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Abstract We investigate the validity of the generalized sec-
ond law of thermodynamics, applying Barrow entropy for
the horizon entropy. The former arises from the fact that
the black-hole surface may be deformed due to quantum-
gravitational effects, quantified by a new exponent �. We
calculate the entropy time-variation in a universe filled with
the matter and dark energy fluids, as well as the correspond-
ing quantity for the apparent horizon. We show that although
in the case � = 0, which corresponds to usual entropy, the
sum of the entropy enclosed by the apparent horizon plus
the entropy of the horizon itself is always a non-decreasing
function of time and thus the generalized second law of ther-
modynamics is valid, in the case of Barrow entropy this is not
true anymore, and the generalized second law of thermody-
namics may be violated, depending on the universe evolution.
Hence, in order not to have violation, the deformation from
standard Bekenstein–Hawking expression should be small as
expected.

1 Introduction

There is a well known analogy between black-hole physics
and thermodynamics. In particular, one can attribute to a
black hole a specific temperature and entropy, which depend
on the black-hole horizon [1]. Inspired by this, an exten-
sion of this analogy was proposed, namely the conjecture of
the “thermodynamics of spacetime”, according to which one
can apply thermodynamics in the horizon of the universe. In
particular, thermodynamical laws are applied on the horizon
itself, considered as a system separated not by a diathermic
wall but by a causality barrier (i.e. the “system” is composed
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by the degrees of freedom beyond the horizon) [2–4]. Thus,
these laws are interpreted in terms of area of local Rindler
horizons and energy flux [2], and heat is incorporated as
energy that flows through the causal horizon. Concerning the
relations for temperature and entropy of the horizon, these
are given by the corresponding relations of black hole ther-
modynamics, but with the universe horizon in place of the
black-hole horizon.

Applying the first law of thermodynamics on the appar-
ent horizon one can extract the Friedmann equations, and
reversely one can express the Friedmann equations as the
first law [5–7]. This procedure proves to be applicable both
in general relativity as well as in a variety of modified
gravity theories, despite the fact that in the latter theories
the entropy relation is in general modified [8–17]. Con-
cerning the second law, which in black-hole physics had
been extended to the “generalized second law of thermo-
dynamics”, namely that the usual entropy plus the black-
hole horizon entropy is a non-decreasing function of time
[18,19], one can also apply it to the universe horizon and
claim that the total entropy of the interior of the universe
plus the entropy of its horizon should be a non-decreasing
function of time [20]. Note that this statement is proven
to be always valid for general relativity in Friedmann–
Robertson–Walker geometry, however it is not always the
case in modified theories of gravity and hence one can
apply it in order to extract constraints on them [14,21–
32]. Since the generalized second law of thermodynamics
is fundamental in physics, its (conditional or complete) vio-
lation acts as a strong argument against the underlying the-
ory.

Recently, Barrow [33] considered the case that quantum-
gravitational effects might bring about intricate, fractal struc-
ture on the black hole surface and thus changing its actual
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horizon area. This in turn led to a new black hole entropy
relation, i.e.

SB =
(

A

A0

)1+�/2

, (1)

where A is the usual horizon area and A0 the Planck
area. Note that the above deformed entropy differs from
the usual “quantum-corrected” one with logarithmic cor-
rections [34,35], however it resembles Tsallis nonextensive
entropy [36–38], nevertheless the involved physical princi-
ples and foundations are radically different. The quantum-
gravitational deformation is quantified by the new exponent
�. The value � = 0 corresponds to the simplest horizon
structure, and in this case we obtain the standard Bekenstein–
Hawking entropy, while � = 1 corresponds to maximal
deformation.

In the present work we are interested in examining the
validity of the generalized second law of thermodynamics,
but applying the Barrow entropy on the horizon instead of
the standard Bekenstein–Hawking one.

2 Generalized second law of thermodynamics

In this section we will apply the generalized second law of
thermodynamics in the universe using Barrow entropy. We
consider a spatially homogeneous and isotropic Friedmann–
Robertson–Walker metric

ds2 = −dt2 + a2(t)δi j dx
i dx j . (2)

Additionally, we consider that the universe is filled with mat-
ter and dark energy perfect fluids, with energy density and
pressure ρDE , ρm and pDE , pm respectively (as usual we
do not take into account the black-hole formation inside the
universe and its effect on entropy). Thus, the two Friedmann
equations are

H2 = 8πG

3
(ρm + ρDE ) (3)

Ḣ = −4πG (ρm + pm + ρDE + pDE ) , (4)

with H = ȧ/a the Hubble parameter and where a dot denotes
the derivative with respect to t . Note that the aforementioned
framework holds in general, independently of the specific
dark energy description. Finally, the conservation of the total
energy-momentum tensor gives:

ρ̇DE +3H(1+wDE )ρDE + ρ̇m +3H(1+wm)ρm = 0, (5)

where wi = pi/ρi denotes the equation-of-state parameter
of the corresponding sector, which throughout this work are
considered general and not constant. We mention that the

above relation holds both in the usual case, as well as in the
case where the two sectors are allowed to mutually interact.

