
Eur. Phys. J. C (2021) 81:610
https://doi.org/10.1140/epjc/s10052-021-09427-8

Regular Article - Theoretical Physics

Tidal forces in Kottler spacetimes

V. P. Vandeev1,a, A. N. Semenova2

1 BALTIC STATE TECHNICAL UNIVERSITY «VOENMEH» named after D.F. Ustinov, 1-Ya Krasnoarmeyskaya Ulitsa, 1, St Petersburg 190005,
Russia

2 Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, Gatchina 188300, Russia

Received: 30 March 2021 / Accepted: 5 July 2021 / Published online: 13 July 2021
© The Author(s) 2021

Abstract The article considers tidal forces in the vicinity
of the Kottler black hole. We find a solution of the geodesic
deviation equation for radially falling bodies, which is deter-
mined by elliptic integrals. And also the asymptotic behav-
ior of all spatial geodesic deviation vector components were
found. We demonstrate that the radial component of the tidal
force changes sign outside the single event horizon for any
negative values of the cosmological constant, in contrast to
the Schwarzschild black hole, where all the components of
the tidal force are sign-constant. We also find the similarity
between the Kottler black hole and the Reissner–Nordström
black hole, because we indicate the value of the cosmolog-
ical constant, which ensures the existence of two horizons
of the black hole, between which the angular components
of the tidal force change sign. It was possible to detect non-
analytical behavior of geodesic deviation vector components
in anti-de Sitter spacetime and to describe it locally.

1 Introduction

The physical properties of black holes are still very inter-
esting for the scientific community, despite the fact that for
the first time a black hole, as a solution to Einstein’s equa-
tions, was discovered in GR more than a hundred years ago.
That was the Schwarzschild solution [1], which has a single
parameter - the mass of the black hole. Subsequently, many
solutions of Einstein’s equations appeared, which general-
ized Schwarzschild’s solution: Kerr (rotating) black hole [2],
Reissner–Nordström (electrically charged) black hole [3,4],
Kerr–Newman (charged and rotating) black hole [5]. How-
ever, non-vacuum solutions are of particular interest. And the
simplest solution of this type is the Kottler metric [6], which
solves the equations of general relativity when the cosmo-
logical constant plays the role of matter. It is also called the
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Schwarzschild–De Sitter metric, and its physical [7] and geo-
metric [8] properties are actively explored.

In this article, we focus on the studying of tidal forces
in the Kottler metric, like articles [9,10], which discuss the
same issues only for Reisnner–Nordström and Kiselev black
holes, respectively. General spherical symmetry spaces are
considered in [11]. The tidal effect in spaces with unusual
regular black hole metrics and Schwarzschild metric with
massive graviton is considered in [12,13]. It is well known
that in Schwarzschild spacetime a test body falling towards
the event horizon of BH experiences stretching in the radial
direction and compression in the both angular directions [14].
However, the presence of matter, which is represented by
a cosmological constant, significantly changes the behavior
of tidal forces in comparison with empty space. The most
important differences are that at infinity all the components
of the tidal forces are nonzero and also they cease to be a
constant sign. At certain points of Kottler metric, the tidal
forces in the radial or angular direction change their sign
unlike in Schwarzschild metric. The paper is organized as
follows. In Sect. 2 we discuss properties of Kottler space-
time. We analyze geodesics in Kottler metric in Sect. 3. And
study tidal forces of such black holes in Sect. 4. In Sect. 5
we obtain the solutions of the geodesic deviation equations.
Then in Sect. 6. we provide an asymptotic analysis of solu-
tions in the vicinity of a physical singularity and infinitely
far from it. And Sect. 7 includes an analysis of geodesic
deviation equations solutions in the Schwarzschild–anti-de
Sitter spacetime, there we manage to show the presence of
non-analytical behavior of all deviation vector components
at large distances from the black hole horizon. We use the
metric signature (+,−,−,−) and set the speed of light c
and Newtonian gravitational constant G to 1 throughout this
paper.
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2 Kottler black holes

In this paper, we investigate the properties of a static solu-
tion of the Einstein equation in the presence of cosmological
constant

Rμν − R

2
gμν + �gμν = 0. (1)

