ)
. (4)

Notably, in the mindset of estimating some parameters θ , as
long we ensure a flat prior p (θ), the likelihood that we seek
and the posterior density which is output by the trained MDN
differ only by an irrelevant multiplicative factor – the prior
p (x), which is determined by the entire training set, and does
not depend on θ .

In order for the MDN to effectively interpolate, it is impor-
tant that there not be too much freedom in the MDN output.
For example, suppose there were an equal number of train-
ing templates and Gaussian components in p̃ (θ |x). The net-
work could then essentially collapse the Gaussian functions
to delta functions at each template θ value and reduce the
cost function without limit. As long as the observed values
x can reasonably be produced by multiple values of θ , and
the number of basis functions in the MDN is kept reasonably
low, the MDN will naturally be forced to interpolate between
parameter points, as desired for estimating L (θ |x).

123

Eur. Phys. J. C (2021) 81 :662 Page 3 of 9 662

Fig. 1 For some applications, training data are only available at dis-
crete values of θ (e.g. at each of the red markers). For every example
discussed here, the training samples consist of 10 template data sets
with parameter θ equally spaced between 0 and 1

3 Density of parameter points

The application of Bayes’ theorem in Eq. (4) involves p(θ),
and simplifies if p(θ) can be assumed to be flat. To ensure
this condition, the locations of the templates in parameter
space should be chosen to ensure an equal density of training
points across the entire range.

This first requires that the templates must be equally dis-
tributed in the parameter space. Otherwise, the density of
training points would be non-constant, implying a non-flat
p (θ). This would bias the network.

Secondly, this necessitates that the parameter range extend
slightly outside of the range of the templates in parame-
ter space. For example, suppose we have one parameter
θ and the parameter range is selected as θ ∈ [0, 1], and
10 templates are to be used. To ensure equal and unbiased
coverage of the parameter range, they should be placed at
θ = 0.05, 0.15, . . . , 0.95, as shown in Fig. 1. If the extra
gaps (from 0 to 0.05 and from 0.95 to 1) are not included
at the edges (for example, if eleven templates were used, at
θ = 0, 0.1, . . . , 1), then the density of training data is higher
at the extremal values of θ , again creating a non-flat p (θ)

and a bias in the training.
Essentially, the templates’ parameter values should lie at

the centers of equal-width histogram bins that extend from
the lowest to highest values of θ . Note that, in Fig. 1, each θ

bin has an equal amount of training data. This condition can
be generalized to multidimensional parameter spaces.

4 PDF normalization

Another issue arises with respect to the normalization of the
MDN output. The MDN’s output posterior p̃ (θ |x;Z) might
not be constructed with any knowledge of the range of param-
eters θ in the training set. For example, Gaussian basis func-
tions have infinite support and therefore will always predict
a non-zero posterior density outside the range of the train-
ing data. Proper training of an MDN requires that the output
posterior density be properly normalized across the selected
range of θ for MDN training to work properly. If this is not
done, parameter values near the edges of the range will be
penalized because the posterior predicts parameter values to

occur outside of the range, and these are never encountered
in the training data.

For a one-dimensional parameter θ ∈ [θmin, θmax], one
must require that

∫ θmax

θmin

p (θ |x) dθ = 1.

This constraint can be achieved by dividing MDN’s predicted
posterior density by the integral of the posterior density over
the parameter range. Since, during training, the posterior den-
sity is never evaluated outside of this range, this results in the
proper normalization.

Practically speaking, it is easier to apply this renormal-
ization procedure for each function Bi than to do it on the
sum. This has the benefit that the condition

∑
i ci = 1 is still

valid. In the one-dimensional parameter case, if the cumula-
tive distribution function (CDF) is available,

Bi (θ; zi) = PDF (θ; zi)
CDF (θmax; zi) − CDF (θmin; zi) .

This effect is not specific to training with discrete parameter
choices, and will generally occur in regions where observed
data could be compatible with parameters outside the training
range.

