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Abstract The connection between gauge and Higgs sec-
tors makes supersymmetric extensions of the Standard Model
predictive frameworks for the derivation of Higgs masses. In
this paper, we study the contamination of such predictions by
field-renormalization constants, in the MSSM with two-loop
gaugeless corrections of O(αt,b αs, α2

t,b

)
and full momen-

tum dependence, and demonstrate how strict perturbative
expansions allow to systematically neutralize the dependence
on such unphysical objects. On the other hand, the popu-
lar procedure consisting in an iterative pole search remains
explicitly dependent on field counterterms. We then analyze
the magnitude of the intrinsic uncertainty that this feature
implies for the iterative method, both in non-degenerate and
near-degenerate regimes, and conclude that this strategy does
not improve on the predictions of the more straightforward
expansion. We also discuss several features related to the
inclusion of the orders αt,b αs and α2

t,b in the so-called ‘fixed-
order’ approach, such as the resummation of UV-logarithms
for heavy supersymmetric spectra.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Inclusion of 2L corrections to the Higgs mass observ-

ables . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Invariance under field-renormalization . . . . . 3
2.2 Non-degenerate case . . . . . . . . . . . . . . 4
2.3 Degenerate case . . . . . . . . . . . . . . . . . 5

3 Field-dependence in the mass predictions for a non-
degenerate scenario . . . . . . . . . . . . . . . . . . 7
3.1 Preliminary considerations . . . . . . . . . . . 7
3.2 Corrections of O(αq αs) . . . . . . . . . . . . 9
3.3 Corrections of O(α2

q

)
. . . . . . . . . . . . . . 13

a e-mail: florian.domingo@csic.es
b e-mail: passehr@physik.rwth-aachen.de (corresponding author)

4 Field-dependence in the mass predictions in near-
degenerate scenarios . . . . . . . . . . . . . . . . . 17
4.1 CP-violating mixing between heavy states . . . 17
4.2 CP-conserving mixing with the SM-like Higgs 19
4.3 Three-state mixing . . . . . . . . . . . . . . . 21

5 Resummation of UV-logarithms ofO(αq , αq αs, α2
q

)

and field dependence . . . . . . . . . . . . . . . . . 22
6 Conclusions . . . . . . . . . . . . . . . . . . . . . 29
A Scattering by scalar resonances and propagator matrix 30

A.1 General considerations . . . . . . . . . . . . . 30
A.2 Propagator matrix in perturbative QFT at 2L order 31
A.3 Vertex corrections in perturbative QFT at 1L order 32

References . . . . . . . . . . . . . . . . . . . . . . . . 33

1 Introduction

The discovery of a Standard-Model (SM)-like Higgs boson
at the LHC [1–3] and the growingly precise measurements
of its characteristics [4–6] make the need for controlled the-
oretical predictions in the Higgs sector of models of new
physics quite clear, if one wishes to exploit associated observ-
ables and constrain the parameter space of beyond-the-SM
(BSM) theories. In many cases, such precision calculations
are difficult to conduct in the full model, e.g. due to the non-
perturbative nature of the theory, and can only be performed
in an effective context, in the limit of decouplingly heavy
new physics. While the absence of conclusive signs of BSM
physics at the LHC seems to justify the relevance of this type
of approach anyway, the case of supersymmetric (SUSY)
extensions of the SM [7,8] is still remarkable in that it pro-
vides a perturbative framework up to relatively high energies.

Discussions of radiative corrections in the SUSY Higgs
sector have a long-lasting history, of which the reader can
find a summary in the recent review [9]. In particular, the
higher-order contributions have a sizable impact on the mass
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of the SM-like state – which is automatically constrained
to take tree-level values of electroweak (EW) magnitude
and acquires sensitivity to new-physics scales via ultraviolet
(UV) logarithms. Recently, the KUTS initiative1 has stimu-
lated substantial advances in various related directions, such
as calculations at fixed order (FO) [11–32] or in the context of
low-energy Effective Field Theories (EFTs) [33–46], hybrid
approaches combining FO and EFT results [47–52], or the
development of public codes [53–59]. The two-loop (2L)
corrections to the SM-like Higgs mass of the MSSM – where
one-loop (1L) contributions are mostly ofO(αt )

2 – are domi-
nated by the contributions of order αt αs [11–14,60–63] and
α2
t [15–18,64–66] – this does not necessarily apply to the

other Higgs states of the model however.
Groups investigating the Higgs masses at FO in SUSY

models frequently turn to a procedure iterating on the
momentum that is injected in radiative corrections – see
e.g. Ref. [67] – under the belief such a numerical evaluation
of the self-energies at a value of the momentum closer to the
physical masses improve the precision of their calculation.
However, this assumption does not resist a careful investiga-
tion of the pieces introduced by this iterative method, which
are partial higher-order terms violating the expected physi-
cal properties of observable quantities, as we demonstrated
at 1L order (and occasionally 2L) in Ref. [68]: these pieces
indeed violate the EW symmetry in an uncontrolled fashion
(i.e. not through a Higgs vacuum-expectation value) and can
be numerically large, thus spoiling the precision of the calcu-
lation and making the inclusion of (controlled) radiative cor-
rections marginal. Another aspect is the explicit dependence
on the choice of field renormalization, i.e. on UV-logarithms
without quantitative meaning; this has already been recog-
nized in earlier works – see e.g. Ref. [67] – but dismissed
without closer investigation due to the higher-order nature
of this dependence – a formal argument actually irrelevant
in view of the numerical nature of the procedure. It is in
fact important to assess the numerical impact of variations
of the field counterterms in order to estimate the actual gain
in predictivity when incorporating radiative corrections in a

1 This initiative consists in a series of workshops (see the webpage
of Ref. [10]) designed to facilitate the exchange of information among
groups that are bent on computing radiative corrections to Higgs masses
in SUSY models.
2 By convention, we denote the considered classes of Feynman dia-
grams by the type of the involved couplings α f = Y 2

f

/
(4 π), αs =

g2
s

/
(4 π), and α = g2

EW

/
(4 π), where Y f is the Yukawa coupling of

fermion f , gs is the strong gauge coupling, and gEW is any of the elec-
troweak gauge couplings. In addition, we introduce αq ≡ αt,b when
considering corrections controlled by the Yukawa couplings of both
heavy quarks.

fashion that explicitly depends on the regularization proce-
dure.3

Alternatively, we showed in Ref. [68] how a strict expan-
sion and truncation order-after-order – a procedure rarely
employed in the literature, see e.g. Ref. [64] – can limit the
dependence on the field and gauge-fixing regulators and pro-
vide results where spurious symmetry-violating effects are
systematically neutralized. The purpose of the present paper
is to explain how this formalism can be extended to address
currently available 2L mass corrections (note that also a class
of 3L corrections is known, see Refs. [55,69–72], but their
inclusion goes beyond the purpose of our paper), without
introducing the unphysical effects originating in the iterative
procedure. We focus on the orders αq αs and α2

q , since these
are fully exploitable at 2L, while the generic EW corrections
miss some contributions needed for a direct connection to
observable quantities. We build upon the existing results of
Refs. [14–17], but include full momentum dependence now,
also making use of the relations derived in Ref. [32]. Below,
we restrict ourselves to the simplest model where the con-
sidered orders matter, i.e. the Minimal Supersymmetric Stan-
dard Model (MSSM), although the method straightforwardly
applies to extensions, e.g. the Next-to-MSSM (NMSSM) –
yet more care is then needed in order to consistently account
for the gaugeless limit and process the more motivated sce-
narios with large radiative Higgs mixing. In addition, we
narrowly scrutinize the dependence of the (pseudo-)Higgs-
mass predictions of the iterative procedure on field countert-
erms and show that the additional (and artificial) uncertainty
resulting from the field dependence is of the same order of
magnitude as the mass-shift generated with respect to the
expansion-and-truncation approach, making the numerical
significance of this shift compatible with zero. Moreover, we
observe that this uncertainty – in fact an error introduced by
the numerical procedure rather than a genuine higher-order
uncertainty, since it violates the expected physical properties
of the mass observable – does not systematically cancel out
with the inclusion of higher-order corrections when combin-
ing full EW 1L pieces and gaugeless 2L corrections (knowl-
edge of the complete 2L order would be necessary to cancel
out the leading unphysical, 1L2 field-dependent terms), but
continues to accumulate order after order, thus limiting the
relevance of incorporating higher loop corrections in the iter-
ative pole search. In our opinion, these facts clearly estab-

3 Here, we employ the term ‘regularization’ in reference to the proce-
dure giving a meaning to ill-defined self-energies away from their mass
shell, not in reference to the counting of UV-divergences in Feynman
amplitudes. Field-renormalization constants are the usual regulators –
and the only ones that we consider in this paper – allowing such an
extrapolation, and the ambiguity rests with their arbitrary finite part,
from which actual observables are supposedly independent.
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lish the superiority of the expansion-and-truncation mass-
determination over the iterative procedure, even in scenarios
involving large mixing – of limited relevance in the MSSM
context, but not necessarily in extensions.

In parallel with the computations at FO, where self-
energies are derived order after order in the full model con-
sidered in a given renormalization scheme, the mass-gap sug-
gested by the absence of discovery of new-physics particles
has encouraged the discussion of SUSY Higgs sectors in the
context of EFTs, allowing for a resummation of the large UV-
logarithms that develop between the SUSY and EW scales;
see e.g. the recent work of Refs. [33–46] and a more com-
plete list of references in the review [9]. While the effects that
we discussed in Ref. [68] also formally apply in such EFTs,
the weight of regulators in the definition of mass observ-
ables is less critical than in FO calculations. Indeed, the
direct variation of the gauge-fixing parameters or the field
counterterms in the EFT is necessarily reduced in such a
formalism where large logarithms are forced to follow an
SU (2) × U (1)-conserving pattern. On the other hand, such
a variation represents only a partial picture in testing the
connection between observables in the EFT context, as the
MSSM–EFT matching procedure then plays a determining
part in establishing this relation. This connection between the
predicted Higgs masses and observable input is however at
the center of what we probe through variations of regulators
in the FO approach. We will not attempt to address the ques-
tion of this relation in EFTs here. Nevertheless, the resumma-
tion of UV-logarithm is an effect that cannot be overlooked
for large values of the SUSY spectrum, and we thus incorpo-
rate it in our mass predictions. There, we demonstrate that the
‘uncertainty’ accumulated by iterative pole searches persists
in such ‘hybrid’ approaches – see e.g. Refs. [47–52] – so that
our discussion of the dependence of FO mass calculations on
the choice of field renormalization continues to apply in this
context.

In Sect. 2, we analyze how to avoid or minimize the depen-
dence of 2L corrections to the Higgs masses on the choice
of field renormalization, taking this criterion as our guide-
line for the inclusion of the 2L contributions of O(αt αs

)

and O(α2
t

)
. We then numerically compare the correspond-

ing mass predictions with those obtained through an itera-
tive pole search, both in non-degenerate and near-degenerate
scenarios, checking how variations of the field counterterms
affect each in view of the magnitude of the 2L effects. We also
probe how the effective-potential approximation performs
for SM and non-SM Higgs states. This forms the content of
Sect. 3 and Sect. 4. In Sect. 5, we perform a resummation of
UV-logarithms of O(αq , αq αs, α2

q

)
in the FO context, as

the increasing weight of these effects for large SUSY scales
otherwise limits the applicability of the FO approach. A brief
summary is provided in Sect. 6.

2 Inclusion of 2L corrections to the Higgs mass
observables

In this section, we present a brief description of the computa-
tion of Higgs masses at higher order, with reference to more
detailed derivations in the appendix. We explicitly extract
the dependence of the radiative contributions on Higgs-field
counterterms and analyze the conditions for its cancellation
at the level of Higgs-mass predictions at the 2L order.

2.1 Invariance under field-renormalization

As usual in Quantum Field Theory, the mass observables are
calculated from the two-point truncated and connected corre-
lators of the model. The complex zeroes of the characteristic
polynomial in the Higgs sector should indeed correspond to
the poles describing the Higgs resonances in particle scat-
tering: a derivation is proposed in Appendix A. The defining
equation for these poles M2

k thus reads:

det
[
M2

k 1 − M2
tree + �̂

(M2
k

)] = 0 . (1)

where M2
tree = diag

[
m2

i

]
represents the tree-level mass

matrix and �̂
(
p2
)

is the renormalized self-energy matrix for
external momentum p.

A problematic feature in Eq. (1) is that the renormalized
self-energies �̂i j

(
p2
)

are not well-defined away from their
mass-shell at p2 = (m2

i +m2
j

)/
2. Indeed, absorption of the

UV-divergences in such objects requires the introduction of
field-renormalization constants,

φi →
(√

Z
)

i j
φ j ≡

(√
1 + δZ (1) + δZ (2) + . . .

)

i j
φ j ,

(2)

where the upper indices in parentheses refer to the loop order
of the renormalization constant. However, since quantum
fields are not measurable as such, these field counterterms
should be strict bookkeeping quantities, which drop out at
the level of observables. An iterative resolution of Eq. (1), as
often advocated in the literature [18–20,57,58,67,73–78],
leads to an explicit dependence of the predicted masses on the
field counterterms. This dependence should ideally become
negligibly small when sufficiently high orders are included
in the calculation and, in the meanwhile, the variation of the
field counterterms could be seen as setting a lower bound
on the higher-order uncertainty, by weighing such terms of
higher order that are introduced in the pole search.

In Ref. [68], we argued against this iterative approach,
in particular because it generates symmetry-violating terms
that are not controlled by the vacuum-expectation values
(v.e.v.-s) of the Higgs fields, but appear as pure artifacts
of the formalism. Consequently, these partial higher-order,
gauge-dependent terms introduced by the pole search do not
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represent a genuine estimate of higher-order corrections but
amount to an intrinsic error of the procedure. Instead, we
preferred to employ an explicit expansion and truncation
where the dependence on field counterterms and gauge-fixing
parameters vanishes or is minimized order-by-order. At 1L,
this procedure leads us to systematically use diagonal self-
energies evaluated on their mass-shell, while off-diagonal
self-energies can be dismissed as contributions of higher
order. Only in near-degenerate scenarios are the replace-

ment �̂i j
(
p2
)−−−−−−→

p2 ∼m2
i

�̂i j

((
m2

i + m2
j

)/
2
)

and the inclu-

sion of off-diagonal self-energies justified by the counting
m2

i − m2
j = O(1L).

Below, we discuss how to extend this procedure to include
2L mass corrections. As the considered orders do not involve
EW gauge corrections, we must take solely independence
from field-renormalization constants as our guiding criterion.
This condition can be formulated in two different fashions:

1. the observables should be invariant under any choice of
field counterterm;

2. the observables are UV-finite without need of considering
field counterterms.

The second prescription proves to be a weaker requirement
than the first one, in particular because the UV-divergent part
of d�i j

/
dp2 is symmetric under the exchange i ↔ j , so that

amplitudes may in general depend on antisymmetric finite
contributions to the field counterterms while these are not
needed to achieve UV-finiteness. In practice, the first criterion
is satisfied in the non-degenerate case, while we must content
ourselves with the second one in the near-degenerate scenario
– at least in the strategy presented in Ref. [68]. We will look
upon the second condition as being roughly equivalent to an
invariance under symmetric choices of the field counterterms
– in fact a more constraining requirement.

2.2 Non-degenerate case

For a non-degenerate state with tree-level mass mi , it is pos-
sible to extract the nearby pole M2

i in the propagator matrix
by solving the recursive Eq. (1); at the 2L order this amounts

to solvingM2
i

!= M̃2
i

(M2
i

)
, where M̃2

i is the quantity derived
in Appendix A.2 and reading

M̃2
i

(M2
i

) = m2
i − �̂

(1)
i i

(M2
i

)− �̂
(2)
i i

(M2
i

)

+
∑

j �=i

�̂
(1)
i j

(M2
i

)2

m2
i − m2

j

+ O(3L) . (3)

Using the condition M2
i = p2

i i + O(2L) = m2
i + O(1L)

(characterizing p2
i i ) in the argument of the renormalized self-

energies (�̂(k) represents the renormalized self-energy of k-

loop order), the right-hand side of this equation can be further
expanded:

M2
i = m2

i − �̂
(1)
i i

(
m2

i

)−
⎡

⎣�̂
(2)
i i

(
m2

i

)

+(p2
i i − m2

i

) d�̂
(1)
i i

dp2

(
m2

i

)

−
∑

j �=i

�̂
(1)
i j

(
m2

i

)
�̂

(1)
j i

(
m2

i

)

m2
i − m2

j

⎤

⎦+ O(3L) . (4)

The leading correction �̂
(1)
i i

(M2
i

)
has been expanded so that

it gives a contribution that is independent from field renor-
malization (and gauge-fixing) at strict O(1L).