The line element of a static black hole in the presence of
constant energy density is given by [6]

ds2 = gμνdx
μdxν

= f (r)dt2 − dr2

f (r)
− r2

(
dθ2 + sin2 θdϕ2

)
, (2)

with

f (r) = 1 − 2M

r
− �r2

3
, (3)

where M is mass of a black hole and � is cosmological
constant. To find the radius of the event horizon of a black
hole, we find solutions of the equation f (r) = 0. Passing to
the dimensionless parameters ρ = r

M and λ = �M2 horizon
equation takes the form

f (ρ) = −λρ3 + 3ρ − 6

3ρ
= 0. (4)

There are four possible cases of the structure of the Kottler
spacetime. They are described in [15] and come down to:

1. For �M2 ≤ 0 we have single event horizon R�, which
matches with the Schwarzschild horizon Rs = 2M at
� = 0.

2. For 0 < �M2 < 1
9 there are two horizons of the black

hole, which we call R+ and R−.
3. For �M2 = 1

9 there is only one critical horizon Rc = 3M .
4. For �M2 > 1

9 black hole does not have any horizons.

Using the Cardano formula [16] we obtain dimensionless
positive roots of (4)

ρ� = R�

M
= 3

√
−3

λ
+ 1

λ

√
9 − 1

λ

+ 3

√
−3

λ
− 1

λ

√
9 − 1

λ
, (5)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ− = R−
M

= 2√
λ

cos

⎛
⎝arccos

(
−3

√
λ
)

+ 4π

3

⎞
⎠,

ρ+ = R+
M

= 2√
λ

cos

⎛
⎝arccos

(
−3

√
λ
)

3

⎞
⎠,

(6)

ρc = Rc

M
= 3. (7)

Fig. 1 Event horizon radius ρh = Rh
M dependence on cosmological

constant λ = �M2

As a result, we have the opportunity to build a dependence
of the radius of the event horizon of a black hole on the
magnitude of the cosmological constant, the value of which
is presented in Fig. 1. Where the square and circle indicate
Rs and Rc correspondingly.

Further in the article, we will call an arbitrary black hole
horizon Rh (or its dimensionless analog ρh = Rh

M ) if we
are not interested in the specific properties of the horizon or
horizons.

3 Radial geodesics in Kottler spacetime

In radial motion, there are two meaningful geodesic equa-
tions [17] for the time and radial variables

dt

dτ
= E

f (r)
, (8)

(
dr

dτ

)2

= E2 − f (r). (9)

where dτ is the proper time. And it should be noted that
the dynamics in angular variables is trivial because we study
radial geodesics and therefore we set the angular momentum
to zero. For the radial infall of a test particle from rest at
position b, we obtain E2 = f (b) from dr

dτ
= 0 [18].
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By defining the ”Newtonian radial acceleration” [19] as
Ar ≡ r̈ , we find from Eq. (9) that

Ar = − f ′(r)
2

, (10)

where the prime denotes the differentiation with respect to
the radial coordinate r . For Kottler metric this becomes

Ar = −M

r2 + �r

3
. (11)

Where it can be seen that a negative value of � gives us addi-
tional attraction to a black hole, and for positive �, regions
of attraction and repulsion appear. These areas are separated
by the surface of a sphere of radius req which is the solution
of equation Ar (req) = 0

req = 3

√
3M

�
. (12)

It is interesting to note that the test particle falling freely from
rest at r = b > Rh can turn back at Rstop. The radius Rstop

can easily be found as a root of E2 = f (r) as

Rstop = −b

2
+
√
b2

4
+ 6M

�b
, (13)

which is real and positive when � > 0. It should be noted
that for � = 0 (Schwarzschild metric) Rstop is absent. Equa-
tion (13) allows us to compare points Rstop and b:
⎡
⎢⎢⎣
Rstop ≥ b at � ∈

(
0,

3M

b3

]
,

Rstop < b at � ∈
(

3M

b3 ,+∞
)

.

(14)

We are interested in case where Rstop < b because a turn of
test particle is possible in Rstop point.

