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Abstract Using computer simulations, we study the geom-
etry of a typical quantum universe, i.e., the geometry one
might expect before a possible period of inflation. We dis-
play it using coordinates defined by means of four classical
scalar fields satisfying the Laplace equation with nontriv-
ial boundary conditions. They are a close analogue of the
harmonic coordinate condition used in the context of GR
(Kuchar and Torre in Phys Rev D 43:419–441, 1991). It is
highly nontrivial that these ideas can be applied to under-
stand the structures which appear in very irregular and fluc-
tuating geometries. The field configurations reveal cosmic
web structures surprisingly similar to the ones observed in
the present-day universe.

1 Introduction

One major unsolved problem in theoretical physics is how to
unite the theory of general relativity and quantum mechan-
ics. It is hoped that such a unification will allow us to under-
stand physics at the Planck scale, where the assumed quantum
nature of gravity most likely plays a dominant role. Further-
more, the idea of an inflationary period in the history of our
Universe has taught us that these quantum fluctuations at or
near the Planck scale can, owing to an exponential growth of
the size of the Universe, freeze and be expanded into the seeds
of macroscopic large-scale structures. Results presented in
this article suggest that the scenario of cosmic filaments and
voids that we observe in the Universe today might have its
source at the very early stage of cosmic evolution of quantum
geometric degrees of freedom.
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2 Lattice quantum universes

To discuss universes of the size of a few Planck lengths
and their fluctuating quantum geometry, one needs a non-
perturbative model of quantum gravity. We will discuss here
a particular model called Causal Dynamical Triangulations
(abbreviated to CDT; see [2,3] for a comprehensive intro-
duction and an explanation of its somewhat technical name),
but we believe that our results are generic and will be present
in any reasonable quantum model of gravity. In CDT, space-
time is a triangulation built by joining together fixed-size
four-dimensional simplices in a way that satisfies certain
topological requirements. The edge length ε of the four-
simplices acts as an ultraviolet (UV) cutoff. Its choice also
fixes the geometry of a triangulation. The way in which sim-
plicial building blocks are connected codes the information
about the curvature of the particular configuration. A natural
geometric way of calculating the classical Einstein-Hilbert
action on such piecewise linear manifolds leads to the so-
called Regge action. The lattice regularized path integral of
quantum gravity is then given by

ZQG =
∫

DMH [gL ] ei SEH [gL ] →
∑

TE∈TE

e−SR [TE ], (1)

where MH is a globally defined hyperbolic Lorentzian man-
ifold and DMH [gL ] denotes the integration over equivalence
classes [gL ] of Lorentzian metrics on MH . TE is a suit-
able set of Wick-rotated Euclidean triangulations. The Regge
action SR[TE ] for a triangulation TE ∈ TE contains the
bare couplings related to the cosmological and Newton con-
stants. In principle, we want to adjust the bare coupling con-
stants such that we can take the UV cutoff ε to zero while
keeping the physics unchanged (see [4] for a recent review).
In accordance with the imposed global hyperbolicity, CDT
introduces a time foliation of the four-dimensional manifolds
into three-dimensional leaves, which are three-dimensional
spatial sub-manifolds with a global time t and a fixed topol-
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ogy. The explicit CDT construction permits a Wick rota-
tion of the time coordinate t (still denoted t), whereby CDT
becomes a statistical model that can be studied using Monte-
Carlo simulations. Each configuration obtained in the simu-
lations can be viewed as the quantum evolution of a three-
dimensional quantum geometric state in the imaginary time.
This allows us inter alia, to measure the time dependence
of some global quantities such as the spatial volume. It was
shown [5–12] that, for suitable choices of the bare coupling
constants, both the average spatial volume and its fluctua-
tions can, with a large degree of accuracy, be described by
the Hartle–Hawking minisuperspace model, which assumes
isotropy and homogeneity of the Universe such that the only
dynamical variable is the scale factor a(t). It should be
emphasized that the isotropy and homogeneity are not put in
by hand in CDT but follow from integrating out all degrees of
freedom other than the scale factor, and the typical geometries
encountered in the quantum path integral are not at all close
to the classical homogeneous solution of GR. The approx-
imate agreement with the classical minisuperspace solution
is obtained from an average of an ensemble of highly fluctu-
ating geometric states and is caused by a nontrivial interplay
between the physical action and the entropy of configura-
tions.