Similarly, invariance under variations of the 2L field coun-

terterm dictates the choice p2 !=m2
i as the argument of �̂

(2)
i i

in Eq. (4). In addition, restriction to the orders αq αs and α2
q

entails a specific distinction between corrections of Yukawa-
and gauge-type since both are otherwise mixed by the EW
symmetry-breaking. A clean separation is only possible in

the gaugeless limit (i.e. gEW
!= 0), where the tree-level spec-

trum slightly differs from the original one: the mass ‘mi ’
entering the self-energy of 2L order computed in the gauge-
less limit and ensuring independence from the 2L field coun-
terterm is not the original tree-level mass, but its gaugeless
counterpart m̆i . The difference with mi corresponds to the
order neglected in the gaugeless approximation. In the non-
degenerate scenario, the identification of the ‘original’ Higgs
state with its gaugeless counterpart is fortunately straightfor-
ward.

The choice of momenta in the 1L2 terms of Eq. (4) should
allow the cancellation of the dependence on the field counter-
terms of 1L order in the 2L contributions. While we already
expanded the momenta in the off-diagonal terms of Eq. (4)
and set them to m2

i , any value p2
i j = m2

i + O(1L) is a priori
as legitimate as long as dependence on the field counterterms
is not considered. Let us therefore analyze the dependence of
�̂

(2)
i i on the 1L field counterterms. It originates in two pieces:

1L diagrams with counterterm insertion (1L×CT) and tree-
level graphs with counterterm squared insertion (CT2):4

4 In this analysis of the dependence on 1L field counterterms δZi j (for
commodity we omit the superscript (1)), we do not display the 2L term(
δZ (2)

i i −∑k
1
4 δZ2

ik

) (
p2 − m2

i

)
emerging simply from the expansion

of Eq. (2), which separately cancels out for p2 != m2
i , as the vanishing

condition for the dependence on the 2L field counterterm δZ (2)
i i . This

restores agreement between our expansion and the standard conventions
for field counterterms – see Eq. (2).
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�̂
(2)
i i

(
p2) � 1

4

(
p2 − m̆2

i

)
δZ2

i i + δZii

[
�̆

(1)
i i

(
p2)− δM̆2

i i

]

+
∑

j �=i

{
1

4

(
p2 − m̆2

j

)
δZ2

j i

+δZ ji

[
�̆

(1)
i j

(
p2)− δM̆2

i j

]}
; (5)

the 1L×CT and CT2 contributions to the tadpoles cancel one
another. Here, �i j (or �̆i j ) stands for the unrenormalized
self-energy; δM2

i j (or δM̆2
i j ) denote the mass and δZ ji the

field counterterms of 1L order. The �̆ notation highlights
that the corresponding quantities are obtained in the approx-
imations applied in the 2L calculation (e.g. the gaugeless
limit). As discussed above, the squared momentum should
be evaluated at p2 = m̆2

i .
From the 1L2 terms emerge the following contributions

depending on field renormalization:

(
p2
i i − m2

i

) d�̂
(1)
i i

dp2

(
m2

i

)−
∑

j �=i

�̂
(1)
i j

(
p2
i j

)
�̂

(1)
j i

(
p2
i j

)

p2
i j − m2

j

� (p2
i i − m2

i

)
δZii −

∑

j �=i

1

p2
i j − m2

j

×
{

1

4

[
δZi j

(
p2
i j − m2

i

)+ δZ ji
(
p2
i j − m2

j

)]2

+
[
δZi j

(
p2
i j − m2

i

)+ δZ ji
(
p2
i j − m2

j

)]

×
(
�

(1)
i j

(
p2
i j

)− δM2
i j

)}
. (6)

The requirement for cancellation of the field-renormalization
dependence between Eqs. (5) and (6) dictates the following
conditions:

p2
i i − m2

i → −
[
�̆

(1)
i i

(
m̆2

i

)− δM̆2
i i

]
,

�
(1)
i j

(
p2
i j

)− δM2
i j → �̆

(1)
i j

(
m̆2

i

)− δM̆2
i j ,

p2
i j → m̆2

i . (7)

In other words, the self-energies employed in the 1L2 terms
should be calculated in the same approximation as in the
2L calculation in order to avoid the inclusion of arbitrary
UV-logarithms in the calculation. This also includes the sub-
stitution m2

i → m̆2
i of tree-level Higgs masses in Eq. (6).

2.3 Degenerate case

We assume the existence of a degenerate sector (denoted by
‘D’). In this case, one should consider the effective mass
matrix

M̃2
D i j
(M2

I
) = m2

i δi j − �̂
(1)
i j

(M2
I
)− �̂

(2)
i j

(M2
I
)

+
∑

k /∈D

(
m2
i + m2

j − 2m2
k

)
�̂

(1)
ik

(M2
I

)
�̂

(1)
jk

(M2
I

)

2
(
m2
i − m2

k

) (
m2

j − m2
k

)

+ O(3L) (8)

derived in Appendix A.2 and evaluated at a pole

M2
I = p2

i j + O(2L) = m2
i j + O(1L) (9)

of the propagator. For two field directions i, j ∈ D, we define
the notation m2

i j ≡ (m2
i + m2

j

)/
2, while pi j , as yet unfixed,

is characterized by the condition above.
Then, there exists a unitary matrix UI such that

(
UI )∗ ·

[
M2

I 1D − M̃2
D

(M2
I

)]·(UI )† = diag[DJ ] (10)

with DI ≡ 0 (DJ , J �= I has no particular relevance), hence

∑

j∈D

[
M̃2

D

(M2
I

)]

i j

(
U I

I j

)∗ = M2
I

(
U I

I i

)∗
,

∑

i, j∈D

(
U I

I i

)∗ (
U I

I j

)∗
[
M2

I δi j −
[
M̃2

D

(M2
I

)]

i j

]
= 0.

(11)

Thus, M2
I is an eigenvalue of M̃2

D

(M2
I

)
and its eigenvector

(
U I

I j

)∗ generates the kernel of
[M2

I 1D − M̃2
D

(M2
I

)]† ×
[M2

I 1D− M̃2
D

(M2
I

)]
. These are the defining properties that

we are going to exploit below after expanding M̃2
D

(M2
I

)
.

As explained in Ref. [68], it is possible, at the 1L order,
to expand M̃2

D

(M2
I

)
in a fashion that is invariant under field

renormalization (in the ‘weak’ sense discussed in Sect. 2.1):

M̃2
D

(M2
I

) =M̃2 (1)
D + O(2L) with

(
M̃2 (1)

D

)
i j ≡ m2

i δi j − �̂
(1)
i j

(
m2

i j

)
(12)

(which now has lost its dependence on the value of the
pole). We denote the associated poles and eigenvectors of
1L order as M2 (1)

I and SI j ≡ (U I (1)
I j

)∗: the poles are simply

given by the eigenvalues of M̃2 (1)
D while the matrix UI (1) is

obtained from the diagonalization of
[M2 (1)

I 1D− M̃2 (1)
D

]†×
[M2 (1)

I 1D − M̃2 (1)
D

]
. There is a subtle difference in the def-

inition of the eigenvectors with respect to the procedure pre-
sented in Ref. [68]: we ensure the exact cancellation of off-
diagonal terms in

(
UI (1)

)∗ ·[M2 (1)
I 1D − M̃2 (1)

D

] ·(UI (1)
)†

now, while they could still amount to O(2L) in Ref. [68];
the reason is that we now also want to put 2L effects under
control.
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Let us now consider the 2L order:

M̃2
D

(M2
I

) =
[(

M̃2 (1)
D

)
i j − �̂

(2)
i j

(
m2

i j

)

− (p2
i j − m2

i j

) d�̂
(1)
i j

dp2

(
m2

i j

)

+
∑

l /∈D

(
m2

i j − m2
l

)
�̂

(1)
il

(
p2
i jl

)
�̂

(1)
jl

(
p2
j il

)

(
m2

i − m2
l

) (
m2

j − m2
l

)
]

i, j∈D
+ O(3L) (13)

Once again, the dependence on field-renormalization con-

stants of 2L order is neutralized by setting p2 != m̆2
i j = M2

I +
O(1L) in the argument of �̂

(2)
i j . We still need to determine

the momenta p2
i j = M2

I +O(2L) and p2
i jl = M2

I +O(1L).

To this end, we consider the dependence on 1L2 field coun-
terterms, directly restricting ourselves to the symmetric case
δZ ji = δZi j . Then, instead of the diagonal matrix element
of Eq. (5) one has to take the full self-energy matrix for the
degenerate sector into account, depending on 1L field coun-
terterms as follows:

�̂
(2)
i j

(
p2) �

∑

k

{
1

4

(
p2 − m̆2

k

)
δZki δZkj

+ 1

2

(
δZki

[
�̆

(1)
k j

(
p2)− δM̆2

k j

]

+δZkj

[
�̆

(1)
ki

(
p2)− δM̆2

ki

])}
. (14)

With the choice p2
i jl ≡ m2

i j ≡ p2
j il one has

∑

l /∈D

(
m2

i j − m2
l

)
�̂

(1)
il

(
m2

i j

)
�̂

(1)
jl

(
m2

i j

)

(
m2

i − m2
l

) (
m2

j − m2
l

)

�
∑

l /∈D

{
1

4

(
m2

i j − m2
l

)
δZli δZl j

+1

2
δZli

[
�

(1)
l j

(
m2

i j

)− δM2
l j

] [

1 + 1

2

m2
j − m2

i

m2
i − m2

l

]

+ 1

2
δZl j

[
�

(1)
li

(
m2

i j

)− δM2
li

]

×
[

1 + 1

2

m2
i − m2

j

m2
j − m2

l

]}
. (15)

Then, the dependence on field-renormalization constants
δZli with i ∈ D, l /∈ D, cancels out against the one of
Eq. (14), provided �(1) − δM2 → �̆(1) − δM̆2 and up to
terms of 3L order involving an additional mass suppression.

If we assume that the degeneracy is lifted at the 1L order,
i.e.
∣∣M2 (1)

I − M2 (1)
J

∣∣ > O(2L) for I �= J , then the off-

diagonal elements of
(
UI (1)

)∗·[M2
I 1D−M̃2

D

(M2
I

)]·(UI (1)
)†

are negligible, since of 2L order when the diagonal splitting
is of 1L order. We can thus focus on the diagonal element (the
mixing matrix for the degenerate subsystem, S, is defined in
terms of the matrices UI after Eq. (12))

D̃I ≡
∑

i, j∈D
SI i SI j

{(
M2

I − M2 (1)
I

)
δi j + �̂

(2)
i j

(
m2

i j

)

+ (p2
i j − m2

i j

) d�̂
(1)
i j

dp2

(
m2

i j

)

−
∑

l /∈D

(
m2

i j − m2
l

)
�̂

(1)
il

(
m2

i j

)
�̂

(1)
jl

(
m2

i j

)

(
m2

i − m2
l

) (
m2

j − m2
l

)
}

. (16)

We define p2
i j ≡ (p2 (i)

i j + p2 ( j)
i j

)/
2 and, from the 1L eigen-

state equation (adding a convenient 2L term):

p2 (i)
i j ≡ m2

i − S−1
I i

∑

k∈D
SIk
[
�̂

(1)
ik

(
m2

jk

)

+m2
ik − m2

j

2

d�̂
(1)
ik

dp2

(
m2

ik

)
]

= M2
I + O(2L) . (17)

Then, we obtain

D̃I= ∑

i, j∈D
SI i SI j

[(M2
I − M2 (1)

I

)
δi j + Wi j

]

with

Wi j ≡ �̂
(2)
i j

(
m2

i j

)− 1

2

∑

k∈D

{[

�̂
(1)
ik

(
m2

i j

)

+m2
i j − m2

k

2

d�̂
(1)
ik

dp2

(
m2

ik

)
]
d�̂

(1)
jk

dp2

(
m2

jk

)+ (i ↔ j)

}

−
∑

l /∈D

(
m2

i j − m2
l

)
�̂

(1)
il

(
m2

i j

)
�̂

(1)
jl

(
m2

i j

)

(
m2

i − m2
l

) (
m2

j − m2
l

) . (18)

The dependence of Wi j on δZi j with i, j ∈ D almost can-
cels (provided all 1L2 quantities are calculated in the same
approximations as the self-energies of 2L order, e.g. in the
gaugeless limit), up to a remainder of 3L order:

m2
i − m2

j

8

[
δZki

d� jk

dp2

(
m2

jk

)− δZkj
d�ik

dp2

(
m2

ik

)]
. (19)

We find no obvious method to absorb this piece by adding
a finite term of 3L order to Wi j ; thus, after applying the

condition D̃I
!=O(3L), a subleading field-renormalization

dependence remains in the determination of the pole of 2L
order by

M2 (2)
I ≡ M2 (1)

I −
∑

i, j∈D
SI i SI j Wi j

/
∑

k∈D
S2
I k . (20)
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This persisting dependence on field-renormalization con-
stants in the degenerate case is intimately related to the form
of the dependence of the off-diagonal self-energy of 2L order
on 1L field counterterms – see Eq. (14). In the non-degenerate
case, this object only intervenes in the mass corrections of 3L
order, so that we can expect the field-renormalization depen-
dence to be tackled by the inclusion of the diagonal �̂

(3)
i i

(which, however, goes far beyond our purpose and our cur-
rent means). The 2L terms of Eq. (17) (contributing at 3L
order) have been chosen so as to avoid a quadratic depen-
dence on the field counterterms. Other choices are of course
possible. While the full cancellation of the dependence on
field counterterms thus fails in the degenerate scenario, we
still expect an improvement in the expansion method, as com-
pared to the iterative pole search, due to the careful pairing
of 2L and 1L2 effects.

In case the degeneracy is not lifted at 1L order, we can still
define M2 (2)

I as an eigenvalue of the effective mass matrix

M̃2 (2)
eff ≡

[
m2

i δi j − �̂
(1)
i j

(
m2

i j

)− Wi j

]
, i, j ∈ D . (21)

Indeed, similarly to the 1L piece in Eq. (12), the 2L correc-
tions Wi j of Eq. (18) are independent from the chosen pole,
the selection being ensured by the projection via the eigen-
vectors UI . It is then convenient to directly consider these
eigenvectors, albeit slightly dependent on the choice of field
renormalization, as determining the mixing matrix S in the
degenerate subspace at 2L order. In addition, the normaliza-

tion
∑

k∈D S2
I k

!= 1 simplifies the application of this object,
as can be read from Eq. (20) or the derivation of the Higgs-
decay amplitudes in Appendix A.3.

Finally, we stress that it is necessary to compute all the 1L2

pieces in the approximation of the 2L calculation, i.e. all self-
energies, mass counterterms and tree-level masses in W are
replaced by �̆(1), δM̆ and m̆. An apparent difficulty accom-
panies the observation that the identification of ‘original’ and
‘gaugeless’ states is no longer trivial in the degenerate sce-
nario. Yet, as the full 2L + 1L2 mass contribution is collected
within the block W , it is possible to compute the latter in the
gaugeless base and then rotate it to the ‘original’ base using
the gauge eigenbase as reference. This ad-hoc procedure is
however a sign that the combination of gaugeless 2L effects
with a full 1L calculation is not defined in a completely con-
sistent fashion in the near-degenerate case.

3 Field-dependence in the mass predictions for a
non-degenerate scenario

We first investigate the numerical significance of radia-
tive corrections to the masses of MSSM Higgs bosons in
the clearly defined configuration where all states are non-
degenerate, and assess the weight of the dependence on

field counterterms in various methods of evaluation. The
required Feynman diagrams are computed with the help of
FeynArts [79], FormCalc [80,81], TwoCalc [82] and
TLDR [32]. The 1L integrals are implemented analytically,
while the 2L integrals are numerically evaluated with the
assistance of TSIL [83].

3.1 Preliminary considerations

We focus on a ‘typical’ MSSM scenario with squarks of third
generation (Q̃3) and gluinos (g̃) at the edge of the mass region
probed by the LHC (mQ̃3

∼ 1.5 TeV and M3 ∼ 2 TeV; At =
2.3 TeV, Ab = 1 TeV). EW-only-interacting SUSY particles
are given a sub-TeV mass. The ratio of the doublet Higgs
v.e.v.-s, tβ , is set to 10 and we vary the charged-Higgs mass
between 0.5 TeV and 4 TeV. In these conditions, the neutral
SM-like Higgs (h), with mass at the EW scale, and the heavy-
doublet states (H , A), with masses comparable to that of the
charged Higgs (H±), are clearly non-degenerate. The CP-
even (H ) and CP-odd (A) heavy states do not mix in the
absence of CP-violation, which we assume in this section.
One can thus safely employ the formalism corresponding
to the non-degenerate scenario. The lagrangian parameters
in the Higgs sector are renormalized in the same scheme
as employed in Refs. [68,84], i.e. with cancellation of the
tadpoles, on-shell conditions for the EW gauge-boson, SM-
fermion and charged-Higgs masses, while tβ is defined in the
DR scheme.