4 Tidal forces in Kottler spacetime

4.1 Geodesic deviation equation

Now let us consider tidal forces in the Kottler metric. As is
well known [14], the equation for the spacelike components
of the geodesic deviation vector ξ̃ μ that describes the distance
between two infinitesimally close particles in free fall is given
by

D2ξ̃ μ

dτ 2 = Rμ
ναβu

νuαξ̃β, (15)

where uν is the unit vector of 4-velocity tangent to the
geodesic. The tetrad basis for radial free-fall reference frames
have form:

eμ
t =
(
E

f
,

√
E2 − f , 0, 0

)
, (16a)

eμ
r =

(
−
√
E2 − f

f
,−E, 0, 0

)
, (16b)

eμ
θ =
(

0, 0,
1

r
, 0

)
, (16c)

eμ
ϕ =
(

0, 0, 0,
1

r sin θ

)
, (16d)

where eμ
α satisfy normalization condition eμ

α eν
β gμν = ηαβ

and ηαβ is Minkowski metric. The geodesic deviation vector
can be submitted as

ξ̃ μ = eμ
ν ξν. (17)

The nonzero components of the Riemann tensor are calcu-
lated by the Kottler metric from expression (2) and have the
form

R0
.101 = − f ′′

2 f
, (18a)

R0
.202 = R1

.212 = − f ′r
2

, (18b)

R0
.303 = R1

.313 = − f ′r sin2 θ

2
, (18c)

R2
.323 = (1 − f ) sin2 θ. (18d)

Using these components in Eq. (15) and linear transfor-
mation from Eq. (17), we find the equations for tidal forces
in free-fall reference frames:

ξ̈ r = − f ′′

2
ξ r =

(
2M

r3 + �

3

)
ξ r , (19)

ξ̈ θ = − f ′

2r
ξθ =

(
−M

r3 + �

3

)
ξθ , (20)

ξ̈ ϕ = − f ′

2r
ξϕ =

(
−M

r3 + �

3

)
ξϕ. (21)

This result for � = 0 corresponds to the Schwarzschild
case presented in [14]. It is worth noting that Eq. (15) have
four components but we have given expressions only for
three: ξ r , ξθ , ξϕ . The reason for this is that the spectrum of
Rμ

ναβu
νuα has one zero eigenvalue, which gives the insignif-

icant equation ξ̈ t = 0. We see that the tidal forces in this
spacetime depend on the mass of a black hole and value
of cosmological constant. We also see that components of
tidal force may vanish, in contrast to what happens in the
Schwarzschild spacetime (� = 0). Below we consider the
Eqs. (19), (20), (21) in more detail.

Equation (19) gives us zero radial component of tidal force
at r = Rr

0:

Rr
0 = − 3

√
6M

�
, or in terms of (λ, ρ) : ρr

0 = − 3

√
6

λ
, (22)

which is positive when λ < 0. This means that for a neg-
ative cosmological constant, the test body inside the sphere
with a radius Rr

0 undergoes tidal stretch, and in the outside
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Fig. 2 Comparison of the equilibrium radii ρa
0 , ρr

0 and horizons of the
Kottler black hole

of the sphere with a radius Rr
0 it experiences tidal compres-

sion along the radial direction. For a positive cosmological
constant, the test body is subjected only to radial tidal stretch.

From Eqs. (20) and (21) we get zero of angular compo-
nents of tidal force at r = Ra

0 :

Ra
0 = 3

√
3M

�
, or in terms of (λ, ρ) : ρa

0 = 3

√
3

λ
, (23)

which is positive when λ > 0. This means that for a positive
cosmological constant, the test body inside the sphere with a
radius Ra

0 undergoes tidal angular (transverse) compression,
and outside the sphere with a radius Ra

0 it experiences tidal
stretch along the transverse direction. For a negative cosmo-
logical constant, the test body is subjected only to angular
(transverse) tidal compression.

It is interesting to compare our results for Kottler met-
ric with results for Reissner–Nordström metric because both
these spacetimes are the simplest generalization of Schwarz-
schild metric and have spherical symmetry. The presence of
the Reissner–Nordström black hole charge causes all com-
ponents of the tidal forces to change sign as well in Kottler
case. Unlike Reissner–Nordström spacetime [9], all compo-
nents of tidal force in Kottler metric have no extremes and
do not change their monotonicity.

