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Abstract A detailed Gitman–Lyakhovich–Tyutin analysis
for higher-order topologically massive gravity is performed.
The full structure of the constraints, the counting of physical
degrees of freedom, and the Dirac algebra among the con-
straints are reported. Moreover, our analysis presents a new
structure into the constraints and we compare our results with
those reported in the literature where a standard Ostrogradski
framework was developed.

1 Introduction

Nowadays the study of higher-order theories is an interest-
ing subject in theoretical physics. In fact, since the works
developed by Ostrogradski concerning the hamiltonian for-
mulation of such systems [1,2] up to now where recent works
regarding systems just like generalizations of electrodynam-
ics [3–6], generalized meson-field theory [7,8], string theory
[9,10], and dark energy physics [11,12] have been analyzed.
Moreover, from the gravitational point of view, we find inter-
esting models of higher derivative gravity where are useful
for testing the investigation of quantum gravitational effects.
Those models are formed with the Einstein–Hilbert action
and the addition of quadratic products of the curvature ten-
sor; the main attractive feature of those models is the renor-
malizability [13,14]. Within the context of three dimensions,
we find an interesting and natural higher-order model, the so-
called topologically massive gravity (TMG) [15]. This the-
ory is the coupling of Einstein-Hilbert action plus a Chern-
Simons term, at a linear level it describes the propagation of
a single massive state of helicity ± 2 on a Minkowski back-
ground, the so-called massive graviton. The theory is a good
laboratory for testing classical and quantum ideas of grav-
ity because it is a local dynamical and unitary gravity model
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which is naive power counting renormalizable [16]. In this
respect, the study of higher-order field theories is carried out
by using the so-called Ostrogradski–Dirac framework [17].
In fact, the Ostrogradski–Dirac framework is based on the
extension of the phase space, where the choice of the fields
and their temporal derivatives are the canonical variables. In
other words, a generalization of the canonical momenta is
introduced, then the identification of the constraints is per-
formed as in Dirac’s method is done [18]. However, in some
cases it is claimed that the usual Ostrogradski–Dirac frame-
work does not have the control for identifying the constraints
in consistent form, then the constraints are fixed by hand [19].
In this respect, a detailed Hamiltonian formulation should
provide a complete description of the system, and the com-
plete set of either constraints or gauge invariance transforma-
tions must be correctly identified. Hence, it is mandatory to
perform a correct analysis of the constraints in any canonical
formulation. In this respect, with all constraints at hand and
classified into first class and second class, the Dirac brack-
ets, useful to quantize a gauge system can be constructed,
then the second-class constraints and non-physical degrees of
freedom are removed. In the case of higher-order gravity the-
ories, the separation of the constraints into first-and second-
class is a delicate issue, therefore, alternative approaches can
be required. In this regard, there exists another, alternative, a
canonical formulation of higher-order systems the so-called
Gitman–Lyakhovich–Tyutin [GLT] formalism [20,21]. The
GLT formalism is a generalization of Ostrogradski’s frame-
work it is based on the introduction of extra fields reducing a
problem with higher derivatives to one with first-order time
derivatives, then by using either a correct gauge fixing and
the introduction of the Dirac brackets, the second class con-
straints and non-physical degrees of freedom can be removed.

In this manner, with all commented above, the purpose of
the present work is to report a detailed GLT study of TMG
theory. Our analysis will follow a different procedure to that
presented in [22]. We will develop a detailed GLT framework
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as an alternative study beyond Ostrogradski–Dirac frame-
work. In fact, the correct canonical analysis of a given classi-
cal theory is the first step towards its canonical quantization
and so it is worthwhile to perform it. The complete structure
of the constraints without fixing them by hand is reported. In
addition, we will compare our results with those reported in
the literature.

The paper is organized as follows. In Sect. 2 the GLT
method for higher-order Chern–Simons theory is developed.
We report the complete set of the constraints and the Dirac
brackets are constructed; the Dirac algebra between the con-
straints and the first-class extended Hamiltonian is reported.
In Sect. 3 the TMG theory is analyzed. We perform a detailed
GLT formalism and the new structure of the constraints is
reported. In addition, the Dirac brackets and the algebra of
the constraints are calculated.

2 GLT analysis of higher order Chern–Simons term

We start with the standard linear form of the Chern–Simons
Lagrangian density given by [22]

LCS = 1

2
ελμν(∂σ h

ρ
λ∂ρ∂μh

σ
ν − ∂σ h

ρ
λ∂

σ ∂μhρν), (1)

here, spacetime indices are represented by the greek alphabet
α, β = 0, 1, 2 and space indices by the latin i, j, k = 1, 2,
hμν is the perturbation of the metric around the flat spacetime
geometry and the following signature ημν = (−1, 1, 1) is
used. By performing the 2 + 1 decomposition, we can write
the action as

LCS = −εi j
(
∂kh0 j ḧki + ∂ j h

k
0ḧki

−1

2
ḣk j ḧki + ∂ j∂

kh00ḣki + ∂k∂i h0 j ḣk0

+1

2
∇2h0 j ḣ0i − 1

2
∇2hk j ḣki

+1

2
∂k∂l h

l
j ḣ

k
i + ∇2h00∂i h0 j

−∇2hk0∂i hk j − ∂ l∂i h
k
j∂khl0

)
. (2)

We can observe that the Lagrangian is a higher-order
derivative theory and the standard way for performing the
canonical analysis is by using the Ostrogradski-Dirac frame-
work, however, we have commented above the interest to
develop an alternative GLT analysis. It is worth commenting
that our results are new and are not reported in the literature.
For our aims, we need to rewrite the Lagrangian by introduc-
ing the following variables

Gμν = ḣμν vμν = Ġμν = ḧμν, (3)

hence, inserting (3) into (2) and introducing the momenta
(πμν, Pμν) canonically conjugate to (hμν,Gμν), we rede-
fine the action as [20,21]

S =
∫ [

Lv
CS + πμν(ḣμν − Gμν) + Pμν(Ġμν − vμν)