It is instructive to first consider the corrections of 1L order
to the tree-level masses mhi of the neutral Higgs bosons hi ∈
{h, H, A}. In Fig. 1, we show the corresponding shifts in mass

squared, �(1)M2
hi

≡ M2(1)
hi

− m2
hi

= −�e
[
�̂

(1)
hi hi

(
m2

hi

)]
.5

The orange curves correspond to the gaugeless limit, while
the full 1L shift is shown in blue. The situation of the SM-like
Higgs is straightforward: the radiative corrections of Yukawa
type O(αt,(b)), captured in the gaugeless approach, indeed
dominate the 1L shift. Contributions of EW type, beyond the
gaugeless description, amount to only ∼ 15%. The gaugeless
limit can thus be seen as predictive for this state.6

Nevertheless, the impact of the various contributions fol-
lows a different pattern in the case of the heavy-doublet states.
A first identifiable feature corresponds to the ‘spikes’ in the
vicinity of MH± = 3 TeV: these are associated with thresh-

5 In the case of the heavy-doublet states, one could more properly
consider the radiative corrections to the mass-splitting between neu-
tral and charged states (otherwise, the squared tree-level mass m2

hi
is

not straightforwardly related to observable quantities): as the charged
Higgs is renormalized on-shell in our scheme, this definition is equiv-
alent.
6 However, contributions of O(αt ) are reduced by large QCD effects
– which could be in part absorbed in the tree-level Yukawa couplings
in a convenient scheme. This ultimately increases the impact of EW
contributions lost in the gaugeless approximation.
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Fig. 1 Mass shifts at 1L for the neutral Higgs states. The full 1L effect is shown in blue and the corresponding result in the gaugeless limit in
orange. For the heavy states (lower row), the leading contribution from gauge loops, scaling linearly with the Higgs mass, is presented in dashed
green

old effects in the loop integrals of the self-energies, when
MH,A ∼ mX +mY for X and Y two particle species entering
the loop diagram (mX and mY , their masses). At MH± ∼
3 TeV, these internal ‘on-shell’ lines are squarks of the third
generation, contributing at O(αq). The sharp variation in the
mass shift is consequently a physical effect, although it is not
quantitatively described in the ‘free-particle’ expansion – we
will make no attempt at addressing the threshold behavior by
accounting for squark interactions in this paper: see e.g. Ref.
[85]. Comparable features also appear close to MH± ≈ 1 TeV
for the blue curve (full 1L corrections) and correspond to
electroweakino loops: these do not show in the gaugeless
limit as EW interactions are turned off.

Beyond this threshold behavior, the pattern of 1L correc-
tions is essentially flat in the gaugeless limit while a slope
is definitely identifiable in the presence of gauge effects. As
explained in Sect. 3.2 of Ref. [68], the radiative contribu-
tions of gauge type to the squared mass-splitting between
heavy-doublet states generate a term scaling linearly with
the Higgs mass. This leading effect is shown as a dashed
green line in Fig. 1 and indeed captures the slope of the full

1L result. The shift between the green and blue curves is
due to corrections scaling like M2

EW lnkM2
H±
/
M2

EW, where
k ∈ {0, 1} and M2

EW ∼ M2
Z denotes the EW scale. There-

fore, radiative corrections of Yukawa type do not capture the
bulk of the contribution to the mass-splitting between heavy
states and corrections of orders αq αs or α2

q are not expected
to dominate the 2L corrections either. While these orders
are fully under control, their inclusion does not improve the
numerical precision of the mass predictions to the heavy
states as long as dominant corrections of EW gauge-type
are not considered. The latter are known as far as scalar self-
energies are concerned [32], but are currently not exploitable
as 2L contributions to the vector self-energies that are needed
for renormalization and the connection to observable input
are still missing. Consequently, when we discuss the known
O(αq αs, α2

q

)
at the level of the heavy-doublet states below,

it is purely for the sake of testing the formalism described
in Sect. 2 on controlled orders: the theoretical prediction is
actually not improved as compared to the strict 1L result.
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3.2 Corrections of O(αq αs)

The (S)QCD corrections have a specific status in the contri-
butions of 2L order to the Higgs masses, because no corre-
sponding 1L2 effects are associated. Thus, this order does not
entail the inclusion of any off-diagonal self-energies – unless
these are already needed at 1L, i.e. in the near-degenerate
case. Given the large impact of QCD corrections to effects of
Yukawa-type, they are particularly relevant for an accurate
determination of the mass of the SM-like state.

In Fig. 2, we plot the shifts of the squared masses obtained
at the considered order, i.e.

�(2,αqαs )M2
hi ≡ M

2(2,αqαs )

hi
− M2(1)

hi

= −�e
[
�̂

(2,αqαs )

hi hi

(
m2(gl)

hi

)]
, (22)

with corrections obtained in the gaugeless (gl) limit. The solid
orange curves have momentum evaluated at the tree-level
(gaugeless) mass of the Higgs states. The cyan dashed lines
are derived in the effective-potential approximation, i.e. with
momentum set to 0. This approximation is ‘exact’ in the
case of the SM-like Higgs, because the corresponding tree-
level mass in the gaugeless limit is indeed equal to 0 (this
is not necessarily true in extensions of the MSSM), so that
the orange and cyan curves overlap. For the heavy-doublet
states, threshold effects originating in squark loops are again
prominent (when considering momentum dependence). Even
far from the threshold region, the effective-potential approx-
imation does not appear as a particularly useful approach for
the heavy states, as its predictions for the order αq αs are
O(100%) away from the actual momentum-dependent con-
tributions. This is not surprising for Higgs states with mass
differing significantly from 0, even in the gaugeless limit. In
this context, the self-energies of order αq αs with vanishing
momentum can at best provide an estimate of the correspond-
ing order in an assessment of the uncertainties, but are not
predictive.

In conformity with the discussion of Sect. 2, the mass
shifts of O(αq αs) presented in orange in Fig. 2 (or those
of 1L order in Fig. 1) are independent from the field coun-
terterms, because the self-energies have been expanded for
momenta in the vicinity of the tree-level masses, and trun-
cated at the strict desired order – meaning in practice that the
self-energies are evaluated at the tree-level Higgs mass. For
definiteness, we remind here the formal expression defining
the pole mass in this expansion-and-truncation approach for
a non-degenerate state hi :

M
2(2,αqαs )

hi
= m2

hi − �e
[
�̂

(1)
hi hi

(
m2

hi

)+ �̂
(2,αqαs )

hi hi

(
m2(gl)

hi

)]
.

(23)

In competition with such an expansion, a popular approach
consists in iteratively replacing the momenta in the self-
energies by the value derived in the pole-mass determination.
As off-diagonal effects do not matter at O(αq αs) in a non-
degenerate scenario,7 we define such a pole search of order
αq αs by simply considering the shift of the diagonal element
of the effective mass matrix. In other words, the equation that
we solve iteratively in this subsection reads

M
2(2,αqαs )

hi
= m2

hi
− �̂

(1)
hi hi

(
M

2(2,αqαs )

hi

)

−�̂
(2,αqαs )

hi hi

(
M

2(2,αqαs )

hi

)
(24)

with M
2(2,αqαs )

hi
denoting the (complex) pole mass – by an

abuse of language, we will employ the same notation for its
real part in the discussion below. In order to achieve UV-
finite results for the renormalized self-energies of Eq. (24)
away from p2 = m2

hi
, the definition of these objects requires

the introduction of field counterterms, thereby generating a

dependence of higher order on field regulators in M
2(2,αqαs )

hi
.

To understand the differences between the expansion and
iteration procedures, we investigate the mass shift between
both through an expansion, where we only keep leading
terms:

M2
hi − M2

hi ≈ −
(
M2

hi − m2
hi

)
�̂

(1)′
hi hi

−
(
M2

hi − m2(gl)
hi

)
�̂

(2,gl)′
hi hi

− �̂
(1,gl)
hi hi

�̂
(1,gl)′
hi hi

≈ �̂
(2,gl)
hi hi

�̂
(1,gl)′
hi hi

+
[
m2(gl)

hi
− m2

hi

+�̂
(1,gl)
hi hi

+ �̂
(2,gl)
hi hi

]
�̂

(2,gl)′
hi hi

+ �̂
(1,EW)′
hi hi

[
�̂

(1,gl)
hi hi

+ �̂
(2,gl)
hi hi

]

+ �̂
(1,EW)
hi hi

[
�̂

(1,gl)′
hi hi

+ �̂
(2,gl)′
hi hi

]

+ �̂
(1,EW)′
hi hi

�̂
(1,EW)
hi hi

(25)

with all self-energies evaluated at the (gaugeless) tree-level
mass, ′ indicating differentiation with respect to the external
momentum squared, ‘gl’ and ‘EW’ referring to the gauge-
less and electroweak contributions respectively. We assumed
�̂

(1)
hi hi

≈ �̂
(1,EW)
hi hi

+�̂
(1,gl)
hi hi

(which may be seen as a definition
of the EW piece). It is clear that the terms of Eq. (25) are
formally of higher order. Here, the systematic appearance of
derivatives of renormalized self-energies makes evident the
dependence on field counterterms; this dependence, however,
signals that the corresponding orders are incomplete, hence,
not of a reliable form for a genuine higher-order estimate.

7 Off-diagonal contributions actually produce EW-violating pieces of
higher order, but numerically dominant in the decoupling limit, see Ref.
[68].
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Fig. 2 Mass shifts at O(αq αs) for the neutral Higgs states. The result in the gaugeless limit is shown in orange with momentum set to the
(gaugeless) tree-level mass. The dashed cyan curve corresponds to the effective-potential approximation

In this respect, Ref. [68] showed that the EW gauge sym-
metry or the SU (2)L symmetry in the decoupling limit were
violated by such partial higher-order pieces, with possibly
dramatical consequences at the numerical level. Therefore,
these contributions correspond to strict artifacts of the itera-
tive procedure and should be regarded as an ‘error’ associated
with this formalism and not as a measure of the higher-order
uncertainty applying to the expansion-and-truncation proce-
dure. The latter can be assessed e.g. by an evaluation of the
UV-logarithms as we will see at the level of the SM-like state
in Sect. 5.

Below, we study the stability of Higgs-mass predictions of
O(αq αs) under variations of the field-renormalization con-
stants. For simplicity, we restrict ourselves to a ‘minimal’
form of the field counterterms, considering on-shell (OS) or
DR field-renormalization constants. In the DR approach, the
only loose parameter is the renormalization scale μUV; its
variation between the physical scales of the model, i.e. the
EW and the SUSY scales, offers a measurement of the arbi-
trariness introduced in the definition and UV-regularization
of physical observables, hence a lower bound on the asso-
ciated ‘error’. Yet, this very specific pattern where distinct
counterterms are correlated by a common regulator may
underestimate the actual theoretical uncertainty. In this pic-

ture, the MSSM Higgs-field counterterms can be written as

δZDR
i j =

(
X R
id X R

jd + X I
id X I

jd

)
δZHd

+
(
X R
iu X

R
ju + X I

iu X
I
ju

)
δZHu (26)

where X R,I
i f encodes the decomposition of the tree-level neu-

tral Higgs state hi on the gauge-eigenbase: hi = X R
id h

0
d +

X R
iu h

0
u + X I

id a
0
d + X R

iu a
0
u . At the 1L order one has8

δZ (1)
Hd

= −3 αb + ατ

4 π

[

�
−1
UV + ln

μ2
ren

μ2
UV

]

,

δZ (1)
Hu

= −3 αt

4 π

[

�
−1
UV + ln

μ2
ren

μ2
UV

]

. (27)

Here, we neglect the Yukawa couplings of the first and second

generation. The symbol �
−1
UV represents the UV-divergence

(including universal finite pieces). The finite piece can be
viewed as resetting the renormalization scale of the fields

8 We refer the reader to Refs. [86,87] and references therein for calcu-
lations of the anomalous dimension of the Higgs fields. We recover
the same results at the one- and two-loop order by explicitly com-
puting derivatives of the Higgs self-energies and assessing their UV-
divergence.
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from μren to μUV. Similarly, the 2L field-renormalization
constants of order αq αs read

δZ
(2,αqαs )

Hd
= αb αs

2 π2

[
(
�

−1
UV + ln

μ2
ren

μ2
UV

)
−
(
�

−1
UV + ln

μ2
ren

μ2
UV

)
]

,

(28a)

δZ
(2,αqαs )

Hu
= αt αs

2 π2

[
(
�

−1
UV + ln

μ2
ren

μ2
UV

)
−
(
�

−1
UV + ln

μ2
ren

μ2
UV

)
]

.

(28b)

Only Yukawa and the QCD-gauge couplings appear in these
expressions of the DR field counterterms. Since the EW
corrections (gauge, gauginos) generate a vanishing UV-
divergence at 1L, the corresponding pieces are insensitive
to scale variations in the field counterterms. Accordingly,
the variations of μUV that we consider below probe all terms
except for the last of Eq. (25). Thus, this type of scale varia-
tion is meaningful as long as Yukawa effects dominate and the
gaugeless approximation holds. On the other hand, if correc-
tions of EW type are large, the partial higher order appearing
in the last term of Eq. (25) is not tested and the uncertainty
from scale variation is only partial.

The approach with OS-renormalized fields allows to take
into account the impact of EW corrections to a certain extent,
but it does not allow for variations. In this case, we simply
express the field counterterms as cancelling the differentiated
self-energies at the corresponding tree-level (OS) mass:

δZOS
i j ≡ −d�i j

dp2

(
p2 = m2

i j

)
, (29)

which is a symmetric, but (for off-diagonal field countert-
erms) not fully conventional choice. We could define this
object in the gaugeless limit, in which case EW corrections
would still be overlooked. In practice, one then recovers
results within the scope of the DR scale variation. There-
fore we dismiss this choice. More usefully, we can define
the 1L field counterterms in the full model, i.e. including
EW effects. We can then compare the differences between
this procedure and the DR evaluations. However, we do not
attempt to express the 2L field counterterms in this scheme,
keeping them DR with μUV = mt , first, because the 2L
contributions are explicitly calculated in the gaugeless limit,
secondly because the evaluation of the differentiated 2L func-
tions is technically involved.

In Fig. 3, we compare the Higgs-mass predictions of 1L
order and αq αs obtained via an expansion – using Eq. (23) –
or an iterative pole search – using Eq. (24) – for MH± =
1 TeV. At the level of the SM-like state (upper row), the
mass shift between the 1L and O(αq αs) predictions is siz-
able (in our renormalization scheme), and much larger than
the dispersion between the expansion and iteration meth-
ods. The dependence of the iteration method on the field-
renormalization constants induces a variation with the reg-

ulator μUV, when evaluating the latter between the EW and
SUSY scales, which (in the considered scenario) amounts to
about 5 GeV at 1L (long-dashed magenta curve) and about
3 GeV at O(αq αs) (solid purple curve). This reduction of
the scale dependence originates in the destructive interplay
between the two orders, not in the completion of the par-
tial order introduced by the pole search – which requires
the terms of O(α2

q

)
(see next subsection). Inclusion of the

O(αq αs) corrections in the effective-potential approxima-
tion (dot-dashed pink curve) leads to very comparable results,
confirming the adequacy of this approach for the SM-like
state: the 2L effects are in fact introduced at their correct
tree-level gaugeless mass value. The evaluation with OS field
counterterms, represented by a cross in the column on the left
of each plot, returns results very near that of the expansion.