5 Edge bias from training on templates

We now discuss a bias which arises from the discreteness of
the input parameter values. As discussed in the previous sec-
tions, in order to achieve a flat p(θ), we need to consider the
input range of parameters θ to be broader than just the range
where training data are located. However the cost function is
only evaluated on the training data, and so the optimizer can
“cheat” by overpredicting values of θ that are compatible
with a broad range of observations, while underpredicting
extremal values of θ that are not represented in the train-
ing data. The symptom of this is that the probability density
p̃ (x|θ) implied by the MDN output posterior p̃ (θ |x),

p̃ (x|θ) = p̃ (θ |x) p (x)
p (θ)

,

when integrated over data x, does not integrate to one for all
values of θ (as one would expect for a properly normalized
density function). Rather, it is smaller than one at extremal
values of θ and greater than one in the interior of the range.

The size of this effect depends on how much the templates
overlap. Figure 2 shows examples of distributions which will
demonstrate negligible and extreme bias.

123

662 Page 4 of 9 Eur. Phys. J. C (2021) 81 :662

Fig. 2 Examples of templates (training data for discrete parameter val-
ues) of an observable x for different values of a parameter θ . When the
observable templates are distinguishable (left), the edge bias (see text) is
negligible. When the templates are harder to distinguish over the range
of θ (right), the correction for the edge bias is critical

5.1 Demonstration with functional fit

It should be emphasized that the observed edge bias is not
unique to the mixture density network method. Rather, it
is simply a result of minimizing the cost function Eq. (2)
composed of the posterior density p (θ |x) for a finite number
of templates. To illustrate this, we will show the existence and
correction of the bias in a simple functional fit.

Consider a statistical model which, given some parameter
value θ ∈ [0, 1], produces a Gaussian distribution of x , a
univariate variable: this could correspond to a “true” value
θ and an “observed” value x which is subject to resolution
effects. For this example, we choose the distribution

p(x |θ) = 1√
2πσ

exp

(
−1

2

(
x − θ

σ

)2
)

, (5)

with σ = 4. We choose 10 equally-spaced values of θ

between 0 and 1 at which to sample the model to generate
training points. Since the width of each template σ is much
broader than the total range of θ , the 10 templates are not very
distinguishable from one another. A few of the templates are
shown on the right-hand side of Fig. 2.

Next, we attempt to reconstruct the joint probability dis-
tribution p(x, θ) by performing an unbinned maximum like-
lihood fit of a three-parameter function to the generated data,

f (x, θ;μm, μb, σ) = A exp

(
−1

2

(
x − (μmθ + μb)

σ

)2
)

,

where A is a normalization factor. The best-fit values of the
function parameters are not the ones used to generate the
data.

To understand the source of the problem, it is helpful to
consider the joint probability density, which is visualized in
Fig. 3. We know the “true” value we want to reproduce, which

Fig. 3 Joint PDFs for the example described in Sect. 5.1. The “true”
joint PDF is shown in black. Fitting to the training dataset with dis-
crete parameter values results in the blue PDF, which is different from
the desired form. Adding additional constraints to the fit requiring∫
p(x |θ) dx to be 1 at θ = 0 and θ = 1 yields the orange dashed

line PDF instead, which is a good approximation of the true distribu-
tion

is the product of the distribution p(x |θ) in Eq. (5) with a flat
prior p(θ) = 1 on the range θ ∈ [0, 1]. We can then overlay
f̂ (x, θ) given by the best-fit values of μm , μb, and σ . We
see that the overall shapes of the two are similar, but f̂ (x, θ)

is more concentrated at intermediate values of θ . Integrating
along vertical lines, the value

∫
f̂ (x |θ = 0) dx is clearly

less than
∫

f̂ (x |θ = 0.5) dx , while the values
∫
p(x |θ) dx

are constant for all θ . While maintaining the total probability
in the joint PDF constant, the fit to f has recognized that a
better value of the likelihood can be achieved by removing
probability from the regions near θ = 0 and θ = 1 (where
there are no data points to enter the likelihood computation)
and placing that likelihood near θ = 0.5, a parameter value
that is consistent with almost all values of x . In other words,
the function f̂ is not consistent with the presumption of a flat
prior p(θ).