]
d3x,

(4)

where

Lv
CS = −εi j (∂kh0 jvki + ∂ j h

k
0vki − 1

2
Gk

jvki

+∂ j∂
kh00Gki + ∂k∂i h0 j Gk0

+1

2
∇2h0 j G0i − 1

2
∇2hk jGki

+1

2
∂k∂l h

l
jGki + ∇2h00∂i h0 j

−∇2hk0∂i hk j − ∂ l∂i h
k
j∂khl0), (5)

we can observe that there is an advantage of the action (4)
because it contains only first-order time derivatives of the
fields. It is worth mentioning that the introduction of the
momenta allows us to identify more easily the constraints
in comparison with Ostrogradski’s formalism [20,21]. In
fact, in GLT framework it is not necessary the introduc-
tion of a generalized canonical momenta for the fields with
higher-order time derivative terms just as in Ostrogradski is
done. Furthermore, there is not any effect in the counting of
degrees of freedom because (2) and (4) are equivalent (see
the “Appendix A”). The fundamental Poisson brackets are
given by

{
hαβ, πμν

} = 1

2

(
δμ

αδν
β + δμ

βδν
α

)
,

{
Gαβ, Pμν

} = 1

2

(
δμ

αδν
β + δμ

βδν
α

)
. (6)

In this manner, the canonical Hamiltonian is defined as usual

HCS = πμνGμν + Pμνvμν − Lv
CS

= π00G00+P00v00+
(

2π0k+ 1

2
εk j∇2h0 j+εi j ∂k∂i h0 j

)
G0k

+
[
πki+εi j

(
∂ j ∂

kh00− 1

2
∇2hk j+ 1

2
∂k∂l h

l
j

)]
Gki + 2P0iv0i

+
[
Pki + εi j

(
∂kh0 j + ∂ j h

k
0 − 1

2
Gk

j

)]
vki

+εi j
(
∇2h00∂i h0 j − ∇2hk0∂i hk j − ∂l∂i h

k
j ∂khl0

)
, (7)

where (3) and (5) have been used. Thus, from the Lagrangian
(5) we identify the following primary constraints [20,21]

Qμν : ∂Lv
CS

∂vμν

− Pμν ≈ 0, (8)
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say

Qki : ∂Lv
CS

∂vki
− Pki ≈ 0

= −
{
Pki + 1

2

[
εi j (∂kh0 j + ∂ j h

k
0

−1

2
Gk

j )+εk j (∂ i h0 j+∂ j h
i
0 − 1

2
Gi

j )

]}
≈ 0, (9)

Q00 : ∂Lv
CS

∂v00
− P00 = 0 ⇒ P00 ≈ 0, (10)

Q0i : ∂Lv
CS

∂v0i
− P0i = 0 ⇒ P0i ≈ 0. (11)

The Poisson algebra between the primary constraints is given
by
{
Q00, Q00

}
=

{
Q00, Q0i

}

=
{
Q0i , Q0i

}
≈ 0, (12)

{
Qki , Qlm

}
= 1

4

(
εmiηlk + εliηmk + εlkηmi + εmkηli

)
,

(13)

and the primary Hamiltonian is defined by

H1
CS := HCS + μνQ

μν, (14)

where μν are idetified as Lagrange multipliers. In this man-
ner, from consistency of primary constraints

Q̇αβ =
{
Qαβ, H1

CS

}
= {

Qαβ, HCS
}+μν

{
Qαβ, Qμν

}≈0,

(15)

we identify the following secondary constraints

S0 :
{
Q00, HCS

}
= π00 ≈ 0, (16)

Si :
{
Q0i , HCS

}
=

(
π0i + 1

4
εi j∇2h0 j + 1

2
εl j∂ i∂l h0 j

)
≈ 0,

(17)

and relations between the Lagrange multipliers
{
Qki , HCS

}
= 1

2

[
εi j

(
∂ j∂

kh00 − 1

2
∇2hk j + 1

2
∂k∂r h

r
j

)

+εk j
(

∂ j∂
i h00 − 1

2
∇2hi j + 1

2
∂ i∂r h

r
j

)]

+π ik − 1

2

(
εlkvil + εlivkl

)

−1

2

[
εi j

(
∂kG0 j + ∂ j G

k
0

)

+εk j
(
∂ i G0 j + ∂ j G

i
0

) ]

−1

2

(
εmki

m + εmik
m

)
≈ 0. (18)

The Poisson algebra between the secondary constraints is
given by

{
S0, S0

}
=

{
Sα, Q00

}
=

{
Sα, Q0i

}
=

{
S0, Qik

}
= 0,

(19)

thus, consistency of the secondary constraints allows us to
identify the following tertiary constraint

Ṡ0 → S̃0 :
[
εi j∂ j∂

kGki + εi j∇2(∂i h0 j )
]

≈ 0, (20)

and Ṡi provides relations between the Lagrange multipliers

Ṡi → S̃i : εik

2

(
∇2G0k

+∂ l∂kG0l − ∂ lvlk − ∂k∇2h00

)

+ εk j

2

(
∂ jv

i
k + ∇2∂kh

i
j − ∂l∂

i∂kh
l
j + ∂ i∂kG0 j

)

+1

2

(
εki∂ llk + εk j∂ j

i
k

)
≈ 0. (21)

From temporal evolution of the tertiary constraint S̃0, we
do not obtain more constraints because the Lagrange multi-
pliers are mixed

˙̃S0 = εi j
(
∂ j∂

kvki + ∇2∂i G0 j + ∂ j∂
kki

)
≈ 0. (22)

On the other hand, this is not the end, because there are more
constraints. In fact, we can observe that the trace of (18)
eliminate the Lagrange multipliers and therefore, we identify
other constraint

V = π i
i + εi j

2
∂i∂l h

l
j ≈ 0. (23)

Moreover, from (18) and (21) we eliminate the Lagrange
multipliers and other constraints are obtained

Ṽ i = ∂kπ
ik + εkl

4
∇2∂kh

i
l − εk j

4
∂k∂

i∂l h
l
j ≈ 0. (24)

Finally, we observe that the trace of (9) implies other con-
straint and from consistency do not emerge further con-
straints, say

ηik Q
ik = Pi

i ,

Ṗi
i =

{
Pi

i , HCS

}
= Ṽ ≈ 0. (25)