In the second and third rows of Fig. 3, we consider the
shifts in squared mass for the heavy neutral states as com-
pared to the charged one. The plots on the left show the disper-
sion of the mass predictions depending on the chosen order.
Once again, the mass shift associated with the inclusion of
O(αq αs) corrections is larger than that induced by the choice
of method (expansion vs. iteration). However, contrarily to
the case of the SM-like state, the effective-potential approxi-
mation ostensibly falls far away from the actual momentum-
dependent result, implying that this approach is not predic-
tive for the heavy-doublet states. Here, we should comment
on the definition of this approach, since it is not completely
straightforward. At first, we remind the reader of the renor-
malized 2L self-energy of the heavy CP-even Higgs boson H
(equivalently for A) in the gaugeless limit:

�̂
(2,αqαs )

HH

(
p2) = �

(2,αqαs )

HH

(
p2)− δ(2,αqαs )m2

H±

+
(
p2 − m2(gl)

H

)
δZ

(2,αqαs )

HH . (30)

We recall that there are no 1L2 contributions at order αq αs

and that, in our renormalization scheme, the charged-Higgs
mass serves as input, with its counterterm fixed by the on-
shell condition

δ(2,αqαs )m2
H± = �e

[
�

(2,αqαs )

H±
(
m2

H±
)]

. (31)

However, if one employs the effective-potential approxima-
tion for the neutral-Higgs self-energies in order to avoid the
lengthy evaluation of 2L momentum-dependent integrals, it
appears more natural to use the condition p2 = 0 in all 2L
self-energies,9 which results in the renormalization condition

9 In case p2 = m2
H± is maintained in the charged-Higgs mass renor-

malization condition, one obtains a neutral-Higgs mass prediction very
close to the dot-dashed pink line.
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Fig. 3 Dependence on the field counterterms at 1L order andO(αq αs)

for MH± = 1 TeV. The off-diagonal effects are neglected in the iteration
of the momenta injected in the self-energies, since they do not contribute
to the corresponding order. The long-dashed curves correspond to 1L
evaluations (green: expansion; magenta: iterative pole search). In the
dot-dashed and dotted pink curves, the O(αq αs) are included in the
effective-potential approximation, but an iteration on the momentum of
the 1L self-energy is included. In the dot-dashed curves, the countert-
erms of the charged-Higgs fields are set to fixed values; in the dotted
curves, they are correlated with those of the neutral fields. The solid

lines represent calculations of O(αq αs) with full momentum depen-
dence: the masses are derived via an expansion (dark green), or an
iterative pole search (purple). The crosses in the columns on the left
of the plots correspond to the evaluations with OS field counterterms.
Up: Mass of the light SM-like state at 1L (left plot; long-dashed curves)
and at order αq αs (right). Middle and bottom: Squared mass-splitting
between theCP-even (Middle) orCP-odd (Bottom) heavy-doublet state
and the charged Higgs; general perspective (left) and details of the 2L
predictions (right)
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δ(2,αqαs )m2
H± = �e

[
�

(2,αqαs )

H±
(
0
)− m2

H± δZ
(2,αqαs )

H+H−
]
, (32)

thereby introducing a dependence on the charged-Higgs

field counterterm δZ
(2,αqαs )

H+H− in addition to the neutral-Higgs

field counterterm δZ
(2,αqαs )

HH . A common choice for these
field counterterms is the correlated one inherited from the
SU (2)L correspondence between neutral and charged fields:

δZ
(2,αqαs )

H+H−
!= δZ

(2,αqαs )

HH . This approach, where both field
counterterms are varied simultaneously with μUV, is dis-
played in the pink dotted lines. Under inspection of Eqs. (30),
(32) and given the relation m(gl)

H = mH± , it is clear, how-
ever, that only the difference of the two field counterterms
contributes to the (pseudo-)Higgs-mass correction. This cor-
related choice thus hides – and in fact underestimates – the
actual field dependence in the p2 = 0 approximation (we
stress that a small dependence on μUV persists from the
impact of the iteration procedure on 1L self-energies). As a
matter of fact, observables are supposed to be separately inde-
pendent from the choices for charged and neutral field coun-
terterms. A more realistic evaluation of the field-dependence
in the p2 = 0 approximation is that displayed in the pink

dot-dashed lines of Fig. 3, where only δZ
(2,αqαs )

HH is varied

with μUV, while δZ
(2,αqαs )

H+H− is fixed at μren = mt . We stress
that the results for full momentum-dependent O(αq αs) cor-
rections are in fact significantly away from those derived
in the effective potential approximation (except in the case
of the SM-like state).10 We do not consider the OS field
counterterms for the charged Higgs in the effective-potential
approach, since these are infrared-divergent, which explains
that only one pink cross appears in each plot. The relative
failure of the effective-potential approximation to capture
the O(αq αs) corrections is not really surprising, as the cor-
responding Higgs masses are far from p2 = 0, even in the
gaugeless limit. Similarly, the large scale dependence in the
dot-dashed pink line proceeds from the necessary inclusion
of a large correction proportional to the field counterterm to
absorb the UV-divergences of the self-energies at p2 = 0.

The plots on the right compare the momentum-dependent
mass predictions of O(αq αs) in the expansion (green) and
iteration (purple) methods. We observe that the scale varia-
tions are not necessarily sufficient to allow both predictions
to overlap – though the size of this dispersion remains com-
patible with the amplitude of the variations with μUV. The
origin of this separation between the expansion and iteration
method is associated with the relevance of EW corrections
at 1L for the heavy-doublet states. The last term of Eq. (25)

10 The charged-Higgs mass counterterm appears neither in the diagonal
nor off-diagonal self-energies contributing to the mass of the lightest
Higgs (in the gaugeless limit); therefore, the distinction in the renor-
malization of the charged-Higgs propagator is invisible in the first row
of Fig. 3.

indeed becomes sizable but, as we explained above, the scale
variation does not probe the incompleteness of this order. As
it is, these partial O(α2

)
effects are most certainly mislead-

ing and should not be interpreted as meaningful contributions
of the iterative pole search. In fact, the evaluation with OS
field counterterms typically pulls the iterative pole search in
the direction of the expansion. As a result, we see that the
mass-shift generated by the iterative procedure with respect
to the expansion method can be fully understood by a choice
of field renormalization, hence by an object of physically
meaningless value.

We complete this discussion about the mass prediction at
O(αq αs) for the heavy-doublet states with another exam-
ple in Fig. 4: MH± = 2.5 TeV, so that effects beyond the
gaugeless approximation, both threshold and EW, are more
relevant. The main difference with respect to the previous
case is that the choice of procedure (expansion vs. iteration)
leads to clearly separated predictions, not connected by the
scale variation. As explained above, this shift originates in
the last term of Eq. (25), which is not probed by the scale
variation, though it is of partial higher order, hence not pre-
dictive. Considering the case of OS field counterterms – a
setup that is sensitive to this term – extends the range of vari-
ation of the iterative pole search to engulf the prediction of
the expansion. Once again, the effective-potential approxi-
mation provides no actual gain in precision with respect to
the strict 1L calculation.

3.3 Corrections of O(α2
q

)

The inclusion of order α2
q brings about the interplay between

2L and 1L2 effects that we discussed in Sect. 2. Off-diagonal
self-energies indeed become meaningful in the mass calcu-
lation even in the non-degenerate case – while they led to
non-decoupling SU (2)-violating effects of higher order in
a 1L calculation [68]. As explained in this reference, it is
crucial, in the case of the heavy-doublet states, to properly
include 1L2 off-diagonal contributions to the charged-Higgs
mass in the 2L counterterms.

Once again, we first investigate the mass shifts generated
at this order, in Fig. 5. Here, with all objects defined in the
gaugeless limit, one has

�(2,α2
q )M2

hi ≡ M
2(2,α2

q )

hi
− M

2(2,αqαs )

hi
= −�

⎡

⎣�̂
(2,α2

q )

hi hi

(
m2

hi

)

− �̂
(1)
hi hi

(
m2

hi

) d�̂
(1)
hi hi

dp2

(
m2

hi

)

−
∑

j �=i

�̂
(1)
hi h j

(
m2

hi

)
�̂

(1)
h j hi

(
m2

hi

)

m2
hi

− m2
h j

⎤

⎦ . (33)
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Fig. 4 Dependence on the field counterterms at 1L order and O(αq αs) for MH± = 2.5 TeV. The conventions are similar to those of Fig. 3

As before, the effective-potential approximation is only
meaningful for the SM-like state, though it seems to work
somewhat better for heavy states at low values of MH± than
at O(αq αs). Threshold effects again appear in association
with squark loops for MH± ≈ 3 TeV, when the momen-
tum dependence is accounted for. The background far from
threshold contributions is essentially flat, as radiative cor-
rections of O(α2

q

)
typically scale like M2

EW lnkM2
H±
/
M2

EW,
k ∈ {0, 1, 2}, at large MH± (provided the charged-Higgs
mass is renormalized on-shell).

The Higgs masses M
2(2,α2

q )

hi
defined via the expansion in

Eq. (33) are by construction independent from field renor-
malization. Alternatively, one can numerically solve Eq. (1)
with the momentum-dependent self-energy matrix includ-

ing contributions up to O(α2
q

)
, defining the poles M

2(2,α2
q )

hi
.

As self-energies are evaluated away from their mass-shell,
it is once again necessary to call upon field renormalization
to neutralize UV-divergences and give a meaning to corre-
sponding objects. In addition to the 1L field counterterms of
Eq. (27), one should consider the 2L field counterterms of
order α2

q , reading (in the DR scheme)

δZ
(2,α2

q )

Hd
= −3 αb (3 αb + αt )

32 π2

⎧
⎨

⎩

[

�
−1
UV + ln

μ2
ren

μ2
UV

]2

−
[

�
−1
UV + ln

μ2
ren

μ2
UV

]}

, (34a)

δZ
(2,α2

q )

Hu
= −3 αt (αb + 3 αt )

32 π2

⎧
⎨

⎩

[

�
−1
UV + ln

μ2
ren

μ2
UV

]2

−
[

�
−1
UV + ln

μ2
ren

μ2
UV

]}

. (34b)

In addition to these 2L field counterterms, the self-energies
of order α2

q depend on the 1L field counterterms of Eq. (27)
according to Eq. (14) – even when the momentum is set
to the tree-level Higgs mass. As explained in Sect. 2, this
dependence on field-renormalization constants is mirrored
by that of the 1L2 terms resulting in a cancellation for the
full order. It is also worth noticing that the dependence on
the charged-Higgs field already vanishes separately within
the 2L + 1L2 terms forming the charged-Higgs mass coun-
terterm of O(α2

q

)
.

In Fig. 6, we show the field-counterterm dependence of
the mass prediction atO(α2

q

)
for MH± = 1 TeV. Once again,

we compare the strict expansion – Eq. (33) – in solid green,
with the iterative pole search, in solid purple. In this last
case, the full CP-even mass matrix of O(α2

q

)
is included in

the pole search – with gaugeless approximation for the 2L
pieces. For the CP-odd state, instead of considering the full
matrix, we directly add the off-diagonal mixing contribution
with the Goldstone boson

[
�̂

(1,gl)
A0G0

(
p2
)]2/

m2
A to the diagonal

element – omission of this term would otherwise induce an
artificial SU (2)-breaking among the heavy-doublet states,
see Ref. [68]. Finally, the dot-dashed and the dotted pink
curves include the 2L corrections of O(αq αs, α2

q

)
in the

effective-potential approximation before performing the pole
search. There, we use two slightly different procedures for the
CP-even and CP-odd sectors, as we add a

[
�̂

(1,gl)
A0G0(0)

]2/
m2

A
term in the latter case, instead of keeping a full momentum-
dependent 1L self-energy matrix. As before, the charged-
Higgs field counterterms are either set to a fixed value (dot-
dashed curves) or correlated with the neutral sector (dotted).
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Fig. 5 Mass shifts at O(α2
q

)
for the neutral Higgs states. The color-code follows the conventions of Fig. 2. The wiggly lines at M2

H± � 3.5 TeV

reveal numerical instabilities in the evaluation of 2L integrals containing the tiny ratios of m2
b

/
M2

H±

At the level of the SM-like state, the corrections of
O(α2

q

)
are sufficiently significant to make them necessary

in any attempt at precision predictions for the mass. Surpris-
ingly, the variations with the field-renormalization scale are
barely reduced as compared to the order αq αs – see Fig. 3
– for the iterative approach. This situation originates in
the inexact cancellation of the 1L2 field counterterms that
are generated in the variation of the 1L self-energy via
the pole search, with those produced in the 2L corrections
and assuming the gaugeless limit. A simple estimate actu-
ally suffices to recover the order of magnitude of these
scale variations. The leading contribution from the pole

search is a term −(M2 (2,α2
q )

h − m2
h

)
�̂′

hh

(
m2

h

)
, generating a

field-renormalization dependence ∼ δZhh �̂
(1,αqαs ,α

2
q )

hh

(
m2

h

)

because all orders are involved in the mass shift. On the side
of 2L self-energies, the dependence on field counterterms is
dominated by the corresponding term −δZhh �̂

(1,gl)
hh

(
m2

h

)
–

see Eq. (5). The mismatch �̂
(1,αqαs ,α

2
q )

hh

(
m2

h

)− �̂
(1,gl)
hh

(
m2

h

)
is

large – of the order of 100% of the magnitude of radiative
corrections to the mass of the SM-like Higgs – while, domi-
nated by αt , δZhh ≈ 0.1 for a variation between the EW and

SUSY scales. In the aftermath, an effect of ∼ 2% is assessed
on the field dependence at the level of the (pseudo-)mass.
Curiously enough, we can expect a comparable uncertainty
from missing EW orders due to the gaugeless approximation.
Indeed, as we observed in Fig. 1, the gaugeless approxima-
tion works at ∼ 15% at 1L for the SM-like state while the
squared-mass shift of O(α2

q

)
is of order 2 × 103 GeV2; com-

bining the two numbers, we arrive at a FO uncertainty of
percent level from uncontrolled 2L orders at the level of a
∼ 125 GeV Higgs mass – corresponding to the squared loga-
rithms ofO(αt α). However, this coincidence does not estab-
lish the variation of field counterterms as a realistic uncer-
tainty estimate for higher orders, as it strictly measures par-
tial higher-order effects associated with the regularization
of the pole-search procedure. We stress that the large depen-
dence on field counterterms is intimately related to the size of
the radiative corrections in the considered approach, i.e. to
the FO procedure: in an EFT, contributions from the hier-
archical spectrum would be absorbed within the tree-level
couplings. Similar behaviours had been observed in Ref.
[30]: see e.g. Fig. 3 of this reference. In addition, the mis-

match between the total mass shift (�̂
(1,αqαs ,α

2
q )

hh

(
m2

h

)
) and
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Fig. 6 Dependence on the field-counterterms in mass predictions of order α2
q . The solid green line is derived with the expansion at strict order, the

purple one, with an iterative pole search. The 2L self-energies are included in the effective potential approximation for the dot-dashed pink curve

the gaugeless 1L self-energy could certainly be minimized
via an adequate choice of renormalization conditions for the
Yukawa couplings, absorbing the impact of higher orders.

Concerning the heavy-doublet states, the field dependence
induced by the pole search is in fact increased in the CP-even
case with respect to O(αq αs) – see Fig. 3. In contrast, the
dependence on DR field-renormalization constants remains
mild in the CP-odd case, which is a consequence of our
adding the off-diagonal self-energies in the gaugeless limit,
hence satisfying the cancellation of the field counterterms
from off-diagonal terms with the diagonal 2L contributions.
Moreover, we observe that even the enlarged field-scale vari-
ations of the CP-even mass predictions do not capture the
full magnitude of the dispersion between the expansion and
iteration methods. Off-diagonal elements in the pole search
indeed add further EW terms insensitive to the scale variation
beyond that of the last term of Eq. (25); they correspond to
partial higher-order α αq and α2 terms and cannot be inter-
preted as a genuine physical effect, because the completion
of the order α2 is likely to sizably affect them. Comparing
the DR regularization with that of OS field counterterms fur-
ther extends the magnitude of the variations associated with

the iterative approach, making it sensitive to EW effects and
filling the gap with the expansion procedure. Finally, for 2L
self-energies derived in the effective-potential approximation
(dot-dashed pink curves), the scale dependence caused by
the approximation p2 = 0 in the 2L self-energies reaches a
magnitude much larger than the mass-squared shift induced
by the inclusion of these contributions with respect to the
strict 1L order. The predicted masses in the case of corre-
lated field counterterms for the neutral- and charged-Higgs
sectors (dotted lines) also fall significantly far away from the
actual momentum-dependent 2L prediction – as compared to
the shift from predictions of 1L order. This approach is thus
meaningless for the heavy states.

To summarize, the inclusion of 2L corrections of orders
αq αs and α2

q is essential in a precise prediction of the mass of
the SM-like Higgs state and the effective-potential approx-
imation is reasonably predictive at this level. However we
have observed that these orders are of little consequence for
the heavy-doublet states in a non-degenerate scenario, since
one expects them to be superseded by EW corrections. In
addition, the effective-potential approximation works poorly
for such states, as the obtained mass shift does not quanti-
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tatively improve the predictions as compared to O(1L). We
also noted that the dependence on the field counterterm at
the level of the SM-like state remains large in an iterative
pole search including terms of O(α2

q

)
due to the mismatch

between the 1L2 terms induced by the pole search and the
corresponding 2L terms derived in the gaugeless limit: it thus
appears that the iterative pole search at FO α2

q contains an
intrinsic uncertainty of ∼ GeV-size (depending on the hier-
archy between the EW and SUSY scales). Concerning the
heavy-doublet states, the dependence on DR field countert-
erms appears comparatively reduced for a full calculation
of O(α2

q

)
. However, this simply indicates that EW effects,

not Yukawa, dominate the corrections to the corresponding
masses: the DR renormalization is insensitive to these con-
tributions, but the comparison with an OS regularization (as
defined in Eq. (29)) allows to probe them and proves that the
apparent gap between predictions from the expansion and the
iterative pole search is strictly artificial, i.e. entirely contained
within a choice of field counterterms. We thus conclude that
there exists no advantage in employing the more costly iter-
ative pole search in a non-degenerate scenario, as compared
to the more straightforward expansion-and-truncation method.
On the contrary, the partial higher orders introduced in the
pole search may be unphysical and, in any case, they generate
an ‘uncertainty’ intrinsic to the procedure and hardly repre-
sentative of ‘genuine’ higher-order effects. Moreover, as the
orders αq αs and α2

q are the leading 2L corrections only for
the SM-like Higgs, there is little significance – as long as
2L EW orders are not under control – in maintaining them
for the mass determination of heavy-doublet states; in par-
ticular the inclusion in the effective-potential approximation
induces uncertainties that are larger than the genuine mass
shift.