Concerning the universe horizon, that will be the boundary
of the thermodynamical system, although in the literature
there have been discussed various choices, there are many
arguments that the appropriate one should be the apparent
horizon, which is a marginally trapped surface with vanishing
expansion given by [39–41]:

r̃A = 1√
H2 + k

a2

, (6)

where k quantifies the spatial curvature which is set to zero
in the present work. Hence, the first Friedmann equation (3)
becomes

1

r̃2
A

= 8πG

3
(ρDE + ρm). (7)

We are going to investigate whether the sum of the entropy
enclosed by the apparent horizon plus the entropy of the
apparent horizon itself, is not a decreasing function of time.
We will start by calculating the former and then the latter.

In general, the apparent horizon r̃A is time-dependent.
Hence, a change dr̃A in time interval dt will bring about a
volume-change dV , while the energy and entropy of the uni-
verse fluids will change by dE and dS respectively. Now, the
first law of thermodynamics applied in the universe is written
as TdS = dE + PdV , and therefore the dark-energy and
dark-matter entropies read [42]:

dSDE = 1

T

(
PDEdV + dEDE

)
(8)

dSm = 1

T

(
PmdV + dEm

)
. (9)

Since the universe volume, bounded by the apparent horizon,
is V = 4π r̃3

A/3, we obtain dV = 4π r̃2
Adr̃A. Additionally,

concerning the temperature of the universe fluids, we assume
it to be the same due to the establishment of equilibrium.
Dividing (8), (9) by dt we acquire

ṠDE = 1

T

(
PDE 4π r̃2

A
˙̃rA + ĖDE

)
(10)

Ṡm = 1

T

(
Pm 4π r̃2

A
˙̃rA + Ėm

)
, (11)

where

˙̃rA = −Ḣ r̃2
A, (12)

as it easily arises differentiating (6).
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In order to connect the thermodynamical quantities Ei

and Pi , with the cosmological ρi and pi ones, we straight-
forwardly use

EDE = 4π

3
r̃3
AρDE (13)

Em = 4π

3
r̃3
Aρm . (14)

Inserting the time-derivatives of (13), (14), into (10), (11)
and using (5), we obtain:

ṠDE = 1

T
(1 + wDE ) ρDE 4π r̃2

A

( ˙̃rA − Hr̃A
)

(15)

Ṡm = 1

T
(1 + wm) ρm 4π r̃2

A

( ˙̃rA − Hr̃A
)

. (16)

These expressions provide the entropy time-variation for the
universe interior.

We now proceed to the calculation of the entropy time-
variation for the universe horizon. As we mentioned in
the introduction, according to the “gravity-thermodynamics”
conjecture the temperature and entropy of the horizon will
be given by the corresponding quantities of black-hole ther-
modynamics, but with the apparent horizon in place of the
black-hole one. The horizon temperature will thus be simply
[2,6]

Th = 1

2π r̃A
. (17)

Concerning the horizon entropy, the standard choice is to use
the Bekenstein–Hawking entropy [2,6] Sh = 4π r̃2

A/(4G).
However, in the present work we will instead apply the Bar-
row black-hole entropy (1), with the standard horizon area
being A = 4π r̃2

A. Therefore, we obtain

Sh = γ r̃�+2
A , (18)

with γ ≡ (4π/A0)
1+�/2. Finally, a crucial assumption in

the “gravity-thermodynamics” conjecture is that after equi-
librium establishes the universe fluids acquire the same tem-
perature with the horizon one, which is constant or slowly-
varying, otherwise the energy flow would deform this geom-
etry [43] (in order to avoid applying non-equilibrium ther-
modynamics the assumption of equilibrium is widely used
[4–7,14,43–46], see also [47]). Therefore, we can equate
Th in (17) with T in (15), (16), and the temperature is only
slowly evolving according to (17) due to the slow change of
the apparent horizon. Lastly, differentiating (18) we obtain