The CDT model is background independent and, in the
spatial directions, coordinate free. There is no background
geometry in the definition of the path integral. Geometric
information provided by the model is local, in the form of the
neighborhood relations between the elements of the geom-
etry. We may determine the geodesic distance between the
simplices, but capturing the global properties of the system
without a good choice of coordinates is difficult [13–15]. It is
not a priori clear if such a choice is at all possible for a locally
highly fluctuating geometry. Below we will show that such a
choice is not only possible but can also give us a much better
understanding of the structures present in quantum geometric
configurations.

3 Boundary conditions

We will now consider a version of CDT where the piece-
wise linear manifolds are periodic both in time and space
directions. Such a toroidal topology can be viewed as being
extended to an infinite four-dimensional space, in which a
four-dimensional elementary cell, bounded by a set of four
independent non-contractible three-dimensional boundaries
is periodically repeated in all directions. These boundaries
are not physical entities, are not unique, and can be locally
deformed as long as they still form an elementary cell, and
yet they can serve as a reference frame for a coordinate sys-
tem on a given triangulation. The nontrivial fractal structure
of the encountered geometries makes it difficult to introduce

spatial coordinates in a chosen elementary cell in a construc-
tive geometric way, using only the geodesic distance from
a boundary. Below we will introduce an alternative method,
where four massless classical scalar fields, which satisfy the
Laplace equation with nontrivial boundary conditions will
be used to fully parametrize the fractal geometry. In the case
discussed in this paper, the fields depend on the geometry,
but they do not modify it, providing us, for each configura-
tion, with a system of external coordinates. One can say that
they act as a microscope which uncovers the complicated
four-dimensional structure of density fluctuations. Even for
a configuration with a very irregular geometry, such fields
allow us to define periodic pseudo-continuous coordinates
and provide generalized foliations in all space-time direc-
tions. Consequently, it becomes possible to visualize and
measure multidimensional correlations in all directions. As
will be reported below, what we see is a quantum universe
which seems surprisingly similar to our present day macro-
scopic universe.

3.1 Scalar fields as coordinates with values on S1

We want to find nontrivial harmonic maps between two Rie-
mannian manifolds M (gμν) → N (hαβ), where gμν is an
arbitrary metric and hαβ is a flat one. If N has the topol-
ogy of T 4, then it can be defined by four scalar fields φα ,
α = 1, 2, 3, 4, where φα(x) is a map M → S1, such that
the following action is minimized:

SM [φ,M ] = 1

2

∫
d4x

√
g(x) gμν(x) hρσ (φγ (x))

×∂μφρ(x)∂νφ
σ (x)). (2)

Because we have chosen the trivial metric hρσ onN , Eq. (2)
splits up into four independent equations for the four scalar
fields φσ . Minimizing Eq. (2) leads to the set of Laplace
equations:

�xφ
σ (x) = 0, �x = 1√

g(x)
∂μ

√
g(x)gμν(x)∂ν. (3)

Thus φσ becomes a harmonic map M → (S1)4 preserving
a dependence of φσ on gμν . Let us consider a trivial one-
dimensional example. In this case, let M be S1 with a unit
circumference and a positive and strictly periodic density√
g(x). We want x → φ(x) to be a non-trivial map S1 → S1

such that φ can serve as a coordinate instead of x . One way
to implement this is to find a solution satisfying

φ(x + n) = φ(x) + nδ, (4)

which maps the circle with a unit circumference to a circle
with a circumference δ. The solution to the Laplace equation
in this case satisfies

dφ(x) = δ · √
g(x) dx . (5)
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By rescaling the field, we can always enforce δ = 1. The
solution φ(x) is fixed by picking x0 where φ(x0) = 0. The
map x → φ(x) becomes a monotonically increasing invert-
ible map in the whole domain R with the geometry peri-
odically repeated with the period δ. If we parametrize the
one-dimensional manifold M in terms of φ instead of x , we
will find the volume density in the range φ to φ+dφ to be pro-
portional to