4 Field-dependence in the mass predictions in
near-degenerate scenarios

Higgs mixing in the near-degenerate scenario makes the sit-
uation more subtle for the mass determination, and we study
its practical implementation in this section. As it is, the com-
plications originate less in the general formalism described in
Sect. 2.3 than in the features of the gaugeless approximation
and its matching to the full model.

4.1 CP-violating mixing between heavy states

In the MSSM, the phenomenologically most relevant sce-
nario with mass degeneracy involves CP-violating mixing
between the neutral components of the heavy doublet. With
the gaugeless description of O(α2

q

)
, it is actually not possi-

ble, even for small mixing, to define loop-corrected masses

according to the strict expansion of Eq. (4) since the CP-
even and CP-odd components are exactly degenerate at tree
level in the gaugeless limit.11 However, as the mass-splitting
between the two neutral components is of EW order, it
can be regarded – consistently with the gaugeless count-
ing – as numerically comparable to 1L effects and the near-
degenerate formalism of Sect. 2.3 applies.

We turn to a scenario where CP-violation is induced at the
loop-level – the tree-level MSSM Higgs sector is always CP-
conserving – by the phase of the trilinear soft SUSY-breaking
coupling in the stop sector, φAt . In practice, generating a siz-
able mixing (always scaling with an SU (2)-breaking v.e.v.)
in this fashion requires a rather large trilinear coupling |At |
as compared to the diagonal soft SUSY-breaking stop masses
mQ̃3,T̃

, which could potentially produce charge- and color-
breaking minima – see e.g. Ref. [88] for a recent reference.
As our discussion is meant to be strictly illustrative of the
mass calculation, we disregard this problem below, and take
mQ̃3,T̃

≈ 1 TeV, |At | = 3 TeV, MH± = 0.5 TeV, tβ = 10.
In the upper left-hand quadrant of Fig. 7, we compare the

mixing entry of the effective mass matrix at 1L (solid cyan),
O(αq αs) (solid green),O(α2

q

)
(solid magenta) with the diag-

onal mass-splitting at tree level (dashed black), 1L (dashed
blue), O(αq αs) (dashed green), O(α2

q

)
(dashed purple), for

varying φAt . We see that the diagonal mass-splitting at the
radiative level vanishes for φAt ≈ π

4 while the off-diagonal
mass entry is comparatively large: we thus expect a sizable
mass-mixing in this region. The plot in the upper right-hand
corner shows the squared mass-splitting between neutral and
charged states at order α2

q in the expansion formalism for
degenerate states. The blue and cyan dashed lines corre-
spond to the diagonal entries of the effective mass matrix
of Eq. (21), crossing at φAt ≈ π

4 . The other curves corre-
spond to various evaluations of the masses corrected with
the CP-violating mixing: eigenvalues of the effective mass
matrix in solid lines, diagonal elements after rotation by the
mixing matrix defined at order αq αs in dashed lines and diag-
onal elements after rotation by the mixing matrix defined at
1L order in dotted lines. We see that these various definitions
give very close results, even though the maximal mixing is
clearly shifted in phase at 1L. In the lower left-hand quadrant,
we plot the squared mass-splitting between neutral states at
1L (green), O(αq αs) (blue) and O(α2

q

)
(purple, orange and

red, depending on the definition through eigenvalues or rota-
tion of the effective mass matrix) in the expansion formalism.
The diagonal splitting is shown in dashed lines. Once again,
we observe the good agreement among definitions at order
α2
q .

Finally, in the lower right-hand panel of Fig. 7, we con-
sider the dependence on field counterterms for φAt = π

4 in

11 For the SM-like Higgs, the mixing with the Goldstone boson always
vanishes, so that this issue does not appear.
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Fig. 7 Mass predictions in the CP-violating scenario at O(α2
q

)
. Up

left: the size of the elements of the effective matrix elements is plot-
ted against φAt ; more precisely, the mass-splitting between diagonal
elements (dashed curves) is compared to the off-diagonal entry (solid
curves) at various orders. Up right: predicted mass-splitting between
neutral and charged states at O(α2

q

)
, without accounting for the mixing

(blue/cyan dashed), or in various evaluations of the 2L mixing. Down
left: Predicted mass-splitting between neutral states at various orders,
without accounting for the mixing or including it. Down right: field

dependence of the predicted masses at O(α2
q

)
for φAt = π

4 , in the
expansion formalism (red), with an iterative pole search retaining full
momentum dependence (blue), or in the effective-potential description
with correlated (green) or uncorrelated (brown) charged field countert-
erms. The crosses on the left correspond to the predictions with OS
counterterms, while the scale variation employs a DR regularization
of the self-energies. The two groupings of lines correspond to the two
states of the H–A system

masses defined with the expansion formalism (red), in an iter-
ative pole search with full momentum-dependence (blue) and
in the effective-potential approximation for 2L self-energies,
with correlated charged-Higgs DR field counterterms (dot-
ted green) or independent charged-Higgs field counterterms
(dashed brown); since the two eigenvalues of the H–A sys-
tem are clearly separated at the numerical level, the same
colors are used for both. In fact, the masses obtained with the

expansion method are fully independent from the field coun-
terterms, because the remainder of Eq. (19) exactly vanishes
due to the exact degeneracy of the two tree-level masses in
the gaugeless approximation. For the iterative pole searches,
the situation is largely comparable to what we discussed in
the non-degenerate case. The predicted masses for the mixed
(heavy) states show only a mild dependence on field-scale
variations: we should stress here that the CP-violating self-
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energy is UV-finite without need of regularization by a field
counterterm, so that the mixing entry in the mass matrix is
itself completely blind to the DR regularization of the fields
– adding to the already noted insensitivity to EW effects.
On the other hand, the OS field counterterms from Eq. (29)
probe both effects: the corresponding mass predictions, indi-
cated by crosses in the column at the left end of the plot,
show a more significant deviation respective to those using
a scale variation in the DR renormalization, which closes
the apparent gap with the masses of the expansion formal-
ism. Once again, this difference appears as a strictly arti-
ficial effect originating in the iterative method. Lastly, the
effective-potential approximation performs somewhat better
than in the non-degenerate scenario, which should be put in
perspective with the small value of MH± . The dependence on
field counterterms of this description is made evident by the
steeper variation with the scale (when keeping the charged-
field counterterms uncorrelated).

4.2 CP-conserving mixing with the SM-like Higgs

As explained in the previous subsection, the CP-violating
mixing between heavy-doublet states always falls in the
degenerate limit, even for small mixing, as long as 2L effects
are considered in the gaugeless approximation. Therefore,
in order to study the transition between degenerate and non-
degenerate regimes, we consider the scenario of degener-
ate CP-even states, i.e. MH± = O(MZ ), even though it
is now only marginally relevant from a phenomenological
perspective due to tight experimental limits – refer e.g. to
the related work in Ref. [89]. As the latter rather motivate
weak- than strong-mixing scenarios, we do not bother and
try to accommodate a Higgs boson with a mass of 125 GeV.
This type of mixing also differs from the CP-violating mix-
ing between heavy-doublet states in that the remainder of
Eq. (19) no longer uniformally vanishes, meaning that the
expansion formalism retains some amount of dependence on
field counterterms, which we aim to quantify below.

In fact, the gaugeless approximation for 2L effects forbids
an actual ‘mass-crossing’ in the off-diagonal 1L2 term pro-
cessed in the non-degenerate expansion formalism of Eq. (4),
because the SM-like state takes a zero-mass in this limit.
Therefore, this equation then returns a well-behaved mass-
prediction, independent from field counterterms. On the other
hand, this approach meets a first issue with the identifica-
tion of gaugeless and ‘actual’ Higgs states, since the gauge-
less state with mass equal to 0 is always SM-like, while the
SU (2)-partner of the Goldstone bosons in the model with
non-vanishing gauge couplings is distributed between both
tree-level states, according to an angle α − β (α denoting
the CP-even tree-level mixing angle with respect to gauge
eigenstates): as MH± narrows MZ , α departs from β − π/2
(for β > π

4 ; while α is fixed to this value in the gaugeless

limit), underlining the irrelevance of a naive identification.
However, performing a rotation of α − β of the total 2L
effects obtained in the gaugeless limit (including 1L2 con-
tributions for controlled dependence on field counterterms)
is ill-defined outside of the degenerate regime. In addition,
the recourse to the near-degenerate formalism is originally
motivated by the need to consistently process off-diagonal
contributions to the Higgs masses intervening at 1L order,
due to the near-degeneracy of diagonal terms. On the other
hand, it is misleading to maintain this mixing-matrix descrip-
tion when the non-degenerate regime applies, since it gener-
ates SU (2)L-violating pieces that are not controlled by the
EW-symmetry breaking, see Ref. [68]. It is thus legitimate
to worry about defining the transition between both regimes.

In Fig. 8, we consider the same region in parameter space
as in Sect. 3, but in the range MH± ∈ [100, 500]GeV. The
first row of plots shows the general perspective of mixing in
the CP-even sector. In the plot on the left, we compare the
off-diagonal mass-squared entry – we use DR counterterms
with μUV = mt – in the effective mass matrix of Eq. (21)
(solid blue curve) to the diagonal splitting (dashed orange
curve): in the range MH± ≈ 120–150 GeV, the mass-squared
splitting is smaller than the off-diagonal self-energy, high-
lighting the need for a near-degenerate formalism. We stress
that we include the block of 2L corrections obtained in the
gaugeless limit after identification of the gauge eigenbasis,
i.e. after rotation by an angle α − β. On the right, we plot
the masses of the CP-even states obtained in various ver-
sions of the expansion formalism. The dashed purple and
magenta lines correspond to the diagonal entries of the effec-
tive mass matrix of Eq. (21), crossing at MH± ≈ 130 GeV.
The dotted orange and dark-red curves represent the masses
obtained in the non-degenerate formalism, i.e. according to
Eq. (4). These noticeably depart from the diagonal entries of
the mixing formalism at low MH± , mainly due to the absence
of corrections accounting for the tree-level mixing (i.e. no
α − β rotation), which are not straightforward to include in
a meaningful way in the non-degenerate scenario. Finally,
the eigenvalues of the effective mass matrix are plotted with
solid green lines. Obviously, the predictions from the mixing
formalism barely differ from those of the non-degenerate one
above MH± ∼ 160 GeV.

In the second row of plots in Fig. 8, we study the differ-
ence between the degenerate and non-degenerate formalisms
in the higher range of MH± . The latter is obviously small – a
few 100 MeV for MH± � 160 GeV. In addition, the depen-
dence of the effective mass matrix on the field counterterms
is made obvious by the dispersion among the various choices
(DR with μUV = MW , DR with μUV = MSUSY, OS). How-
ever, this dispersion remains within O(10 MeV), although it
tends to increase as MH± reaches 500 GeV, then outstretch-
ing somewhat the regime of validity of the near-degenerate
method. Given the good agreement between the predictions
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Fig. 8 Mass predictions at O(α2
q

)
in the scenario with CP-conserving

mixing. Up left: magnitude of the elements of the effective mass matrix
(with DR renormalization of the Higgs fields and μUV = mt ) of O(α2

q

)
,

diagonal mass-splitting (dashed orange) vs. off-diagonal entry (solid
blue). Up right: mass predictions (obtained with the expansion formal-
ism) for the CP-even states at O(α2

q

)
, in the non-degenerate descrip-

tion (dotted lines), from the diagonal elements of the effective mass
matrix (dashed) and from its eigenvalues (solid) (with DR renormaliza-
tion of the Higgs fields and μUV = mt ). Middle: difference between
the mass predictions (obtained with the expansion formalism) in the
near-degenerate and non-degenerate descriptions for the lightest (left)
and heaviest (right) CP-even states. Several regularizations of the self-

energies with the Higgs field counterterms are considered: OS (solid
red), DR (dashed) with μUV = MW (green) and μUV = MSUSY
(blue). Down: dependence of the mass predictions at MH± = 140 GeV
on the field regularization for the expansion formalism with degener-
acy (green), in an effective-potential description (magenta and purple,
depending on whether charged-Higgs field counterterms are correlated
with the neutral ones) and in an iterative pole search retaining full
momentum dependence (blue). The plot on the left (resp. right) cor-
responds to the lightest (resp. heaviest) CP-even state. The crosses on
the left-hand side of the plots correspond to the OS renormalization of
the fields, and the curves to the DR renormalization with varying scale
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obtained with Eqs. (4) and (21) in the range MH± ≈ 200–
400 GeV (corresponding to a 10%–1% mixing), there is
no difficulty to extrapolate between the two. However, the
combined results will still receive an uncertainty of order
O(100 MeV) from this extrapolation (in addition to other
sources of theoretical uncertainties). It is actually unclear
whether the non-degenerate regime should not be altogether
preferred in this intermediate regime. The difficulty here
consists in estimating the uncertainty from neglected off-
diagonal EW effects: the corresponding mixing entry in the
effective mass matrix indeed generates partial effects of EW
2L order, which are not quantitatively reliable – in particular
because they do not necessarily satisfy the symmetries of the
system, see Ref. [68].

In the last row of Fig. 8, we compare the dependence on
the field-renormalization scale in the expansion, effective-
potential and iterative strategies for a point with near-
maximal mixing (MH± = 140 GeV). Expectedly, the
field dependence in the expansion approach, of the order
of ∼ 10 MeV, is much smaller than that obtained with the
other approaches, of GeV order. As announced in Sect. 2,
this is related to the careful pairing of 2L and 1L2 terms in
the expansion, which limits the contamination of the mass
prediction by partial higher-order effects.

Finally, we explained in Sect. 3 that the 2L corrections
of O(αq αs, α2

q

)
are not really quantitatively meaningful for

heavy-doublet states, since one then expects larger EW 2L
effects. On the other hand, these orders are known to be dom-
inant for the SM-like state. Therefore, with MH± ∼ MZ , it
appears necessary to keep these O(αq αs, α2

q

)
corrections

for the full effective mixing matrix. In Fig. 9, we compare

the masses M (α2
q ) obtained with full O(αq αs, α2

q

)
correc-

tions (as we always considered them till now) and those
obtained in the approximation where these corrections of
order αq αs and α2

q are only applied in the SM-like direction,

denoted as M (α2
q ,SM). The solid green lines correspond to the

masses derived in the degenerate formalism, the dashed red
and orange ones to those derived in the non-degenerate for-
malism. Obviously, the introduction of O(αq αs, α2

q

)
for the

non-SM states and mixings has little impact for all states in
the parameter space above MH± ∼ 300 GeV, and may as well
be neglected since these orders are not quantitatively predic-
tive. On the other hand, they contribute significantly in the
mixing regime, justifying a complete inclusion at low MH± .

4.3 Three-state mixing

For completeness, we study a scenario involving three-state
mixing, although of little phenomenological relevance in the
MSSM due to strong experimental constraints on the prop-
erties of the observed Higgs state. Such a setup has been
considered in particular in Refs. [90,91], in view of study-

Fig. 9 Difference between the predicted masses (in the expansion
formalism with DR field counterterms at μUV = mt ) including the

O(αq αs , α2
q

)
gaugeless corrections for all states (M (α2

q )), and those
obtained with 2L corrections only applied to the SM-like direction

(M (α2
q ,SM))

ing interference effects close to degenerate scalar resonances,
e.g. in the ‘toy’-scattering bb̄ → hi → τ+τ−. The corre-
sponding cross-section is then dominated by the S-channel
exchange of Higgs bosons indeed. However, the formalism
employed in these references fully disregards the dependence
on field counterterms, both in the definition of the full propa-
gator matrix and subsequent approximations, implying a siz-
able ‘uncertainty’ associated to regulators, as we show below.
Instead, we prefer to describe such phenomena through the
formalism derived in Appendix A, i.e. in a fashion minimiz-
ing the dependence on field counterterms (and linear gauge
regulators).