Ṡh = (� + 2)γ r̃�+1
A

˙̃rA. (19)

We can now calculate the total entropy time-variation.
Adding relations (15), (16) and (19), and replacing T through
(17), we find:

Ṡtot ≡ ṠDE + Ṡm + Ṡh

= 8π2r̃3
A

( ˙̃rA − Hr̃A
) [

(1+wDE )ρDE + (1+wm)ρm

]

+(� + 2)γ r̃�+1
A

˙̃rA. (20)

Hence, substituting ˙̃rA from (12), knowing that r̃A = H−1,
and using the two Friedmann equations (3), (4), we easily
find

Ṡtot = 2π

G
H−5 Ḣ

{
Ḣ + H2

[
1 − γG

2π
(� + 2)H−�

]}
.

(21)

Let us now examine the sign of (21). In the case where the
Barrow exponent takes its standard value � = 0, i.e. in the
case of usual black-hole thermodynamics, we have

Ṡtot |�=0 = 2π

G
H−5 Ḣ2 ≥ 0, (22)

since in this case γ ≡ (4π/A0) = π/G (in units where
h̄ = kB = c = 1). As expected, Ṡtot |�=0 ≥ 0 and thus the
generalized second law of thermodynamic is always valid
in a universe filled with matter and dark energy sectors and
governed by general relativity (note that the limiting result
Ṡtot |�=0 = 0 is obtained for the de Sitter universe).

However, interestingly enough, in the case where the
Barrow exponent is non-zero, i.e. the quantum-gravitational
effects on the entropy switch on, the total entropy is not nec-
essarily a non-decreasing function of time, and hence the
generalized second law can be violated. The reason is the
following.

In the case of standard Bekenstein–Hawking universe
thermodynamics, Ṡh has always the necessary value in order
to bring Ṡtot to non-negative values. In particular, for Ḣ < 0,
i.e. in the case where the universe fluids satisfy the null energy
condition in total, we have Ṡh > 0 and thus it leads to Ṡtot ≥ 0
even if the universe fluids have ṠDE + Ṡm < 0, while in the
case Ḣ > 0, i.e for the violation of the total null energy
condition, where Ṡh < 0 we have ṠDE + Ṡm > 0 always
in a sufficient amount to make Ṡtot ≥ 0. However, in the
case where Barrow entropy is used the horizon contributes
with a changed Ṡh , which does not satisfy the aforementioned
conditions anymore (in the case where it is positive it is not
always sufficiently positive to counterbalance cases where
ṠDE + Ṡm < 0, while in the case where it is negative it is
not always sufficiently close to zero in order to be counter-
balanced by the ṠDE + Ṡm > 0). Therefore, the use of the
deformed, Barrow entropy, leads to the conditional violation
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Fig. 1 The evolution of the entropy time-variation as a function of
the redshift z given by (23), in the case of �CDM background evo-
lution (24), for various values of the Barrow exponent �: � = 0
(black—solid), � = 0.3 (red—dashed), � = 0.6 (blue—dotted),
� = 1 (green—dashed-dotted). We have imposed �m0 = 0.30 and
�r0 = 10−4, and we have used units where h̄ = kB = c = 1 = H0 = 1

of the generalized second law of thermodynamics, depending
on the universe evolution.

In order to see the above qualitative behavior more trans-
parently we proceed to a quantitative investigation, by explor-
ing Ṡtot for different forms of Hubble function evolution. For
convenience we use the redshift 1 + z = a0/a (with a0 = 1
the present scale factor) as the independent variable, and thus
relation (21) becomes

Ṡtot (z) = 2π

G
H(z)−3H ′(z)(1 + z)

{
H ′(z)(1 + z)

−H(z)
[
1 − γG

2π
(� + 2)H(z)−�

]}
, (23)

where primes denote derivatives with respect to z and we
have used the relation ḟ = −(1 + z)H f ′.

As a first example we consider the case where the Hubble
function evolves as in �CDM cosmology, namely as

H�CDM(z) = H0

√
�m0(1 + z)3 + �r0(1 + z)4 + ��0,

(24)

where H0 is the current Hubble parameter, �i0 is the value
of the density parameter �i = 8πGρi/(3H2) at present,
��0 = 1 − �m0 − �r0, and with the subscripts “m” and “r”
denoting the matter and radiation sectors respectively. We
insert (24) into (23) and in Fig. 1 we depict the evolution
of Ṡtot (z) for various values of the Barrow exponent �. As
we observe, Ṡtot is always positive, throughout cosmologi-
cal evolution, and for all values of �. This is an advantage
for Barrow entropy, since it implies that for �CDM back-
ground the generalized second law of thermodynamics is
always valid.