√
g(x) dx , so that effectively g(φ) = 1. We can

also consider a function ψ(x) = mod(φ(x)−φ(x1), δ). This
function satisfies the Laplace equation in the range between
x1 (where ψ(x) = 0) and x1+1 (where ψ(x) = δ). The equa-
tion satisfied by ψ(x) becomes a Poisson equation with the
extra inhomogeneous local term, producing jumps at bound-
ary points x = x1 and x = x1 + 1. It can still be considered
to be a Laplace equation with a non-trivial boundary “jump”
condition. Generalizing this to M with the topology of T 4,
we want a solution to the Laplace Eq. (3) that wraps around
S1 in a particular direction once, and, in addition, we want
the points x in M that satisfy φσ (x) = c to form hypersur-
faces Hσ (c) whose union for c varying in a range of length
1 covers the whole M .

3.2 Classical scalar fields with a jump

In CDT, the four-dimensional manifolds are represented by
regular four-dimensional triangulations constructed by glu-
ing together four-simplices so that each face is shared by
exactly two simplices. Denote the number of four-simplices
in the triangulation by N4. Each triangulation we consider
is generated by a Monte Carlo simulation, using the CDT
partition function. We call such a generated triangulation a
configuration. For each configuration, we keep information
about the position of the four boundaries of the elementary
cell. This information is non-dynamical: it does not influ-
ence the Monte Carlo process. Each boundary is a connected
set of three-dimensional faces, each of which separates two
simplices, for instance, i and j , belonging to two neigh-
boring elementary cells. The connection i → j can have
either a positive or negative orientation, depending on the
direction in which we cross the boundary. The boundary
between the neighboring elementary cells in a direction σ

can be parametrized by the N4 × N4 anti-symmetric matrix
Bσ
i j = −Bσ

j i with the elements

Bσ
i j =

{
±1 if i → j crosses the boundary,

0 otherwise.
(6)

The number of directed boundary faces of a simplex i is given
by bσ

i = ∑
j B

σ
i j , with the obvious constraints −5 < bσ

i < 5
and

∑
i b

σ
i = 0. For any simplex i adjacent to a boundary, the

values Bσ
i j are all positive or zero (on one side of the bound-

ary), or all negative or zero (on the other side). We consider
four scalar fields φσ

i located in the centers of simplices and

solve the minimization problem for the following discrete
version of the continuous action in Eq. (2), for each field φσ

i :

SCDT
M [φσ , TE ] = 1

2

∑
i↔ j

(φσ
i − φσ

j − δBσ
i j )

2. (7)

The simplicity of the action does not mean that the geometric
information about the connections between simplices is lost.
Its form is purely a result of the fact that the system is built
from simplices with an equal size. In (7) the sum is over all
pairs of neighboring four-simplices in the triangulation TE
representing the manifold M (gμν) in Eq. (2). The parameter
δ plays the same role as in the one-dimensional example
considered previously, and here too, by rescaling the field,
we can always set δ = 1. The action (7) has two important
symmetries. The first one is the invariance under a constant
shift of the scalar field (the Laplacian zero mode). The second
is a local invariance under a modification of the boundaryBσ

i j
and a shift by ±1 (depending on the side of the boundary) of
the field value in a simplex i adjacent to the boundary. This
is equivalent to moving the simplex to the other side of the
boundary and compensating for the change of the field in its
center. After such a move, the number of faces belonging to
the boundary will in general be changed, but the action (7)
will remain constant. The classical field, henceforth denoted
as φσ

i , minimizes the action (7), and thus has to satisfy the
non-homogeneous Poisson-like equation

Lφσ = bσ , (8)

where L = 51−A is the N4 × N4 Laplacian matrix, and Ai j

is the adjacency matrix with entries of value 1 if simplices i
and j are neighbors and 0 otherwise. The Laplacian matrix L
has a constant zero mode but can be inverted if we fix a value
of the field φσ

i0
= 0 for an arbitrary simplex i0. Although L

is a sparse matrix, inverting it is a major numerical challenge
for a system typically of size N4 ≈ 106. After we neverthe-
less obtain the classical solution φσ , the multi-dimensional
analogue of the one-dimensional function ψ(x) is given by
ψσ
i :

ψσ
i = mod(φσ

i , 1). (9)

A new boundary is defined by b̄σ = Lψσ . This allows us
to reconstruct a new three-dimensional hypersurface H , sep-
arating the elementary cell from its copies in the direction
σ and characterized by the fact that the field jumps from 0
to 1 when crossing H . This hypersurface can be moved to
another position if we consider a family of hypersurfaces
H(ασ ) obtained from

ψσ
i (ασ ) = mod(φσ

i − ασ , 1), b̄σ (ασ ) = Lψσ (ασ ).