For simplicity, we focus on the scattering bb̄ → hi →
τ+τ− via a trio of near-degenerate Higgs states hi . A
‘naive’ Feynman-diagrammatic calculation would converge
very slowly, due to the difference between the MSSM tree-
level masses and the actual poles. It is thus useful to directly
resum resonant effects. When performing this operation, one
needs to extrapolate the form of the effective propagator away
from tree-level Higgs masses. A direct resummation of self-
energies as achieved in Ref. [90] then explicitly contami-
nates the pole values with gauge-dependent partial higher-
order effects and field regulators. Instead, the identification
of poles, residues and effective couplings via the expansion
method, as proposed in Appendix A, minimizes the depen-
dence on field counterterms and accordingly distributes the
residues between pole and effective couplings, leading to an
a priori more predictive result.

Below, we consider a scenario similar to that of Sect. 5.2
of Ref. [90] with MH± = 175 GeV, tan β = 50, φAt = π/4.
A first formal difficulty in such a setup with MH± ∼ MEW

originates in the mixing of (charged and neutral) Higgs states
with Goldstone and gauge bosons: in order to avoid problems
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of consistency with the gaugeless limit, we assume that this
mixing can be processed in the perturbative (non-degenerate)
description. The latter is justified in the gaugeless evaluation
where e.g.

∣∣�̂(1,gl)
H+G−

(
M2

H±/2
)∣∣/M2

H± ≈ 5×10−4, but also in

the full model, with
∣∣�̂(1)

H+G−
(
(M2

H± + m2
G±)/2

)∣∣/M2
H± ≈

1 × 10−3 – gauge considerations justify the denomina-
tor M2

H± over M2
H± − m2

G± . We may then focus on the
three-state mixing in the neutral sector and consider the
effective mass matrix of Eq. (21) or, alternatively, a mass
derivation through an iterative pole search. In fact, the mix-
ing among neutral states is not numerically large in this sce-
nario and the recourse to the degenerate formalism – although
it is legitimized by the proximity in mass – is only forced
upon us by the need to connect the gaugeless 2L correc-
tions to the original Higgs states. The (square-roots of the)
poles are provided in Table 1, considering both the expansion
and the iterative methods, and employing three types of 1L
field counterterms: OS, DR with μUV = MEW = MW and
DR with μUV = MSUSY = 1 TeV. Similarly to the previ-
ous examples, the poles derived in the expansion formalism
hardly depend on the choice of field renormalization (the vari-
ations are actually at the level of ∼ 1 × 10−5), while those
obtained with an iterative pole search show fluctuations of
GeV order (with varying hierarchies).

The effective couplings employed in the expansion approach
are obtained at 1L from Eq. (58), which actually corresponds
to a decay amplitude for the (loop-corrected) Higgs states.
Such objects are independent on the choice of scheme for
the fields. There exists no particular inconsistency – only
added uncertainty – in working with different orders for the
mass determination and the effective couplings, except pos-
sibly in the identification of the correspondence between
poles and couplings. The latter offers no difficulty in the
scenario with weak mixing considered here, and can always
be made straightforward by using a mixing matrix defined at
2L order (at the cost of introducing a small dependence on
field counterterms). QCD logarithms and tβ -enhanced cor-
rections to the Higgs-bottom couplings are factorized out and
resummed. Turning to the poles obtained in the iterative pro-
cedure, we adjoin to them effective couplings that are derived
according to the recipe of Ref. [74] for decay amplitudes,
objects that are then also explicitly dependent on the choice
of field renormalization. We then combine these objects to
define the cross-section σ [bb̄ → H1,2,3 → τ+τ−] in the
Breit–Wigner description. These quantities are also gauge-
dependent, see Ref. [68], but we only consider the ’t Hooft–
Feynman gauge here.

The results for the bb̄ → τ+τ− scattering mediated by
neutral Higgs states are shown in the left panel of Fig. 10.
The cross-sections obtained with the expansion method, in
green and cyan tones, are hardly distinguishable from one
another, illustrating the weak dependence of this descrip-

tion on field renormalization. Conversely, the orange, red
and magenta curves, obtained with different prescriptions for
the field counterterms, demonstrate the strong dependence of
the iterative method with off-shell momenta on these regu-
lators: the predicted cross-sections then come with an in-
built uncertainty of order 100%, strictly induced by the field
dependence of the would-be (pseudo-)observables. Here, we
note that this strong disparity among the cross-sections is
mostly driven by the imaginary parts of the poles (�hi ): the
amplitude of the resonances indeed scales like �−2

hi
, so that

moderate fluctuations of these quantities result in enhanced
effects at the level of the scattering. The effective Higgs cou-
plings to SM fermions, gHi f f

eff with f ∈ {b, τ }, are shown in
the right-hand panel of Fig. 10. With the expansion method
(left-most column), the couplings of each Higgs resonance
cluster at a definite point in the complex plane, irrespec-
tively of the choice of scheme for the field renormalization.
With the iteration method (right-most column), this clus-
tering is still perceptible but looser, again highlighting the
dependence on the choice of scheme. We note that the prop-
erty

(
gHi f f

eff

)
R = (gHi f f

eff

)∗
L cannot be maintained with a com-

plex mixing matrix, as derived at 2L order, which reveals the
presence of partial 2L pieces in the couplings thus defined.
However, at 1L order, it would also be possible to restore this
property by employing a real mixing matrix, as in Ref. [68].

To summarize on these mass predictions in near degen-
erate scenarios, we have seen how, in many cases, this for-
malism was rather forced upon us by the gaugeless approx-
imation for 2L effects, than by the actual size of the Higgs
mixing. The exact degeneracy among the SU (2)L partners of
the charged Higgs at the tree level in the gaugeless limit thus
forbids the description of 1L2 CP-violating mixing terms
in the formalism of Eq. (4). Similarly, the tree-level mixing
angle α − β of the full MSSM (including gauge terms), rel-
evant for MH± ≈ MEW, can only be accounted for in an ad-
hoc fashion in the gaugeless description, requiring a mixing-
matrix formalism. This situation is not surprising as it natu-
rally emerges from the neglected EW effects in the gaugeless
description and can only be properly addressed by the inclu-
sion of full EW 2L corrections. As it is, we observed that the
expansion formalism for near-degenerate states, represented
by the effective mass matrix of Eq. (21), provides predictive
mass (pole) observables, showing little or no dependence on
the choice of field renormalization, when the converse defect
limits the usefulness of the iteration method.

5 Resummation of UV-logarithms of O(
αq, αq αs, α2

q
)

and field dependence

In the previous sections, we have derived the Higgs masses
and discussed the field dependence in a strict expansion
at FO. Nevertheless, the large size of the radiative corrections
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Table 1 Mass poles obtained in the scenario with three near-degenerate
neutral states. In the left trio of columns, the masses are derived with the
expansion method. In the righter one, the iterative method is employed.

Three schemes are considered for the 1L Higgs fields: OS, DR with
μUV = MW (DR EW) and DR with μUV = MSUSY = 1 TeV
(DR SUSY)

Poles Expansion Iteration

[GeV] OS DR EW DR SUSY OS DR EW DR SUSY

M1 123.3 − 6.9 ı 123.3 − 6.9 ı 123.3 − 6.9 ı 124.0 − 5.8 ı 124.7 − 0.8 ı 123.5 − 7.8 ı

M2 123.8 − 7.6 ı 123.8 − 7.6 ı 123.8 − 7.6 ı 124.6 − 6.6 ı 125.0 − 6.9 ı 124.3 − 8.4 ı

M3 125.8 − 0.7 ı 125.8 − 0.7 ı 125.8 − 0.7 ı 126.0 − 0.8 ı 125.3 − 7.7 ı 127.5 − 0.5 ı

Fig. 10 Fermion scattering in the vicinity of three near-degenerate
scalar resonances. Left: cross-section σ [bb̄ → τ+τ−] obtained with
poles and couplings in the expansion approach (dark-green, green and
cyan, solid and dashed, depending on the scheme for field renormaliza-
tion) and in the iterative method with off-shell momenta (solid orange,
red and magenta in the DR EW, DR SUSY and OS schemes for fields,

respectively). Right: effective Higgs couplings to bottom quarks (upper
row) and τ leptons (lower row) obtained in the expansion (left column)
and in the iterative approaches (right column). Left- and right-handed
couplings are depicted in the complex plane with filled and empty sym-
bols respectively

ofO(2L) to the mass of the SM-like state in such an approach
points at the slow convergence of the perturbative series in the
presence of heavy (multi-TeV) SUSY particles. As is well-
known, UV-logarithms of the type lnkM2

SUSY

/
M2

EW – with
MSUSY typically corresponding to the mass of the squarks
of third generation – are responsible for these large effects
and should be resummed for numerically meaningful predic-
tions. One usually turns to the EFT framework – see e.g. Refs.
[33–46] – in order to implement this resummation. How-
ever, for the corrections of O(αq , αq αs, α2

q

)
that we dis-

cuss here, this operation can be performed directly in the
FO context: all the relevant parameter input – strong gauge-
and Yukawa couplings – is indeed accessible at low energy

from SM observables, so that a matching at high scale is
superfluous. Then, the (simple and squared) UV-logarithms
contained in the FO expansion can be explicitly extracted
and re-molded according to the flow of the Callan–Symanzik
equations applying to the SM-like Higgs mass (or the mass-
splitting between heavy states). While the method is thus
formally distinct from that of an EFT, it is very similar at the
technical level to the hybrid procedure described in Ref. [92],
since both subtract UV-logarithms from the FO calculation
to re-inject them in resummed form.

The relevant Renormalization-Group Equations (RGEs)
are those obtained after screening-off the heavy fields – due
to the large mass that cut these off in the emergence of

123



661 Page 24 of 35 Eur. Phys. J. C (2021) 81 :661

UV-logarithms at the level of the loop functions: in other
words, they match the field content of the SM, or of the
Two-Higgs Doublet Model (THDM) for intermediate scales
(if MH± � MSUSY). Further thresholds could be considered,
depending on the relative scales of the gluino and the squarks
of third generation, but we will not discuss them here. For
the considered orders, the RGEs are entirely determined by
the running of the quartic Higgs couplings, the EW v.e.v.,
the strong gauge- and Yukawa couplings. For definiteness,
we collect the resummation formulae for the SM-like state
in the gaugeless limit below:

�̂
(gl,resum)
hh =

ln M2
SUSY∫

ln M2
EW

d ln μ2
{
− 12

[
α2
t (μ) s4

β + α2
b(μ) c4

β

](
1 + 16

3

αs(μ)

4 π

)
+ β

α2
q

λ (μ)

+ 6 (δλ)(αq )

4 π

[
αt (μ) s2

β + αb(μ) c2
β

]}
v2(μ) , (35a)

β
α2
q

λ (μ) ≡ 12

4 π

{
5
[
α3
t (μ) s4

β + α3
b(μ) c4

β

]+ αt (μ) αb(μ)
[
αt (μ) s2

β + αb(μ) c2
β

]
, μ > MH± ,

5
[
α3
t (μ) s6

β + α3
b(μ) c6

β

]− αt (μ) s2
β αb(μ) c2

β

[
αt (μ) s2

β + αb(μ) c2
β

]
, μ < MH± ,

(35b)

d αs

d ln μ2 ≡ −7
α2
s

4 π
+ O(α3

s , α
2
s αq) , (35c)

d αt

d ln μ2 ≡
{

1
4 π

αt
[ 9

2 αt + 1
2 αb − 8 αs

]+ O(αq α, α2
s αq , αs α2

q , α
3
q) , μ > MH± ,

1
4 π

αt

[
9
2 αt s2

β + 3
2 αb c2

β − 8 αs

]
+ O(αq α, α2

s αq , αs α2
q , α

3
q) , μ < MH± ,

(35d)

d αb

d ln μ2 ≡
{

1
4 π

αb
[ 9

2 αb + 1
2 αt − 8 αs

]+ O(αq α, α2
s αq , αs α2

q , α
3
q) , μ > MH± ,

1
4 π

αb

[
9
2 αb c2

β + 3
2 αt s2

β − 8 αs

]
+ O(αq α, α2

s αq , αs α2
q , α

3
q) , μ < MH± ,

(35e)

d v2

d ln μ2 ≡ −3 v2

4 π

[
αt s

2
β + αb c

2
β

]
+ O(α, αs αq , α

2
q) , (35f)

(δλ)(αq ) ≡
[
(δλ2)

(αq ) s4
β + (δλ1)

(αq ) c4
β

]
·
[
αt (μ) s2

β + αb(μ) c2
β

]−1
, μ > MH± , (35g)

d(δλ1)
(αq )

d ln μ2 ≡ −6 α2
b(μ) + O(α2

q αs, α3
q

)
,
d(δλ2)

(αq )

d ln μ2 ≡ −6 α2
t (μ) + O(α2

q αs, α3
q

)
,

d(δλ)(αq )

d ln μ2 ≡ −6
[
α2
t (μ) s4

β + α2
b(μ) c4

β

]
+ O(α2

q αs, α3
q

)
, μ < MH± . (35h)

The resummation of gaugeless orders has little significance
for the heavy-doublet masses, where EW corrections are
dominant, and we thus omit the corresponding formulae.
Contrarily to the EFT description where the EFT parameters
are run down from a UV-matching scale to the Higgs (EW)
scale, the RGEs of the FO description are run up from the
SM (or THDM) input scale MEW – set equal tomt in practice
– towards the scale corresponding to the heavy screened-off
particles. The conversion of observable input (e.g. fermion
and gauge pole masses) to running (MS) parameters gener-
ates further next-to-leading logarithms.

The RGEs summarized in Eq. (35) incorporate all the
logarithmically-enhanced corrections that one can derive in
the gaugeless limit at 2L order. We thus explicitly restrict
ourselves to the leading order (LO) and next-to-LO (NLO)
that are explicitly contained in the diagrammatic calculation
of Higgs self-energies at 2L FO. However, RGEs of higher
order could also be employed – in that case, without subtract-
ing the higher-order logarithms in expanded form, since these
have no equivalent in the diagrammatic calculation ofO(2L).
Furthermore, a few subtleties associated with the Higgs self-
coupling parameter (δλ)(αq ) that are generated by loop effects

of O(αq) may be worth discussing. Indeed, the traditional
(EFT) counting would associate to this object the boundary

condition (δλ)(αq )(MSUSY)
!= 0, resulting in the low-energy

boundary

(δλ)(αq )(MEW) ≈ 6
[
α2
t s

4
β + α2

b c
4
β

]
ln M2

SUSY

/
M2

EW.

This is also the choice that allows to reproduce the explicit
logarithmic expansion of the FO calculation. Nevertheless,

the choice (δλ)(αq )(MEW)
!= 0 is also a perfectly legitimate

condition due to the fundamental ambiguities in order count-
ing – αq ∼ α and αq ln M2

SUSY

/
M2

EW ∼ 1 – which allow the
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transmutation of the 2L quantity α2
q ln2M2

SUSY

/
M2

EW into
the 1L object α ln M2

SUSY

/
M2

EW: instead of being resummed
as logarithms of Yukawa type, the squared logarithms thus
overlooked would be left as simple EW logarithms – and
possibly resummed as such when absorbed within the quar-
tic Higgs coupling λ(MEW). As we do not perform this
EW resummation here, however, the numerical difference
between the two procedures can be sizable at large squark
masses. To keep the comparisons simple, we therefore adopt
the traditional counting by default, i.e. set

(δλ)(αq )(MEW)
!=

ln M2
SUSY∫

ln M2
EW

d ln μ2 6
[
α2
t s

4
β + α2

b c
4
β

]
. (36)

With LO and NLO logarithms of O(αq , αq αs, α2
q

)

properly resummed (up to another caveat that we dis-
cuss below), the higher-order uncertainty, controlled by
terms ∼αq α2

s ln3M2
SUSY

/
M2

EW (� 10–30%, at the level
of the squared mass, for MSUSY = 1.5–10 TeV) in the
strict expansion, is now pushed back – as far as gauge-
less orders are concerned – to ∼ αq α2

s ln M2
SUSY

/
M2

EW (<
1%). In fact, the higher-order uncertainty is now controlled
by EW 2L effects ∼ αq α ln2M2

SUSY

/
M2

EW (∼ 0.2–2% for
MSUSY = 1.5–10 TeV). Furthermore, another term of gauge-
less order appears in the RGEs, originating in Higgs self-
interactions:

�̂
(gl,α3

q )

hh =
ln M2

SUSY∫

ln M2
EW

d ln μ2 12

16 π2

[
(δλ)(αq )(μ)

]2
v(μ)2

= O(α3
q ln2M2

SUSY

/
M2

EW

)
. (37)

As this is a contribution of 3L order, it does not appear in the
2L calculation at FO. In order to resum all NLO logarithms
of Yukawa-type, we add this term to our calculation nonethe-
less, instead of leaving it as a contribution of O(α). Finally,
it is fair to mention in this short uncertainty estimate that not
only logarithmically-enhanced contributions may require the
recourse to resummation techniques: see e.g. Ref. [93] for a
resummation of squark-mixing terms.