Having seen this, we can now propose a solution: we
require the fit to minimize the cost in Eq. (2) while also
satisfying the following constraint:

∫ ∞

−∞
p

(
θ j , x

)
dx = 1 ∀ θ j ∈ [0, 1] . (6)

This constraint prevents the optimizer from improving the
cost function by implicitly modifying p(θ). In practice, the
constraint is applied for a few values of θ , for example
θ = 0, 0.5, 1, as this was seen to be enough to correct the bias.
In this case, the smoothness of the functional forms forced
the constraint to apply everywhere. Applying this constraint,
we redo the fit. The best-fit parameters obtained – the bottom
row of Table 1 – are now consistent with the true values used

123

Eur. Phys. J. C (2021) 81 :662 Page 5 of 9 662

Table 1 The maximum likelihood estimators for the parameters of the
function f , when determined using discrete parameter inputs, do not
match the intended model parameters due to edge effects. Adding a
constraint during likelihood optimization resolves this, and the results
are consistent with the desired values

μm μb σ

True values 1 0 4

max{L} 0.17 0.41 1.65

Unbiased 1.03 −0.02 3.99

Fig. 4 Four of the ten template histograms used as training data for
the single-input MDN of Sect. 5.2

to generate the data. Accordingly, the joint PDF of the con-
strained fit (in Fig. 3) shows no bias towards θ = 0.5. Any
remaining disagreement is attributable to statistical fluctua-
tions in the estimation of p(x) from the finite data set.

5.2 MDN with one observable

Now we will demonstrate how this correction is applied with
a mixture density network. We construct a neural network
using PyTorch [8] with a single input x , and outputs which
are parameters of a function p̃ (θ |x) which estimates the like-
lihood L (θ |x). (See Sect. 2 for details.) There is a single
hidden layer with an adjustable number of nodes. Because of
the intentional simplicity of these data, the number of nodes
in this hidden layer was generally kept between 2 and 5, and
we model the posterior density with just a single Gaussian
function. Therefore, the two output nodes of the network are
just the mean and standard deviation of this function.1

A large number of x values were generated at each of 10
equally-spaced discrete values of θ from Gaussian distribu-

1 To avoid ambiguity, it is common practice in MDN applications that
the output node corresponding to the Gaussian’s σ is actually log (σ),
and the exponential of this node’s value is used to calculate the loss.
This action effectively forces σ > 0.

Fig. 5 Parameters of the posterior density functions predicted by the
MDNs of Sect. 5.2 for various values of the input x . Without correction,
the network will underestimate the width of the posterior density, and
predict a maximum-likelihood θ value biased towards the middle of the
sampled rang

tions with μ = θ and σ = 1 (see Fig. 4). The network is
trained by minimizing the cost function described in Sect. 2.
At each epoch, the cost is backpropagated through the net-
work, and the Adam minimizer [9] is used to adjust the net-
work parameters. We find that this produces biased results.
Due to the construction of the training data, we expect that
the MDN should predict that p̃ (θ |x) is a truncated Gaus-
sian (nonzero only on the range θ ∈ [0, 1]) with μ = x and
σ = 1. In Fig. 5, the MDN output from the naive training for
input values of x are shown; we see that the network under-
estimates the width of the posterior density and biases the
mean towards 0.5.

5.2.1 1D network correction and validation

The cost function of the network is then modified by adding
an extra term,

C → C + λS, (7)

where

S = std.

{∫ ∞

−∞
p̃

(
θ j , x

)
dx

}
, (8)

for some set of parameter values θ j . With respect to Fig. 3,
this extra term is the standard deviation of integrals of the
joint probability p̃ (x, θ) along vertical slices in θ . This term
ensures that these integrals are all the same, thus ensuring that
p(x |θ) remains constant for any value of θ , discouraging a
bias towards intermediate values of θ . The joint probability,

p̃(θ, x) = p̃(θ |x)p(x),

is estimated from the product of the MDN output and the
probability distribution over the training sample, which is
estimated using histograms.