(10)

Changing 0 ≤ ασ < 1, we shift the position of the
hypersurface and cover the whole elementary cell defined
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Fig. 1 The projection of four-volume on the xy-plane, as defined by
(11) for a CDT configuration. Different colors correspond to different
times t of the original t-foliation

by the boundary (10), and in this way we obtain a folia-
tion in the direction σ . We may now use ψσ

i = ψσ
i (0) as

a coordinate in the σ -direction. The same construction can
be repeated in all directions σ ∈ {x, y, z, t} for any con-
figuration obtained in the numerical simulations, and in this
way every simplex i will be assigned a unique set of coor-
dinates {ψ x

i , ψ
y
i , ψ z

i , ψ
t
i }, all in the range between 0 and 1.

A solution to the Laplace equation has the property that the
coordinates of each simplex are equal to the mean value of the
coordinates of its neighbors (up to the shift of the field at the
boundary), i.e., it preserves the triangulation structure. This
is the required map from our configuration with a topology of
T 4 to (S1)4 (which of course also has the topology T 4). Note
that the coordinate ψ t

i is not the same as the one coming from
the original foliation of the CDT model. The parametrization
defined above permits to analyze the distribution of the four-
volume (the number of simplices) contained in hypercubic
blocks with sizes {�ψ x

i ,�ψ
y
i ,�ψ z

i ,�ψ t
i }, which is equiv-

alent to measuring the integrated
√
g(ψ):

�N (ψ) = √
g(ψ)

∏
σ

�ψσ = N (ψ)
∏
σ

�ψσ . (11)

We can measure the full four-dimensional distribution
N (ψ). In Figs. 1 and 2 we show projections of the vol-
ume density distribution of a typical configuration on two-
dimensional parameter subspaces, the xy-plane and the t x-
plane respectively, integrating over the remaining two direc-
tions. One observes a remarkable pattern of voids and fil-
aments, which qualitatively looks quite similar to the pic-

Fig. 2 The projection of four-volume on the t x-plane for a CDT con-
figuration. There is a strong correlation between the original t-foliation
(color) and new time coordinate ψ t (horizontal axis)

tures of voids and filaments observed in our real Universe
(see e.g. [16]; the plots can be found on the web [17,18]).
Using the new coordinates, we observe a pattern of volume
concentrations in the spatial directions. The higher-density
domains tend to attract each other, forming denser clouds,
which survive in the imaginary time evolution in a quantum
trajectory (see Fig. 2). There seems to appear a sequence
of scales, characterizing a gradual condensation of gravita-
tionally interacting “objects”, but one should remember that
there is no matter in this system, only pure geometry, which
behaves as if quantum fluctuations could produce massive
interacting objects, somewhat analogous to dark matter. This
indicates that quantum geometric fluctuations are highly cor-
related, an effect which could not be easily analyzed without
introducing a global set of coordinates. Of course, we are
talking about quantum objects of Planckian size, but if a
more extended model exhibited inflation, one could imagine
that aspects of these objects would be frozen when entering
the horizon, like the standard Gaussian fluctuations in simple
inflationary models, and then would re-enter the horizon at a
later stage, after reheating, as classical densities.

4 Discussion

CDT presents us with a model of what we believe are generic
fluctuations of geometry at the Planck scale. We hope that
measurements of space-time correlations will allow us to
determine “experimentally” (i.e., using Monte Carlo data) the
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effective continuum action that governs our lattice model not
only in time, but also in spatial directions. The construction of
such an effective action will help us to understand if CDT is an
UV-complete quantum field theory of gravity, as imagined in
the so-called asymptotic safety scenario, or only an effective
quantum theory of geometries.
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