EW logarithms of LO could also be resummed, as is rou-
tinely performed in the EFT description. Our method with
input at the low-energy boundary continues to apply, with-
out need of a matching at high scale. EW gauge couplings are
indeed well-defined at the low-energy end. As to the quartic
Higgs couplings, they can be obtained from the observables
(Higgs masses and decays) that are predicted in the FO cal-
culation, without or with partial UV-resummation. This is a
straightforward recipe for a low-energy effective SM – only
the (preliminary) mass prediction for the SM-like state is
then needed – but accounting for a THDM threshold becomes

more intricate as a larger basis of observables is then needed
in order to identify the more numerous parameters of the
Higgs potential; yet, the situation is no different at this level
in an EFT approach, in principle. In fact, the somewhat less
robust boundary condition for the Higgs self-interactions is
the only drawback as compared to the EFT procedure: we
anticipate it to amount to little at the numerical level, albeit
a detailed comparison (beyond our current scope) would be
needed in order to ascertain this claim. In this paper, we
choose not to carry out the resummation of EW logarithms
and go through the intricacies of a THDM threshold, first
because this would exceed the bounds of gaugeless orders
that we meant to discuss here, then because these effects
remain comparatively small (and not necessarily related to
the scale of the sole gluino and squarks of third genera-
tion), finally because the actual focus of the paper concerns
the dependence on field counterterms and that the gauge-
less orders are quite sufficient to measure its impact in a
resummed mass prediction for the SM-like Higgs.

In the upper row of Fig. 11, we compare the explicit cal-
culation of Higgs self-energies at FO in the gaugeless limit
and the corresponding expansion in lnkM2

SUSY

/
M2

EW. This
latter expansion is obtained from the integration of the RGEs
of Eq. (35) in a linear way, but – as mentioned above – addi-
tional logarithms of NLO intervene from the conversion of
parameters in our scheme to MS ones at the scale MEW –
e.g. mOS

t = mMS
t (mt )

(
1 + 16

3
αs
4 π

+ O(αq)
)
. The plots in

the middle and lower rows show the impact of the resumma-
tion of the UV-logarithms for the prediction of the SM-like
mass. Here, the UV-resummation is achieved by subtracting
the identified UV-logarithms and substituting a resummed
version where Eq. (35) is integrated numerically. The cor-
responding evaluations are shown in red and orange lines,
while the blue and cyan lines correspond to the predictions
without resummation. These calculations are conducted for
both the expansion formalism (blue and red) and for the iter-
ative pole search (cyan and orange) with DR regularization
of the Higgs fields (μUV = MW in solid and μUV = MSUSY

in dashed lines). In the lower row, the orange and cyan curves
correspond to the approximation p2 = 0 in the contributions
of 2L order processed in an iterative fashion: their colors
match those of the corresponding curves in the middle row,
accounting for full momentum dependence.

On the left-hand side of Fig. 11, we consider an MSSM
scenario with decoupling squarks and gluinos (mQ̃3,T̃

≈
M3

!= MSUSY � mt ), keeping the mixing in the stop sec-
tor, Xt ≡ At − μ/tβ , minimal, and setting MH± = 1 TeV,
tβ = 10 for the THDM sector. This is the ideal setup for
checking the agreement between the logarithmic expansion
and the FO calculations, as can be observed in the very nar-
row matching of the various self-energies. We note in passing
that this numerical agreement between the UV-logarithms
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Fig. 11 Impact of the resummation of UV-logarithms of
O(αq , αq αs , α2

q ) for the Higgs-mass prediction and the field
dependence. Up: Higgs self-energies in the gaugeless limit (solid
curves) compared to the logarithmic expansion (dashed curves).
Middle: mass predictions with resummed UV-logarithms (red and
orange) compared to the strict FO expansion (blue and cyan). Both the

expansion formalism (red and blue) and the iterative pole search with
DR field counterterms (orange and cyan; solid: μUV = MW ; dashed:
μUV = MSUSY) are considered. Down: same as in the middle row, but
with two-loop self-energies evaluated at p2 = 0. Left: the stop mixing
is set to negligible values. Right: the stop mixing is kept at the SUSY
scale
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obtained in the strict expansion approach and those expected
from EFT considerations is another argument for preferring
the expansion method against the iteration approach: in the
latter, UV-logarithms come with an explicit dependence on
field renormalization, hence can only match the EFT value for
specific choices of the field counterterms. Turning to the mass
predictions, the resummation of UV-logarithms accounts for
a shift of already ∼ 1.5 GeV at MSUSY ∼ 1.5 TeV and
over 10 GeV at 10 TeV. As already noted in earlier works
– see e.g. Ref. [9] – the resummation counteracts the ten-
dency of mass predictions of O(α2

q

)
to fall at large MSUSY

– due to large ln2M2
SUSY

/
M2

EW added linearly in the strict
FO expansion.

On the right-hand side of Fig. 11, we maintain the stop
mixing at |Xt | ≈ MSUSY, which generates sizable shifts
between the logarithmic expansion and the FO calculation
(without endangering the relevance of the resummation of
UV-logarithms). At least the leading orders from squark mix-
ing are properly included within the non-logarithmic terms
of the FO calculation.

As to the dependence of masses on field counterterms, in
case an iterative pole search is employed, it is obvious that the
resummation affects it only marginally, as the momenta eval-
uated in self-energies are still shifted with respect to the tree-
level mass (the latter choice ensuring invariance in the expan-
sion method). Correspondingly, the uncertainty associated
with field variations steeply grows with increasing MSUSY in
the FO approach with iterative pole search, reachingO(10%)

at MSUSY ∼ 10 TeV – hence becoming larger than the
actual higher-order uncertainty after resummation of the UV-
logarithms. The approximation p2 = 0 in pieces of 2L order
of the iterative pole search (lower row) tends to systemati-
cally over-estimate the mass as compared to the prediction
with full momentum dependence, but does not reduce the
magnitude of the dependence on field-renormalization con-
stants. Given the similarity of the procedure employed in
the hybrid calculation of Ref. [92], then refined in Refs.
[30,38,42,47–50], the corresponding predictions of the pub-
lic code FeynHiggs [47,48,58,61,67,92,94,95] are thus
a priori subject to the large error associated with the field
dependence. Yet, an ad-hoc choice of field counterterms,
derived by comparison of the logarithms with those of an
EFT (see Ref. [30]), then restores a more predictive behav-
ior – largely compatible with that of the more straightforward
expansion approach. We aim at a more detailed comparison
in Fig. 12 for the same scenario as in the left-hand column of
plots of Fig. 11 (Xt ≈ 0).

FeynHiggs-2.18.0 delivers Higgs-mass predictions
in the MSSM. The 2L corrections of order αq αs and α2

q
are included in the effective-potential approximation, which
is a relevant choice for the SM-like state, as already dis-
cussed. UV-logarithms can optionally be resummed and

included in the hybrid approach described in Refs. [47–
50,92]. The default setup (labelled ‘vanilla FeynHiggs’
below) employs an iterative pole-search algorithm to find
the loop-corrected Higgs masses. In order to neutralize the
large unphysical scale dependence that is thus introduced
by the field-renormalization constants, a special scheme has
been devised in Ref. [30]; it includes all finite SUSY contri-
butions in the field counterterms, thereby yielding the same
logarithmic dependence as that of an EFT calculation. The
predictions of ‘vanilla FeynHiggs’ are depicted as refer-
ence in all plots of Fig. 12 (blue and red short-dashed lines).

For consistency checks, FeynHiggs also provides some
hidden flags that can be set through environment variables.
Below, we make use of the following settings:

• FHFOPOLEEQ=1 switches the determination of the
loop-corrected masses to a partial perturbative expan-
sion – only corrections for the diagonal self-energies
are included; in the considered scenario with hierarchical
Higgs sector, this is expected to agree relatively well with
our calculation using the expansion formalism;

• with FHFINFIELDREN=0 the finite terms of the field-
renormalization constants are set to zero, hence reverting
the field counterterms to a simple DR form;

• FHTBSCALE=# interprets the input value for tan β at the
scale #GeV, which can largely be seen as resetting the
renormalization scale μren for this parameter.

In the upper-left plot of Fig. 12, we compare the mass
predictions of the partial perturbative expansion available
in FeynHiggs (solid curves) with the results using our
own expansion formalism (disks). The plain FO determi-
nation is shown in blue, while a resummation of logarithms
is included in the red curves. In the case of FeynHiggs,
the setting loglevel=2 is employed, which corresponds
to the resummation of next-to-leading logarithms (NLL) for
the case where all SUSY masses are large.12 We observe
an almost exact agreement of FeynHiggs and our for-
malism for this expansion approach; small differences at
the level of predictions with resummed UV-logarithms are
of the expected percent-order magnitude for unresummed
EW logarithms (in our setup) and can thus be attributed
to additional classes of logarithms that are included in the
resummation of FeynHiggs. In addition, the resummation
of EW logarithms may not be completely suited to our sce-
nario where electroweakino and slepton masses are not varied
with MSUSY.

12 A setting for higher precision is possible and performs a next-to-
NLL resummation, but such effects are not considered in our calculation
(though they could be added at a later stage), hence appear of limited
use for the comparison that we conduct here and which focusses on
field-dependence aspects.
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Fig. 12 Comparison of our results with those of FeynHiggs.
Blue/cyan curves and symbols correspond to the mass predictions with
strict FO expansion, while the red/orange ones include a resumma-
tion of UV-logarithms. Actual lines refer to masses determined with
FeynHiggs whereas the disks and circles proceed from our own cal-
culations. The default output of FeynHiggs, ‘vanilla FeynHiggs’,
is plotted with short-dashed lines in all plots to serve as a reference. All

other curves test different settings. Up left: the partial expansion avail-
able in FeynHiggs (solid lines) is compared with our own (disks).
Bottom left: results of the iterative pole search without resumming UV-
logarithms. The calculations are performed with two different renor-
malization scales and the DR input is correspondingly adjusted. Bot-
tom right: similar to bottom left, but now including the resummation of
UV-logarithms

In the lower row of Fig. 12, we compare our predictions
(disks and circles) to the corresponding ones obtained with
FeynHiggs (solid and dashed curves) when using an iter-
ative pole-search algorithm with DR-renormalized fields. In
order to resemble the setup of FeynHiggs, our predic-
tions include the 2L corrections in the effective-potential
approximation. The plot on the left-hand side shows the
FO results, while the curves on the right-hand side include
resummed logarithms. In both plots we display predictions
at the renormalization scales μren = mt (solid curves or
disks) and μren = MSUSY (dashed curves or circles). The
input value for the DR parameter tan β is interpreted at the
scalemt before being run to the chosen renormalization scale
and fed as input: we thus make sure that we are comparing the
same points in parameter space. The running of the additional
DR parametersmb and Ab has a negligible impact in the cho-
sen scenario. This whole procedure is meant to emulate the
direct variation of finite field counterterms, as we considered

it before, since an independent variation is not straightfor-
wardly accessible in FeynHiggs. Again, we are able to
recover the predictions of FeynHiggs at FO (left plot) to
a good approximation, which confirms our observations as
to the large inherent uncertainty associated with an iterative
approach to the pole determination. A somewhat larger devia-
tion is visible in the resummed prediction at the SUSY scale:
we could not completely understand the origin of this dis-
crepancy, but this may not matter much since the dependence
on the choice of field renormalization in such a description
spoils the logarithmic behavior anyway. In any case, it is
obvious that the introduction of the UV-resummation does
not neutralize the intrinsic uncertainty originating in the pole
search. We note that the results obtained with μUV = mt are
very close to the– in our opinion more reliable – predictions
of the expansion procedure. This good performance is not
completely mysterious in the considered scenario. Indeed,
with the external momentum set to 0 in the 2L self-energies
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and a sizable hierarchy between MEW and MH± , the dif-
ference between the iteration and expansion procedures for
the determination of the mass of the SM-like Higgs can be
estimated as −(M2

h −m2
h

)
�̂

(1) ′
hh

(
m2

h

)+ �̂
(1,gl)
hh (0) �̂

(1,gl) ′
hh (0)

(similarly to Eq. (25)). Then, in the gaugeless approximation,

�̂
(1,gl) ′
hh ≈ − 3 αt

4 π
s2
β

[
ln μ2

UV

/
m2

t − 2
3 + O(X2

t

/
M2

SUSY

)]
,

which vanishes for μUV = O(mt ) at small Xt . The inclusion
of EW orders does not spoil this picture, as long as large
logarithms do not develop from the electroweakino loops.
Therefore, the apparent predictivity of the choice μUV = mt

is very specific to this scenario and not reliable on fundamen-
tal grounds.

Finally, we turn to the predictions by ‘vanillaFeynHiggs’.
These appear to be relatively close to our results obtained
with the perturbative expansion (upper plot). Again, this com-
parative proximity is not really mysterious, as the injected
counterterms in FeynHiggs have been designed such that
one recovers the correct logarithmic behavior. Such a choice
is comparable to our OS scheme for the field countert-
erms, for which we also observed comparative agreement
with the expansion in similar setups: see the pink cross in
the upper plot of Fig. 6. Therefore, although FeynHiggs
employs an iterative pole search by default, it escapes the
large uncertainty associated with this procedure through a
judicious choice of field counterterms. Yet, a discrepancy
reachingO(1 GeV) at MSUSY = 10 TeV is visible in the strict
FO approach – blue curves; both calculations are compara-
ble in that they consider exactly the same orders. Unques-
tionably, this difference originates in the choice of proce-
dure (expansion vs. iteration), since the simplified expansion
available in FeynHiggs agrees with our method. This is
therefore the magnitude of the error – again, we stress that
this shift has no predictive value – contained in this choice
for the mass determination, which should be included as
an irreducible uncertainty to the predictions (beyond esti-
mated higher-order effects). This contribution is somewhat
reduced after inclusion of the UV-resummation (in this sce-
nario), because M2

h then comes closer to m2
h − �̂

(1,gl)
hh (0)

(≈ 1622 GeV2 at MSUSY = 10 TeV) – the difference between
these two quantities controls the leading dependence on the
field counterterm, proportional to δZhh .

In addition, the use of the technically more involved itera-
tion method remains a choice of questionable efficiency since
the predictivity of the FO calculation, directly accessible with
the simple expansion procedure, is first wasted, then restored
through the cross-reference of the logarithms with the EFT
method. Finally, it is unlikely that this method can simulta-
neously produce predictive results at the level of the mass-
splitting among heavy states. We therefore recommend the
use of the more robust expansion and truncation procedure
that we described in Sect. 2 after the principle of indepen-

dence of observables from the choice of scheme for field
renormalization.

6 Conclusions

In this paper, we investigated the dependence of MSSM
Higgs masses on field counterterms in a FO approach at 2L.
This dependence on regulators originates in the arbitrary
regularization of Higgs self-energies away from their (tree-
level) mass-shell, and is exacerbated when processing 2L
and 1L2 corrections in independent fashions. This situa-
tion is further complicated by the fact that – due to miss-
ing EW corrections in 2L vector self-energies – only effects
of O(αq αs, α2

q

)
are fully exploitable at 2L, rendering an

evaluation in the gaugeless approximation necessary at the
technical level. Masses derived in the strict expansion for-
malism evade these difficulties through a careful pairing of
field-dependent pieces and the neutralization of field coun-
terterms. On the other hand, the popular mass determination
via an iterative pole search, computationally more costly,
retains an explicit dependence on field regulators, which gen-
erates an irreducible uncertainty inherent to the method. In
the case of the SM-like Higgs state, we have seen that this
‘error’ already amounts to a few GeV for a SUSY sector at
the TeV scale. Concerning the heavy-doublet states, unlike
the SM-like one, the known orders αq αs and α2

q are of lim-
ited relevance since EW corrections are expected to domi-
nate. We still considered these contributions in order to test
the impact of the regularization of Higgs self-energies away
from their mass-shell. Then, a scale variation with DR coun-
terterms is insufficient to capture the full extent of the field
dependence, which is driven by leading EW effects, and we
also introduced an OS regularization for comparison. In all
cases, variation of the field regulators yielded variations of
mass predictions by the iterative pole search that are of the
same order as the deviation between iterative and expansion
approach. This demonstrates that the mass-shifts generated
by the iterative pole search with respect to the expansion
approach are purely artificial in nature, and we thus believe
it justified to prefer the simpler – and field-independent –
method. This argument adds to the one of the symmetry con-
siderations that we raised at 1L order in Ref. [68].

In the presence of mass degeneracies, the expansion for-
malism can be extended to account for mixing effects in
a fashion keeping the dependence on field regulators to a
minimum. We studied several scenarios involving large mix-
ing effects as well as the transition with the non-degenerate
regime. The inclusion of 2L effects in the gaugeless approx-
imation has various consequences at this level, such as
imposing the degeneracy of heavy Higgs states in the pres-
ence of CP-violating mixing or complicating the connection
between the gaugeless and ‘full’ tree-level Higgs states. At
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a technical level, it would thus seem desirable to put full 2L
EW corrections under control, which would allow to escape
the constraints of the gaugeless approximation and limit the
use of a near-degenerate formalism strictly to scenarios with
large mixing. As far as the dependence on field counterterms
is concerned, the situation is very similar, however, in the
non-degenerate and near-degenerate scenarios.