123

662 Page 6 of 9 Eur. Phys. J. C (2021) 81 :662

Fig. 6 For a fixed value of the parameter θ = 0.2, three xi values are
generated. The posteriors p̃i (θ |xi) are obtained from the output of the
trained MDN of Sect. 5.2. The maximum likelihood estimator θML is
extracted from the product of these posteriors according to Eq. (10) and
shows a result statistically compatible with the expected value of 0.2.
(For visualization, all functions are offset to have a minimum of 0)

The new hyperparameter λ is tuned to balance the effec-
tiveness of the additional term while avoiding the introduc-
tion of numerical instability into the minimization. In prac-
tice, its value during the training is initially set to zero, allow-
ing the network to first loosely learn the posterior. Then, in
a second step of the training, its value is increased so that
the values of the two terms in Eq. 7 are approximately equal.
With this new cost function, the outputs of the neural network
– the coefficients of the Gaussian posterior density function
– correctly match expectations, as seen in Fig. 5.

Next, we demonstrate the ability of the network to recon-
struct the underlying parameter θ given a set of observations.
Each measurement of the quantity x will be denoted xi . For
each xi , the trained network outputs an estimate of the pos-
terior function p̃i (θ |xi). To calculate the combined cost of
an entire set of measurements, {xi }, we take the negative
logarithm of the product of the individual posteriors,

C (θ | {xi }) = − log

[
∏

i

p̃i (θ |xi)
]

. (9)

The maximum likelihood estimator is defined as

θML = arg min
θ∈[0,1]

{C (θ | {xi })} . (10)

A likelihood-ratio test can be used to determine the statistical
uncertainty of the estimator θML. An example of the functions
generated for this trained network is given in Fig. 6.

To test the accuracy and precision of the network, we
choose 20 equally-spaced test θt values in the range [0, 1].
For each θt , we generate a set of 10,000 measurements {xi }.

Fig. 7 Comparison of the true value of the parameter θ and the MLE
estimate determined for a dataset generated at that θ over the range
θ ∈ [0, 1]. The errors shown are those obtained by applying Wilks’
theorem to the posterior density. No bias is observed and the error
estimates meet expectations

The pseudodata is passed though the network for each θt , the
posterior density functions calculated, and a θML is found.
The uncertainty in θML is estimated using Wilks’ theorem
[10] (searching for values of θ that increase C by 0.5). If
the network is accurate and unbiased, we should find statisti-
cal agreement between θt and θML. Indeed, we found this to
be true with χ2/d.o.f. = 0.92. The results for the unbiased
network are shown in Fig. 7.

5.3 Demonstration with 2D network

Next, we consider a more advanced usage of MDNs. We
consider a system with two inputs, x = (x1, x2). The value of
x1 is sensitive to an underlying parameter θ , but only for small
values of x2; when x2 is large, there is no sensitivity. This
is chosen to demonstrate how this neural network technique
can be an advantageous approach to parameter estimation:
the MDN will automatically learn when observables offer
meaningful information on parameters and when they do not.

5.3.1 2D toy model

The model used to generate 2D pseudodata comprises two
components. The first is events with a small x2 value. These
events have an x1 value which depends on the unknown
parameter θ . In the toy model, this component is modeled
by a Gaussian in x1. The mean of this Gaussian varies with
θ . In x2, it is modeled by a Gaussian with a (lower) mean of
1.

123

Eur. Phys. J. C (2021) 81 :662 Page 7 of 9 662

Fig. 8 Examples of PDFs (solid lines) and generated sample points
(translucent circles) for different values of θ for the model of Sect. 5.3

In the other component, the value of x2 is large, and the
x1 value is not related to the unknown parameter. This com-
ponent is modeled with a Gamma distribution in x1, and a
Gaussian with a (higher) mean of 3 in x2. The relative fraction
of the two components is the final model parameter.

Written out, the 2D PDF takes the form

p (x1, x2|θ) = f · pa (x1, x2|θ) + (1 − f) · pb (x1, x2) ,

where

pa (x1, x2|θ) = N (x1;μa1 (θ) , σa1) · N (x2;μa2, σa2)

pb (x1, x2) = � (x1;μb1, α, β) · N (x2;μb2, σb2) .

This PDF is shown for the two extremal values of θ in Fig. 8.