123



678 Page 4 of 12 Eur. Phys. J. C (2021) 81 :678

Therefore the complete set of constraints is given by

Q00 : P00 ≈ 0,

Q0i : P0i ≈ 0,

Qik : Pki + εi j

2
∂kh0 j + εi j

2
∂ j h

k
0 − εi j

4
Gk

j

+εk j

2
∂ i h0 j + εk j

2
∂ j h

i
0 − εk j

4
Gi

j ≈ 0,

S0 : π00 ≈ 0,

Si : π0i + εi j

4
∇2h0 j + εl j

2
∂ i∂l h0 j ≈ 0,

S̃0 : εi j∂ j∂
kGki + εi j∇2∂i h0 j ≈ 0,

Ṽ i : ∂kπ
ik + εkl

4
∇2∂kh

i
l − εk j

4
∂k∂

i∂l h
l
j ≈ 0,

Ṽ : π i
i + εi j

2
∂i∂l h

l
j ≈ 0,

U : Pi
i ≈ 0. (26)

Now, the not trivial algebra between all constraints is
expressed by

W =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

Q00 Q0l Qlm S0 Sl S̃0 Ṽ l Ṽ U

Q00 0 0 0 0 0 0 0 0 0
Q0i 0 0 0 0 0 0 0 0 0

Qik 0 0
{
Qik, Qlm

}
0

{
Qik, Sl

} {
Qik, S̃0

}
0 0 0

S0 0 0 0 0 0 0 0 0 0
Si 0 0

{
Si , Qlm

}
0

{
Si , Sl

} {
Si , S̃0

}
0 0 0

S̃0 0 0
{
S̃0, Qlm

}
0

{
S̃0, Sl

}
0 0 0 0

Ṽ i 0 0 0 0 0 0 0 0 0
Ṽ 0 0 0 0 0 0 0 0 0
U 0 0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

. (27)

where

{
Qik , Qlm

}
= 1

4

(
εmiηlk + εliηmk + εlkηmi + εmkηli

)
δ2(x − y),

{
Qik , Sl

}
= 1

4

(
εil∂k + εkl∂ i + εi jηkl∂ j + εk jηil∂ j

)
δ2(x − y),

{
Qik , S̃0

}
= 1

2

(
ε j i∂ j∂

k + ε jk∂ j∂
i
)

δ2(x − y),

{
Si , Sl

}
= 1

4

(
εil∇2 + εi j∂ l∂ j + ε jl∂ i∂ j

)
δ2(x − y),

{
Si , S̃0

}
= 1

2
εli∇2∂lδ

2(x − y), (28)

from the matrix (27) we can classify the constraints into first
class and second class. In fact, from the rank of this matrix
we identify the set of second class constraints, and the null
vectors allows us to identify the first class constraints [23],
thus, from the null vectors we identify the following first

class constraints

Q00 : P00 ≈ 0,

Q0i : P0i ≈ 0,

S0 : π00 ≈ 0,

Si : ∂k P
ki − π0i + εi j

2
∂k∂ j h

k
0 + εi j

4
∇2h0 j

−εi j

4
∂kGkj − εk j

4
∂kG

i
j ≈ 0

Ṽ i : ∂kπ
ik + εkl

4
∇2∂kh

i
l − εk j

4
∂k∂

i∂l h
l
j ≈ 0,

Ṽ : π i
i + εi j

2
∂i∂l h

l
j ≈ 0,

U : Pi
i ≈ 0,

S̃0∂i∂k P
ik + εi j

2
∂i∂

kGkj , (29)

and the rank implies the following two second class con-
straints

Q11 = P11 + ∂1h02 + ∂2h
1

0 − 1

2
G1

2 ≈ 0,

Q12 = P12 + ∂2h02 − ∂1h01 + 1

4
G1

1 − 1

4
G2

2 ≈ 0, (30)

we can observe that the constraints are identified by means
of the rank and the null vectors; it is not necessary to fix-
ing them by hand such as in Ostrogradski formalism is
done [22]. For instance, one null vector is given by w =
(0, 0, ∂iω, 0, ηi

jω, 0, 0, 0), where ω is an arbitrary function.
From the contraction of the vector w with the constraints (26),
the first class constraints Si are obtained.

With the correct constraints, we are able to calculate the
number of physical degrees of freedom. In fact, there are 24
canonical variables, 11 first class constraints and two second
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class constraints, this allows us to conclude that

DOF = 1

2
[(24) − 2 (11) − (2)] = 0, (31)

as expected.
To complete the analysis, it is well-known that for two

functions on the phase space, namely A and B, the Dirac
bracket between these variables is defined by

{A, B}D = {A, B}−
∫

dudv
{
A, χα(u)

}
C−1

αβ

{
χβ(v), B

}
,

(32)

where we have noted to χα and χβ as the second class con-
straints, and C−1

αβ is the inverse matrix of Cαβ whose entries
are the Poisson brackets between the second class constraints.
Thus, for the theory under study Cαβ takes the form

Cαβ =
({

Q11, Q11
} {

Q11, Q12
}

{
Q12, Q11

} {
Q12, Q12

}
)

=
(

0 − 1
2

1
2 0

)
δ2(x − y),

(33)

and its inverse is given by

C−1
αβ =

(
0 2

−2 0

)
δ2(x − y). (34)

Therefore, the non trivial Dirac’s brackets between the canon-
ical variables are given by

{
h00, π00

}

D
= δ2(x − y),

{
h0i , π

0l
}

D
= 1

2
δl
i δ2(x − y),

{
hi j , π

lm
}

D
= 1

2

(
δi
lδ j

m + δi
mδ j

l
)

δ2(x − y),
{
π0i , π0l

}

D

= − 1

2
εil∇2δ2(x − y),

{
π0i ,Glm

}

D

= 1

2

(
δl

1δm
2 + δl

2δm
1
) (

ε1i ∂1 + η1i ∂2
)

δ2(x − y)

− 1

2
δl

1δm
1
(
ε1i ∂2 + ε2i ∂1

+η2i ∂2 − η1i ∂1
)