In Fig. 2 we can see Rr
0 > Rλ for all negative values of the

cosmological constant, and for value range of cosmological
constant where two horizons exist: R− < Ra

0 < R+.

Fig. 3 Radial tidal force for Kottler BH with different choices of λ.
We have chosen b = 10M

Fig. 4 Radial tidal force for Kottler BH with different choices of λ on
a small scale. We have chosen b = 10M

4.2 Radial tidal force

In Fig. 3 we plot the radial tidal force given by Eq. (19) for
Kottler black holes for different values of the cosmological
constant. The presence of a nonzero �-term does not change
the monotonicity of the dependence of tidal force on ρ = r

M ,
it changes only the asymptotic behavior at infinitely large
distances. The radial component of the tidal force does not
vanish at infinity. At short distances, tidal forces increase as in
the case of the Schwarchild black hole (� = 0). It illustrates
that the radial tidal force changes (for � < 0) sign always
outside the event horizon, such Rr

0 > Rh .
The scale of Fig. 3 does not allow us to see Rstop points

on it. Therefore in Fig. 4 the same force is shown but on
a different scale. And for any positive value of λ the radial
component of the tidal force is positive for any r . Also all
points Rstop, where the radial component of the velocity of
a freely falling body is zero, are below the event horizon
Rstop < Rh .

But this scale makes all curves on Fig. 4 merge into one.

4.3 Angular tidal force

In Fig. 5 we plot the angular tidal force given by Eq. (20) or
Eq. (21) (in a spherically symmetric problem azimuthal and
polar angles are equal) for Kottler black holes for different
values of the cosmological constant. In this graph, we see
that the angular component of the tidal force changes sign
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Fig. 5 Angular tidal forces for Kottler BH with different choices of λ.
We have chosen b = 10M

Fig. 6 Angular tidal forces for Kottler BH with different choices of λ

on a small scale. We have chosen b = 10M

on the event horizon at a critical value of the cosmological
constant λ = 1

9 . And for any λ ∈ (0, 1
9

)
the tidal force

changes sign between the two black hole horizons. But at
any negative values of λ, this component of the tidal force
does not change sign.

In Fig. 6 we show the same force but on a different scale.
These curves demonstrate that the stopping points Rstop are
inside the event horizon, as well as for the radial component.
This is another common property of the Kottler and Reissner–
Nordström metrics. But this scale makes all curves on Fig. 6
merge into one.

5 Solutions of the geodesic deviation equations in
Kottler spacetime

In this section we solve deviation equations (19), (20) and
(21) and find the geodesic deviation vectors for radially free-
falling geodesics as functions of r . We consider a test body
infalling radially towards the Kottler black hole. It is simple
to convert Eqs. (19), (20) and (21) to differential equations
in r by using Eq. (9). Thus, we find

(
E2 − f

) d2ξ r

dr2 − f ′

2

dξ r

dr
+ f ′′

2
ξ r = 0, (24)

(
E2 − f

) d2ξa

dr2 − f ′

2

dξa

dr
+ f ′′

2r
ξa = 0, (25)

where a = θ, ϕ means angular variables, because Eqs. (20)
and (21) have the same structure due to spherical symmetry
of the problem and prime means the derivative with respect
to r . In terms of dimensionless variables ρ and λ Eqs. (24)
and (25) look accordingly

(
E2 − 1 + 2

ρ
+ λ

3
ρ2
)

ξ r
′′ +
(

− 1

ρ2 + λ

3
ρ

)
ξ r

′

−
(

2

ρ3 + λ

3

)
ξ r = 0, (26)

(
E2 − 1 + 2

ρ
+ λ

3
ρ2
)

ξa
′′ +
(

− 1

ρ2 + λ

3
ρ

)
ξa

′

−
(

− 1

ρ3 + λ

3

)
ξa = 0, (27)

where prime means the derivative with respect to dimension-
less ρ. The analytical solutions of Eqs. (26) and (27) can be
expressed as quadratures. For the radial component we have

ξ r (ρ) =

⎡
⎢⎢⎣A + B

∫
dρ

(
E2 − 1 + 2

ρ
+ λ

3 ρ2
) 3

2

⎤
⎥⎥⎦×

×
√
E2 − 1 + 2

ρ
+ λ

3
ρ2, (28)

and for the angular components we have

ξa(ρ) = ρ

⎡
⎣C + D

∫
dρ

ρ2
√
E2 − 1 + 2

ρ
+ λ

3 ρ2

⎤
⎦ , (29)

where A, B, C and D are constants of integration. However,
the integrals in Eqs. (28) and (29) are elliptic, which signifi-
cantly complicates the analysis of these functions.