5.3.2 2D network structure, correction, and validation

The network is built in the following manner. First, we note
that there are two inputs. Accordingly, there will be two input
nodes. Next, one should note from the contours of p (x1, x2)

in Fig. 8, for a sample x with large x2, the value of x1 has
no predictive power of θ . Restated simply, the red and blue
contours overlap entirely on the upper half of the plot. How-
ever, for small values of x2, the x1 variable can distinguish
different values of θ ; the red and blue contours are separated
on the lower half of the plot. Two hidden layers are used. The
output of the network is the coefficients of a mixture of Gaus-
sian distributions. The number of Gaussians in the mixture
is a hyperparameter which may be tuned to best match the
particular structure of some data. In this example, the data
are bimodal, so it is reasonable to expect two Gaussians to be
expected. It was confirmed by trial-and-error that a mixture
of two Gaussians was adequate to model these data, since
it produced the correct linear response in the validation of

Fig. 9 Posterior densities predicted by the trained MDN for three pos-
sible observations in the model of Sect. 5.3. When x2 is small (blue and
green curves), the value of x1 gives sensitivity to the model parameter
θ . When x2 is large (orange curve), there is very little sensitivity to θ

and the posterior is flat. (For visualization, all functions are offset to
have a minimum of 0)

the network. Therefore, for this network, there are six output
nodes (with one normalization constraint) for a total of five
independent values. The correction term presented in Eq. (7)
is applied as well. To do this, p(x) is estimated using a 2D
histogram. It is then multiplied by the MDN output posterior
p̃ (θ |x) to obtain the joint probability p̃ (θ, x). Finally, the
integrals in Eq. (8) are calculated. The training data consist
of 100,000 samples generated according to p (x1, x2|θ) at
each of 10 equally-spaced discrete values of θ .

Figure 9 demonstrates that the trained network is able to
learn that the sensitivity of individual observations to the
value of the model parameter θ varies with x2; the predicted
posterior density is much flatter in regions where all param-
eter values give similar distributions.

To validate the network’s performance, we generate test
data sets {xi } for various test parameter values θt . As in the
one observable case of Sect. 5.2, each point xi is passed
through the network and a function p̃i (θ |xi) is calculated. We
then find the maximum likelihood estimator of θ . An accu-
rate network should, within statistical uncertainty, reproduce
the line θML = θt . Indeed, Fig. 10 shows that the network
is accurate and unbiased, and that it provides a reasonable
uncertainty estimate.

6 Method limitations

In the previous section, we have demonstrated necessary cor-
rections for networks taking one or two values for each obser-
vation. In principle, this method could work with an arbitrar-
ily high number of input observables. However, the current
correction technique has a curse-of-dimensionality problem

123

662 Page 8 of 9 Eur. Phys. J. C (2021) 81 :662

Fig. 10 Maximum likelihood estimator for parameter value θML, and
associated statistical uncertainties estimated using Wilks’ theorem, for
samples generated at various values of true θ . No bias is observed and
the error estimation works well

in that computing the correction term S defined in Eq. (8)
requires an estimate of p(x) over the full training data set.
When determined using histograms with m bins per axis, N
observables will require an mN -bin histogram to be reason-
ably well populated. Other techniques such as generic kernel
density estimation [11] or k-nearest neighbors run into the
same issues eventually, although at differing rates, and the
best option should be explored in each specific situation.
The dimensionality issue is alleviated somewhat by the fact
that only one function (p(x) over the entire training dataset)
needs to be estimated, unlike methods which need to generate
templates separately at each generated parameter point.

Another limitation concerns the spacing of training points.
While we have demonstrated that MDNs can be trained with
discrete templates of data and still interpolate properly to the
full continuous parameter space, it has been necessary to use
templates from parameters which are uniformly distributed,
to enforce that p(θ) is flat. If the parameter values are not
equally spaced, this would correspond to a non-flat p(θ). In
principle, weights could be used during training to correct for
this effect, but reconstructing p(θ) from the distribution of θ

is a density estimation problem and it is not clear if there is
an optimal estimation method for the required p(θ) if there
are only a limited number of θ available. This is an area for
future investigation.