δ2(x − y),

{
π0i , Plm

}

D
= − 1

8

(
εlnηim+εmnηil+εmiηln+εliηmn

)
∂nδ2(x − y),

{
G00, P00

}

D
= δ2(x − y),

{
G0i , P

0l
}

D
= 1

2
δi
lδ2(x − y),

{
Gi j ,Glm

}
D = δi

1δ j
1
(
δl

1δm
2 + δl

2δm
1
)

δ2(x − y)

−δl
1δm

1
(
δi

1δ j
2 + δi

2δ j
1
)

δ2(x − y),

{
Gi j , P

lm
}

D
= 1

4
δi

1δ j
1
(
ε1mη2l+ε1lη2m+ε2mη1l+ε2lη1m

)
δ2(x−y)

− 1

4

(
δi

1δ j
2 + δi

2δ j
1
) (

ε1mη1l + ε1lη1m
)

δ2(x − y)

+ 1

2

(
δi
lδ j

m + δi
mδ j

l
)

δ2(x − y),

{
Pi j , Plm

}

D
= 1

16

(
εilηmj + εimη jl + ε jlηmi + ε jmηil

)
δ2(x − y).

(35)

Finally, the correct classification of the constraints allows
us to construct the extended Hamiltonian. In fact, it is well
known that the extended Hamiltonian must to be a first class
function. Moreover, the extended Hamiltonian and the Dirac
brackets are the cornerstones for performing the identifica-
tion of either observables or the study of quantization. The
extended Hamiltonian is given by

HE = HCS + uαχα, (36)

where uα are the Lagrange multipliers that can be obtained
from

uα = C−1
βα {χβ, HCS}, (37)

where χα = (χ1, χ2) = (Q11, Q12) are the second class
constraints. There are two second class constraints, then
there are two Lagrange multipliers to be found, say (u1, u2).
Hence, by using (37), the following multipliers arise

u1 = C−1
21 {χ2, HCS} (38)

= 2π12 + ∂2∂2h00 − ∂1∂1h00

+1

2
∇2h1

1 − 1

2
∇2h2

2 + 1

2
∂l∂2h

l
2

−1

2
∂l∂1h

l
1 − 2∂2G02 + 2∂1G01 + v22 − v11, (39)

u2 = C−1
12 {χ1, HCS}

= −2π11 − 2

(
∂2∂1h00 − 1

2
∇2h12

+1

2
∂1∂l h

l
2

)
+ 2∂1G02 + 2∂2G01 − 2v21, (40)

and the extended Hamiltonian takes the form

HECS = HCS + uαχα = HCS + u1Q
11 + u2Q

12. (41)
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The extended Hamiltonian given in (41) is a first class func-
tion. In fact, its algebra with all first class constraints is given
by

{
Q00, HECS

}

D
= −π00 = −S0, (42)

{
Q0i , HECS

}

D
= −δi 2∂2Q

11 + δi 1∂1Q
11

+δi 2∂1Q
12 + δi 1∂2Q

12

−π0i − 1

4
εi j∇2h0 j − 1

2
εk j∂ i∂kh0 j = Si , (43)

{
S0, HECS

}

D
= ∂1∂1Q

11 − ∂2∂2Q
11

+2∂1∂2Q
12 − εi j∂ j∂

kGki − εi j∇2∂i h0 j = S̃0,

(44)
{U, HECS}D = −Ṽ , (45)

{
Ṽ i , HECS

}

D
= 0, (46)

{
Ṽ , HECS

}

D
= ∂1∂1Q

11 − ∂2∂2Q
11

+2∂1∂2Q
12 − εi j∂ j∂

kGki

−εi j∇2∂i h0 j = S̃0, (47)
{
S̃0, HECS

}

D
= 0, (48)

{
Si , HECS

}

D
= Ṽ i , (49)

where we observe that the algebra is closed. In this manner,
we have performed a complete GLT analysis for the Chern-
Simons term in the weak field context, and we have shown
that the constraints are obtained with a correct structure from
the null vectors. We finish this section with the calculation
of the gauge transformations. For this aim, we use the first
class constraints and we define the generator of gauge trans-
formations as [18]

G =
∫ {

ε00(y)Q
00(y) + ε0i (y)Q

0i (y) + ε0(y)S
0(y)

+εi (y)S
i (y) + ε̃i (y)Ṽ

i (y) + ε̃(y)Ṽ (y)

+ψ(y)U (y) + ψ̃0(y)S̃
0(y)

}
d2y, (50)

where (ε00, ε0i , ε0, εi , ε̃i , ε̃, ψ, ψ̃0) are gauge parameters.
Hence, the gauge transformations of the canonical variables
hμν are given by

δh00(x) = {h00(x),G}D = ε0(x),

δh0i (x) = {h0i (x),G}D = −εi (x),

δhi j (x) = {hi j (x),G}D = −1

2
(∂i ε̃ j (x)+∂ j ε̃i (x))+δi j ε̃(x),

(51)

where (35) have been used. If we fixing the gauge param-
eters as ε0 = 2∂0ζ0,−εi = ∂0ζi + ∂iζ0, δi j ε̃ = 1

2 (∂iζ j +
∂ jζi ),−ε̃i = ζi , then the gauge transformations are given by

δhμν = ∂μζν + ∂νζμ, (52)

it is easy to see that the action (1) and the equations of motion
(see “Appendix B” Eq. (102)) are invariant under these gauge
transformations.

3 The GLT analysis for topologically massive gravity

We have observed in previous sections, that the GLT analysis
for the higher-order derivative Chern–Simons theory allowed
us to know the complete structure of the constraints. Hence,
in this section, we shall perform the GLT analysis for TMG
theory and we shall report the complete structure of the con-
straints; our study will complete those results reported in
[22].