Fig. 2 The evolution of the entropy time-variation as a function of the
redshift z given by (23), in the case of power-law background evolution
(25), for various values of the Barrow exponent �. Upper panel: n =
2/3 and � = 0 (black—solid), � = 0.3 (red—dashed), � = 0.6
(blue—dotted), � = 1 (green—dashed-dotted). Lower panel (mind
the difference in the axes): n = 2 and � = 0 (black—solid), � =
0.3 (red—dashed), � = 0.6 (blue—dotted), � = 1 (green—dashed-
dotted). We have imposed �m0 = 0.30 and �r0 = 10−4, and we have
used units where h̄ = kB = c = 1 = H0 = 1

Let us proceed by investigating a general power-law cos-
mological evolution of the form a(t) = a1tn , which implies
that

Hpower (z) = H0(1 + z)1/n (25)

with H0 = na1/n
1 , which is a well studied scenario in cos-

mology. Inserting (25) into (23) we find

Ṡtot (z) =
[
H0(z + 1)1/n

]−1−�

Gn2

{
Gnγ (2 + �)

+2(1 − n)π
[
H0(z + 1)1/n

]� }
, (26)

and in Fig. 2 we depict the evolution of Ṡtot (z) for various val-
ues of the Barrow exponent �, considering n = 2/3 (upper
panel) and n = 2 (lower panel).

As we can see, in the case where n < 1 the entropy time-
variation is always positive for all � values, and thus the
generalized second law of thermodynamics is always valid

123



Eur. Phys. J. C (2021) 81 :644 Page 5 of 6 644

(this can be immediately seen from the analytical expression
(26) too). However, in the case n > 1 we observe that for
suitably large � values Ṡtot can become negative in the past
(this can be implied from (26) too), and thus the general-
ized second law is violated. Hence, these parameter regions
should be avoided.

We close this section by mentioning that although Bar-
row entropy accounts for quantum-gravitational phenomena,
since the gravity-thermodynamics conjecture incorporates
holography, which in turn dually connects the very small
with the very large, one in principle may have the reflection of
these phenomena on the classical universe horizon itself (this
is also the case of the usual logarithmic-corrected entropy due
to quantum effects, which is widely studied in the universe-
thermodynamics framework as well [34,35,48,49]). Never-
theless, what is the value of � in the real world is a different
thing, and actually one expects it to be close to the standard
value � = 0. Indeed, recent cosmological observational con-
straints on � reveal that the value zero is indeed inside the
1σ region [50].

3 Conclusions

In this work we investigated the validity of the generalized
second law of thermodynamics, but using for the horizon
entropy the Barrow one. Specifically, Barrow entropy arises
from the fact that the black-hole surface may be deformed
due to quantum-gravitational effects, and its deviation from
Bekenstein–Hawking one is quantified by a new exponent
�.

We calculated the entropy time-variation in a universe
filled with the matter and dark energy fluids, as well as the cor-
responding quantity for the apparent horizon. As we showed,
although in the case � = 0, which corresponds to usual
entropy, the sum of the entropy enclosed by the apparent
horizon plus the entropy of the horizon itself is always a non-
decreasing function of time and thus the generalized second
law of thermodynamics is valid, in the case where quantum-
gravitational corrections switch on this is not true anymore.
Hence, the generalized second law of thermodynamics may
be conditionally violated, depending on the universe evolu-
tion. In particular, in the case of �CDM background cosmo-
logical evolution the entropy time-variation is always positive
and thus the generalized second law of thermodynamics is
always valid. However, in the case of a general power-law
cosmological evolution we found that for power-law expo-
nents larger than one and for suitably large � values the
entropy time-variation can be negative in the past, leading
to the violation of the generalized second law. Hence, the
involved parameter regions should be avoided, and therefore
if Barrow entropy is the case in nature then its allowed region
would be constrained in a narrow window close to the stan-

dard entropy. This reveals the usefulness of examining the
generalized second law of thermodynamics.

It would be interesting to investigate whether the above
result remains valid in the case of various gravitational mod-
ifications instead of general relativity, and whether the known
violations of the generalized second law in modified gravity
may be eliminated using Barrow entropy. These studies lie
beyond the scope of the present work and are left for future
projects.
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