Figures 6 and 7 show the numerical solutions of differen-
tial equations (26) and (27), respectively. They present the
dependence of the component of the geodesic deviation vec-
tor on the dimensionless radial variable ρ for different values
of λ.

The behavior of the radial component of the deviation
vector in the Kottler spacetime in the vicinity of the physical
singularity is similar to the dependence of the radial com-
ponent of the deviation vector in the (� = 0). It aims at
infinity for ρ → 0. However, far from the center of black
hole, the influence of the cosmological constant begins to
dominate, therefore, infinitely far from the black hole, the
radial geodesic deviation in the Kottler metric differs signifi-
cantly from asymptotically flat Schwarzschild and Reissner–
Nordström [9] metrics. For � > 0 ξ r grows linearly at
ρ → ∞. Case of negative λ requires a separate study because
the denominator of the integrand from (28) vanishes.
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Fig. 7 Radial components of the geodesic deviation vector for several
values of λ. We have chosen b = 10M and E = 10, initial conditions:
ξ r (b) = 1, ξ r ′(b) = 0

Fig. 8 Angular components of the geodesic deviation vector for sev-
eral values of λ. We have chosen b = 10M and E = 10, initial condi-
tions: ξa(b) = 1, ξa ′(b) = 0

Angular components ξa , where a = θ, ϕ, of deviation
vector behave like a radial component at spatial infinity. In
the vicinity of the center of the black hole they are finite for
all values λ in contrast to the radial component that is similar
to case of Reissner–Nordström spacetime [9].

6 Behavior of solutions near singularity and infinity

In this section, we give a local description of solutions to the
Eqs. (26) and (27). These are linear homogeneous differential
equations with variable coefficients. Since we have elliptic
integrals in Eqs. (28) and (29), so we would like to describe
the local behavior of solutions in the surrounding area of
the singularity of a black hole and infinitely far from it. We
show how expressions (28) and (29) behave for ρ → 0 and
ρ → ∞.

6.1 Radial component

To determine the behavior of ξ r for small or large ρ let us
consider Taylor series at ρ → 0 and ρ → ∞ (or 1

ρ
→

0) respectively. In Eq. (28), the root and the integrand are

expanded in a series

ξr (ρ) =
(√

2

ρ
+

√
2

4

(
E2 − 1

)√
ρ + O

(
ρ

3
2

))

×
[
A + B

∫ {√
2

4
ρ

3
2 − 3

√
2

16

(
E2 − 1

)
ρ

5
2 + O

(
ρ

7
2

)}
dρ

]

for ρ → 0, (30a)

ξr (ρ) =
(√

λ

3
ρ +
√

3

λ

E2 − 1

2ρ
+ O

(
1

ρ2

))

×
⎡
⎣A +

(
3

λ

) 3
2
B
∫ {

1

ρ3 + 3

λ

E2 − 1

2ρ5
+ O

(
1

ρ6

)}
dρ

⎤
⎦

for ρ → ∞. (30b)

After integrating the sum of power functions and multiplying
brackets in both expressions (30a) and (30b) we get

ξ r (ρ) =
√

2A√
ρ

+
√

2A
(
E2 − 1

)

4
√

ρ + O
(
ρ

3
2

)

for ρ → 0, (31a)

ξ r (ρ) =
√

λ

3
Aρ +

[√
3

λ

A
(
E2 − 1

)

2
− 3B

2λ

]
1

ρ
+ O

(
1

ρ2

)

for ρ → ∞. (31b)

From Eq. (31a) we see that near the black hole singularity
the radial component of deviation vector tends to infinity
as 1√

ρ
, whereas according to Eq. (31b) at spatial infinity it

grows linearly only for positive λ. The asymptotic behavior
of ξ r (ρ) from (31a) and (31b) completely coincides with the
numerical solution shown in Fig. 7, except for the case when
λ < 0. Numerical solutions from Fig. 7 correspond to (31a)
and (31b) in the indicated areas of ρ.