Now, the action under study is given by

S[gμν ]=
∫ {

R
√−g+

[
1

μ
ελμν�

ρ
λσ (∂μ�σ

ρν+
2

3
�σ

μξ�
ξ
νρ)

]}
dx3,

(53)

where R is the Ricci tensor, g is the determinant of the metric
tensor and μ is a coupling constant [15]. If we consider the
week gravitational field formalism, the action (53) is reduced
to the well known Lagrangian for TMG which it is given by
[22]

LTMG = 1

4
∂λhμν∂

λhμν

−1

4
∂λh

μ
μ∂λhν

ν

+1

2
∂λh

λ
μ∂μhν

ν

−1

2
∂λh

λ
μ∂νh

νμ

+ 1

2μ
ελμν(∂σ h

ρ
λ∂ρ∂μh

σ
ν

−∂σ h
ρ

λ∂
σ ∂μhρν). (54)

We have commented in previous sections that the action
(54) describes the propagation of a massive graviton on a
Minkowski background [15], and the analysis of this action
always is an interesting subject for studying due to the close-
ness with real gravity.

In this manner, by performing the 2 + 1 decomposition we
obtain

LT MG = 1

4
ḣi j ḣ

i j − 1

4
ḣi i ḣ

k
k

+ḣi j ∂
i h0 j − ḣi i ∂

kh0
k − 1

2
∂i h0 j ∂

i h0 j
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−1

4
∂i h jk∂

i h jk + 1

2
∂i h

0
0∂ i h j

j

+1

4
∂i h

j
j ∂

i hkk − 1

2
∂i h

i j ∂ j h
0

0

−1

2
∂i h

i j ∂ j h
k
k + 1

2
∂i h j0∂ j h0i

+1

2
∂i h jk∂

j hik

− 1

μ
εi j (∂kh0 j ḧki

+∂ j h
k

0ḧki − 1

2
ḣk j ḧki + ∂ j ∂

kh00ḣki + ∂k∂i h0 j ḣk0

+1

2
∇2h0 j ḣ0i − 1

2
∇2hk j ḣki

+1

2
∂k∂l h

l
j ḣ

k
i + ∇2h00∂i h0 j

−∇2hk0∂i hk j − ∂l∂i h
k j∂khl0). (55)

By following the GLT formalism, we introduce the vari-
ables (3) into (55) and we obtain

Lv
T MG = 1

4
Gi jG

i j − 1

4
Gi

iG
k
k

+gi j∂
i h0 j − Gi

i∂
kh0

k − 1

2
∂i h0 j∂

i h0 j

−1

4
∂i h jk∂

i h jk + 1

2
∂i h

0
0∂

i h j
j

+1

4
∂i h

j
j∂

i hkk − 1

2
∂i h

i j∂ j h
0

0

−1

2
∂i h

i j∂ j h
k
k + 1

2
∂i h j0∂

j h0i

+1

2
∂i h jk∂

j hik

− 1

μ
εi j (∂kh0 jvki + ∂ j h

k
0vki − 1

2
Gk

jvki

+∂ j∂
kh00Gki + ∂k∂i h0 j Gk0

+1

2
∇2h0 j G0i − 1

2
∇2hk jGki

+1

2
∂k∂l h

l
jGki + ∇2h00∂i h0 j

−∇2hk0∂i hk j − ∂ l∂i h
k
j∂khl0). (56)

hence, the canonical Hamiltonian for the theory under study
is given by

HTMG = πμν ġμν

+Pμν Ġμν − Lv
T MG

= πμνGμν + Pμνvμν − Lv
T MG

= π00G00 + P00v00

+2π0kG0k + 2P0kv0k + πkiGki + Pkivki

−1

4
Gi jG

i j + 1

4
Gi

iG
k
k − Gi j∂

i h0 j + Gi
i∂

kh0
k

+1

2
∂i h0 j∂

i h0 j

+1

4
∂i h jk∂

i h jk − 1

2
∂i h

0
0∂

i h j
j

−1

4
∂i h

j
j∂

i hkk + 1

2
∂i h

i j∂ j h
0

0

+1

2
∂i h

i j∂ j h
k
k − 1

2
∂i h j0∂

j h0i − 1

2
∂i h jk∂

j hik

+ 1

μ
εi j (∂kh0 jvki + ∂ j h

k
0vki

−1

2
Gk

jvki + ∂ j∂
kh00Gki + ∂k∂i h0 j Gk0

+1

2
∇2h0 j G0i − 1

2
∇2hk jGki

+1

2
∂k∂l h

l
jGki + ∇2h00∂i h0 j

−∇2hk0∂i hk j − ∂ l∂i h
k
j∂khl0). (57)

and the fundamental Poisson brackets between the canonical
variables are given by

{
hαβ, πμν

} = 1

2

(
δμ

αδν
β + δμ

βδν
α

)
,

{
Gαβ, Pμν

} = 1

2

(
δμ

αδν
β + δμ

βδν
α

)
, (58)

thus, from (56) we can identify the following primary con-
straints [17,18]

Q00 : ∂Lv
T MG

∂v00
− P00 = 0 ⇒ P00 ≈ 0, (59)

Q0i : ∂Lv
T MG

∂v0i
− P0i = 0 ⇒ P0i ≈ 0, (60)

Qki : ∂Lv
T MG

∂vki
− Pki

= −
{
Pki + 1

2μ

[
εi j (∂kh0 j + ∂ j h

k
0 − 1

2
Gk

j )

+εk j (∂ i h0 j + ∂ j h
i
0 − 1

2
Gi

j )

]}
≈ 0. (61)

Furthermore, the primary Hamiltonian is given in usual way

H1
T MG := HTMG + μνQ

μν, (62)

where μν are identified as Lagrange multipliers. Now, from
consistency of the primary constraints say

Q̇αβ = {
Qαβ, H1

T MG

}

= {
Qαβ, HTMG

} + μν

{
Qαβ, Qμν

} ≈ 0. (63)

we identify the following secondary constraints

S0 : π00 ≈ 0, (64)

Si :
(

π0i + 1

4μ
εi j∇2h0 j + 1

2μ
εl j∂ i∂l h0 j

)
≈ 0, (65)
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and the following relations involving Lagrange multipliers

Sik : π ik − 1

2
Gik + 1

2
ηikG j

j

− 1

2

(
∂ i h0k + ∂kh0i

)
+ ηik∂ j h0

j

+ 1

2μ

[
εi j

(
∂ j∂

kh00 − 1

2
∇2hk j + 1

2
∂k∂r h

r
j

)