In addition, we observed that the effective-potential
approximation for 2L self-energies leads to quantitatively
reliable results only when applied to the mass of the SM-like
state. Considering the numerical cost of evaluating 2L inte-
grals at non-vanishing momentum, as well as the irrelevance
(in the absence of EW 2L corrections) of the orders αq αs

and α2
q for heavy-doublet states, it makes limited sense, in the

non-degenerate case, to consider 2L gaugeless self-energies
for any other external state than the SM-like one. Further-
more, the limited pertinence of this approximation for non-
vanishing tree-level masses questions as to the applicability
of corresponding calculations to extensions of the MSSM,
away from an MSSM-like regime, since tree-level masses do
not necessarily vanish then, even in the gaugeless limit.

Given that large UV-logarithms develop with increasingly
heavy SUSY spectrum, the strict FO formalism suffers from
a slow convergence of the perturbative series. This issue can
be evaded through an explicit resummation of logarithmic
effects. This resummation can be directly included in the con-
text of the FO calculation, without resorting to a matching
scale, simply by exploiting low-energy observables as input,
and we explicitly performed this operation for the orders αq ,
αq αs and α2

q . As this resummation does not modify the prob-
lem of the regularization of Higgs self-energies away from
their mass-shell, it does not affect our conclusions concerning
the dependence of mass predictions at FO on field countert-
erms. This situation contrasts with the concurrent computa-
tion method through EFTs, where artificial field-dependent
terms cannot receive large logarithmic enhancement – due
to the very structure of the EFT that embeds UV-logarithms
within effective tree-level couplings – but not with e.g. the
hybrid approach of Ref. [92]. Nevertheless, we have also
shown how the judicious choice of field renormalization
devised in Ref. [30] for the public code FeynHiggs largely
shields the latter from excessive uncertainties associated with
the iterative mass determination.
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A Scattering by scalar resonances and propagator
matrix

A.1 General considerations

For definiteness, we consider the 2→2 scattering process
bb̄ → τ+τ− mediated by scalar (neutral Higgs) resonances,
with a center-of-mass energy

√
s. The amplitude can be for-

mally written as

A[bb̄ → τ+τ−] =
[
v̄b( p̄b) ı V̌

α
Sbb ub(pb)

]
ı P̌ S

αβ

×
[
v̄τ ( p̄τ ) ı V̌

β
Sττ uτ (pτ )

]
. (38)

In this appendix, the �̌ notation represents vectors and matri-
ces in scalar space – corresponding to the Greek indices, α,
β, which are implicitly summed over. The symbols have the
following meaning:

• The propagator P̌ S is a symmetric matrix in scalar space,
depending on the external momentum squared s ≡ (pb+
p̄b)2. As is customary in particle physics, we assume that
this object can be decomposed into single poles and a
continuum:

P̌ S(s) =
∑

H

ŘH

s − M2
H

+ Č(s) (39)

where Č is a ‘smooth’ function of s.
Without loss of generality,

ŘH =
∑

m

rHm ĚHm ĚT
Hm

, (40)

where ĚHm are vectors generating the subspace associ-
ated with the pole M2

H , while rHm is a normalization
(‘residue’ if ĚHm is normalized).

• The vertex operator V̌S f f is a ‘column’-vector in scalar
space and – since it corresponds to interactions with
scalar resonances – can be decomposed as e.g.V̌S f f =

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2021) 81 :661 Page 31 of 35 661

V̌L
S f f PL+V̌ R

S f f PR in spinor space, where PL ,R represent

the chiral projectors while V̌L ,R
S f f have no spinor indices

left. A priori, V̌L ,R
S f f are functions of p f and p̄ f , which we

can replace bym2
f (kept implicit) and s = (p f + p̄ f

)2 due
to Lorentz invariance. By ‘physical’ hypothesis, these
functions of s are ‘smooth’, so that, near a pole M2

H of
the propagator,

V̌L ,R
S f f (s) =

s∼M2
H

V̌L ,R
S f f

(M2
H

)+
(
s − M2

H

) dV̌L ,R
S f f

ds

(M2
H

)

+ · · · . (41)

We write the scalar product r1/2
Hm

(
ĚT
Hm

V̌L ,R
S f f (M2

H )
)

as

gL ,R
Hm f f .

From the analysis above, the scattering amplitude may
thus be written as follows:

A[bb̄ → τ+τ−]

= f (s) +
∑

H,m

[
v̄b( p̄b) ı

(
gL ,R
Hmbb

PL ,R

)
ub(pb)

]

× ı

s − M2
H

[
v̄τ ( p̄τ ) ı

(
gL ,R
Hmττ PL ,R

)
uτ (pτ )

]
(42)

where f is a smooth function. Perturbative QFT, assuming
it is in its regime of validity, should offer a predictive frame-
work for the calculation of the objects defined above, in par-
ticular the (complex) poles M2

H and the effective couplings

gL ,R
Hm f f .

A.2 Propagator matrix in perturbative QFT at 2L order

The propagator matrix is defined as the inverse of the two-
point function in the scalar sector: P̌ S(s) = [s 1̌−M̌2

S(s)
]−1,

where M̌2
S(s) = M̌2

tree − �̂(s) with M̌2
tree denoting the tree-

level mass matrix and �̂(s) = �̂(1)(s) + �̂(2)(s) + O(3L)

denoting the renormalized self-energy matrix. We work in
the basis of the tree-level mass eigenstates, i.e. M̌2

tree =
diag

[
m2

i

]
.

Non-degenerate case: Let us consider s = m2
i + O(1L),

with m2
i representing a non-degenerate tree-level mass, and

define the matrix ̌i (s) from its elements ( j, k �= i)

̌i
i i (s) ≡ 1 − 1

2

∑

j �=i

[
�̂

(1)
i j (s)

m2
i − m2

j

]2

,

̌i
jk(s) ≡δ jk − �̂

(1)
i j (s) �̂

(1)
ik (s)

2
(
m2

i − m2
j

) (
m2

i − m2
k

) , (43a)

̌i
i j (s) = −̌i

j i (s) ≡ − 1

m2
i − m2

j

⎡

⎣�̂
(1)
i j (s) + �̂

(2)
i j (s)

+ �̂
(1)
i i (s) �̂

(1)
i j (s)

m2
i − m2

j

−
∑

k �=i

�̂
(1)
ik (s) �̂

(1)
jk (s)

m2
i − m2

k

⎤

⎦ .

(43b)

It satisfies ̌i (s)· ̌i T (s) = 1̌ + O(3L) as well as

[
s 1̌ − M̌2

S(s)
]

jk
= (s − M̃2

i (s)
)
̌i

i j (s) ̌i
ik(s)

+
∑

m,n �=i

̌i
m j (s) ̌i

nk(s)
(
s δ jk − M̃2

jk(s)
)

+ O(3L) , (44)

i.e. the ̌i (s) ‘rotation’ isolates the direction i up to terms of
3L order, with the diagonal element (‘eigenvalue’) reading

M̃2
i (s) = m2

i − �̂
(1)
i i (s) − �̂

(2)
i i (s) +

∑

j �=i

�̂
(1)
i j (s)2

m2
i − m2

j

+ O(3L).

(45)

Coming back to the propagator matrix, we then have

P̌ S
jk(s) =

s∼m2
i

1

s − M̃2
i (s)

̌i
i j (s) ̌i

ik(s) + · · · , (46)

where the ellipses represent non-singular pieces in the vicin-
ity of s ∼ m2

i . We thus obtain a pole M2
i defined by the

recursive conditionM2
i = M̃2

i (M2
i ), together with a residue

r−1
i = 1 + d�̂

(1)
i i

ds

(M2
i

)+ O(2L) (47)

and the associated ‘eigenvector’ ̌i
i j

(M2
i

)
. Further perturba-

tive expansion of the argument in the self-energies, M2
i =

m2
i − �̂

(1)
i i

(
m2

i

) + O(2L), leads to the expression of Eq. (4)

with the residue r−1
i = 1 + d�̂

(1)
i i

ds

(
m2

i

) + O(2L) – as we
restrict ourselves to vertex corrections of 1L order below, we
do not attempt to control the residue beyond 1L order.

Near-degenerate case: Now, let us consider a degenerate
sector D. We can still isolate it via a ‘rotation’ ̌D(s) satis-
fying ̌D(s)· ̌D T (s) = 1̌ + O(3L). In this case, one may
choose (i, j ∈ D, k, l /∈ D)

̌D
i j (s) ≡ δi j −

∑

k /∈D

�̂
(1)
ik (s) �̂

(1)
jk (s)

2
(
m2

i − m2
k

) (
m2

j − m2
k

) ,

̌D
kl(s) ≡δkl −

∑

i∈D

�̂
(1)
ik (s) �̂

(1)
il (s)

2
(
m2

i − m2
k

) (
m2

i − m2
l

) , (48a)
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̌D
ik(s) = −i

ki (s) ≡ − 1

m2
i − m2

k

⎡

⎣�̂
(1)
ik (s) + �̂

(2)
ik (s)

+
∑

j∈D

�̂
(1)
i j (s) �̂

(1)
jk (s)

m2
j − m2

k

−
∑

l /∈D

�̂
(1)
il (s) �̂

(1)
kl (s)

m2
i − m2

l

⎤

⎦ .

(48b)

Then, the object P̌−1(s) ≡ ̌D(s)·
[
s 1̌ − M̌2(s)

]
· ̌D T (s)

satisfies P̌−1
ik (s) = O(3L) = P̌−1

ki (s), for i ∈ D and k /∈ D,

while P̌−1
i j (s) = s δi j − M̃2

D i j (s) for i, j ∈ D, with

M̃2
D i j (s) ≡ m2

i δi j − �̂
(1)
i j (s) − �̂

(2)
i j (s)

+
∑

k /∈D

(
m2

i + m2
j − 2m2

k

)
�̂

(1)
ik (s) �̂

(1)
jk (s)

2
(
m2

i − m2
k

) (
m2

j − m2
k

)

+O(3L) . (49)
(P̌−1

i j (s)
)
i, j∈D is still a symmetric matrix, hence can be writ-

ten as ǓD T (s) · Ď(s) · ǓD(s), with a diagonal matrix Ď(s)

and a unitary matrix ǓD(s). The equation det[Ď(s)] != 0,
defining the zeroes of the inverse propagator matrix in the

degenerate sector, implies det[s 1̌D − M̃2
D(s)] != 0, since

det[ǓD(s)] �= 0. Thus, the zeroes M2
I in the subspace D

still satisfy an implicit eigenvalue condition

det
[
M2

I 1̌D − M̃2
D

(M2
I

)] = 0 . (50)

At the 2L order, it is no longer sufficient to simply derive
ǓD from the eigenvectors of M̃2

D , because the orthogonal-
ity property is not necessarily satisfied by the diagonaliz-
ing matrices in the complex case. Instead, one should deter-
mine ǓD(M2

I ) through the diagonalization of
[M2

I 1̌D −
M̃2

D

(M2
I

)]†·[M2
I 1̌D − M̃2

D

(M2
I

)]
. Then, close to the pole,

the propagator matrix looks like

P̌ S(s) =
s∼M2

I

rI
(
SI i SI j

)
i, j∈D

s − M2
I

+ · · · ,

SI i ≡
∑

j∈D

(
Ǔ D

I j

(M2
I

))∗
̌D

ji

(M2
I

)
, (51a)

r−1
I ≡

∑

i, j∈D

(
Ǔ D

I i

(M2
I

))∗ (
Ǔ D

I j

(M2
I

))∗

×
[

δi j + d�̂
(1)
i j

ds

(M2
I

)
]

+ O(2L) . (51b)

We note that for i ∈ D and k /∈ D one has

SI i =
(
Ǔ D

I i

(M2
I

))∗ + O(2L) ,

SIk = −
∑

j∈D

(
Ǔ D

I j

(M2
I

))∗ �̂
(1)
jk

(M2
I

)

m2
j − m2

k

+ O(2L) . (52)

In addition, from
(
ǓD(s)

)∗ ·[s 1̌D − M̃2
D(s)

] ·(ǓD(s)
)† =

Ď(s) and ĎI J
(M2

I

) = 0, we obtain

∑

j∈D

(
M̃2

D

(M2
I

))

i j

(
Ǔ D

I j

(M2
I

))∗ = M2
I

(
Ǔ D

I i

(M2
I

))∗
,

(53)

i.e.
(
Ǔ D

I i

(M2
I

))∗ is still an eigenvector of M̃2
D

(M2
I

)
for the

eigenvalue M2
I .

A.3 Vertex corrections in perturbative QFT at 1L order

Having extracted the poles from the propagator matrix, we
may now turn to the effective couplings in Eq. (42). We
restrict ourselves to an analysis of strict 1L order.

Non-degenerate case: The effective couplings of a res-
onance associated with a pole M2

i are straightforwardly
derived from their definition in Appendix A.1 and those of
the residue and of the ‘rotation’ matrix from Appendix A.2:

gL ,R
i f f ≡ r1/2

i

∑

j

̌i
i j

(M2
i

) (V̌L ,R
S f f

(M2
i

))

j

=
[

1 − 1

2

d�̂
(1)
i i

ds

(
m2

i

)
](

V̌L ,R (tree)
S f f

)

i

−
∑

j �=i

�̂
(1)
i j

(
m2

i

)

m2
i − m2

j

(
V̌L ,R (tree)
S f f

)

j

+
(
V̌L ,R (1)
S f f

(
m2

i

))

i
+ O(2L) . (54)

The derivative term originates in the residue, the mixing term
in the ‘rotation’ matrix, and the 1L vertex from the expansion
of V̌L ,R

S f f = V̌L ,R (tree)
S f f + V̌L ,R (1)

S f f (s) + O(2L). We simply
recover the LSZ reduction.

Near-degenerate case: For the pole M2
I , we can write (in

terms of the mixing matrix S of Appendix A.2 at 1L order):

gL ,R
I f f = r1/2

I

∑

j∈D
SI j

{(
V̌L ,R (tree)
S f f

)

j
−
∑

k /∈D

�̂
(1)
jk

(
m2

j

)

m2
j − m2

k

×
(
V̌L ,R (tree)
S f f

)

k
+
(
V̌L ,R (1)
S f f

(
m2

j

))

j

}
+ O(2L) .

(55)

Instead of directly expanding the residue, it is convenient
in this case to exploit the invariance of observables (and S)
under field renormalization and then use the on-shell scheme
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as intermediary. The field counterterms are simply shifted

according to (δZ)OS
i j = − d�̂

(1)
i j

ds

(
m2

i j

)+O(2L) – the �̂ nota-
tion continues to denote renormalized quantities in the orig-
inal scheme. Correspondingly,

(
V̌L ,R (1)
S f f

(
m2

j

))OS

j
=
(
V̌L ,R (1)
S f f

(
m2

j

))

j

− 1

2

∑

k∈D

d�̂
(1)
jk

ds

(
m2

jk

) (V̌L ,R (tree)
S f f

)

k
,

rOS
I = 1

∑

k∈D
S2
I k

. (56)

We can define the normalized mixing matrix as S̃I j ≡
(
rOS
I

)1/2
SI j . Finally, we observe for j �= k,

1

2

d�̂
(1)
jk

ds

(
m2

jk

) = �̂
(1)
jk

(
m2

j

)− �̂
(1)
jk

(
m2

jk

)

m2
j − m2

k

+ O(2L) . (57)

Putting everything together, one finds

gL ,R
I f f

!= gL ,R OS
I f f

=
∑

i∈D
S̃I i

{
−
∑

j∈D

�̂
(1)
i j

(
m2

i

)− �̂
(1)
i j

(
m2

i j

)

m2
i − m2

j

(
V̌L ,R (tree)
S f f

)

j

−
∑

k /∈D

�̂
(1)
ik

(
m2

i

)

m2
i − m2

k

(
V̌L ,R (tree)
S f f

)

k

+
[

1 − 1

2

d�̂
(1)
i i

ds

(
m2

i

)
](

V̌L ,R (tree)
S f f

)

i

+
(
V̌L ,R (1)
S f f

(
m2

i

))

i

}
+ O(2L) . (58)

This defines a generalized LSZ reduction for the near-
degenerate case.

As shown in Ref. [68], these loop-corrected couplings are
explicitly independent of the field renormalization and mini-
mize the dependence on linear gauge-fixing parameters. The
properties of the resonance can then be straightforwardly
interpreted as that of a ‘genuine’ particle, allowing for the
definition of masses and decay widths in terms of the scat-
tering cross-sections.
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