6.2 Angular components

A similar analysis of Eq. (29) in the same way leads first to

ξa(ρ) = ρ

⎡
⎣C + D

∫ ⎛
⎝ρ

− 3
2√
2

− E2 − 1

4
√

2
ρ

− 1
2 + O

(√
ρ
)
⎞
⎠ dρ

⎤
⎦

for ρ → 0, (32a)

ξa(ρ) = ρC + ρD

√
3

λ

∫ {
1

ρ3 − 3

λ

E2 − 1

2ρ5
+ O

(
1

ρ6

)}
dρ

for ρ → ∞, (32b)

and after integration and multiplication to

ξa(ρ) = −√
2D

√
ρ + Cρ + O

(
ρ

3
2

)
for ρ → 0, (33a)

ξa(ρ) = Cρ −
√

3

λ

D

2ρ
+ O

(
1

ρ3

)
for ρ → ∞. (33b)

Equation (33a) means the angular components of the devia-
tion vector near the black hole singularity grows as

√
ρ (this

is different from Eq. (31a)), while the linear growth at infinity
in Eq. (33b) is similar Eq. (31b), despite the absence of a λ

leading order. The asymptotic behavior of ξa(ρ) from (33a)
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and (33b) completely coincides with the numerical solution
shown in Fig. 8, except for the case when λ < 0. Numerical
solutions from Fig. 8 correspond to (33a) and (33b) in the
indicated areas of ρ.

7 Separately about anti-de Sitter

Now let us consider the anti-de Sitter spacetime where λ < 0
(λ = −|λ|). In this case we can see that the denominator of
expressions (28) and (29) can vanish

E2 − 1 + 2

ρ
− |λ|

3
ρ2 = 0. (34)

Equation (34) reduces to the cubic equation

ρ3 − 3(E2 − 1)

|λ| ρ − 6

|λ| = 0. (35)

Using the Cardano formula we get

ρ0 = 3

√√√√ 3

|λ| + 3

|λ|

√
1 − (E2 − 1)3

9|λ|

+ 3

√√√√ 3

|λ| − 3

|λ|

√
1 − (E2 − 1)3

9|λ| . (36)

The nature of the roots of this equation depends on the sign

of the expression 1 − (E2−1)3

9|λ| :

1. 1 >
(E2−1)3

9|λ| means that Eq. (35) has a single real positive
simple root ρ0 described by the Eq. (36).

2. 1 = (E2−1)3

9|λ| means that Eq. (35) takes the form

ρ3 − 27

(E2 − 1)2 ρ − 54

(E2 − 1)3

=
(

ρ − 6

E2 − 1

)(
ρ + 3

E2 − 1

)2

= 0, (37)

which has only one real simple positive root ρ = 6
E2−1

,

but the second root ρ = − 3
E2−1

is negative what is point-
less for us.

3. 1 <
(E2−1)3

9|λ| means that Eq. (35) has three real root

ρ = 2

√
E2 − 1

|λ| cos

⎛
⎜⎜⎝

arccos

(
3
√|λ|

(E2−1)
3
2

)
+ 2πk

3

⎞
⎟⎟⎠ , (38)

where k = 0, 1, 2. And among them, only one root is
positive. This is the root for k = 0.

Fig. 9 Radial components of the geodesic deviation vector for several
values of λ. We have chosen b = 10M and E = 10, initial conditions:
ξ r (b) = 1, ξ r ′(b) = 0

Fig. 10 Angular components of the geodesic deviation vector for sev-
eral values of λ. We have chosen b = 10M and E = 10, initial condi-
tions: ξa(b) = 1, ξa ′(b) = 0

Thus, all the cases described above show us that for any
λ < 0 there is simple positive root of Eq. (34). Let us label
this single simple root ρ0, so the left side of the Eq. (34) can
be represented as