+ εk j
(

∂ j∂
i h00 − 1

2
∇2hi j + 1

2
∂ i∂r h

r
j

) ]

− 1

2μ

(
εlkvil + εlivkl

)

− 1

2μ

[
εi j

(
∂kG0 j + ∂ j G

k
0

)

+ εk j
(
∂ i G0 j + ∂ j G

i
0

) ]

− 1

2μ

(
εmki

m + εmik
m

)
≈ 0. (66)

From consistency of S0 we obtain a tertiary constraint

Ṡ0 → S̃0 : 1

2
∇2hi i−1

2
∂ j∂i h

i j− 1

μ

[
εi j∂ j∂

kGki+εi j∇2(∂i h0 j )
]

≈ 0,

(67)

and preservation in time of Si gives more relations involving
Lagrange multipliers

Ṡi → S̃i : 1

2
∂kG

ki − 1

2
∂ i G j

j + 1

2
∇2h0i

−1

2
∂ j∂

i h0 j + εik

2μ

(
∇2G0k + ∂ l∂kG0l

−∂ lvlk − ∂k∇2h00

)
+ εk j

2μ

(
∂ jv

i
k + ∇2∂kh

i
j

−∂l∂
i∂kh

l
j + ∂ i∂kG0 j

)

+ 1

2μ

(
εki∂ llk + εk j∂ j

i
k

)
≈ 0. (68)

Furthermore, from consistency of S̃0 we do not obtain fur-
ther constraints but more relations between Lagrange multi-
pliers

˙̃S0 = 1

2
∇2Gi

i − 1

2
∂ j∂ i Gi j

− 1

μ
εi j

(
∂ j∂

kvki + ∇2∂i G0 j + ∂ j∂
kki

)
≈ 0, (69)

Nonetheless, we can eliminate the Lagrange multipliers
from (66) and (68), thus, a new constraint is obtained

Ṽ i = ∂kπ
ik + εkl

4μ
∇2∂kh

i
l − εk j

4μ
∂k∂

i∂l h
l
j ≈ 0, (70)

the trace of (66) remove the Lagrange multipliers and other
new constraint arise

Ṽ = π i
i + 1

2
G j

j + ∂ i h0
i + 1

2μ
εi j∂i∂l h

l
j ≈ 0. (71)

Moreover, from the trace of (61) emerges other constraint and
preservation in time ends the search of further constraints

Qikηik = Pi
i ≈ 0,

Ṗi
i =

{
Pi

i , H
1
CS

}
= Ṽ ≈ 0. (72)

Therefore the complete set of constraints is given by

Q00 : P00 ≈ 0,

Q0i : P0i ≈ 0,

Qik : Pki + εi j

2μ
∂kh0 j + εi j

2μ
∂ j h

k
0 − εi j

4μ
Gk

j + εk j

2μ
∂ i h0 j

+εk j

2μ
∂ j h

i
0 − εk j

4μ
Gi

j ≈ 0,

S0 : π00 ≈ 0,

Si : π0i + εi j

4μ
∇2h0 j + εl j

2μ
∂ i∂l h0 j ≈ 0,

S̃0 : 1

2
∇2h j

j−1

2
∂i∂ j h

i j− 1

μ
εi j∂ j∂

kGki− 1

μ
εi j∇2∂i h0 j ≈ 0,

Ṽ i : ∂kπ
ik + εkl

4μ
∇2∂kh

i
l − εk j

4μ
∂k∂

i∂l h
l
j ≈ 0,

Ṽ : π i
i + 1

2
G j

j + ∂i h
0i + εi j

2μ
∂i∂l h

l
j ≈ 0,

U : Pi
i ≈ 0. (73)

Now, we will separate the constraints into first class and
second class. For this aim, we calculate the matrix, say Wαβ ,
whose entries are given by the Poisson brackets between all
constraints, this is
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W =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

Q00 Q0l Qlm S0 Sl S̃0 Ṽ l Ṽ U

Q00 0 0 0 0 0 0 0 0 0
Q0i 0 0 0 0 0 0 0 0 0

Qik 0 0
{
Qik, Qlm

}
0

{
Qik, Sl

} {
Qik, S̃0

}
0

{
Qik, Ṽ

}
U

S0 0 0 0 0 0 0 0 0 0
Si 0 0

{
Si , Qlm

}
0

{
Si , Sl

} {
Si , S̃0

}
0

{
Si , Ṽ

}
0

S̃0 0 0
{
S̃0, Qlm

}
0

{
S̃0, Sl

}
0 0

{
S̃0, Ṽ

}
0

Ṽ i 0 0 0 0 0 0 0 0 0
Ṽ 0 0

{
Ṽ , Qlm

}
0

{
Ṽ , Sl

} {
Ṽ , S̃0

}
0 0

{
Ṽ ,U

}

U 0 0 0 0 0 0 0
{
U, Ṽ

}
0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

, (74)

where the nontrivial brackets are given by

{
Qik , Qlm

}
= 1

4μ

(
εmiηlk + εliηmk + εlkηmi + εmkηli

)
δ2(x − y),

{
Qik , Sl

}
= 1

4μ

(
εil∂k + εkl∂ i + εi jηkl∂ j + εk jηil∂ j

)
δ2(x − y),

{
Qik , S̃0

}
= 1

2μ

(
εi j ∂ j ∂

k + εk j ∂ j ∂
i
)

δ2(x − y),

{
Qik , Ṽ

}
= − 1

2
ηikδ2(x − y),

{
Si , Sl

}
= 1

4μ

(
εil∇2 + εi j ∂l∂ j + ε jl∂ i ∂ j

)
δ2(x − y),

{
Si , Ṽ

}
= − 1

2
∂ i δ2(x − y),

{
S̃0, Ṽ

}
= 1

2
∇2δ2(x − y),

{
Si , S̃0

}
= 1

2μ
ε j i∇2∂ j δ

2(x − y),

{
Ṽ ,U

}
= δ2(x − y), (75)

hence, after a long algebraic manupulations, we observe that
tha matrix (74) has a rank= 4 and nine null vectors. From the
null vectors we identify the following first class constraints