7 Conclusions

Mixture density networks can output posterior density func-
tions which robustly approximate likelihood functions and

enable the estimation of parameters from data, even if the
training data is only available at discrete values. This method
permits one to proceed directly from (possibly multiple)
observables to a likelihood function without having to per-
form the intermediate step of creating a statistical model for
the observables, as would be required by many parameter
estimation techniques. The MDN technique can be applied
even with training data that provide a discrete set of parameter
points, provided that the points are spaced evenly and certain
corrections and constraints are applied during the training of
the network.

An introductory tutorial has been implemented in a
Jupyter Notebook and made public [12].

Acknowledgements This work was supported by the US Department
of Energy, Office of Science, Office of High Energy Physics, under
Award number DE-SC0007890.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: There are no
external data associated with the manuscript.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. J. Brehmer, K. Cranmer, G. Louppe, J. Pavez, Phys. Rev. D 98(5),
052004 (2018). https://doi.org/10.1103/PhysRevD.98.052004

2. F. Flesher, K. Fraser, C. Hutchison, B. Ostdiek, M.D. Schwartz,
Parameter inference from event ensembles and the top-quark mass
(2020)

3. A. Andreassen, S.C. Hsu, B. Nachman, N. Suaysom, A. Suresh,
Phys. Rev. D 103(3), 036001 (2021). https://doi.org/10.1103/
PhysRevD.103.036001

4. M. Baak, S. Gadatsch, R. Harrington, W. Verkerke, Nucl. Instrum.
Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip.
771, 39–48 (2015). https://doi.org/10.1016/j.nima.2014.10.033

5. K. Cranmer, G. Lewis, L. Moneta, A. Shibata, W. Verkerke,
HistFactory: a tool for creating statistical models for use with
RooFit and RooStats. Technical Report. CERN-OPEN-2012-016,
New York University, New York (2012). https://cds.cern.ch/record/
1456844

6. A.L. Read, Nucl. Instrum. Methods A 425, 357 (1999). https://doi.
org/10.1016/S0168-9002(98)01347-3

7. C.M. Bishop, Mixture density networks. Aston University Neural
Computing Research Group Report NCRG/94/004 (1994)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.98.052004
https://doi.org/10.1103/PhysRevD.103.036001
https://doi.org/10.1103/PhysRevD.103.036001
https://doi.org/10.1016/j.nima.2014.10.033
https://cds.cern.ch/record/1456844
https://cds.cern.ch/record/1456844
https://doi.org/10.1016/S0168-9002(98)01347-3
https://doi.org/10.1016/S0168-9002(98)01347-3

Eur. Phys. J. C (2021) 81 :662 Page 9 of 9 662

8. A. Paszke et al., in Advances in Neural Information Processing
Systems, vol. 32 (Curran Associates, Inc., Red Hook, 2019), pp.
8024–8035

9. D. Kingma, J. Ba, Adam: a method for stochastic optimization. Int
Conf. Learn. Representations (2014)

10. S.S. Wilks, Ann. Math. Stat. 9(1), 60 (1938). https://doi.org/10.
1214/aoms/1177732360

11. E. Parzen, Ann. Math. Stat. 33(3), 1065 (1962). https://doi.org/10.
1214/aoms/1177704472

12. C.D. Burton, Mdn_likelihood_tutorial. https://doi.org/10.5281/
zenodo.5061425

123

https://doi.org/10.1214/aoms/1177732360
https://doi.org/10.1214/aoms/1177732360
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.5281/zenodo.5061425
https://doi.org/10.5281/zenodo.5061425

	Mixture density network estimation of continuous variable maximum likelihood using discrete training samples
	Abstract
	1 Introduction
	2 Mixture density networks as likelihood approximators
	3 Density of parameter points
	4 PDF normalization
	5 Edge bias from training on templates
	5.1 Demonstration with functional fit
	5.2 MDN with one observable
	5.2.1 1D network correction and validation

	5.3 Demonstration with 2D network
	5.3.1 2D toy model
	5.3.2 2D network structure, correction, and validation

	6 Method limitations
	7 Conclusions
	Acknowledgements
	References