E2 − 1 + 2

ρ
− |λ|

3
ρ2 ≡ (ρ0 − ρ)Q(ρ). (39)

Where Q(ρ) is rational function which has no positive roots.
Expression (39) allows us to explore (28) and (29) in the
vicinity of ρ0. Representing square roots and integrands as
a Taylor series, we can, after integration, obtain the local
behavior of the deviation vector components ξ r (ρ) and ξa(ρ)

ξ r (ρ) = 2B

Q(ρ0)
+ A
√

(ρ0 − ρ)Q(ρ0) + O(ρ0 − ρ)

for ρ → ρ0 − 0, (40)

ξa(ρ) = ρ0C − 2D
√

ρ0 − ρ

ρ0
√
Q(ρ0)

+ O (ρ0 − ρ)

for ρ → ρ0 − 0. (41)

Thus, we found a root feature for all components of the devi-
ation vector. If we extend the numerical solution of Eqs. (26)
and (27) shown in Figs. 7 and 8 to longer distances we can
demonstrate in Figs. 9 and 10 that for negative λ ξ r and ξa

behave in a root manner.
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Thus Eqs. (40) and (41) accurately describe the behavior
of the bottom bold curves in Figs. 9 and 10 in the vicinity
of the singular points ρ = ρ0. The reason for non-analytical
behavior of the components of the geodesic deviation vector
is that geodesic equation (8) for λ < 0 defined only for
ρ ≤ ρ0. It means that negative energy density leads to tidal
compression along all spatial directions at large distances
from the black hole.

8 Conclusion

In this article we discuss the Kottler black hole which is solu-
tion of Einstein’s equations when the cosmological constant
plays the role of a matter. We analyze properties of Kottler
spacetime and build the dependence of event horizons radius
on cosmological constant value and describe properties of
radial geodesics in Kottler metric. We detected the presence
of stopping points in the process of free movement in the
investigated space (13). Using geodesic deviation equation
we study tidal force in Kottler black hole, we have shown
that they can change sign (22) and (23) as in the Reissner–
Nordström spacetime in contrast to the Schwarzschild metric.
It was shown that unlike Schwarzschild spacetime (� = 0),
in the case of Kottler metric both radial and angular compo-
nents of tidal force may vanish. But tidal force in the Kottler
and Schwarzschild spaces also have common features differ-
ent from charged Reissner–Nordström black hole, they do not
have an extrema and therefore do not change their monotonic-
ity. The nonzero �-term changes the asymptotic behavior of
tidal force at infinitely large distances (19), (20) and (21):
the radial and angular components do not vanish at infinity.
However, at short distances tidal forces increase as in the case
of the Schwarzschild black hole. The analytical solutions of
the geodesic deviation equations expressed as quadratures
were founded (28) and (29). For these analytical solutions,
we managed to obtain expressions describing the asymptotic
behavior of the deviation vector components near the singu-
larity of the black hole (31a), (33a) and at large distances
from it (31b), (33b). The solutions of the geodesic devia-
tion equations in the Schwarzschild–anti-de Sitter spacetime
(Kottler with � < 0) are considered separately. With a neg-
ative value of the cosmological constant, it was possible to
detect a root peculiarity in the behavior of the deviation vector
at large distances (40) and (41) in comparison with the radius
of the event horizon. This means that, in Schwarzschild–anti-
de Sitter spacetime, there is a region of tidal compression at
a great distance from the black hole. Analytical calculations
are confirmed by the numerical solution of the equations for
the deviation of geodesics.

Development of tidal effects studying in general relativity
can have several directions. First of all, it is interesting to con-
sider any combinations of matter, for example, quintessence

and cosmological constant together. Secondary it can be
investigated how tidal forces are affected by the presence of
non-zero angular momentum of the freely falling body. The
third direction in the study of tidal forces near black holes can
be the study of the properties of geodesic deviation equations
in multidimensional spacetime. It is also very interesting to
observe how tidal forces behave in axially symmetric spaces
in the presence of matter. A separate completely unexplored
question is the nature of tidal forces in the metrics of black
rings. As we can see, despite the fact that the classical effects
in the general theory of relativity have been studied for more
than a hundred years, this issue still contains a large number
of unsolved problems.
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