Q00 : P00 ≈ 0,

Q0i : P0i ≈ 0,

S0 : π00 ≈ 0,

Si : ∂k P
ki−π0i+ εi j

4μ
∇2h0 j+ εi j

2μ
∂ j ∂

khk0− εi j

4μ
∂kGkj− εk j

4μ
∂kG

i
j ≈ 0

S̃0∂i ∂k P
ik + 1

2
∇2h j

j − 1

2
∂i ∂ j h

i j + εi j

2μ
∂i ∂kG

k
j ≈ 0

Ṽ i : ∂kπ
ik + εkl

4μ
∇2∂kh

i
l − εk j

4μ
∂k∂

i ∂l h
l
j ≈ 0, (76)

and the rank implies the following four second class con-
straints

Q11 = P11 + 1

μ
∂1h02 + 1

μ
∂2h

1
0 − 1

2μ
G1

2 ≈ 0,

Q12 = P12+ 1

μ
∂2h02− 1

μ
∂1h01 + 1

4μ
G1

1 − 1

4μ
G2

2 ≈ 0,

Ṽ : π i
i + 1

2
G j

j + ∂i h
0i + εi j

2μ
∂i∂l h

l
j ≈ 0,

U : Pi
i ≈ 0. (77)

In this manner, the complete set of constraints allow us to
carry out the counting of physical degrees of freedom as fol-
lows; there are 24 canonical variables (hμν,Gμν, π

μν, Pμν),
four second class constraints (Q11, Q12, Ṽ ,U ) and nine first
class constraints (Q00, Q0i , S0, Si , S̃0, Ṽ i ), thus

DOF = 1

2
[(24) − 2 (9) − (4)] = 1, (78)

as expected [14,15,22]. From the second class constraints
we can construct the Dirac brackets between the canonical
variables. The nontrivial Dirac’s brackets are given by

{
h00, π

00}
D = δ2(x − y),

{
h0i , π

0l
}

D
= 1

2
δl
i δ2(x − y),

{
hi j , π

lm
}

D
= 1

2

(
δi
lδ j

m + δi
mδ j

l
)

δ2(x − y),
{
hi j ,Glm

}
D = −ηi jηlmδ2(x − y),

{
π0i , π0l

}

D
= − 1

2μ
εil∇2δ2(x − y),

{
π0i ,Glm

}

D
= 1

2

(
δi m∂l + δi l∂m

)
δ2(x − y),

{
π0i , Plm

}

D
= − 1

8μ

(
εlnηim+εmnηil+εmiηln+εliηmn

)
∂nδ

2(x − y),

{
π i j ,Glm

}

D
= 1

4μ
ηlm

(
εnj∂n∂

i + εni∂n∂
j
)

δ2(x − y),

{
G00, P

00}
D = δ2(x − y),

{
G0i , P

0l
}

D
= 1

2
δi
lδ2(x − y),
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{
Gi j ,Glm

}
D = μ

4

(
εilη jm + εimη jl + ε jlηim + ε jmηil

)
δ2(x − y),

{
Gi j , P

lm
}

D
= 1

4

(
δl i δ

m
j + δl j δ

m
i − ηlmηi j

)
δ2(x − y)

{
Pi j , Plm

}

D
= 1

16μ

(
εilηmj + εimη jl + ε jlηmi + ε jmηil

)
δ2(x − y),

(79)

where we can observe that these brackets coincide with those
reported in [22] where the Ostogradski approach was used.
Furthermore, the extended action is given by

SEXT
[
hμν, π

μν,Gμν, P
μν, λα,wα

]

=
∫ (

πμν ḣμν + Pμν ḧμν − HETMG − λαγ α − wαχα
)
d3x,

where HETMG is the extended Hamiltonian, γ α are the first
class constraints, χα are the second class constraints; λα and
wα are Lagrange multipliers enforcing the first class and sec-
ond class constraints respectively. The extended Hamiltonian
is given by

HETMG = HTMG + uαχα

= HTMG + u1Q
11 + u2Q

12 + u3Ṽ + u4U,

(80)

where the u’s are four Lagrange multipliers that must be
identified because they are associated with the four second
class constraints. Hence, the u’s are given by

uα = C−1
βα {χβ, HTMG}, (81)

where χα = (Q11, Q12, Ṽ ,U ). In this manner, from (81)
we obtain the following expresions for the multipliers

u1 = C−1
21 {χ1, HTMG }

= (2μπ12 − μG12 − μ∂1h02 − μ∂2h01 + ∂2∂2h00

−∂1∂1h00 + 1

2
∇2h1

1 − 1

2
∇2h2

2

+1

2
∂l∂

2hl2 − 1

2
∂l∂

1hl1

−2∂2G02 + 2∂1G01 + v2
2 − v1

1)δ2(x − y), (82)

u2 = C−1
12 {χ1, HTMG } + C−1

42 {χ4, HTMG }
= (−2μπ11 − μG22 − 2μ∂2h02 − 2∂2∂1h00

+∇2h1
2 − ∂1∂l h

l
2

+2∂1G02 + 2∂2G
1

0 − 2v1
2 + μṼ )δ2(x − y), (83)

u3 = C−1
43 {χ4, HTMG } = −Ṽ δ2(x − y), (84)

u4 = C−1
24 {χ2, HTMG } + C−1

34 {χ3, HTMG }

=
(

− μπ12 + μ

2
G12 + μ

2
∂1h02 + μ

2
∂2h01

−v2
2 − ∂2∂2h00 − 1

4
∇2h1

1 + 1

4
∇2h2

2

−1

4
∂l∂

2hl2 + 1

4
∂l∂

1hl1

+2∂1G01 − 1

μ
εi j ∂i ∂

kGk j + 1

μ
εi j ∂i∇2h j0

)
δ2(x − y),

(85)

the substitution of these multipliers in the extended Hamil-
tonian defines a first class function. In fact, the Dirac algebra
between the first class constraints and the extended Hamil-
tonian is given by
{
Q00, HETMG

}

D
= −S0, (86)

{
Q0i , HETMG

}

D
= Si , (87)

{
S0, HETMG

}

D
= S̃0, (88)

{
Ṽ i , HETMG

}

D
= 0, (89)

{
S̃0, HETMG

}

D
= 0, (90)

{
Si , HETMG

}

D
= Ṽ i , (91)

therefore, with this result, we have constructed a first class
extended Hamiltonian as expected. We have observed that
the constraints in this work are not the same at all to those
reported in [22], however, the results of the Dirac brackets are
equivalent. In this manner, we have presented a new alterna-
tive canonical analysis for TMG that extends those reported
in the literature.

4 Conclusions

In this paper, a detailed GLT analysis of higher-order Chern-
Simons and TMG theories in the perturbative context has
been performed. Concerning higher-order Chern-Simons
theory, we have reported all the complete structure of the
constraints, as far as we know, a complete analysis of the
constraints of this theory in the weak field context has not
been reported. We found the extended Hamiltonian and we
showed by means the Dirac algebra that it is of first-class. On
the other hand, from the analysis of TMG we have reported a
new structure of the constraints. We obtained the constraints
through the null vectors and we showed that our analysis
is consistent; we constructed a first-class extended Hamil-
tonian and the Dirac algebra between it and the first-class
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constraints is closed. In this manner, we observed that GLT
formalism is an elegant and pragmatic scheme for analyzing
higher-order theories.

It is worth emphasizing, that the GLT framework can be
applied to other physical systems. In fact, it can be used
in others theories where the Ostrogradski framework is not
easy to develop. In this sense, the results of this paper are the
basis for future works where the GLT framework will show
advantages for the analysis of the constraints, for instance,
in higher order modifications of gravity. However, all these
ideas are in progress and will be reported soon [24].
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5 Appendix A

In general, the higher order Lagrangian (1) has the form

LCS = LCS

(
hαβ, ∂0hαβ, ∂i hαβ, ∂0∂0hαβ, 2∂0∂i hαβ, ∂i∂ j hαβ

)
, (92)

hence, the equations of motion obtained from (92) are given
by

∂LCS

∂hαβ

− ∂0
∂LCS

∂(∂0hαβ)
− ∂i

∂LCS

∂(∂i hαβ)
+ ∂0∂0

∂LCS

∂(∂0∂0hαβ)

+∂0∂i
∂LCS

∂(∂i∂0hαβ)
+ ∂i∂ j

∂LCS

∂(∂i∂ j hαβ)
= 0. (93)

On the other hand, the introduction of the momenta (πμν,

Pμν) allows us to rewrite the Lagrangian (92) as (see Eq.
(4))

S =
∫ [

Lv
CS + πμν(ḣμν − Gμν) + Pμν(Ġμν − vμν)

]
d3x,

(94)

where Lv
CS = Lv

CS

(
hαβ,Gαβ, ∂i hαβ, vαβ, ∂i Gαβ, ∂i∂ j hαβ

)
,

Gαβ = ḣαβ and Ġαβ = vαβ . Hence, the variation of (94)
respect all dynamical variables is given by

δS

δhαβ

= ∂Lv
CS

∂hαβ

− ∂i
∂Lv

CS

∂(∂i hαβ)
+ ∂i∂ j

∂Lv
CS

∂(∂i∂ j hαβ)
− π̇αβ = 0,

(95)
δS

δGαβ

= ∂Lv
CS

∂Gαβ

− ∂i
∂Lv

CS

∂(∂i Gαβ)
− παβ − Ṗαβ = 0, (96)

δS

δvαβ

= ∂Lv
CS

∂vαβ

− Pαβ = 0, (97)

δS

δπαβ
= ḣαβ − Gαβ = 0, (98)

δS

δPαβ
= Ġαβ − vαβ = 0. (99)

The Eqs. (95–99) are equivalent to (93). In fact, from time
differentiation of (97) and taking (96) into account, we obtain

∂Lv
CS

∂Gαβ

− ∂i
∂Lv

CS

∂(∂i Gαβ)
− παβ − ∂0

∂Lv
CS

∂vαβ

= 0, (100)

now, substituting the time derivative of (100) into (95) the
following arise

∂Lv
CS

∂hαβ

− ∂i
∂Lv

CS

∂(∂i hαβ)

+∂i∂ j
∂Lv

CS

∂(∂i∂ j hαβ)
− ∂0

∂Lv
CS

∂Gαβ

+∂0∂i
∂Lv

CS

∂(∂i Gαβ)
+ ∂0∂0

∂Lv
CS

∂vαβ

= 0, (101)

finally, if the solutions of (98–99) are substituted into (101),
then (93) and (101) are equivalents [27,28].

6 Appendix B

In this appendix we shall resume the difference between the
Chern-Simons and TMG theories. In fact, the equations of
motion obtained from the Chern–Simons action (1) are given
by

C (L)
μν = εμ

αβ∂αR
(L)
βν + εν

αβ∂αR
(L)
βμ = 0, (102)

where C (L)
μν is the linear Cotton tensor and R(L)

βν is the linear
Ricci tensor given by

R(L)
μν = 1

2

(−�hμν −∂μ∂νh+∂σ ∂νhσμ +∂σ ∂μhσν

)
. (103)

It is well-known that Cotton tensor vanishes if and only if
the 3-dimensional metric tensor is conformally flat, and this
shows a difference between Chern-Simons theory and TMG.
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In fact, Chern-Symons theory does not describe propagation
of degrees of freedom, there is not gravity.

On the other hand, the equations of motion obtained from
(54) are given by

G(L)
αν + 1

μ
C (L)

αν = 0, (104)

where G(L)
αν = R(L)

αν − 1
2gανR(L) is the linear Einstein tensor.

By using the Coulomb gauge ∂αhαβ = 0 and the traceless
condition hα

α = 0, the equation (104) can be reduced to that
branch of the massive sector given by

hαν + 1

μ
εα

ρβhβν = 0, (105)

if we contract the Eq. (105) with (ην
ρ − 1

μ
ερ

αν∂α) we obtain

(
� − μ2)hμν = 0. (106)

Equation (96) describes the propagation of one degree of
freedom, a massive spin-2 graviton with mass m = √

μ2

[25], now the solutions are even more general than Einstein’s
metrics [26]. In this respect, the TMG theory is attractive
because it is close to real gravity.
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